JP6621353B2 - Heat resistant ceramic circuit board - Google Patents

Heat resistant ceramic circuit board Download PDF

Info

Publication number
JP6621353B2
JP6621353B2 JP2016061903A JP2016061903A JP6621353B2 JP 6621353 B2 JP6621353 B2 JP 6621353B2 JP 2016061903 A JP2016061903 A JP 2016061903A JP 2016061903 A JP2016061903 A JP 2016061903A JP 6621353 B2 JP6621353 B2 JP 6621353B2
Authority
JP
Japan
Prior art keywords
copper
circuit board
copper plate
ceramic circuit
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016061903A
Other languages
Japanese (ja)
Other versions
JP2017175061A (en
Inventor
翔二 岩切
翔二 岩切
宮川 健志
健志 宮川
秀樹 広津留
秀樹 広津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2016061903A priority Critical patent/JP6621353B2/en
Publication of JP2017175061A publication Critical patent/JP2017175061A/en
Application granted granted Critical
Publication of JP6621353B2 publication Critical patent/JP6621353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、耐熱性に優れるセラミックス回路基板に関する。 The present invention relates to a ceramic circuit board having excellent heat resistance.

パワーモジュール等に利用される回路用基板として、熱伝導率やコスト、安全性等の点から、アルミナ、窒化ケイ素、窒化アルミニウム等のセラミックス基板が利用されている。これらのセラミックス基板は、両主面にCuやAl等の金属回路や放熱板を接合しセラミックス回路基板として用いられる。 As circuit boards used for power modules and the like, ceramic substrates such as alumina, silicon nitride, and aluminum nitride are used from the viewpoint of thermal conductivity, cost, safety, and the like. These ceramic substrates are used as a ceramic circuit substrate by bonding a metal circuit such as Cu or Al or a heat sink to both main surfaces.

近年、省エネルギー化への需要の高まりやエレクトロニクス技術の発展に伴い、パワーモジュールの小型化、高出力化が求められており、従来のSi半導体に変わる材料としてSiC半導体の開発が進められている。 In recent years, with the increasing demand for energy saving and the development of electronics technology, there has been a demand for miniaturization and high output of power modules, and development of SiC semiconductors as materials replacing conventional Si semiconductors has been promoted.

SiC半導体を搭載したパワーモジュールでは、Siデバイスより高温での動作が可能であり、モジュールを構成する材料には−40℃〜250℃での耐熱サイクル性を要求される。 Power modules equipped with SiC semiconductors can operate at higher temperatures than Si devices, and the materials constituting the modules are required to have heat cycle resistance at -40 ° C to 250 ° C.

−40℃〜250℃の熱サイクルにおいて、セラミックス基板と銅板の熱膨張差に起因する応力歪みが粒界に蓄積し、銅板表面では粒界ずれが発生するため熱サイクルの経過に伴い表面粗さが増加する。 In a thermal cycle of -40 ° C to 250 ° C, stress strain due to the thermal expansion difference between the ceramic substrate and the copper plate accumulates at the grain boundary, and the grain boundary shift occurs on the copper plate surface, so that the surface roughness increases with the progress of the thermal cycle. Will increase.

セラミックス回路基板の銅板の表面粗さが増加すると、SiCを接合するための半田との接合性が低下し、モジュールが正常に動作しなくなることが懸念されている。 When the surface roughness of the copper plate of the ceramic circuit board is increased, there is a concern that the bondability with the solder for bonding SiC is lowered and the module does not operate normally.

この課題に対し、銅板の厚みを薄くすることで熱サイクルの経過に伴う表面粗さの増加率を抑制することが可能であるが、長期の熱サイクルにおいて表面粗さは増加するため十分に解決されたとは言えない。 To reduce this problem, it is possible to suppress the rate of increase in surface roughness over the course of the thermal cycle by reducing the thickness of the copper plate, but this is a sufficient solution because the surface roughness increases in the long-term thermal cycle. It cannot be said that it was done.

国立研究開発法人新エネルギー・産業技術総合開発機構、「低炭素社会を実現する新材料パワー半導体プロジェクト」事業原簿(公開)、p.III―572(平成27年7月13日)National Research and Development Corporation New Energy and Industrial Technology Development Organization, “New Material Power Semiconductor Project Realizing Low Carbon Society” Business Ledger (open), p. III-572 (July 13, 2015)

本発明の目的は、上記課題に鑑み、−40℃〜250℃の長期熱サイクルにおいても銅板表面の平滑性に優れたセラミックス回路基板を提供することである。 In view of the above problems, an object of the present invention is to provide a ceramic circuit board excellent in smoothness of a copper plate surface even in a long-term thermal cycle of −40 ° C. to 250 ° C.

セラミックス基板の両面に銅板を接合してなるセラミックス回路基板において、特定の銅板を選択することにより、セラミックス基板と銅板を接合した後の銅の結晶配向率を80%以上であることを特徴とするセラミックス回路基板である。 In a ceramic circuit board formed by bonding copper plates to both surfaces of a ceramic substrate, the specific crystal orientation of the copper after bonding the ceramic substrate and the copper plate is 80% or more by selecting a specific copper plate. It is a ceramic circuit board.

本発明によれば、長期的な−40℃〜250℃の熱サイクルにおいても、銅板表面の平滑性に優れたセラミックス回路基板が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the ceramic circuit board excellent in the smoothness of the copper plate surface is provided also in a long-term thermal cycle of -40 degreeC-250 degreeC.

本発明に係るセラミックス回路基板の製造方法は特に限定されるものではなく、例えば次の方法で作製することができる。 The method for producing a ceramic circuit board according to the present invention is not particularly limited, and for example, it can be produced by the following method.

セラミックス回路基板を構成する各セラミックス基板の厚さは特に限定されないが、0.2mm〜1.0mmのものを用いるのが一般的である。 The thickness of each ceramic substrate constituting the ceramic circuit board is not particularly limited, but generally 0.2 mm to 1.0 mm is used.

セラミックス基板の材質は、熱伝導性及び熱サイクルに対する信頼性から、窒化アルミニウム又は窒化ケイ素の焼結体であることが好ましい。 The material of the ceramic substrate is preferably a sintered body of aluminum nitride or silicon nitride from the viewpoint of thermal conductivity and reliability against thermal cycling.

金属板には、圧延後の平均粒子サイズ15μm以下であり、結晶配向率が50%以上の銅板を用いるのが好ましい。銅板の厚みは、放熱性の観点から0.3mm〜1.0mmのものを用いるのが好ましい。 As the metal plate, it is preferable to use a copper plate having an average particle size after rolling of 15 μm or less and a crystal orientation ratio of 50% or more. The thickness of the copper plate is preferably 0.3 mm to 1.0 mm from the viewpoint of heat dissipation.

セラミックス基板に回路パターン及び放熱面を形成させるには、セラミックス基板と金属板とを接合した後にエッチングする方法、金属板から打ち抜かれた回路及び放熱面のパターンをセラミックス基板に接合する方法等によって行うことができる。 In order to form the circuit pattern and the heat dissipation surface on the ceramic substrate, the etching is performed after bonding the ceramic substrate and the metal plate, the circuit punched from the metal plate and the pattern of the heat dissipation surface are bonded to the ceramic substrate, and the like. be able to.

セラミックス基板と金属板の接合には、接合材を用いない溶湯法、活性金属ろう付け法などのいずれも採用することができるが、生産性が良く、しかも比較的低温で接合ができる活性金属ろう付け法が好ましい。Ag、Cu、Al、Ti、Mgなどの金属合金がろう材として好適である。ろう材はペースト又は箔として用いられる。ろう材はセラミックス基板、または、金属板のどちらに塗布、或いは配置してもよく、箔を用いる場合は予め金属板と箔をクラッド化しておくこともできる。ろう材ペーストの塗布方法は特に限定されないが、例えばスクリーン印刷法、ロールコーター法等を採用することができる。ろう材ペーストの塗布されたセラミックス基板に金属板を配置し、真空中で熱処理することで接合できる。 For joining the ceramic substrate and the metal plate, either a molten metal method that does not use a bonding material or an active metal brazing method can be employed, but an active metal brazing that has good productivity and can be bonded at a relatively low temperature. The attaching method is preferred. Metal alloys such as Ag, Cu, Al, Ti, and Mg are suitable as the brazing material. The brazing material is used as a paste or foil. The brazing material may be applied or disposed on either a ceramic substrate or a metal plate. When a foil is used, the metal plate and the foil can be clad in advance. The method for applying the brazing paste is not particularly limited, and for example, a screen printing method, a roll coater method, or the like can be employed. It can be joined by placing a metal plate on a ceramic substrate coated with a brazing material paste and heat-treating it in a vacuum.

接合体から回路パターン及び放熱面を形成するには、接合体の最上層及び最下層の金属板にエッチングレジストを塗布しエッチングする。エッチングレジストとしては、一般に使用されている紫外線硬化型や熱硬化型のものが挙げられる。また、エッチング液としては、金属板の材質が銅であるときには、塩化第2鉄溶液、塩化第2銅液、硫酸、過酸化水素水等の溶液が使用できる。エッチングによって不要な金属部分を除去したセラミックス回路基板には、塗布したろう材やその合金層・窒化物層等が残っており、ハロゲン化アンモニウム水溶液、硫酸、硝酸等の無機酸、過酸化水素水を含む溶液を用いて除去するのが一般的である。その後に、全てのエッチングレジストをアルカリ溶液によって除去する。必要に応じニッケル等のめっき処理を施すことも可能である。 In order to form a circuit pattern and a heat dissipation surface from the joined body, an etching resist is applied to the uppermost and lowermost metal plates of the joined body and etched. Examples of the etching resist include commonly used ultraviolet curable types and thermosetting types. As the etching solution, when the material of the metal plate is copper, a solution such as a ferric chloride solution, a cupric chloride solution, sulfuric acid, or hydrogen peroxide solution can be used. The ceramic circuit board from which unnecessary metal parts have been removed by etching has the applied brazing material and its alloy layer / nitride layer, etc. remaining. Ammonium halide aqueous solution, inorganic acid such as sulfuric acid and nitric acid, hydrogen peroxide solution Generally, it is removed using a solution containing. Thereafter, all the etching resist is removed with an alkaline solution. It is also possible to carry out a plating treatment of nickel or the like as necessary.

[実施例1]
両面に銀、銅、チタンを含む活性金属ろう材を塗布した厚さ0.32mmの窒化ケイ素基板と、厚さ0.30mmの銅板を両面に配置し、840℃で1時間加熱して接合した。両面の銅板にエッチングレジストを印刷してから、塩化銅水溶液、次いで過酸化水素と酸性フッ化アンモニウムの混合液を用いてエッチングを行い、回路パターンと放熱面を形成した。次いで、エッチングレジストをアルカリ剥離液で剥離し、銅板表面にはNiPメッキおよびAuメッキ処理を施すことでセラミックス回路基板を得た。得られたセラミックス回路基板はエスペック社製TSE−11−A−S装置を用いて、250℃気槽での保持時間18分、−40℃気槽での保持時間18分を1回とする熱サイクル試験を1000回繰り返し実施した。
[Example 1]
A 0.32 mm thick silicon nitride substrate coated with an active metal brazing material containing silver, copper, and titanium on both sides and a 0.30 mm thick copper plate were placed on both sides and joined by heating at 840 ° C. for 1 hour. . After printing an etching resist on the copper plates on both sides, etching was performed using an aqueous copper chloride solution and then a mixed solution of hydrogen peroxide and ammonium acid fluoride to form a circuit pattern and a heat dissipation surface. Next, the etching resist was stripped with an alkaline stripping solution, and the surface of the copper plate was subjected to NiP plating and Au plating to obtain a ceramic circuit board. The obtained ceramic circuit board was heated using a TSE-11-A-S apparatus manufactured by Espec Corp. with a holding time of 18 minutes in a 250 ° C. air tank and a holding time of 18 minutes in a −40 ° C. air tank. The cycle test was repeated 1000 times.

<使用材料>
窒化ケイ素基板:デンカ社製。寸法28×24mm。
銅板1:株式会社SHカッパープロダクツ製無酸素銅OFC−HC材
銅板2:AURUBIS社製DCuB1/PNA401材
銅板3:三菱伸銅株式会社製無酸素銅OFC材
<Materials used>
Silicon nitride substrate: manufactured by Denka Corporation. Dimensions 28x24mm.
Copper plate 1: Oxygen-free copper OFC-HC material manufactured by SH Copper Products Co., Ltd. Copper plate 2: DCUB1 / PNA401 material manufactured by AURUBIS Copper plate 3: Oxygen-free copper OFC material manufactured by Mitsubishi Shindoh Co., Ltd.

<評価方法>
銅の結晶配向率:セラミックス基板と銅板を接合した後に任意の位置でセラミックス回路基板の銅板部分の断面を作製し、800×300μmの視野にて加速電圧15kVの条件で電子線後方散乱分析(日立ハイテク社製SU6600形電界放出形走査顕微鏡、TSL社製EBSD)を行い、視野内の銅板部分にて結晶方位マップを作成した後、銅の結晶方位を(001)面、(111面)、(101)面に3値化し、各方位の面積比から最も高い値を示した面の割合を結晶配向率として評価した。
銅平均粒子径:セラミックス基板と銅板を接合した後の断面SEM画像800×300μm視野(日立ハイテク社製SU6600形電界放出形走査顕微鏡)から、銅の粒子サイズのヒストグラムを5μm幅で作成し、ヒストグラムの累積50%の値を銅平均粒子径として評価した。
表面粗さ(Ra):250℃での保持時間18分、−40℃での保持時間18分の条件にて熱サイクル試験を1000回実施した後の銅板メッキ後のメッキ表面粗さRaを接触式の表面粗さ計(ミツトヨ社製201P)を用いて評価した。
<Evaluation method>
Copper crystal orientation ratio: After bonding the ceramic substrate and the copper plate, a cross section of the copper plate portion of the ceramic circuit substrate is prepared at an arbitrary position, and an electron beam backscattering analysis is performed under the condition of an acceleration voltage of 15 kV in a field of 800 × 300 μm (Hitachi) After performing a high-tech SU6600 field emission scanning microscope, TSL EBSD) and creating a crystal orientation map at the copper plate portion in the field of view, the copper crystal orientation was set to (001) plane, (111 plane), ( The ratio of the surface which was trinarized to 101) plane and showed the highest value from the area ratio of each orientation was evaluated as the crystal orientation ratio.
Copper average particle diameter: A cross-sectional SEM image after bonding a ceramic substrate and a copper plate 800 × 300 μm field of view (SU6600 field emission scanning microscope manufactured by Hitachi High-Tech Co., Ltd.), a histogram of copper particle size is created with a width of 5 μm. The value of the cumulative 50% was evaluated as the copper average particle size.
Surface roughness (Ra): Contact with the plating surface roughness Ra after copper plate plating after 1000 heat cycle tests under the conditions of holding time at 250 ° C. for 18 minutes and holding time at −40 ° C. for 18 minutes. Evaluation was performed using a surface roughness meter of the formula (201P manufactured by Mitutoyo Corporation).

Figure 0006621353
Figure 0006621353

実施例2〜3、比較例1〜2
銅板および接合温度を表1に示す条件でセラミックス基板と銅板の接合を行うことにより、結晶配向率と平均粒子径の異なるセラミックス回路基板を作製した。
Examples 2-3 and Comparative Examples 1-2
Ceramic circuit boards having different crystal orientation ratios and different average particle diameters were produced by joining the ceramic board and the copper board under the conditions shown in Table 1 for the copper plate and the joining temperature.

表1よりセラミックス基板と銅板を接合した後の銅板断面において結晶の配向率が80%以上である際に、熱サイクル1000回後においても表面平滑性に優れたセラミックス回路基板が得られた。また、結晶の配向率の向上により熱サイクル後のRaが低下し、結晶配向率95%、銅平均粒子径90μmにて最も改善効果が高かった。

From Table 1, when the orientation ratio of the crystal was 80% or more in the cross section of the copper plate after joining the ceramic substrate and the copper plate, a ceramic circuit substrate excellent in surface smoothness was obtained even after 1000 thermal cycles. Moreover, Ra after the heat cycle decreased due to the improvement of the crystal orientation ratio, and the improvement effect was the highest when the crystal orientation ratio was 95% and the copper average particle diameter was 90 μm.

Claims (2)

セラミックス基板の両面に銅板を接合してなるセラミックス回路基板において、セラミックス基板と銅板を接合した後の銅板断面800×300μmの視野における銅の結晶配向率が80%以上であることを特徴とするセラミックス回路基板。 A ceramic circuit board formed by bonding a copper plate to both surfaces of a ceramic substrate, wherein the crystal orientation ratio of copper in a field of view of a cross section of the copper plate of 800 × 300 μm after bonding the ceramic substrate and the copper plate is 80% or more Circuit board. 接合後の銅平均粒子径が100μm以下且つ、結晶配向率が95%以上であることを特徴とする請求項1記載のセラミックス回路基板。

The ceramic circuit board according to claim 1, wherein the copper average particle diameter after bonding is 100 µm or less and the crystal orientation is 95% or more.

JP2016061903A 2016-03-25 2016-03-25 Heat resistant ceramic circuit board Active JP6621353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061903A JP6621353B2 (en) 2016-03-25 2016-03-25 Heat resistant ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061903A JP6621353B2 (en) 2016-03-25 2016-03-25 Heat resistant ceramic circuit board

Publications (2)

Publication Number Publication Date
JP2017175061A JP2017175061A (en) 2017-09-28
JP6621353B2 true JP6621353B2 (en) 2019-12-18

Family

ID=59971549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061903A Active JP6621353B2 (en) 2016-03-25 2016-03-25 Heat resistant ceramic circuit board

Country Status (1)

Country Link
JP (1) JP6621353B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7212700B2 (en) * 2018-12-28 2023-01-25 デンカ株式会社 CERAMIC-COPPER COMPOSITE, CERAMIC CIRCUIT BOARD, POWER MODULE, AND CERAMIC-COPPER COMPOSITE MANUFACTURING METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110290380A1 (en) * 2008-11-12 2011-12-01 Toyo Kohan Co., Ltd. Method for manufacturing metal laminated substrate for semiconductor element formation and metal laminated substrate for semiconductor element formation
JP5463280B2 (en) * 2010-12-28 2014-04-09 株式会社日立製作所 Circuit board for semiconductor module
JP2011124585A (en) * 2011-01-07 2011-06-23 Hitachi Metals Ltd Ceramic wiring board and manufacturing method and semiconductor module of the same
JP6517069B2 (en) * 2014-06-30 2019-05-22 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2017175061A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP7080881B2 (en) Ceramic circuit board and modules using it
KR102272865B1 (en) Joined body, substrate for power module provided with heat sink, heat sink, method for manufacturing joined body, method for manufacturing substrate for power module provided with heat sink, and method for manufacturing heat sink
JP6742073B2 (en) Ceramics circuit board
WO2014142310A1 (en) Bonded body, substrate for power modules, and substrate with heat sink for power modules
WO2011049067A1 (en) Substrate for power module, substrate with heat sink for power module, power module, method for producing substrate for power module, and method for producing substrate with heat sink for power module
TWI713746B (en) Power module substrate
JP5133960B2 (en) Circuit board for semiconductor mounting and manufacturing method thereof
JP2006240955A (en) Ceramic substrate, ceramic circuit board, and power control component using the same
JP4037425B2 (en) Ceramic circuit board and power control component using the same.
KR102336484B1 (en) Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
CN106537580B (en) Ceramic circuit board and method for manufacturing the same
JP2007324301A (en) Method for manufacturing nitride ceramics circuit board
WO2018225809A1 (en) Ceramic circuit substrate
JP4703377B2 (en) Stepped circuit board, manufacturing method thereof, and power control component using the same.
JP6904094B2 (en) Manufacturing method of insulated circuit board
JP2006351988A (en) Ceramic substrate, ceramic circuit board and power control component using same
JP5069485B2 (en) Metal base circuit board
JP6621353B2 (en) Heat resistant ceramic circuit board
JP2017065935A (en) Ceramic circuit board
JP2008147309A (en) Ceramic substrate and semiconductor module using the same
JP2011082502A (en) Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module
JP2011201760A (en) Substrate for power module, substrate with heat sink for power module, power module, method for producing substrate for power module, and method for producing substrate with heat sink for power module
JP2007109995A (en) Method of mounting circuit board
JP4282627B2 (en) Ceramic circuit board, manufacturing method thereof, and power control component using the same.
JP2009277990A (en) Substrate for power module, power module, and method of manufacturing substrate for power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191119

R150 Certificate of patent or registration of utility model

Ref document number: 6621353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250