JP6624161B2 - Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet - Google Patents

Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet Download PDF

Info

Publication number
JP6624161B2
JP6624161B2 JP2017106463A JP2017106463A JP6624161B2 JP 6624161 B2 JP6624161 B2 JP 6624161B2 JP 2017106463 A JP2017106463 A JP 2017106463A JP 2017106463 A JP2017106463 A JP 2017106463A JP 6624161 B2 JP6624161 B2 JP 6624161B2
Authority
JP
Japan
Prior art keywords
image
metal plate
coated metal
coating film
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017106463A
Other languages
Japanese (ja)
Other versions
JP2018204956A (en
Inventor
俊佑 山本
俊佑 山本
弘之 増岡
弘之 増岡
悠也 弦巻
悠也 弦巻
猪股 雅一
雅一 猪股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017106463A priority Critical patent/JP6624161B2/en
Publication of JP2018204956A publication Critical patent/JP2018204956A/en
Application granted granted Critical
Publication of JP6624161B2 publication Critical patent/JP6624161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、塗装金属板の塗膜膨れ幅測定装置および塗装金属板の塗膜膨れ幅の測定方法に関する。   The present invention relates to a coating film swelling width measuring device for a coated metal plate and a method for measuring a coating swelling width of a coated metal plate.

従来、鋼板等の金属板の表面に塗装を施した塗装金属板は、屋内外の様々な用途に用いられている。塗装鋼板等の塗装金属板には、優れた耐食性が求められる場合がある。   2. Description of the Related Art Conventionally, a coated metal plate obtained by applying a coating to a surface of a metal plate such as a steel plate has been used for various applications indoors and outdoors. In some cases, a coated metal plate such as a coated steel plate is required to have excellent corrosion resistance.

塗装鋼板の耐食性評価方法の一つとして、塗装鋼板の表面にカッターナイフで塗膜下の鋼板まできずをつけたサンプルを作成し、前記サンプルを屋外の暴露試験環境下、あるいは実験室での塩水浸漬試験環境下、あるいは塩水噴霧(塩水浸漬)、乾燥、湿潤を繰り返すサイクリック試験環境下などに置き、きず部から発生した錆もしくは塗膜膨れの広がり具合を評価する方法が知られている。   As one of the methods for evaluating the corrosion resistance of a coated steel sheet, a sample in which the surface of the coated steel sheet is covered with a steel plate under the coating film with a cutter knife is created, and the sample is subjected to an outdoor exposure test environment, or salt water in a laboratory. There is known a method of evaluating the degree of spread of rust or swelling of a coating film generated from a flaw portion by placing the device in an immersion test environment or a cyclic test environment in which salt spray (salt water immersion), drying and wetting are repeated.

例えば、自動車規格の自動車用材料腐食試験方法や自動車部品外観腐食試験方法に記載されているように、塗装鋼板の表面にカッターナイフでX字状にきず(例えばクロスカット)を入れ、きずの片側の最大塗膜膨れ幅をノギスなどを用いて1/10mmまで測定し、これを最大塗膜膨れ幅とする規格がある(非特許文献1、2参照)。   For example, as described in the automobile material corrosion test method and the automobile part appearance corrosion test method of the automobile standard, a flaw (for example, a cross cut) is cut into the surface of a coated steel sheet with a cutter knife in an X shape, and one side of the flaw is formed. There is a standard for measuring the maximum film swelling width to 1/10 mm using calipers or the like and using this as the maximum film swelling width (see Non-Patent Documents 1 and 2).

また、特許文献1には、塗装鋼板の耐食性試験後の表面に、斜め方向から光を当て上方のテレビカメラで塗装鋼板表面を撮像し、画素毎に受けた輝度と基準面から受けた輝度との差を求め、この差の正負及びその大小の分布状態から塗膜膨れ発生域を算出する方法が記載されている。   Further, in Patent Document 1, the surface of the coated steel plate after the corrosion resistance test is exposed to light from an oblique direction, an image of the coated steel plate surface is taken with a television camera above, and the luminance received for each pixel and the luminance received from the reference plane are compared. A method is described in which the difference between the differences is determined, and the swelling area of the coating film is calculated from the sign of the difference and the distribution of the difference.

特開平8−278118号公報JP-A-8-278118

自動車技術会、JASO M 609−91 自動車用材料腐食試験方法Japan Society of Automotive Engineers, JASO M 609-91 Method for testing corrosion of automotive materials 自動車技術会、JASO M 610−92 自動車部品外観腐食試験方法Japan Society of Automotive Engineers, JASO M 610-92 Test method for external corrosion of automobile parts

しかしながら、前述の従来技術には以下のような問題点がある。
塗膜膨れ幅の測定は、ルーペなどの拡大鏡を用いて検査員が目視検査で測定する方法が一般的である。そのため、塗膜膨れ幅が最大となった部位(最大塗膜膨れ幅部)の判定に個人差が生じやすく、また、広範囲に亘り微細な塗膜膨れ幅の変化を観察する必要があるため、疲労等による測定ミスを生じるという問題がある。
However, the above-mentioned prior art has the following problems.
In general, a method of measuring the swollen width of a coating film is to perform a visual inspection by an inspector using a magnifier such as a loupe. Therefore, it is easy to cause individual differences in the determination of the portion where the coating film swelling width is the maximum (the maximum coating swelling width portion), and it is necessary to observe a fine change in the coating swelling width over a wide range. There is a problem that a measurement error due to fatigue or the like occurs.

さらに、目視判定では最大塗膜膨れ幅の数値でのみ評価しており、最大塗膜膨れ幅の発生した部位の情報までは記録できていないために、腐食試験回数に伴う最大塗膜膨れ幅の変化の様子を必ずしも追跡できていない。   Furthermore, in the visual judgment, only the numerical value of the maximum coating swelling width was evaluated, and it was not possible to record even the information of the site where the maximum coating swelling width occurred. The state of change cannot always be tracked.

また、特許文献1には画像から塗膜膨れ発生域を算出する方法が記載されているが、きずをつけた部位からの距離の算出方法は提示されていない。更に、1方向からの照明を用いて基準面での輝度レベル差で塗膜膨れ部を判断しており、照明の輝度ムラや塗膜表面の色や反射率ムラなどの影響を受けやすいという問題がある。   Patent Document 1 discloses a method for calculating a coating film swelling area from an image, but does not disclose a method for calculating a distance from a flawed portion. Furthermore, the swelling portion of the coating film is determined based on the difference in the brightness level on the reference surface using illumination from one direction, and is susceptible to uneven brightness of the illumination, uneven color of the coating surface, and uneven reflectance. There is.

本発明は、塗装金属板の塗膜膨れ幅を精度よく測定できる、塗装金属板の塗膜膨れ幅測定装置および塗装金属板の塗膜膨れ幅の測定方法を提供することを目的とする。   An object of the present invention is to provide a coating film swelling width measuring apparatus and a method for measuring the coating film swelling width of a coated metal plate, which can accurately measure the coating swelling width of the coated metal plate.

本発明は、以下の態様を有する。
[1]表面にきずをつけ、腐食環境で腐食を生じさせた塗装金属板の塗膜膨れ幅を測定する塗膜膨れ幅測定装置であって、前記塗装金属板を載置するサンプル台と、前記塗装金属板の表面を撮像する撮像手段と、前記塗装金属板の表面を少なくとも2方向から照明可能な照明手段と、前記塗装金属板の塗膜膨れ幅を算出する演算手段と、を備え、前記演算手段は、前記照明手段により、少なくとも2方向のうちの1方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第1の画像と、前記1方向以外の方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第2の画像とから、前記塗装金属板の表面のきずの位置を抽出し、かつ、前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するか、または、前記照明手段により、少なくとも2方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第3の画像から、前記塗装金属板の表面の塗膜膨れ部位を抽出し、前記抽出した塗装金属板の表面のきずの位置と、前記抽出した塗装金属板の表面の塗膜膨れ部位とから、前記塗装金属板の塗膜膨れ幅を算出する、塗装金属板の塗膜膨れ幅測定装置。
[2]前記演算手段が画像合成手段を有し、前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面のきずの位置を抽出するに際し、前記画像合成手段が、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち低い方の輝度レベルを算出した最小輝度画像を合成する、[1]に記載の塗装金属板の塗膜膨れ幅測定装置。
[3]前記演算手段が画像合成手段を有し、前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するに際し、前記画像合成手段が、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち高い方の輝度レベルを算出した最大輝度画像を合成する、[1]または[2]に記載の塗装金属板の塗膜膨れ幅測定装置。
[4]表面にきずをつけ、腐食環境で腐食を生じさせた塗装金属板の塗膜膨れ幅を測定する塗膜膨れ幅の測定方法であって、前記塗装金属板の表面を1方向から照明した状態で当該塗装金属板の表面を撮像した第1の画像と、前記塗装金属板の表面を前記1方向以外の方向から照明した状態で当該塗装金属板の表面を撮像した第2の画像とから、前記塗装金属板の表面のきずの位置を抽出し、かつ、前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するか、または、前記塗装金属板の表面を少なくとも2方向から照明した状態で当該塗装金属板の表面を撮像した第3の画像から、前記塗装金属板の表面の塗膜膨れ部位を抽出し、前記抽出した塗装金属板の表面のきずの位置と、前記抽出した塗装金属板の表面の塗膜膨れ部位とから、前記塗装金属板の塗膜膨れ幅を算出する、塗装金属板の塗膜膨れ幅の測定方法。
[5]前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面のきずの位置を抽出するに際し、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち低い方の輝度レベルを算出した最小輝度画像を合成する、[4]に記載の塗装金属板の塗膜膨れ幅の測定方法。
[6]前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するに際し、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち高い方の輝度レベルを算出した最大輝度画像を合成する、[4]または[5]に記載の塗装金属板の塗膜膨れ幅の測定方法。
The present invention has the following aspects.
[1] A coating film swelling width measuring device for measuring the coating film swelling width of a coated metal plate that has been scratched on a surface and caused corrosion in a corrosive environment, and a sample table on which the coated metal plate is placed; Imaging means for imaging the surface of the painted metal plate, lighting means capable of illuminating the surface of the painted metal plate from at least two directions, and arithmetic means for calculating a film swelling width of the painted metal plate, The arithmetic unit includes a first image obtained by imaging the surface of the coated metal plate in a state where the illumination unit illuminates the surface of the coated metal plate in at least one of two directions, and a first image other than the one direction. Extracting a position of a flaw on the surface of the painted metal plate from a second image obtained by imaging the surface of the painted metal plate while illuminating the surface of the painted metal plate from a direction, and extracting the first image And from the second image, the coating gold Extracting the blistering portion of the coating on the surface of the plate, or by the lighting means, from a third image of the surface of the coated metal plate in a state where the surface of the coated metal plate is illuminated from at least two directions, The coating film swelling portion on the surface of the painted metal plate is extracted, and from the position of the extracted flaw on the surface of the painted metal plate and the extracted film swelling portion on the surface of the painted metal plate, A device for measuring the swelling width of a coated metal plate, which calculates the swelling width of the coating film.
[2] The arithmetic means has an image synthesizing means, and when extracting the position of a flaw on the surface of the painted metal plate from the first image and the second image, the image synthesizing means includes: From the first image and the second image, a minimum luminance image in which the lower one of the luminance levels at the same pixel address of the first image and the second image is calculated is synthesized. , [1] the apparatus for measuring the swollen width of a coated metal plate.
[3] The arithmetic means has an image synthesizing means, and when extracting a film swelling portion on the surface of the painted metal plate from the first image and the second image, the image synthesizing means Combining the first image and the second image with a maximum luminance image obtained by calculating a higher luminance level among luminance levels at the same pixel address of the first image and the second image. The apparatus for measuring the swollen width of a coated metal plate according to [1] or [2].
[4] A method for measuring the swollen film width of a coated metal plate which has been flawed in a corrosive environment by scratching the surface, wherein the surface of the coated metal plate is illuminated from one direction. A first image obtained by imaging the surface of the coated metal plate in a state in which the coating is performed, and a second image obtained by imaging the surface of the coated metal plate while illuminating the surface of the coated metal plate from a direction other than the one direction. From, extract the position of the flaw on the surface of the painted metal plate, and, from the first image and the second image, to extract the swelling portion of the coating film on the surface of the painted metal plate, or Extracting, from a third image obtained by imaging the surface of the coated metal plate with the surface of the coated metal plate illuminated from at least two directions, a coating blister portion on the surface of the coated metal plate, Position of the flaw on the surface of the metal plate and the extracted painted metal plate And a coating film swelling portion of the surface, to calculate the coating blister width of the coated metal plate, the measuring method of the coating film blister width of the coated metal plate.
[5] In extracting the position of a flaw on the surface of the painted metal plate from the first image and the second image, the first image and the second image are used to extract the position of the flaw. The measurement of the swollen width of the coated metal plate according to [4], wherein the minimum luminance image in which the lower one of the luminance levels at the same pixel address of the first image and the second image is calculated is synthesized. Method.
[6] When extracting a swelling portion of a coating film on the surface of the painted metal plate from the first image and the second image, the first image and the second image The coating of the coated metal plate according to [4] or [5], wherein a maximum luminance image in which a higher one of the luminance levels at the same pixel address of the first image and the second image is calculated is synthesized. Method for measuring film swelling width.

本発明によれば、塗装金属板の塗膜膨れ幅を精度よく測定できる。
本発明によれば、自動的に塗装金属板の塗膜膨れ幅測定を精度よく行うことができるようになり、かつ、測定時間の短縮、測定の信頼性の向上が図れる。また、本発明によれば、最大塗膜膨れ幅の発生した部位等の特定の部位の情報を記録でき、腐食試験を繰り返し行った際の当該部位の変化の様子(腐食状態の変化の様子等)を追跡できる。
ADVANTAGE OF THE INVENTION According to this invention, the coating film swelling width of a coating metal plate can be measured accurately.
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to perform the coating film swelling width measurement of a coating metal plate with high precision automatically, to shorten the measurement time, and to improve the reliability of the measurement. Further, according to the present invention, it is possible to record information on a specific portion such as a portion where the maximum coating swelling width has occurred, and to change the state of the portion when the corrosion test is repeatedly performed (such as a change in the corrosion state). ) Can be tracked.

本発明の塗装金属板の塗膜膨れ幅測定装置の一実施形態を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows one Embodiment of the coating film swelling width measuring apparatus of the coating metal plate of this invention. 図1に示す塗膜膨れ幅測定装置において、サンプル台に載置された塗装鋼板サンプルの周辺の構成を説明する説明図である。FIG. 2 is an explanatory diagram illustrating a configuration around a coated steel plate sample placed on a sample table in the coating film swelling width measuring device illustrated in FIG. 1. 塗装鋼板サンプルの例である。It is an example of a painted steel plate sample. 本発明の塗膜膨れ幅の測定手順を示す図である。It is a figure which shows the measuring procedure of the coating film swelling width of this invention. 第1の画像(左側照明画像)の見え方について、塗装鋼板サンプルの断面形状と画像輝度レベルの関係を用いて模式的に説明する説明図である。It is explanatory drawing which illustrates typically how to look at a 1st image (left side illumination image) using the relationship between the cross-sectional shape of a coating steel plate sample, and an image brightness level. 第2の画像(右側照明画像)の見え方について、塗装鋼板サンプルの断面形状と画像輝度レベルの関係を用いて模式的に説明する説明図である。It is explanatory drawing which illustrates typically how to look at a 2nd image (right side illumination image) using the relationship between the cross-sectional shape of a coating steel plate sample, and an image brightness level. Step01で撮像した画像(左側照明画像、右側照明画像)の例である。It is an example of the image (left illumination image, right illumination image) captured in Step01. きずの位置の抽出手順の一例を示す図である。It is a figure which shows an example of the extraction procedure of a defect position. Step21で合成した最小輝度画像の例である。It is an example of the minimum luminance image synthesized in Step 21. 図9の最小輝度画像に対して微分処理を行った微分処理画像の例である。10 is an example of a differentially processed image obtained by differentiating the minimum luminance image of FIG. 9. 図10の微分処理画像に対して2値化処理を行った2値画像の例である。11 is an example of a binary image obtained by performing a binarization process on the differentially processed image in FIG. 10. Hough変換による直線の検出方法を説明する説明図である。FIG. 9 is an explanatory diagram illustrating a method of detecting a straight line by the Hough transform. 図11の2値画像からHough変換により直線を検出した直線検出画像の例である。12 is an example of a straight line detection image obtained by detecting a straight line from the binary image of FIG. 11 by Hough transform. 塗膜膨れ部位の抽出手順の一例を示す図である。It is a figure which shows an example of the extraction procedure of a coating film swelling part. Step31で合成した最大輝度画像の例である。It is an example of the maximum luminance image synthesized in Step31. Sobelフィルタの例である。This is an example of a Sobel filter. 図15の最小輝度画像に対してSobelフィルタ処理を行ったSobelフィルタ処理画像の例である。16 is an example of a Sobel filter-processed image obtained by performing a Sobel filter process on the minimum luminance image in FIG. 15. 図17のSobelフィルタ処理画像に対して2値化処理を行った2値画像の例である。18 is an example of a binary image obtained by performing a binarization process on the Sobel filter-processed image in FIG. 17. 図18の2値画像に対してノイズ除去処理を行ったノイズ除去処理画像の例である。19 is an example of a noise removal processing image obtained by performing noise removal processing on the binary image of FIG. 18. 塗膜膨れ幅の算出手順の一例を示す図である。It is a figure which shows an example of the calculation procedure of a coating film swelling width. 図13の直線検出画像、図19のノイズ除去処理画像を回転して表示した例である。20 is an example in which the straight line detection image in FIG. 13 and the noise removal processing image in FIG. 19 are rotated and displayed. 塗膜膨れ幅の算出方法を説明する図である。It is a figure explaining the calculation method of a coat swelling width.

以下、本発明の一実施形態について図面を参照しながら説明する。ただし、本発明は、以下に示す実施形態に限定されない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below.

図1は、本発明の塗装金属板の塗膜膨れ幅測定装置(以下、単に「塗膜膨れ幅測定装置」ともいう)の一実施形態を示す概略構成図である。
本実施形態では、測定対象の塗装金属板として、表面にきずをつけ、腐食環境で腐食を生じさせた塗装鋼板を想定している。以下、測定対象の前記塗装鋼板を、「塗装鋼板サンプル」ともいう。
FIG. 1 is a schematic configuration diagram showing an embodiment of a coating film swelling width measuring device (hereinafter, also simply referred to as a “coating film swelling width measuring device”) of the present invention.
In the present embodiment, as a coated metal plate to be measured, a coated steel plate that has been scratched on its surface and caused corrosion in a corrosive environment is assumed. Hereinafter, the coated steel sheet to be measured is also referred to as a “coated steel sheet sample”.

(塗膜膨れ幅測定装置)
図1に示す塗膜膨れ幅測定装置は、塗装鋼板サンプルを載置するサンプル台と、前記塗装鋼板サンプルの表面を撮像する撮像手段としてのテレビカメラと、前記塗装鋼板サンプルの表面を少なくとも2方向から照明可能な照明手段としてのLED照明と、前記塗装鋼板サンプルの塗膜膨れ幅を算出する演算手段としての解析用パソコンと、を備える。
(Coating swelling width measuring device)
The coating film swelling width measuring apparatus shown in FIG. 1 includes a sample table on which a coated steel sheet sample is placed, a television camera as an imaging unit for imaging the surface of the coated steel sheet sample, and a surface of the coated steel sheet sample in at least two directions. LED lighting as lighting means capable of lighting from above, and an analysis personal computer as calculating means for calculating the blister width of the coated steel sheet sample.

図1に示すように、塗装鋼板サンプルの上方には、塗装鋼板サンプルの表面を撮像するためのテレビカメラが鉛直下向きに設置されており、該テレビカメラの視野中心に塗装鋼板サンプル表面の中央部が映るように、サンプル台の位置及び塗装鋼板サンプルの取り付け位置が調整されている(図2)。サンプル台及び塗装鋼板サンプルは水平に配置されている。   As shown in FIG. 1, a television camera for imaging the surface of the painted steel sheet sample is installed vertically downward above the painted steel sheet sample. The position of the sample table and the mounting position of the painted steel plate sample are adjusted so that is displayed (FIG. 2). The sample stand and the coated steel sheet sample are arranged horizontally.

また、塗装鋼板サンプルはテレビカメラで撮像したときに、視野の横方向に塗装鋼板サンプルの長手方向が映り込むように配置されている。すなわち、テレビカメラの視野の横方向をX軸、縦方向をY軸、視野の奥行き方向をZ軸とすると、塗装鋼板サンプルの長手方向がX軸と平行に配置されている。   Further, the painted steel plate sample is arranged so that the longitudinal direction of the painted steel plate sample is reflected in the lateral direction of the visual field when an image is taken by a television camera. That is, assuming that the horizontal direction of the visual field of the television camera is the X axis, the vertical direction is the Y axis, and the depth direction of the visual field is the Z axis, the longitudinal direction of the coated steel sheet sample is arranged parallel to the X axis.

図3に、塗装鋼板サンプルの例を示す。塗装鋼板サンプルは平板であり、長方形の形状をしており、周辺部はテープでシールされている。   FIG. 3 shows an example of a coated steel sheet sample. The painted steel sheet sample is a flat plate, has a rectangular shape, and the periphery is sealed with tape.

本実施形態においては、表面にカッターナイフでX字形に直線状に塗膜下の鋼板まできず(クロスカット)をつけたあと、塩水浸漬、乾燥、湿潤を繰り返すサイクリック試験環境下に置いた塗装鋼板サンプルを測定対象とし、前記塗装鋼板サンプルのきず部から発生した錆もしくは塗膜膨れの広がり具合を評価する。   In this embodiment, the coating is performed in a cyclic test environment where salt water immersion, drying, and moistening are repeated after the surface of the steel sheet under the coating film is not linearly cut (cross cut) with a cutter knife in a straight line in an X-shape with a cutter knife. With the steel sheet sample as a measurement object, the degree of spread of rust or swelling of the coating film generated from the flaw of the coated steel sheet sample is evaluated.

なお、本発明において、塗装金属板の表面につけるきずの形状や本数は、特に限定されない。例えば、塗装金属板の表面に直線状のきずを一本だけつけてもよいし(縦カット、横カット、斜カット)、直線状のきずを複数本つけてもよい。また、複数本のきずをつける場合には、きず同士をクロス(交差)させてもよいし、クロスさせなくてもよい。なお、本実施形態では、クロスカットの小さい方の対頂角の角度を略60°としているが、これに限定されず、きず同士をクロスさせる場合の角度は任意である。   In the present invention, the shape and number of flaws formed on the surface of the coated metal plate are not particularly limited. For example, only one linear flaw may be formed on the surface of the painted metal plate (vertical cut, horizontal cut, oblique cut), or a plurality of linear flaws may be formed. When a plurality of flaws are formed, the flaws may be crossed (intersecting) or may not be crossed. In the present embodiment, the angle of the vertex angle of the smaller cross cut is set to approximately 60 °, but the angle is not limited to this, and the angle at which the flaws are crossed is arbitrary.

図1、図2に示すように、本実施形態の塗膜膨れ幅測定装置は、照明手段としてLED照明を備える。LED照明は、塗装鋼板サンプルを挟んだ左側の位置と右側の位置にそれぞれ配置されている。すなわち、LED照明は、塗装鋼板サンプルの表面を左右2方向から照明できるように配置されている。   As shown in FIGS. 1 and 2, the apparatus for measuring the swollen width of a coating film according to the present embodiment includes LED illumination as illumination means. The LED lighting is arranged at a position on the left side and a position on the right side of the painted steel plate sample, respectively. That is, the LED lighting is arranged so that the surface of the coated steel sheet sample can be illuminated from two directions, left and right.

本実施形態におけるLED照明は、LED発光部が細長くライン状に並んでおり、細長い領域を照明する構造となっている。LED照明から出射された光は細く且つ広がり角が狭いため、塗装鋼板サンプルに対して低い角度で照明しても塗装鋼板サンプルの幅方向(Y軸方向)に表面を均一に照明することができる。
また、図2に示すように、LED照明の長さは塗装鋼板サンプルの長さより長くされており、塗装鋼板サンプルの長手方向(X軸方向)にも表面を均一に照明することができる。
また、LED照明は解析用パソコンから出力される点消灯信号によって、左右のLED照明の点消灯を、各々単独で制御できるようになっている。
The LED lighting according to the present embodiment has a structure in which the LED light emitting portions are elongated and arranged in a line, and illuminates an elongated region. Since the light emitted from the LED lighting is narrow and has a narrow spread angle, even when illuminated at a low angle with respect to the coated steel sheet sample, the surface can be uniformly illuminated in the width direction (Y-axis direction) of the coated steel sheet sample. .
In addition, as shown in FIG. 2, the length of the LED lighting is longer than the length of the coated steel sheet sample, and the surface can be uniformly illuminated also in the longitudinal direction (X-axis direction) of the coated steel sheet sample.
The LED lighting can be turned on and off independently of each other by a light-on / off signal output from the analysis personal computer.

なお、本発明において、照明手段は、LED照明に限定されず、任意の照明装置を採用できる。また、本発明において、塗装鋼板サンプルの表面を照明する方法としては、塗装鋼板サンプルを挟んで対向する位置に照明装置を配置し、該照明装置により塗装鋼板サンプルの表面を照明する方法が好ましい。例えば、本実施形態のように塗装鋼板サンプルを挟んだ左右の位置にそれぞれ照明装置を配置し、左右2方向から塗装鋼板サンプルの表面を照明できるようにしてもよいし、塗装鋼板サンプルを挟んだ紙面手前側の位置と、紙面奥側の位置に照明装置をそれぞれ配置し、紙面手前方向(前方向)と紙面奥方向(後方向)の2方向から塗装鋼板サンプルの表面を照明できるようにしてもよい。さらに、塗装鋼板サンプルを挟んだ左右の位置と、手前側奥側の位置に照明装置をそれぞれ配置し、前後左右方向の4方向から塗装鋼板サンプルの表面を照明できるようにしてもよい。   In the present invention, the lighting means is not limited to the LED lighting, and any lighting device can be adopted. Further, in the present invention, as a method of illuminating the surface of the coated steel sheet sample, a method of arranging an illuminating device at a position facing the coated steel sheet sample and illuminating the surface of the coated steel sheet sample with the illuminating device is preferable. For example, as in the present embodiment, the lighting devices may be arranged at left and right positions with the painted steel plate sample interposed therebetween so that the surface of the painted steel plate sample can be illuminated from two directions, left and right. Illumination devices are placed at the front and rear sides of the paper, respectively, so that the surface of the coated steel sheet sample can be illuminated from two directions, the front (front) and the back (back). Is also good. Further, the lighting devices may be arranged at the left and right positions with the painted steel plate sample therebetween and at the positions on the front and back sides, respectively, so that the surface of the painted steel plate sample can be illuminated from four directions of front, rear, left and right.

さらに、照明手段は、前記各方向からの照明光が略同一の入射角度(照明光が塗装鋼板サンプル表面となす角度)で塗装鋼板サンプルの表面を照明できることが好ましい。また、前記入射角度は小さい方が好ましい。これにより、塗装鋼板サンプルの表面を幅方向、長手方向に均一に照明しやすくなり、かつ、塗装鋼板サンプル表面の微小な凹凸を強調して観察できる。   Further, it is preferable that the illuminating means can illuminate the surface of the coated steel sheet sample at substantially the same incident angle (the angle between the illuminating light and the surface of the coated steel sheet sample) of the illumination light from each direction. Further, it is preferable that the incident angle is small. Thereby, it becomes easy to uniformly illuminate the surface of the coated steel sheet sample in the width direction and the longitudinal direction, and it is possible to emphasize and observe minute irregularities on the surface of the coated steel sheet sample.

本実施形態において、前記テレビカメラはUSBケーブルで解析用パソコンに接続されており、テレビカメラで撮像された画像は解析用パソコンに転送され処理される。解析用パソコンはテレビカメラで撮像した画像データから画像処理により、塗装鋼板サンプルの表面のきずの位置の抽出と、塗装鋼板サンプルの表面の塗膜膨れ部位の抽出を行い、その結果から塗膜膨れ幅を算出する。そして、算出結果を解析用パソコンに接続されたモニタ上に表示する。また、テレビカメラで撮像するときには、解析用パソコンからLED照明の点消灯制御信号を出力し、左側照明のみ点灯した状態で左側照明画像(第1の画像)を取り込み、右側照明のみ点灯した状態で右側照明画像(第2の画像)を取り込む。また、後述するように、塗装鋼板サンプルの表面の塗膜膨れ部位を抽出するために、左側照明と右側照明を同時点灯した状態で撮像した画像(第3の画像)を別途取り込んでもよい。   In the present embodiment, the television camera is connected to a personal computer for analysis by a USB cable, and an image captured by the television camera is transferred to the personal computer for analysis and processed. The analysis personal computer extracts the position of the flaw on the surface of the coated steel sheet sample and extracts the blistering part of the coating on the surface of the coated steel sheet sample by image processing from the image data captured by the TV camera, and based on the result, the coating blistering. Calculate the width. Then, the calculation result is displayed on a monitor connected to the analysis personal computer. In addition, when capturing an image with a television camera, a control signal for turning on and off the LED illumination is output from the analysis personal computer, and a left illumination image (first image) is taken in with only the left illumination turned on, and a signal with only the right illumination turned on. A right side illumination image (second image) is captured. Further, as will be described later, an image (third image) captured in a state where the left illumination and the right illumination are simultaneously turned on may be separately taken in order to extract the blister portion of the coating film on the surface of the coated steel sheet sample.

(塗膜膨れ幅の測定方法)
次に、本発明の塗膜膨れ幅の測定方法について説明する。
図4は、本発明における塗膜膨れ幅の測定手順を示す図である。図4のフローに従って本発明における塗膜膨れ幅の測定及び解析の手順例を説明する。
(Method of measuring blister width of coating film)
Next, the method for measuring the swollen width of the coating film of the present invention will be described.
FIG. 4 is a diagram showing a procedure for measuring the swollen width of the coating film in the present invention. An example of the procedure for measuring and analyzing the swollen width of the coating film according to the present invention will be described with reference to the flow of FIG.

まず、Step01では、撮像手段で、前記照明手段により、少なくとも2方向のうちの1方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した画像(第1の画像)と、前記1方向以外の方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した画像(第2の画像)を撮像する。
さらに、このStep01では、前記第1の画像、前記第2の画像とは別に、撮像手段で、前記照明手段により少なくとも2方向から同時に前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した画像(第3の画像)を撮像しても良い。
First, in Step01, an image (first image) of the surface of the coated metal plate is taken by the imaging unit while the surface of the coated metal plate is illuminated by the illumination unit from at least one of two directions. And capturing an image (second image) of the surface of the painted metal plate while illuminating the surface of the painted metal plate from a direction other than the one direction.
Further, in this Step 01, separately from the first image and the second image, the imaging means illuminates the surface of the painted metal plate simultaneously from at least two directions by the illumination means, and An image of the surface (third image) may be taken.

次に、Step02では、演算手段が、Step01で得られた前記第1の画像と前記第2の画像とから、塗装金属板の表面のきずの位置を抽出する。   Next, in Step 02, the calculating means extracts the position of the flaw on the surface of the painted metal plate from the first image and the second image obtained in Step 01.

また、Step03では、演算手段が、Step01で得られた前記第1の画像と前記第2の画像とから、塗装金属板の表面の塗膜膨れ部位を抽出する。このStep03では、前記第3の画像から塗装金属板の表面の塗膜膨れ部位を抽出してもよい。
なお、Step02とStep03が行われる順序は、任意である。
Further, in Step 03, the calculating means extracts a swelling portion of the coating film on the surface of the coated metal plate from the first image and the second image obtained in Step 01. In this Step 03, the swelling portion of the coating film on the surface of the coated metal plate may be extracted from the third image.
Note that the order in which Step02 and Step03 are performed is arbitrary.

Step04では、演算手段が、Step02で抽出した塗装金属板の表面のきずの位置と、Step03で抽出した塗装金属板の表面の塗膜膨れ部位とから、塗装金属板サンプルの塗膜膨れ幅を算出する。そして、Step05で、その結果を出力する。   In Step 04, the calculation means calculates the swollen width of the coated metal plate sample from the position of the flaw on the surface of the coated metal plate extracted in Step 02 and the swollen portion of the coated metal plate surface extracted in Step 03. I do. Then, in Step 05, the result is output.

次に、上記各Stepの詳細について説明する。   Next, the details of each step will be described.

<Step01>
Step01で撮像する画像について説明する。
図5、図6は、本実施形態の塗膜膨れ幅測定装置により塗装鋼板サンプルの表面を撮像した際の画像の見え方について、模式的に説明する説明図である。
図5は、塗装鋼板サンプルの表面を左方向から照明した状態で当該塗装鋼板サンプルの表面を撮像した第1の画像(左側照明画像)の見え方について、塗装鋼板サンプルの断面形状と画像輝度レベルの関係を用いて模式的に説明する説明図であり、図6は、塗装鋼板サンプルの表面を右方向から照明した状態で当該塗装鋼板サンプルの表面を撮像した第2の画像(右側照明画像)の見え方について、塗装鋼板サンプルの断面形状と画像輝度レベルの関係を用いて模式的に説明する説明図である。
<Step01>
The image captured in Step 01 will be described.
FIG. 5 and FIG. 6 are explanatory views schematically illustrating how the image looks when the surface of the coated steel sheet sample is captured by the coating film swelling width measuring apparatus of the present embodiment.
FIG. 5 shows the cross-sectional shape and the image brightness level of the painted steel sheet sample with respect to the appearance of a first image (left-side illumination image) of the surface of the painted steel sheet sample while the surface of the painted steel sheet sample is illuminated from the left. FIG. 6 is a diagram schematically illustrating the relationship using the relationship (1). FIG. 6 is a second image (right-side illumination image) of the surface of the coated steel sheet sample captured in a state where the surface of the coated steel sheet sample is illuminated from the right. FIG. 4 is an explanatory diagram schematically explaining the appearance of, using the relationship between the cross-sectional shape of a coated steel sheet sample and the image luminance level.

はじめに、図5を用いて、塗装鋼板サンプルの表面を左方向から照明した状態で当該塗装鋼板サンプルの表面を撮像した画像(第1の画像)の見え方について説明する。
塗装鋼板の腐食を生じていない部分は平坦なままである(図中の基準面)が、鋼板に腐食を生じると、腐食により塗膜が凸状に膨らみ始める。そのため、比較的低い角度で塗装鋼板サンプルの表面を照明すると(すなわち、塗装鋼板サンプルの表面とLED照明から出射された光線のなす角度が比較的小さくなるように該表面を照明すると)、基準面上では照明光がほぼそのまま鏡面反射し、テレビカメラに入る光量は少ない。しかし、塗膜膨れを生じた部分(塗膜膨れ部)では、塗膜膨れ部の左側(照明側)端面は基準面より立ち上がっているために、基準面に比べるとより多くの光がテレビカメラに反射するために、塗膜膨れ部の左側端部はテレビカメラで明るく観察される。また、きず部では、きずの両側に基準面から大きく盛り上がった盛り上がり部が生じており、盛り上がり部の左側(照明側)では明るくなり、一方、盛り上がり部の照明と反対側では“影”が発生し影部となるために暗く観察される。
従って、第1の画像では塗膜膨れ部及びきず部の左側(照明側)端部は明るい領域として観察され、きず部ではクロスカット状に明暗の領域が観察される。
First, the appearance of an image (first image) of the surface of the coated steel sheet sample captured with the surface of the coated steel sheet sample illuminated from the left will be described with reference to FIG.
The portion of the coated steel sheet where corrosion has not occurred remains flat (reference plane in the figure), but when corrosion occurs on the steel sheet, the corrosion causes the coating film to start to bulge convexly. Therefore, when the surface of the coated steel sheet sample is illuminated at a relatively low angle (that is, when the surface formed by the light emitted from the LED lighting and the surface of the coated steel sheet sample is relatively small), the reference plane is illuminated. Above, the illumination light is almost specularly reflected and the amount of light entering the TV camera is small. However, in the portion where the coating swelling has occurred (the coating swelling portion), the left side (illumination side) end surface of the coating swelling rises above the reference surface, so that more light is transmitted from the TV camera than the reference surface. The left end of the swelling portion of the coating film is observed brightly by a television camera. Also, in the flaw, there is a prominence on both sides of the flaw that rises greatly from the reference plane, and the left side (illumination side) of the fever becomes brighter, while a "shadow" occurs on the side opposite to the illumination of the fever. It is observed dark because it becomes a shadow.
Therefore, in the first image, the left side (illumination side) end of the coating film swelling portion and the flaw portion is observed as a bright region, and a cross-cut bright and dark region is observed at the flaw portion.

次に、図6を用いて、塗装鋼板サンプルの表面を右方向から照明した状態で当該塗装鋼板サンプルの表面を撮像した画像(第2の画像)の見え方について説明する。
第2の画像では、塗装鋼板サンプルの表面を右側から照明することにより、塗膜膨れ部の右側(照明側)端部がテレビカメラで明るく観察される。また、きず部では左右に大きな盛り上がり部が生じることから、図6に示すように、第2の画像では、塗装膨れ部及びきず部の右側(照明側)端部は明るい領域として観察され、きず部の左側は影(影部)となるために暗く観察される。
Next, with reference to FIG. 6, the appearance of an image (second image) of the surface of the coated steel sheet sample captured while the surface of the coated steel sheet sample is illuminated from the right will be described.
In the second image, by illuminating the surface of the coated steel sheet sample from the right side, the right side (illumination side) end of the blister portion of the coating film is observed brightly by the television camera. In addition, since a large swelling portion is formed on the left and right in the flaw portion, as shown in FIG. 6, in the second image, the right end (illumination side) of the swollen portion and the flaw portion is observed as a bright region. The left side of the part is observed dark because it becomes a shadow (shadow part).

前記第1の画像(左側照明画像)の撮像は、解析用パソコンから点消灯制御信号を出力して、左側照明を点灯し、右側照明を消灯した状態で、解析用パソコンにUSBケーブルで接続されたテレビカメラで塗装鋼板サンプル表面を撮像する。そして撮像した画像を第1の画像(左側照明画像)として解析用パソコンに保存する。同様に、左側照明を消灯し、右側照明を点灯した状態で塗装鋼板サンプル表面を撮像した画像を第2の画像(右側照明画像)として解析用パソコンに保存する。前記第1の画像(左側照明画像)、前記第2の画像(右側照明画像)の例を図7に示す。なお、撮像の順番は第1の画像(左側照明画像)と第2の画像(右側照明画像)のどちらを先に撮像してもよい。   In the imaging of the first image (left illumination image), the analysis personal computer outputs a lighting / light-off control signal to turn on the left illumination and turn off the right illumination, and is connected to the analysis personal computer via a USB cable. The sample surface of the painted steel plate sample with a TV camera. Then, the captured image is stored in the analysis personal computer as a first image (left-side illumination image). Similarly, an image obtained by imaging the surface of the coated steel sheet sample with the left illumination turned off and the right illumination turned on is stored in the analysis personal computer as a second image (right illumination image). FIG. 7 shows an example of the first image (left-side illumination image) and the second image (right-side illumination image). Note that the order of imaging may be either the first image (left-side illumination image) or the second image (right-side illumination image).

なお、Step01において、前記第1の画像、前記第2の画像とは別に、左側照明と右側照明を同時に点灯した状態で塗装鋼板サンプル表面を撮像した画像を第3の画像として解析用パソコンに保存してもよい。図示は省略するが、この第3の画像では、塗装膨れ部の左側端部と右側端部の両端部が明るい領域として観察され、後述の最大輝度画像と類似した画像となる。   In Step 01, separately from the first image and the second image, an image obtained by imaging the surface of the coated steel sheet sample with the left illumination and the right illumination turned on simultaneously is stored in the analysis personal computer as a third image. May be. Although not shown, in the third image, both left and right ends of the swollen portion are observed as bright regions, and the image is similar to a maximum luminance image described later.

<Step02>
次に、Step02でのきずの位置の抽出手順を説明する。
図8は、Step01で得られた第1の画像と第2の画像とから、塗装金属板の表面のきずの位置を抽出する抽出手順の一例を示す図である。
<Step02>
Next, the procedure for extracting the position of a flaw in Step 02 will be described.
FIG. 8 is a diagram showing an example of an extraction procedure for extracting a position of a flaw on the surface of the painted metal plate from the first image and the second image obtained in Step01.

本実施形態では、塗装鋼板サンプルの表面のきずの位置を抽出するために、演算手段が、画像合成手段と、空間フィルタ手段と、2値化手段と、直線検出手段とを備える。   In the present embodiment, in order to extract the position of the flaw on the surface of the coated steel sheet sample, the calculating means includes an image synthesizing means, a spatial filtering means, a binarizing means, and a straight line detecting means.

まず、Step21では、画像合成手段が、Step01で撮像し解析用パソコンに保存された第1の画像(左側照明画像)と第2の画像(右側照明画像)の対応する同一画素アドレス毎に輝度レベルを比較し、輝度レベルが低いほうの値をその画素アドレスの輝度レベルとして画像合成し、最小輝度画像を合成する。最小輝度画像において、きず部は、きず部の左右の影が最小輝度画像の演算で暗く強調され、また、きず部中央が膨れている場合にはきず部中央が明るい領域として表示されるため、塗装膨れ部とは区別して観察できる。図9に合成した最小輝度画像例を示す。   First, in Step 21, the image synthesizing means sets the luminance level for each of the same pixel addresses corresponding to the first image (left-side illumination image) and the second image (right-side illumination image) captured in Step 01 and stored in the analysis personal computer. Are compared, and the image having the lower luminance level is used as the luminance level of the pixel address, and the minimum luminance image is synthesized. In the minimum-brightness image, the flaws are darkened and emphasized by the calculation of the minimum-brightness image, and the left and right shadows of the flaw are displayed as a bright region when the flaw center is swollen. It can be observed separately from the blisters. FIG. 9 shows an example of the synthesized minimum luminance image.

次いで、Step22では、空間フィルタ手段が、前記最小輝度画像からきず部の輝度レベル変動を強調して、きず部を強調した画像を合成する。
本実施形態では、きず部はクロスカットパターンとしてX軸に近い方向に斜めに直線状に延びていることから、空間フィルタ手段として微分フィルタ手段を用い、該微分フィルタ手段により、Y軸方向に画像の微分処理を行い、きず部を強調した画像(微分処理画像)を得る。
Next, in Step 22, the spatial filter unit emphasizes the luminance level fluctuation of the flaw portion from the minimum luminance image and synthesizes an image in which the flaw portion is emphasized.
In this embodiment, since the flaws extend obliquely and linearly in a direction close to the X-axis as a cross-cut pattern, a differential filter is used as a spatial filter, and an image is formed in the Y-axis direction by the differential filter. Is performed to obtain an image in which the flaw is emphasized (differential processing image).

微分フィルタ手段による微分処理の例を以下に示す。着目画素nの輝度レベルAnに対して、Y軸方向にα画素離れたn-α、n+α画素の輝度レベルをそれぞれAn-α、An+αとしたときに微分値Bnを次式で算出する。
Bn =2×An − (An-α + An+α) ・・・(1)
An example of the differential processing by the differential filter means will be described below. When the luminance levels of n-α and n + α pixels separated by α pixels in the Y-axis direction with respect to the luminance level An of the pixel of interest n are An-α and An + α, respectively, the differential value Bn is expressed by the following equation. calculate.
Bn = 2 × An− (An−α + An + α) (1)

前出の最小輝度画像に対して微分処理を行った例(微分処理画像例)を図10に示す。なお、図10はBnの値にバイアスを加算して表示している。
なお、塗装鋼板サンプルの基準面部では、輝度変動が少ないために微分値は撮像画像の輝度レベルに関係なく、ほぼ”0”レベルとなる。
FIG. 10 shows an example (an example of a differentiated image) in which the above-described minimum luminance image is subjected to a differentiation process. FIG. 10 shows a value obtained by adding a bias to the value of Bn.
In the reference plane portion of the painted steel plate sample, the differential value is almost “0” level regardless of the luminance level of the captured image because the luminance variation is small.

その後、Step23で、2値化手段により、前記微分処理画像を所定の閾値レベルで2値化することで、きず部を含む領域を抽出する。2値化処理を行った例(2値画像例)を図11に示す。2値画像でも、きず部は白い直線として観察できる。   Thereafter, in Step 23, the binarizing means binarizes the differentiated image at a predetermined threshold level to extract a region including a flaw. FIG. 11 shows an example in which the binarization process is performed (an example of a binary image). Even in a binary image, the flaw can be observed as a white straight line.

Step24では、きず部が2本のクロスした直線で構成されていることに着目し、直線検出手段が、前記2値画像のHough変換を行いきず部の2本の直線を検出し、きずの位置を抽出する。   In Step 24, focusing on the fact that the flaw is composed of two crossed straight lines, the straight line detecting means performs the Hough transform of the binary image and detects the two straight lines of the flaw, and determines the position of the flaw. Is extracted.

Hough変換による直線の検出方法を以下に示す。
Hough変換による直線の表現として、xy座標上の原点から対象とする直線に引いた法線の長さρと角度θで表す(図12参照)。
ρ = x×cosθ + y×sinθ ・・・(2)
A method of detecting a straight line by the Hough transform will be described below.
As a representation of a straight line by the Hough transform, it is represented by the length ρ and the angle θ of the normal drawn from the origin on the xy coordinates to the target straight line (see FIG. 12).
ρ = x × cos θ + y × sin θ (2)

ある点P(x、y)を通る直線は無数に描画可能であり、それらの直線は全てρθ座標上に表示される。同様に複数の点P1,P2,P3の各々を通る直線はρθ座標上に表示されるが(図12(a))、複数の点P1,P2,P3が同一直線l上の点の場合には、ρθ座標上の特定の点(ρ0、θ0)で全ての線が重なることになる(図12(b))。従って、前記きず部を抽出した2値画像の各点について取りうる直線をρθ座標上に描画し、ρθ座標上で重なりの最大となる点を2点抽出することにより、クロスカット部を2本の直線としてρθ座標上で検出できる、と同時に画像上のxy座標でのクロスカット部を直線として検出し、きずの位置を抽出したことになる。図13に直線検出結果(直線検出画像)例を示す。 Infinite numbers of straight lines passing through a certain point P (x, y) can be drawn, and all of these straight lines are displayed on the ρθ coordinates. Similarly, a straight line passing through each of the plurality of points P1, P2, and P3 is displayed on the ρθ coordinates (FIG. 12A), but when the plurality of points P1, P2, and P3 are points on the same straight line l, Means that all lines overlap at a specific point (ρ 0 , θ 0 ) on the ρθ coordinates (FIG. 12B). Therefore, by drawing a straight line that can be taken for each point of the binary image from which the flaw is extracted on the ρθ coordinate, and extracting two points having the maximum overlap on the ρθ coordinate, two cross-cut parts are formed. Is detected on the ρθ coordinate, and at the same time, the crosscut portion on the xy coordinate on the image is detected as a straight line, and the position of the flaw is extracted. FIG. 13 shows an example of a straight line detection result (straight line detection image).

<Step03>
次に、Step03での塗膜膨れ部位の抽出手順を説明する。
図14は、Step01で得られた第1の画像と第2の画像とから、塗装金属板の表面の塗膜膨れ部位を抽出する抽出手順の一例を示す図である。
<Step03>
Next, the procedure for extracting the swollen portion of the coating film in Step 03 will be described.
FIG. 14 is a diagram illustrating an example of an extraction procedure for extracting a swelling portion of the coating film on the surface of the coated metal plate from the first image and the second image obtained in Step01.

本実施形態では、塗装鋼板サンプルの表面の塗膜膨れ部位を抽出するために、演算手段が、画像合成手段と、空間フィルタ手段と、2値化手段と、ノイズ除去手段とを備える。   In the present embodiment, the arithmetic unit includes an image synthesizing unit, a spatial filter unit, a binarizing unit, and a noise removing unit in order to extract a swelling portion of the coating film on the surface of the coated steel sheet sample.

まず、Step31では、Step01で撮像し解析用パソコンに保存された第1の画像(左側照明画像)と第2の画像(右側照明画像)の対応する同一画素アドレス毎に輝度レベルを比較し、輝度レベルが高いほうの値をその画素アドレスの輝度レベルとして画像合成し、最大輝度画像合成を合成する。最大輝度画像では塗膜膨れ部位の左右エッジ部が高輝度部位として観察される。図15に最大輝度画像例を示す。   First, in Step 31, the luminance level is compared for each corresponding pixel address of the first image (left-side illumination image) and the second image (right-side illumination image) captured in Step 01 and stored in the analysis personal computer. Image synthesis is performed using the higher value as the brightness level of the pixel address, and the maximum brightness image synthesis is performed. In the maximum brightness image, the left and right edges of the swollen portion of the coating film are observed as high brightness portions. FIG. 15 shows an example of the maximum luminance image.

次いで、Step32では、空間フィルタ手段が、前記最大輝度画像から塗膜膨れ部位での輝度レベル変動を強調した画像を合成する。
本実施形態では、塗膜膨れ部位を抽出するために、空間フィルタ手段としてエッジ強調フィルタを用い、最大輝度画像にエッジ強調フィルタをかける。エッジ強調フィルタとしては、例えばSobelフィルタを用いる。
Next, in Step 32, the spatial filter unit synthesizes an image in which the luminance level fluctuation at the coating film swelling portion is emphasized from the maximum luminance image.
In this embodiment, an edge enhancement filter is used as a spatial filter means and an edge enhancement filter is applied to the maximum luminance image in order to extract a blistered portion of the coating film. As the edge enhancement filter, for example, a Sobel filter is used.

Sobelフィルタの例を図16に示す。Sobelフィルタは、図16のように3×3画素のフィルタであり、横(水平)方向のエッジ抽出用、縦(垂直)方向のエッジ抽出用、右斜方向のエッジ抽出用、左斜方向のエッジ抽出用があり、3×3フィルタの中央が対象とする画像の着目画素に対応するように配置し、フィルタの各画素毎にフィルタの重み付け演算を行い、その積算値をフィルタの出力値とする。対象とする画像の全画素について前記フィルタをかけ、各フィルタの出力を例えば次式に従って合算した値をSobelフィルタの出力値とする。
g = sqrt(gh×gh+gv×gv+gr×gr+gl×gl) ・・・(3)
FIG. 16 shows an example of the Sobel filter. The Sobel filter is a filter of 3 × 3 pixels as shown in FIG. 16 and is used for extracting edges in the horizontal (horizontal) direction, extracting edges in the vertical (vertical) direction, extracting edges in the right oblique direction, and extracting the edges in the left oblique direction. There is an edge extraction, the center of the 3 × 3 filter is arranged so as to correspond to the target pixel of the target image, a filter weighting operation is performed for each pixel of the filter, and the integrated value is used as the output value of the filter. I do. The filter is applied to all the pixels of the target image, and a value obtained by summing the outputs of the filters according to, for example, the following equation is set as the output value of the Sobel filter.
g = sqrt (gh × gh + gv × gv + gr × gr + gl × gl) (3)

前出の最大輝度画像に対して前記Sobelフィルタ処理を行った例(Sobelフィルタ処理画像例)を図17に示す。塗装鋼板サンプルの基準面部は画像の明るさの変化がほとんどないために、基準面部のSobelフィルタ出力画像の輝度レベルは”0”に近い暗い画像となる。塗装鋼板サンプルの最大輝度画像は、使用した塗装により基準面の輝度レベルは変動してしまうが、このようにSobelフィルタ処理を行うことで、基準面部は塗装の違いによる変動を受けにくくなる。   FIG. 17 shows an example in which the above-described Sobel filter processing is performed on the maximum luminance image (an example of a Sobel filter processed image). Since the reference plane of the coated steel sheet sample has almost no change in image brightness, the brightness level of the output image of the Sobel filter on the reference plane is a dark image close to “0”. In the maximum brightness image of the coated steel sheet sample, the brightness level of the reference surface varies depending on the coating used. However, by performing the Sobel filter processing as described above, the reference surface portion is less susceptible to the variation due to the difference in the coating.

一方、塗膜膨れ部は細かな凹凸形状をしているために、面の傾きによる照明の反射光画像は膨れの凹凸パターンを反映した細かな明暗変動のある画像となっている。そのため、Sobelフィルタ処理を行うと、塗膜膨れ部及びきず部が強調された画像となる。   On the other hand, since the swelling portion of the coating film has a fine uneven shape, the reflected light image of the illumination due to the inclination of the surface is an image having a fine brightness variation reflecting the uneven pattern of the swelling. Therefore, when the Sobel filter processing is performed, an image in which the swollen portion and the flaw portion of the coating film are emphasized is obtained.

その後、Step33で、2値化手段により、前記Sobelフィルタ処理した画像を所定の輝度レベルで2値化することにより、塗装鋼板サンプル表面の基準面から塗膜膨れ部での立ち上がりで発生した明るい領域を含む塗膜膨れ部を抽出する。2値化処理を行った例(2値画像例)を図18に示す。   Thereafter, in Step 33, the image subjected to the Sobel filter processing is binarized by a binarizing means at a predetermined luminance level, so that a bright region generated at the rise of the coating film swelling portion from the reference surface of the coated steel sheet sample surface. Is extracted. FIG. 18 shows an example in which the binarization processing is performed (an example of a binary image).

Step34では、ノイズ除去手段が、前記2値画像を所定画素縮小し、更に、きず部を含む最も大きな2値画像領域のみを抽出する。
この処理により、きずから発生した塗膜膨れ部に接していない領域をノイズとして除去し、また、抽出した2値画像領域内部の穴を埋めた画像を、抽出した塗膜膨れ部位とする。ノイズ除去処理を行った例(ノイズ除去処理画像例)を図19に示す。
In Step 34, the noise removing unit reduces the binary image by a predetermined number of pixels, and further extracts only the largest binary image area including a flaw.
By this processing, an area that is not in contact with the coating film swelling portion generated from the flaw is removed as noise, and an image in which holes inside the extracted binary image area are filled is defined as an extracted coating film swelling portion. FIG. 19 shows an example in which noise removal processing has been performed (an example of a noise removal processing image).

なお、上述したとおり、塗装鋼板サンプルの表面を左右方向から同時に照明した状態で当該塗装鋼板サンプルの表面を撮像した第3の画像では、塗膜膨れ部の左側端部と右側端部の両端部が明るい領域として観察されることから、この第3の画像は、上記最大輝度画像と類似した画像となる。したがって、第3の画像から塗装金属板の表面の塗膜膨れ部位を抽出することも可能である。ただし、撮像回数が少なくて済むこと等から、Step03では、前記第1の画像と前記第2の画像とから、塗膜膨れ部位を抽出することが好ましい。   As described above, in the third image in which the surface of the coated steel sheet sample is imaged while simultaneously illuminating the surface of the coated steel sheet sample from the left and right directions, the left and right ends of the coating film swelling portion Is observed as a bright area, the third image is an image similar to the maximum luminance image. Therefore, it is also possible to extract the swelling portion of the coating film on the surface of the coated metal plate from the third image. However, in Step 03, it is preferable to extract the swollen portion of the coating film from the first image and the second image because the number of times of imaging is small.

<Step04>
Step04では、Step02で抽出したきずの位置、Step03で抽出した塗装膨れ部位から、塗膜膨れ幅を算出する。このStep04では、抽出したきずの位置を基準にして、塗膜膨れ部位から塗膜膨れ幅を算出する。
<Step04>
In Step 04, the swollen width of the paint film is calculated from the position of the flaw extracted in Step 02 and the swollen portion of the paint extracted in Step 03. In Step 04, the swollen width of the paint film is calculated from the swollen portion of the paint film based on the position of the extracted flaw.

図20は、塗膜膨れ幅の算出手順の一例を示す図である。
本実施形態では、Step41で、Step02で得た上記直線検出画像(きずの位置の抽出画像)と、Step03で得た上記ノイズ除去処理画像(塗膜膨れ部位の抽出画像)を、塗装鋼板サンプルの表面の2本のクロスカットラインの内1本が垂直となるように画像を右回転させる。その際の回転角は、きず部の直線を検出したときの直線の傾きから算出される。図21は、上記ノイズ除去処理画像、上記直線検出画像を右回転して表示した例である。このように画像を回転させることで、塗膜膨れ幅の測定及び算出がより容易となる。
FIG. 20 is a diagram illustrating an example of a procedure for calculating the swelling width of the coating film.
In the present embodiment, in Step 41, the straight line detection image (extracted image of the position of the flaw) obtained in Step 02 and the noise removal processing image (extracted image of the blister portion of the coating film) obtained in Step 03 are combined with the coated steel sheet sample. The image is rotated clockwise so that one of the two crosscut lines on the surface is vertical. The rotation angle at that time is calculated from the inclination of the straight line when the straight line at the flaw is detected. FIG. 21 is an example in which the noise removal processing image and the straight line detection image are rotated clockwise and displayed. By rotating the image in this way, the measurement and calculation of the coating swollen width becomes easier.

次に、Step42で、きずの位置からの水平方向の塗膜膨れ幅を測定する。
塗膜膨れ幅の測定は、きず部直線に沿って、2本のきず部検出結果がクロスしたクロスカット中心から鉛直方向に距離L1だけ離れたところから、長さL2の範囲について測定を行う。
Next, in Step 42, the swollen width of the coating film in the horizontal direction from the position of the flaw is measured.
The swollen width of the coating film is measured in a range of length L2 along a straight line of the flaw from a center of a cross cut where two flaw detection results cross each other by a distance L1 in a vertical direction.

Step43では、図22に示すように、抽出したきずの位置から左右の塗膜膨れ部端部までの距離を、右側塗膜膨れ幅、左側塗膜膨れ幅として算出する。なお、長さL2の範囲内での右側塗膜膨れ幅の最大値とその検出位置、及び左側塗膜膨れ幅の最大値とその検出位置を合わせて算出する。   In Step 43, as shown in FIG. 22, the distances from the positions of the extracted flaws to the ends of the left and right coating swelling portions are calculated as the right coating swelling width and the left coating swelling width. The maximum value of the swollen width of the right coating film and its detection position within the range of the length L2, and the maximum value of the swollen width of the left coating film and its detection position are calculated together.

次に、2本のクロスカットラインの内もう1本のクロスカットラインが垂直となるように画像を左回転させ、上記と同様にして、抽出したきずの位置から左右の塗膜膨れ部端部までの距離を測定し、右側塗膜膨れ幅、左側塗膜膨れ幅として算出する。また、右側塗膜膨れ幅の最大値とその検出位置、左側塗膜膨れ幅の最大値とその検出位置を合わせて算出する(Step44〜Step46)。   Next, rotate the image counterclockwise so that the other of the two cross-cut lines is vertical, and in the same manner as described above, from the position of the extracted flaw, to the left and right ends of the swollen portion of the paint film. To the right and the left-hand coating swelling width are calculated. Further, the maximum value of the right-side coating swollen width and its detection position, and the maximum value of the left-side coating swollen width and its detection position are calculated together (Steps 44 to 46).

<Step05>
Step05では、Step04で算出した塗膜膨れ幅の算出結果を出力する。出力の方法や形式は、特に限定されないが、本実施形態では、クロスカット中心から4方向に伸びたきず部の各L2の長さ領域における右側最大塗膜膨れ幅、左側最大塗膜膨れ幅とその位置情報を、右側照明画像と左側照明画像から合成した最大輝度画像(図15)上にマークして、解析用パソコンに接続したモニタ上に表示する。このように、本発明においては、最大塗膜膨れ幅とその位置情報を最大輝度画像等の画像上にマークして表示でき、腐食試験を繰り返し行った際の最大塗膜膨れ幅の変化の様子を容易に追跡できる。
<Step05>
In Step 05, the calculation result of the swelling width of the coating film calculated in Step 04 is output. Although the output method and format are not particularly limited, in the present embodiment, the right maximum coating film swelling width and the left maximum coating film swelling width in the length region of each L2 of the flaw portion extending in four directions from the crosscut center are defined as The position information is marked on the maximum luminance image (FIG. 15) synthesized from the right-side illumination image and the left-side illumination image, and displayed on a monitor connected to a personal computer for analysis. Thus, in the present invention, the maximum coating swelling width and its position information can be marked and displayed on an image such as a maximum luminance image, and the state of the change of the maximum coating swelling width when the corrosion test is repeated. Can be easily tracked.

以上、説明したとおり、本発明によれば、少なくとも2方向から塗装金属板の表面を照明した画像から、きずの位置と塗膜膨れ部位を抽出することで、前記抽出精度がより高められ、塗膜膨れ幅をより精度よく測定できる。本発明によれば、照明の輝度ムラ、塗膜表面の色や反射率ムラなどの影響を受けにくく、また、自動で塗装金属板の塗膜膨れ幅を精度よく測定でき、測定時間の短縮、測定の信頼性の向上が図れる。さらに、本発明によれば、特定の塗膜膨れ部位の塗膜膨れ幅、位置情報も記録でき、当該部位の経時による状態の変化も容易に追跡できる。   As described above, according to the present invention, by extracting the position of the flaw and the blistering portion of the coating film from the image illuminating the surface of the coated metal plate from at least two directions, the extraction accuracy is further improved, The film swollen width can be measured more accurately. According to the present invention, uneven brightness of the illumination, less affected by the unevenness of the color and reflectance of the coating surface, and can automatically measure the swollen width of the coating of the coated metal plate accurately, shortening the measurement time, The reliability of the measurement can be improved. Further, according to the present invention, the swollen width and position information of a specific swollen portion of a coating can be recorded, and a change in the state of the portion over time can be easily tracked.

なお、本発明においては、Step42、43、Step45、46での塗膜膨れ幅の測定、算出を、例えば1画素ごとに、瞬時に行える。そのため、例えば1画素ごとの塗膜膨れ幅の算出結果をすべて出力することも可能である。また、塗膜膨れ幅の平均値や、塗膜膨れ幅の面積を算出して出力することも可能である。   In the present invention, the measurement and calculation of the swelling width of the coating film in Steps 42, 43, 45 and 46 can be performed instantaneously, for example, for each pixel. Therefore, for example, it is also possible to output all the calculation results of the swelling width of the coating film for each pixel. Further, it is also possible to calculate and output the average value of the swollen width of the coating film and the area of the swollen width of the coating film.

本発明の塗膜膨れ幅測定装置および塗膜膨れ幅の測定方法は、塗装金属板の塗膜膨れ幅だけでなく、塗膜膨れ部をテープ等により剥離した塗膜剥離幅の測定への応用も想定される。   The film swelling width measuring apparatus and the method for measuring the film swelling width of the present invention can be applied not only to the measurement of the film swelling width of a coated metal plate but also to the measurement of the coating film peeling width obtained by peeling the film swelling portion with a tape or the like. Is also assumed.

Claims (6)

表面にきずをつけ、腐食環境で腐食を生じさせた塗装金属板の塗膜膨れ幅を測定する塗膜膨れ幅測定装置であって、
前記塗装金属板を載置するサンプル台と、前記塗装金属板の表面を撮像する撮像手段と、前記塗装金属板の表面を少なくとも2方向から照明可能な照明手段と、前記塗装金属板の塗膜膨れ幅を算出する演算手段と、を備え、
前記演算手段は、
前記照明手段により、少なくとも2方向のうちの1方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第1の画像と、前記1方向以外の方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第2の画像とから、前記塗装金属板の表面のきずの位置を抽出し、かつ、
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するか、または、前記照明手段により、少なくとも2方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第3の画像から、前記塗装金属板の表面の塗膜膨れ部位を抽出し、
前記抽出した塗装金属板の表面のきずの位置と、前記抽出した塗装金属板の表面の塗膜膨れ部位とから、前記塗装金属板の塗膜膨れ幅を算出する、塗装金属板の塗膜膨れ幅測定装置。
A coating swelling width measuring device for measuring the coating swelling width of a coated metal plate that has caused a flaw in the surface and caused corrosion in a corrosive environment,
A sample table on which the painted metal plate is placed; imaging means for imaging the surface of the painted metal plate; lighting means capable of illuminating the surface of the painted metal plate from at least two directions; Calculating means for calculating the swollen width,
The calculating means includes:
A first image obtained by imaging the surface of the coated metal plate in a state where the surface of the coated metal plate is illuminated from at least one of the two directions by the illumination unit; From the second image obtained by imaging the surface of the painted metal plate in a state where the surface of the plate is illuminated, the position of the flaw on the surface of the painted metal plate is extracted, and
From the first image and the second image, a swelling portion of a coating film on the surface of the coated metal plate is extracted, or the surface of the coated metal plate is illuminated from at least two directions by the illumination unit. From the third image obtained by imaging the surface of the coated metal plate in a state where the coating film swelling portion on the surface of the coated metal plate is extracted,
From the positions of the scratches on the surface of the extracted painted metal plate and the swelled portion of the painted film on the surface of the extracted painted metal plate, calculate the swelling width of the painted metal plate. Width measuring device.
前記演算手段が画像合成手段を有し、
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面のきずの位置を抽出するに際し、
前記画像合成手段が、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち低い方の輝度レベルを算出した最小輝度画像を合成する、請求項1に記載の塗装金属板の塗膜膨れ幅測定装置。
The arithmetic means has an image synthesizing means,
In extracting the position of the flaw on the surface of the painted metal plate from the first image and the second image,
The image combining means calculates a lower one of the luminance levels at the same pixel address of the first image and the second image from the first image and the second image. The apparatus according to claim 1, wherein the minimum luminance image is synthesized.
前記演算手段が画像合成手段を有し、
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するに際し、
前記画像合成手段が、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち高い方の輝度レベルを算出した最大輝度画像を合成する、請求項1または2に記載の塗装金属板の塗膜膨れ幅測定装置。
The arithmetic means has an image synthesizing means,
In extracting the swelling portion of the coating film on the surface of the coated metal plate from the first image and the second image,
The image combining means calculates a higher luminance level among the luminance levels at the same pixel address of the first image and the second image from the first image and the second image. 3. The apparatus for measuring a swelling width of a coated metal plate according to claim 1 or 2, wherein the maximum brightness image is synthesized.
表面にきずをつけ、腐食環境で腐食を生じさせた塗装金属板の塗膜膨れ幅を測定する塗膜膨れ幅の測定方法であって、
前記塗装金属板の表面を1方向から照明した状態で当該塗装金属板の表面を撮像した第1の画像と、前記塗装金属板の表面を前記1方向以外の方向から照明した状態で当該塗装金属板の表面を撮像した第2の画像とから、前記塗装金属板の表面のきずの位置を抽出し、かつ、
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するか、または、前記塗装金属板の表面を少なくとも2方向から照明した状態で当該塗装金属板の表面を撮像した第3の画像から、前記塗装金属板の表面の塗膜膨れ部位を抽出し、
前記抽出した塗装金属板の表面のきずの位置と、前記抽出した塗装金属板の表面の塗膜膨れ部位とから、前記塗装金属板の塗膜膨れ幅を算出する、塗装金属板の塗膜膨れ幅の測定方法。
A method for measuring the swelling width of a coating film to measure the swelling width of the coating film on a coated metal plate that has caused corrosion in a corrosive environment,
A first image obtained by imaging the surface of the coated metal plate in a state where the surface of the coated metal plate is illuminated from one direction; and a first image obtained by imaging the surface of the coated metal plate in a direction other than the one direction. From the second image obtained by imaging the surface of the plate, the position of the flaw on the surface of the painted metal plate is extracted, and
From the first image and the second image, a swelling portion of the coating film on the surface of the coated metal plate is extracted, or the coating is performed in a state where the surface of the coated metal plate is illuminated from at least two directions. From the third image obtained by imaging the surface of the metal plate, extract a film swelling portion on the surface of the painted metal plate,
From the positions of the scratches on the surface of the extracted painted metal plate and the swelled portion of the painted film on the surface of the extracted painted metal plate, calculate the swelling width of the painted metal plate. How to measure width.
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面のきずの位置を抽出するに際し、
前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち低い方の輝度レベルを算出した最小輝度画像を合成する、請求項4に記載の塗装金属板の塗膜膨れ幅の測定方法。
In extracting the position of the flaw on the surface of the painted metal plate from the first image and the second image,
From the first image and the second image, a minimum luminance image in which the lower one of the luminance levels at the same pixel address of the first image and the second image is calculated is synthesized. The method for measuring the swollen width of a coated metal sheet according to claim 4.
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するに際し、
前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち高い方の輝度レベルを算出した最大輝度画像を合成する、請求項4または5に記載の塗装金属板の塗膜膨れ幅の測定方法。
In extracting the swelling portion of the coating film on the surface of the coated metal plate from the first image and the second image,
From the first image and the second image, a maximum luminance image in which the higher one of the luminance levels at the same pixel address of the first image and the second image is calculated is synthesized. The method for measuring the swollen width of a coated metal sheet according to claim 4 or 5.
JP2017106463A 2017-05-30 2017-05-30 Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet Active JP6624161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106463A JP6624161B2 (en) 2017-05-30 2017-05-30 Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106463A JP6624161B2 (en) 2017-05-30 2017-05-30 Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet

Publications (2)

Publication Number Publication Date
JP2018204956A JP2018204956A (en) 2018-12-27
JP6624161B2 true JP6624161B2 (en) 2019-12-25

Family

ID=64955612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106463A Active JP6624161B2 (en) 2017-05-30 2017-05-30 Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet

Country Status (1)

Country Link
JP (1) JP6624161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102307685B1 (en) * 2020-05-18 2021-10-01 주식회사 포스코 Evaluating method of steel and evaluating apparatus of steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801805B1 (en) * 2020-06-22 2020-12-16 マツダ株式会社 Measuring method and measuring device, and corrosion resistance test method and corrosion resistance test device for coated metal material
JP6835281B1 (en) * 2020-06-22 2021-02-24 マツダ株式会社 Measuring method and measuring device, and corrosion resistance test method and corrosion resistance test device for coated metal material
JP7472924B2 (en) 2022-01-31 2024-04-23 Jfeスチール株式会社 Apparatus and method for measuring the width of a blister in a coated metal sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102307685B1 (en) * 2020-05-18 2021-10-01 주식회사 포스코 Evaluating method of steel and evaluating apparatus of steel

Also Published As

Publication number Publication date
JP2018204956A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6624161B2 (en) Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet
JP6447637B2 (en) Surface defect detection apparatus, surface defect detection method, and steel material manufacturing method
Perng et al. A novel internal thread defect auto-inspection system
JP2018040649A (en) Image inspection device, image inspection method, image inspection program, computer-readable recording medium and recording apparatus
JP2904069B2 (en) Method for inspecting appearance of spherical object and inspection apparatus therefor
JP3185559B2 (en) Surface defect inspection equipment
JP2017009523A (en) Surface defect detection method, surface defect detection device, and method of manufacturing steel
KR101146081B1 (en) Detection of macro-defects using micro-inspection inputs
JP2006010392A (en) Through hole measuring system, method, and through hole measuring program
JP3189588B2 (en) Surface defect inspection equipment
JP4910128B2 (en) Defect inspection method for object surface
JP2006003372A (en) Method for measuring property of specularly reflecting surface by ccd camera, and apparatus thereof
JP2001099632A (en) Normal reflection type surface shape measuring method and device with ccd camera
He et al. An effective MID-based visual defect detection method for specular car body surface
US20230020684A1 (en) Laser based inclusion detection system and methods
JP7472924B2 (en) Apparatus and method for measuring the width of a blister in a coated metal sheet
JP3871963B2 (en) Surface inspection apparatus and surface inspection method
Sills et al. Defect identification on specular machined surfaces
JP5605010B2 (en) Surface inspection method
JP2023151945A (en) Inspection system and inspection method
JP2019066222A (en) Visual inspection device and visual inspection method
Kmec et al. Optical noncontact method to detect amplitude defects of polymeric objects
KR20190139604A (en) Apparatus and method for surface inspection
KR20200107404A (en) Apparatus for inspecting display panel
US20230252616A1 (en) Inspection system and inspection method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6624161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250