JP6626476B2 - Rotation angle detection device using gear support mechanism to hold gear in proper position - Google Patents

Rotation angle detection device using gear support mechanism to hold gear in proper position Download PDF

Info

Publication number
JP6626476B2
JP6626476B2 JP2017137283A JP2017137283A JP6626476B2 JP 6626476 B2 JP6626476 B2 JP 6626476B2 JP 2017137283 A JP2017137283 A JP 2017137283A JP 2017137283 A JP2017137283 A JP 2017137283A JP 6626476 B2 JP6626476 B2 JP 6626476B2
Authority
JP
Japan
Prior art keywords
gear
rotation
shaft
rotation angle
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017137283A
Other languages
Japanese (ja)
Other versions
JP2017201326A (en
Inventor
徳行 根岸
徳行 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Motor Co Ltd
Original Assignee
Oriental Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Motor Co Ltd filed Critical Oriental Motor Co Ltd
Priority to JP2017137283A priority Critical patent/JP6626476B2/en
Publication of JP2017201326A publication Critical patent/JP2017201326A/en
Application granted granted Critical
Publication of JP6626476B2 publication Critical patent/JP6626476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、回転角検出装置に使用される歯車を支持する機構に関し、さらに詳しくは、歯車を適正な位置に保持する歯車支持機構を用いる回転角検出装置に関する。   The present invention relates to a mechanism for supporting a gear used in a rotation angle detecting device, and more particularly, to a rotation angle detecting device using a gear supporting mechanism for holding a gear at an appropriate position.

歯車の回転を正確に検出するためには、歯車を取り付ける軸が歯車の回転に対して安定していることが必須である。軸の安定性を確保するために、特開2012−145380号公報(特許文献1)に開示された多回転アブソリュート回転角検出装置は、図2に示されるように、歯車24a,b、25a,b、26a,bをそれぞれ固定した第2〜4回転軸24〜26を保持するための保持板32を用いる。この保持板32により、第2〜4回転軸24〜26の中心軸は、歯車24a,b、25a,b、26a,bの回転に対して、ぶれないで安定する。   In order to accurately detect the rotation of the gear, it is essential that the shaft on which the gear is mounted is stable with respect to the rotation of the gear. In order to secure the stability of the shaft, a multi-rotation absolute rotation angle detection device disclosed in Japanese Patent Application Laid-Open No. 2012-145380 (Patent Document 1), as shown in FIG. A holding plate 32 for holding the second to fourth rotation shafts 24 to 26 to which b, 26a, and b are respectively fixed is used. By the holding plate 32, the central axes of the second to fourth rotation shafts 24 to 26 are stabilized without rotation against rotation of the gears 24a, b, 25a, b, 26a, b.

また、特開2004−354075号公報(特許文献2)に開示された回転角度検出装置1は、回路基板2と下ケース10とで樹脂製の第2のギア3を挟持する構造を開示する。   Further, the rotation angle detection device 1 disclosed in Japanese Patent Application Laid-Open No. 2004-354075 (Patent Document 2) discloses a structure in which a second gear 3 made of resin is sandwiched between a circuit board 2 and a lower case 10.

さらに、特開2013−152092号公報(特許文献3)は、歯車301に従属する歯車302,303が軸受303,304でそれぞれ軸支される多回転モジュールを開示し、この構造によれば、軸受303,304による1点で歯車を支持、かつ保持する。   Further, Japanese Patent Application Laid-Open No. 2013-152092 (Patent Document 3) discloses a multi-rotation module in which gears 302 and 303 subordinate to a gear 301 are supported by bearings 303 and 304, respectively. The gear is supported and held at one point by 303 and 304.

特開2012−145380号公報JP 2012-145380 A 特開2004−354075号公報JP-A-2004-354075 特開2013−152092号公報JP 2013-152092 A

特許文献1の図2に示される構造の場合、歯車の回転軸を両端で保持する部品はそれぞれ別の部品となるため、組立の際に歯車軸受部の同軸度精度を維持することが難しく、回転軸を保持するための保持板が必要となる。   In the case of the structure shown in FIG. 2 of Patent Document 1, the components that hold the rotating shaft of the gear at both ends are separate components, so it is difficult to maintain the coaxiality accuracy of the gear bearing during assembly. A holding plate for holding the rotating shaft is required.

特許文献2の図1に示される構造は、車両のステアリング舵角を検出する回転角度検出装置に用いられるので、歯車の回転速度が低いため、回転角度の検出精度に問題となることはない。しかしながら、歯車が高速回転する場合は、樹脂歯車を樹脂材料で保持した場合、摺動部の摺動速度が高くなると摩擦熱により樹脂材料の溶融が発生する。このため、高速回転用途にはこの構造は適用できない。それを防ぐために歯車を金属製にする対策が考えられるが、金属で同じ形状の歯車を作製した場合、コストが高くなる。また、金属歯車は導体であるため、摩耗粉により回路基板上で回路短絡が発生する危険性がある。   The structure shown in FIG. 1 of Patent Document 2 is used for a rotation angle detection device that detects a steering angle of a vehicle, and therefore has a low rotation speed of a gear, so that there is no problem in the detection accuracy of the rotation angle. However, when the gear rotates at high speed, when the resin gear is held by the resin material, when the sliding speed of the sliding portion increases, the resin material is melted by frictional heat. For this reason, this structure cannot be applied to high-speed rotation applications. To prevent this, a countermeasure to make the gears made of metal is conceivable. However, if gears of the same shape are made of metal, the cost increases. Further, since the metal gear is a conductor, there is a risk that a short circuit may occur on the circuit board due to abrasion powder.

特許文献3の図4のような構造の場合、歯車を軸方向に固定するためにベース部品に固定された軸受に歯車を固定する必要がある。そのため、使用する軸受は深溝玉軸受のようにベース部品に固定される部品(外輪)と歯車と固定される部品(内輪)とに分かれた部品を持つ軸受を使用する必要がある。深溝玉軸受等を使用するためコストを抑えることが難しくなる。また、軸受け内部隙間等の影響で歯車軸が傾くことで、歯車のかみ合いが適正に行えない状態となるとか、歯車に設置した磁石の位置が半径方向にずれるため、センサ検出精度に影響することが考えられる。   In the case of the structure shown in FIG. 4 of Patent Document 3, it is necessary to fix the gear to a bearing fixed to the base component in order to fix the gear in the axial direction. Therefore, it is necessary to use a bearing such as a deep groove ball bearing, which has parts separated into a part (outer ring) fixed to the base part and a part (inner ring) fixed to the gear, such as a deep groove ball bearing. Since a deep groove ball bearing or the like is used, it is difficult to reduce costs. Also, if the gear shaft is tilted due to the effect of the bearing internal clearance, etc., it will not be possible to properly engage the gear, or the position of the magnet installed on the gear will shift in the radial direction, affecting the sensor detection accuracy. Can be considered.

本発明は、このような従来の課題に着目してなされたもので、主回転軸の回転角を検出するための歯車機構を構成する歯車を、歯車機構を収容する筐体に固定された歯車軸で保持するととともに筐体の2面で挟持する構成とし、また、歯車を面で挟持する部分については、筐体の一部としての回路基板を使用する。また、歯車には樹脂材料を使用し、歯車軸には金属軸を使用する。歯車は回路基板と回転可能に直接接する。さらに、歯車の端面が、内蔵した磁石の端面より適正量だけ突出しており、その突出量で磁石と、磁気検出素子との間隔を適正に保ち、かつ、磁石と回路基板が直接摺動することを防ぐ構造とすることにより、上記の課題を解決することができる。以下、本発明を図面に基づいて説明する。   The present invention has been made in view of such a conventional problem, and a gear that constitutes a gear mechanism for detecting a rotation angle of a main rotation shaft is fixed to a housing that houses the gear mechanism. It is configured to be held by the shaft and held between two surfaces of the housing, and a circuit board as a part of the housing is used for a portion where the gear is held between the surfaces. Further, a resin material is used for the gear, and a metal shaft is used for the gear shaft. The gear is rotatably in direct contact with the circuit board. In addition, the end face of the gear protrudes by an appropriate amount from the end face of the built-in magnet, and the distance between the magnet and the magnetic detection element is appropriately maintained by the amount of protrusion, and the magnet and the circuit board slide directly. The above problem can be solved by adopting a structure that prevents the above. Hereinafter, the present invention will be described with reference to the drawings.

本発明によれば、歯車と筐体を異種の材料で作製することにより、筐体に対する歯車の摺動性を高めることができるとともに、高速回転に適応させることができる。また、歯車を回路基板および筐体に直接接触させて回転することができることから、部品点数を削減した歯車機構を実現することができ、安価で小型の回転角検出装置を実現することが可能となるとともに、歯車内に発生した摩擦熱を歯車軸から筐体に伝導させ、歯車の溶融を防ぐことができるADVANTAGE OF THE INVENTION According to this invention, the slidability of the gear with respect to a housing | casing can be improved by producing a gear and a housing | casing from a different material, and it can be adapted to high-speed rotation. In addition, since the gears can be rotated by directly contacting the circuit board and the housing, a gear mechanism with a reduced number of components can be realized, and an inexpensive and small rotation angle detection device can be realized. At the same time, the frictional heat generated in the gear can be conducted from the gear shaft to the housing, thereby preventing the gear from melting .

本発明の歯車支持機構を用いる回転角検出装置の断面図である。FIG. 3 is a cross-sectional view of a rotation angle detection device using the gear support mechanism of the present invention. 本発明の歯車支持機構を用いる別の回転角検出装置の立体分解図である。It is a three-dimensional exploded view of another rotation angle detecting device using the gear support mechanism of the present invention.

本発明に係る回転角検出装置は、回転軸の回転角度を検出する装置で、相互にかみ合いされた複数の歯車により構成される歯車機構を含む。各歯車の回転角度を検出することにより回転角検出装置に入力される回転軸の多回転のアブソリュート(絶対)回転角を検出することができる。図1は、このような回転角検出装置100の断面図である。回転角検出装置100の主回転軸101は、図示しないモーターの出力回転軸に結合され、回転角検出装置100の入力となる。すなわち、回転角検出装置100は、モーター出力回転軸の多回転アブソリュート回転角を検出することができる。   A rotation angle detection device according to the present invention is a device that detects a rotation angle of a rotation shaft, and includes a gear mechanism configured by a plurality of gears meshed with each other. By detecting the rotation angle of each gear, it is possible to detect a multi-rotation absolute (absolute) rotation angle of the rotation shaft input to the rotation angle detection device. FIG. 1 is a cross-sectional view of such a rotation angle detection device 100. The main rotation shaft 101 of the rotation angle detection device 100 is coupled to an output rotation shaft of a motor (not shown) and serves as an input of the rotation angle detection device 100. That is, the rotation angle detection device 100 can detect a multiple rotation absolute rotation angle of the motor output rotation shaft.

主回転軸101に固定された主軸歯車102は、従属歯車103にかみ合いされ、主軸歯車102の回転を従属歯車103に伝達する。従属歯車103は、回転角検出装置100の筐体104に固定された歯車軸105に挿入され、歯車軸105を軸として自由に回転する。主回転軸101の先端部に磁石106が取り付けられ、磁石106は、主軸歯車102の回転とともに回転する。磁石106は、磁極となるS極とN極を交互に複数配列した環状の磁石である。また、従属歯車103に磁石108が組み込まれ、磁石108は、従属歯車103の回転とともに回転する。図1に示すように、従属歯車103に従属歯車103と一体整形された円筒状の収納容器107を設け、その中に磁石108を内蔵させてもよい。   The main shaft gear 102 fixed to the main rotation shaft 101 is engaged with the sub gear 103, and transmits the rotation of the main shaft gear 102 to the sub gear 103. The slave gear 103 is inserted into a gear shaft 105 fixed to a housing 104 of the rotation angle detection device 100, and freely rotates around the gear shaft 105. A magnet 106 is attached to the tip of the main rotating shaft 101, and the magnet 106 rotates with the rotation of the main shaft gear 102. The magnet 106 is an annular magnet in which a plurality of S poles and N poles serving as magnetic poles are alternately arranged. Further, the magnet 108 is incorporated in the slave gear 103, and the magnet 108 rotates with the rotation of the slave gear 103. As shown in FIG. 1, a subordinate gear 103 may be provided with a cylindrical storage container 107 integrally formed with the subordinate gear 103, and a magnet 108 may be built therein.

主回転軸101の先端部に対向する位置にMRセンサ等の磁気検出素子109が回路基板110上に取り付けられ、磁気検出素子109は、磁石106の回転によって生じる磁場の変化を検出する。また、磁石108に対向する位置にMRセンサ等の磁気検出素子111が回路基板110上に取り付けられ、磁気検出素子111は、磁石108の回転によって生じる磁場の変化を検出する。磁気検出素子109,111が検出した磁場の変化は、磁気検出信号として回路基板110上に配置された磁気検出回路(図示せず)に出力され、所定の演算により主回転軸101の多回転アブソリュート回転角を算出する。主軸歯車102、従属歯車103、磁石106,108、および磁気検出素子109,111は、磁気検出回路とともにアブソリュート磁気エンコーダ112を構成する。   A magnetic detection element 109 such as an MR sensor is mounted on the circuit board 110 at a position facing the tip of the main rotating shaft 101, and the magnetic detection element 109 detects a change in a magnetic field caused by rotation of the magnet 106. A magnetic detection element 111 such as an MR sensor is mounted on the circuit board 110 at a position facing the magnet 108, and the magnetic detection element 111 detects a change in a magnetic field caused by the rotation of the magnet 108. The change in the magnetic field detected by the magnetic detection elements 109 and 111 is output as a magnetic detection signal to a magnetic detection circuit (not shown) arranged on the circuit board 110, and the multi-rotation absolute of the main rotary shaft 101 is performed by a predetermined calculation. Calculate the rotation angle. The main shaft gear 102, the subordinate gear 103, the magnets 106 and 108, and the magnetic detection elements 109 and 111 constitute an absolute magnetic encoder 112 together with a magnetic detection circuit.

上述のように、従属歯車103は、主軸歯車102の回転により歯車軸105を中心として回転するが、回転角検出装置100が設置された向きに応じて、従属歯車103に掛かる重力や、主軸歯車102との間のかみ合い反力により歯車軸105の軸方向に力が発生する。この力により従属歯車103は、歯車軸105の軸方向に移動しようとするが、以下説明するように従属歯車103は、筐体104と回路基板110により適正な隙間を維持した状態で支持され、適正な位置を保つことができる。   As described above, the slave gear 103 rotates around the gear shaft 105 by the rotation of the main shaft gear 102. However, depending on the direction in which the rotation angle detection device 100 is installed, the gravity applied to the slave gear 103 or the main shaft gear A force is generated in the axial direction of the gear shaft 105 due to the meshing reaction force with the gear shaft 105. This force causes the dependent gear 103 to move in the axial direction of the gear shaft 105. However, as described below, the dependent gear 103 is supported by the housing 104 and the circuit board 110 while maintaining an appropriate gap. The proper position can be maintained.

主軸歯車102の回転により従属歯車103が回転すると、従属歯車103と歯車軸105との間、および従属歯車103と筐体104との間の摺動部103aに摩擦熱が発生する。この摩擦熱は、金属製の歯車軸105を使用することで容易に筐体104へ伝導させることができるので、従属歯車103が摩擦熱により溶融することを防ぐことができる。また、高硬度が得やすい軸受鋼、例えば高炭素クロム軸受鋼により歯車軸105を作製することにより、耐摩耗性や高い剛性を確保することができる。   When the slave gear 103 rotates due to the rotation of the main shaft gear 102, frictional heat is generated between the slave gear 103 and the gear shaft 105 and between the slave gear 103 and the housing 104 in the sliding portion 103a. The friction heat can be easily transmitted to the housing 104 by using the metal gear shaft 105, so that the slave gear 103 can be prevented from being melted by the friction heat. Further, by manufacturing the gear shaft 105 from bearing steel that easily obtains high hardness, for example, high carbon chromium bearing steel, wear resistance and high rigidity can be ensured.

主軸歯車102および従属歯車103は、吸水性・膨潤性が無く、寸法安定性に優れ、かつ潤滑性に優れたポリアセタールを基材とした樹脂を使用し、歯車間のあそびであるバックラッシが維持される。また、従属歯車103と摺動する筐体104の材料を選定するにあたり、様々な材料の組み合わせを検討した結果、筐体104を従属歯車103とは異種の材料とすることが、従属歯車103と筐体104間の摺動性を高めることができるという知見を得た。そこで、回転角検出装置100の筐体104は、強度および剛性に優れたポリフェニルサルファイドを基材とした樹脂を採用した。しかしながら、強度および剛性に優れた材料であれば、従属歯車103と異なる材料である限り、他の樹脂材料を用いることができる。   The main shaft gear 102 and the slave gear 103 are made of a polyacetal-based resin having no water absorption / swelling properties, excellent dimensional stability, and excellent lubricity, and a backlash, which is play between gears, is maintained. You. Further, in selecting a material for the casing 104 that slides with the dependent gear 103, as a result of examining various combinations of materials, it has been determined that the casing 104 is made of a material different from the dependent gear 103. It has been found that the slidability between the housings 104 can be improved. Therefore, the housing 104 of the rotation angle detecting device 100 employs a resin having polyphenyl sulfide as a base material having excellent strength and rigidity. However, as long as the material has excellent strength and rigidity, another resin material can be used as long as the material is different from that of the dependent gear 103.

従属歯車103は、回路基板110により適正な隙間を維持した状態で支持される。従属歯車103の摺動性を高めるために、従属歯車103と回路基板110との隙間に摺動板113が挿入される。摺動性を高めるために、筐体104が従属歯車103とは異種の材料を用いたのと同様に、摺動板113は、従属歯車103の材料とは異なる材料が用いられる。摺動板113として、摺動性に優れたナイロン基材の樹脂材料が用いられ、例えば、ポリスライダーが用いられてもよい。この摺動板113を用いることで、回路基板110の製造ロットや製造元の違いにより、回路基板110の表面状態に変化が生じたとしても、従属歯車103と回路基板110との間の潤滑状態に変化が生じず、従属歯車103を安定して回転させることができる。また、摺動板113の摺動部の面積を出来るだけ小さくすることにより、従属歯車103と回路基板110との間の摩擦熱の発生を抑制することができる。なお、従属歯車103を回路基板110の摺動部に直接接しても、回路基板110の摺動部の耐久性に問題が無いことが確認できれば、従属歯車103と回路基板110との間に摺動板113を挿入する必要はない。   The slave gear 103 is supported by the circuit board 110 while maintaining an appropriate gap. In order to enhance the slidability of the dependent gear 103, a sliding plate 113 is inserted into a gap between the dependent gear 103 and the circuit board 110. In order to enhance the slidability, the sliding plate 113 is made of a material different from the material of the dependent gear 103, similarly to the case where the casing 104 is made of a material different from that of the dependent gear 103. As the sliding plate 113, a resin material of a nylon base material having excellent slidability is used, and for example, a polyslider may be used. By using the sliding plate 113, even if the surface state of the circuit board 110 changes due to the difference between the manufacturing lot and the manufacturer of the circuit board 110, the lubrication state between the dependent gear 103 and the circuit board 110 is reduced. No change occurs, and the dependent gear 103 can be rotated stably. Further, by reducing the area of the sliding portion of the sliding plate 113 as much as possible, the generation of frictional heat between the dependent gear 103 and the circuit board 110 can be suppressed. In addition, even if the slave gear 103 is in direct contact with the sliding part of the circuit board 110, if it is confirmed that there is no problem in the durability of the sliding part of the circuit board 110, the sliding between the slave gear 103 and the circuit board 110 is possible. There is no need to insert the moving plate 113.

収納容器107の上端面107aが、内蔵した磁石108の上端面108aより適正量だけ突出しており、その突出量で磁石108と磁気検出素子111との間隔が適正に保たれ、かつ、磁石108の上端面108aが摺動板113と直接摺動することを防ぐことができる。   The upper end surface 107a of the storage container 107 protrudes by an appropriate amount from the upper end surface 108a of the built-in magnet 108, and the distance between the magnet 108 and the magnetic detection element 111 is appropriately maintained by the amount of protrusion, and It is possible to prevent the upper end surface 108a from sliding directly on the sliding plate 113.

図2は、図1に示される歯車機構の主回転軸101に2つの直列接続した従属歯車をさらに加えた歯車機構を有する別の回転角検出装置200の立体分解図を示す。図2において、同一の参照番号は、図1の要素と同一または類似の要素を示す。なお、主回転軸101に固定された主軸歯車102と従属歯車103とからなる歯車機構は、図1と同一の構成であるので説明を省略する。   FIG. 2 is a three-dimensional exploded view of another rotation angle detecting device 200 having a gear mechanism in which two series-connected slave gears are further added to the main rotation shaft 101 of the gear mechanism shown in FIG. 2, the same reference numerals indicate the same or similar elements as those in FIG. The gear mechanism composed of the main shaft gear 102 fixed to the main rotation shaft 101 and the subordinate gear 103 has the same configuration as that of FIG.

図2において、モーター本体201の出力回転軸に主回転軸101が結合される。主回転軸101に固定された主軸歯車102は、筐体104に固定された歯車軸202に挿入された第1従属歯車203aとかみ合いし、第1従属歯車203aは、第1歯車軸202を軸中心として自由に回転する。第1従属歯車203aは、第1従属歯車203aの歯数と異なる歯数を有する第2従属歯車203bと一体整形される。第2従属歯車203bの上部には、円筒状の収納容器204が第1,2従属歯車203a,bと共に一体整形され、その収納容器204内に磁石205が内蔵される。主回転軸101、磁石106、および、回路基板110の中心は、中心軸X1に沿って配置される。また、歯車軸105、従属歯車103、および、磁石108の中心は、中心軸X2に沿って配置される。さらに、歯車軸202、第1従属歯車203a、第2従属歯車203b、および、磁石205の中心は、中心軸X3に沿って配置される。   In FIG. 2, a main rotation shaft 101 is coupled to an output rotation shaft of a motor main body 201. The main shaft gear 102 fixed to the main rotation shaft 101 meshes with a first dependent gear 203a inserted into a gear shaft 202 fixed to the housing 104, and the first driven gear 203a Rotate freely as center. The first subsidiary gear 203a is integrally formed with a second subsidiary gear 203b having a number of teeth different from the number of teeth of the first subsidiary gear 203a. Above the second dependent gear 203b, a cylindrical storage container 204 is integrally formed with the first and second dependent gears 203a and 203b, and a magnet 205 is built in the storage container 204. The centers of the main rotation shaft 101, the magnet 106, and the circuit board 110 are arranged along the center axis X1. Further, the centers of the gear shaft 105, the slave gear 103, and the magnet 108 are arranged along the center axis X2. Further, the centers of the gear shaft 202, the first subsidiary gear 203a, the second subsidiary gear 203b, and the magnet 205 are arranged along the central axis X3.

第2従属歯車203bは、さらに筐体104に固定された第2歯車軸206に挿入された第3従属歯車207とかみ合いし、第3従属歯車207は、第2歯車軸206を軸中心として自由に回転する。第3従属歯車207の上部には、円筒状の収納容器208が第3従属歯車207と共に一体整形され、その収納容器208内に磁石209が内蔵される。このような歯車機構により、主回転軸101の回転は、主軸歯車102から第1従属歯車203aへ伝達され、第1従属歯車203aと一体整形された第2従属歯車203bからさらに第3従属歯車207へ伝達される。歯車軸206、第3従属歯車207、および、磁石109の中心は、中心軸X4に沿って配置される。   The second dependent gear 203b further meshes with a third dependent gear 207 inserted into a second gear shaft 206 fixed to the housing 104, and the third dependent gear 207 is free to rotate about the second gear shaft 206 as an axis. To rotate. Above the third subsidiary gear 207, a cylindrical storage container 208 is integrally formed with the third subsidiary gear 207, and a magnet 209 is built in the storage container 208. With such a gear mechanism, the rotation of the main rotation shaft 101 is transmitted from the main shaft gear 102 to the first subordinate gear 203a, and from the second subordinate gear 203b integrally formed with the first subordinate gear 203a to the third subordinate gear 207. Is transmitted to The centers of the gear shaft 206, the third subsidiary gear 207, and the magnet 109 are arranged along the central axis X4.

第1,3従属歯車203a,207の回転は、第1,2歯車軸202,206に摩擦熱を生じさせるが、この摩擦熱は、第1,2歯車軸202,206が金属であるので容易に筐体104へ伝導させることができ、歯車軸105と同様に、摩擦熱による第1,2,3従属歯車203a,203b,207の溶融を防止することができる。また、高硬度が得やすい軸受鋼、例えば高炭素クロム軸受鋼により第1,2歯車軸202,206を作製することにより、耐摩耗性や高い剛性を確保することができることは、歯車軸105と同様である。   The rotation of the first and third dependent gears 203a and 207 generates frictional heat on the first and second gear shafts 202 and 206. This frictional heat is easily generated because the first and second gear shafts 202 and 206 are made of metal. Thus, similarly to the gear shaft 105, it is possible to prevent the first, second, and third dependent gears 203a, 203b, and 207 from melting due to frictional heat. Further, by producing the first and second gear shafts 202 and 206 from bearing steel that easily obtains high hardness, for example, high carbon chromium bearing steel, wear resistance and high rigidity can be secured. The same is true.

図1に示される磁石108と磁石108に対向する位置に配置された磁気検出素子111との間の位置関係と同様に、磁石205,209に対向する回路基板110上の位置に磁気検出素子(図示せず)がそれぞれ配置される。これらの磁気検出素子から出力される磁気検出信号に基づいて、回路基板110上に配置された磁気検出回路(図示せず)は、所定の演算を実行して、主回転軸101の多回転アブソリュート回転角を算出する。   Similar to the positional relationship between the magnet 108 shown in FIG. 1 and the magnetic detection element 111 disposed at a position facing the magnet 108, the magnetic detection element ( (Not shown). Based on the magnetic detection signals output from these magnetic detection elements, a magnetic detection circuit (not shown) arranged on the circuit board 110 executes a predetermined operation to execute the multi-rotation absolute rotation of the main rotation shaft 101. Calculate the rotation angle.

筐体104の材料に関して上述したように、従属歯車103および筐体104を相互に異なる材料とすることが、従属歯車103の摺動性を高めることができるという知見に基づき、第1,2,3従属歯車203a,203b,207は、筐体104の材料と異なる材料が用いられる。第1,2,3従属歯車203a,203b,207の材料は、従属歯車103と同様に、ポリアセタールを基材とした樹脂を使用する。なお、第1,2,3従属歯車203a,203b,207は、筐体104の材料と異なる材料である限り、他の樹脂材料を用いてもよい。   As described above with respect to the material of the casing 104, based on the finding that the slidability of the dependent gear 103 can be improved by using different materials for the dependent gear 103 and the casing 104, A material different from the material of the housing 104 is used for the three dependent gears 203a, 203b, and 207. As the material of the first, second, and third dependent gears 203a, 203b, and 207, a resin based on polyacetal is used as in the case of the dependent gear 103. The first, second, and third dependent gears 203a, 203b, and 207 may be made of another resin material as long as the material is different from the material of the housing 104.

回路基板110と収納容器204,208の上端面204a,208aとの間に摺動性を高めるための摺動板210が挿入される。摺動性を高めるために、摺動板210は、第1,2,3従属歯車203a,203b,207の材料とは異なる材料が用いられる。摺動板210として、摺動板113と同様に、摺動性に優れたナイロン基材の樹脂材料が用いられ、例えば、ポリスライダーが用いられてもよい。この摺動板210により、回路基板110の表面状態に変化が生じたとしても、第1,2,3従属歯車203a,203b,207を安定して回転させることができる。また、摺動板210における摺動部の面積を出来るだけ小さくすることにより、上端面204a,208aと摺動板210との間の摩擦熱の発生を抑制することができる。なお、上端面204a,208aを回路基板110に直接接触させても、回路基板110上の摺動部の耐久性に問題が無いことが確認できれば、上端面204a,208aと回路基板110との間に摺動板210を挿入する必要はない。   A sliding plate 210 for improving slidability is inserted between the circuit board 110 and the upper end surfaces 204a and 208a of the storage containers 204 and 208. In order to enhance the slidability, a material different from the material of the first, second, and third dependent gears 203a, 203b, and 207 is used for the sliding plate 210. As the sliding plate 210, similarly to the sliding plate 113, a nylon-based resin material having excellent slidability is used, and for example, a polyslider may be used. The sliding plate 210 can stably rotate the first, second, and third dependent gears 203a, 203b, and 207 even when the surface state of the circuit board 110 changes. Further, by reducing the area of the sliding portion of the sliding plate 210 as much as possible, it is possible to suppress the generation of frictional heat between the upper end surfaces 204a and 208a and the sliding plate 210. Even if the upper end surfaces 204a and 208a are brought into direct contact with the circuit board 110, if it is confirmed that there is no problem in the durability of the sliding portion on the circuit board 110, the contact between the upper end surfaces 204a and 208a and the circuit board 110 is possible. It is not necessary to insert the sliding plate 210 in the first position.

なお、収納容器204,208の上端面204a,208aを、内蔵した磁石205,209の上端面205a,209aより1ミリメートル未満の適正量だけ突出させることにより、その突出量で磁石205,209と磁石205,209に対向する磁気検出素子との間隔を適正に保つことができ、かつ、磁石205,209の上端面205a,209aが摺動板210と直接摺動することを防ぐことができる。   The upper end surfaces 204a, 208a of the storage containers 204, 208 are made to protrude from the upper end surfaces 205a, 209a of the built-in magnets 205, 209 by an appropriate amount of less than 1 mm, so that the magnets 205, 209 It is possible to maintain a proper distance between the magnets 205 and 209 and the opposing magnetic detecting element and prevent the upper end surfaces 205a and 209a of the magnets 205 and 209 from directly sliding on the sliding plate 210.

以上のように、歯車が筐体に接触して回転する場合、歯車と筐体を異種の材料で作製することにより、歯車をスムーズに回転させることができるので、筐体に対する歯車の摺動性を高めることができるとともに、高速回転に適応させることができる。歯車を筐体に直接接触させて回転することができることから、部品点数を削減した歯車機構を実現することができ、安価で小型の回転角検出装置を実現することが可能となる。   As described above, when the gear rotates in contact with the casing, the gear and the casing are made of different materials, so that the gear can be smoothly rotated. , And can be adapted to high-speed rotation. Since the gear can be rotated by directly contacting the housing, a gear mechanism with a reduced number of components can be realized, and a low-cost and small rotation angle detecting device can be realized.

100,200 回転角検出装置
101 主回転軸
102 主軸歯車
103 従属歯車
104 筐体
105 歯車軸
106 磁石
107 収納容器
107a 上端面
108 磁石
108a 上端面
109,111 磁気検出素子
110 回路基板
112 アブソリュート磁気エンコーダ
113 摺動板
201 モーター本体
202 歯車軸
203a 第1従属歯車
203b 第2従属歯車
204,208 収納容器
204a,208a 上端面
205 磁石
205a,209a 上端面
206 第2歯車軸
207 第3従属歯車
209 磁石
210 摺動板
REFERENCE SIGNS LIST 100, 200 rotation angle detection device 101 main rotation shaft 102 main shaft gear 103 slave gear 104 housing 105 gear shaft 106 magnet 107 storage container 107 a upper end surface 108 magnet 108 a upper end surface 109, 111 magnetic detection element 110 circuit board 112 absolute magnetic encoder 113 Sliding plate 201 Motor main body 202 Gear shaft 203a First dependent gear 203b Second dependent gear 204,208 Storage container 204a, 208a Upper surface 205 Magnet 205a, 209a Upper surface 206 Second gear shaft 207 Third dependent gear 209 Magnet 210 Slide Moving plate

Claims (3)

モーターの出力回転を入力する主回転軸に結合された主軸歯車および前記主軸歯車の回転に従属して回転する少なくとも1つの従属歯車からなる歯車機構の、前記主軸歯車および前記従属歯車の回転角から前記主回転軸の回転角を求める多回転回転角検出装置において、
樹脂で形成され、前記歯車機構を収容する筐体と、
前記筐体および回路基板の間に位置する従属歯車であって、前記従属歯車は前記回路基板および前記筐体と回転可能に直接接しており、前記筐体とは異なる樹脂で形成された前記従属歯車と、を含み、
前記従属歯車は、前記筐体に直接接して固定された軸受鋼の歯車軸に挿入され、前記歯車軸を中心に回転し、前記歯車軸は、前記従属歯車の回転により前記従属歯車内に発生する摩擦熱を前記筐体に伝導させることを特徴とする多回転回転角検出装置。
The rotation angle of the main shaft gear and the subordinate gear of a gear mechanism including a main shaft gear coupled to a main rotation shaft that inputs the output rotation of the motor and at least one sub gear that rotates in accordance with the rotation of the main shaft gear. In a multi-rotation angle detection device that determines the rotation angle of the main rotation shaft,
A housing formed of resin and housing the gear mechanism;
A slave gear positioned between the housing and the circuit board, wherein the slave gear is in direct contact with the circuit board and the housing in a rotatable manner, and is formed of a different resin from the housing. And a gear,
The slave gear is inserted into a bearing steel gear shaft fixed directly in contact with the housing and rotates about the gear shaft, and the gear shaft is generated in the slave gear by rotation of the slave gear. multiple rotation rotation angle detecting apparatus of the frictional heat, characterized in Rukoto is conducted to the housing.
前記筐体は、ポリフェニルサルファイドを基材とした樹脂により形成され、また前記従属歯車は、ポリアセタールを基材とした樹脂により形成されることを特徴とする請求項1記載の多回転回転角検出装置。   The multi-rotational rotation angle detection device according to claim 1, wherein the housing is formed of a resin based on polyphenyl sulfide, and the dependent gear is formed of a resin based on polyacetal. apparatus. 前記従属歯車は前記従属歯車の回転角を検出するために用いられる磁石を内蔵し、前記従属歯車の前記回路基板側の端面は前記磁石より予め定める量だけ突出していることを特徴とする請求項1または2に記載の多回転回転角検出装置。 The said dependent gear incorporates a magnet used for detecting a rotation angle of the dependent gear, and an end face of the dependent gear on the circuit board side projects by a predetermined amount from the magnet. 3. The multi-rotation angle detection device according to 1 or 2 .
JP2017137283A 2017-07-13 2017-07-13 Rotation angle detection device using gear support mechanism to hold gear in proper position Active JP6626476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017137283A JP6626476B2 (en) 2017-07-13 2017-07-13 Rotation angle detection device using gear support mechanism to hold gear in proper position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017137283A JP6626476B2 (en) 2017-07-13 2017-07-13 Rotation angle detection device using gear support mechanism to hold gear in proper position

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014068033A Division JP6260397B2 (en) 2014-03-28 2014-03-28 Rotation angle detection device using gear support mechanism for holding gear in proper position

Publications (2)

Publication Number Publication Date
JP2017201326A JP2017201326A (en) 2017-11-09
JP6626476B2 true JP6626476B2 (en) 2019-12-25

Family

ID=60264993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017137283A Active JP6626476B2 (en) 2017-07-13 2017-07-13 Rotation angle detection device using gear support mechanism to hold gear in proper position

Country Status (1)

Country Link
JP (1) JP6626476B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377002B2 (en) * 2019-03-29 2023-11-09 ミネベアミツミ株式会社 absolute encoder

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240327A (en) * 1992-11-13 1993-09-17 Canon Inc Rotary body device
US5411376A (en) * 1993-12-15 1995-05-02 Walbro Corporation Fuel pump with noise suppression
JP3724224B2 (en) * 1998-09-30 2005-12-07 富士ゼロックス株式会社 Bearing device for developing device and developing device using the same
JP3613340B2 (en) * 2002-05-15 2005-01-26 日本精機株式会社 Moving object detection device
JP3958115B2 (en) * 2002-05-28 2007-08-15 ナイルス株式会社 Rotation detector
JP2004279065A (en) * 2003-03-12 2004-10-07 Calsonic Kansei Corp Rotation angle detecting apparatus
JP2005054946A (en) * 2003-08-07 2005-03-03 Toyota Motor Corp Bearing device
JP4174388B2 (en) * 2003-08-07 2008-10-29 キヤノン株式会社 Method for manufacturing electrophotographic photosensitive drum unit
JP4716079B2 (en) * 2003-09-30 2011-07-06 株式会社ジェイテクト Rotation amount detection device
JP2007170614A (en) * 2005-12-26 2007-07-05 Nsk Ltd Rolling bearing
JP5439773B2 (en) * 2008-09-16 2014-03-12 パナソニック株式会社 Rotation angle detector
JP2012063008A (en) * 2010-08-19 2012-03-29 Ricoh Co Ltd Drive reduction gear and image forming apparatus
JP2012112926A (en) * 2010-11-02 2012-06-14 Jtekt Corp Rotation angle detection device and electric power steering device
JP5420624B2 (en) * 2011-11-14 2014-02-19 オリエンタルモーター株式会社 Multi-rotation absolute rotation angle detection device and method for detecting absolute rotation angle

Also Published As

Publication number Publication date
JP2017201326A (en) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6260397B2 (en) Rotation angle detection device using gear support mechanism for holding gear in proper position
JP5417132B2 (en) Electric actuator
CN103097771B (en) Electric actuator
KR101891745B1 (en) Synthetic resin-made sliding bearing
EP3001057B1 (en) Sensor-equipped rolling bearing, motor, and actuator
JP2016109431A (en) Mechanical encoder and actuator
JP4763033B2 (en) Synthetic resin cage and angular contact ball bearing
WO2014156535A1 (en) Gear transmission
JP6626476B2 (en) Rotation angle detection device using gear support mechanism to hold gear in proper position
WO2019002888A1 (en) Gearbox assembly
JP2013152092A (en) Multi-rotation absolute rotary encoder
JP2011147223A (en) Actuator
JP2012125044A (en) Electric actuator
JP4912001B2 (en) Oscillating gear unit
JP2005083531A (en) Spline shaft
JP2006207750A (en) Bearing with sensor and bearing device
JP2006266962A (en) Bearing with rotation sensor
EP3543561A1 (en) Gear device
JP6488187B2 (en) Torque limiter
JP2006329295A (en) Shaft coupling
JPWO2012014697A1 (en) Encoder and actuator
JP2010025875A (en) Linear gauge
JP2006292494A (en) Meter
JP4436144B2 (en) Shaft coupling
JP2021113780A (en) Rotation angle detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191129

R150 Certificate of patent or registration of utility model

Ref document number: 6626476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250