JP6617582B2 - 車両操舵制御装置 - Google Patents

車両操舵制御装置 Download PDF

Info

Publication number
JP6617582B2
JP6617582B2 JP2016015504A JP2016015504A JP6617582B2 JP 6617582 B2 JP6617582 B2 JP 6617582B2 JP 2016015504 A JP2016015504 A JP 2016015504A JP 2016015504 A JP2016015504 A JP 2016015504A JP 6617582 B2 JP6617582 B2 JP 6617582B2
Authority
JP
Japan
Prior art keywords
vehicle
control
unit
steering control
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016015504A
Other languages
English (en)
Other versions
JP2017134724A (ja
Inventor
尚大 横田
尚大 横田
義徳 渡邉
義徳 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016015504A priority Critical patent/JP6617582B2/ja
Publication of JP2017134724A publication Critical patent/JP2017134724A/ja
Application granted granted Critical
Publication of JP6617582B2 publication Critical patent/JP6617582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、車両操舵制御装置に関する。
非特許文献1には、車両の操舵制御に用いられる目標経路(目標走行軌跡)の生成方法が記載されている。この方法では、目的関数を最小とする経路上の制御点が算出され、算出された制御点に曲線関数が当てはめられて、目標経路が生成される。
2014 IEEE IntelligentVehicles Symposium (IV) Julius Ziegler, Philipp Bender, Thao Dang and ChristophStiller, "TrajectoryPlanning for BERTHA- a Local, Continuous Method", June 8-11, 2014. Dearborn, Michigan, USA.
非特許文献1記載の車両用物標検出装置は、実際に車両が走行しようとしている経路の形状を考慮していないため、曲線関数によっては目標経路の曲率の滑らかさが損なわれることがある。
本発明は、滑らかな目標経路を生成することができる車両操舵制御装置を提供することを目的とする。
本発明に係る車両操舵制御装置は、車両の目標経路に基づいて車両の操舵を制御する車両操舵制御装置であって、車載センサの検出結果に基づいて車両の前方の走行可能領域である走路を算出する走路算出部と、車両の進行方向に沿って等間隔又は所定の間隔になるように走路内に複数の制御点を設定する設定部と、設定部により設定された複数の制御点の横位置を、走路の中心線に対するオフセット量と経路形状とをパラメータとする目的関数を最適化することによって調整する横位置調整部と、横位置調整部により調整された複数の制御点、及び、曲線関数に基づいて、目標経路を生成する経路生成部と、経路生成部により生成された目標経路に基づいて車両の操舵を制御する操舵制御部と、を備える。
本発明によれば、滑らかな目標経路を生成して操舵制御することができる。
実施形態に係る車両操舵制御装置を備える車両の構成を説明するブロック図である。 一様な3次Bスプラインによる曲線生成手法を説明する図である。 走行可能領域および制御点の一例である。 再サンプリングを説明する図である。 制御点の横位置の調整を説明する図である。 車両操舵制御装置の制御処理のフローチャートである。 離散点の2つの配置パターンそれぞれに曲線関数を当てはめたときの曲率を説明する図である。 制御点間隔比率と制御点数との関係を示すグラフである。
以下、図面を参照して、本発明の実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一符号を付し、重複する説明を省略する。
図1は、実施形態に係る車両操舵制御装置1を備える車両2の構成を説明するブロック図である。図1に示されるように、車両操舵制御装置1は、乗用車などの車両2に搭載される。車両操舵制御装置1は、後述のとおり、車両2の目標経路に基づいて車両2の操舵を制御する。目標経路とは、車両操舵制御装置1の制御目標となる曲線(走行軌跡)である。
車両2は、車載センサ4、ECU(Electronic Control Unit)5及びアクチュエータ6を備えている。車載センサ4、ECU5及びアクチュエータ6は、CAN(Controller Area Network)通信回路を用いて通信するネットワークにそれぞれ接続され、相互通信を行うことができる。
車載センサ4は、内部センサ及び外部センサを含む。内部センサは、車両2の走行状態を検出する検出機器である。内部センサは、速度センサを含む。速度センサは、車両の速度を検出する検出機器である。外部センサは、車両2の外部状況を検出する検出機器である。車両2の外部状況とは、車両2の所定範囲内の環境又は状況である。車両2の外部状況は、一例として、レーンの境界線の位置、レーン中央位置及び道路幅、道路の形状、物体の状況などを含む。物体の状況は、一例として、固定障害物と移動障害物とを区別する情報、車両2に対する障害物の位置、車両2に対する障害物の移動方向、車両2に対する障害物の相対速度などを含む。外部センサは、カメラ、レーダー及びライダーのうち少なくとも一つを含む。外部センサの検出結果には、車両2の外部状況に関する情報が含まれる。車載センサ4は、検出結果をECU5へ出力する。
ECU5は、走行するレーンに設定された制御点(ベクトル)と3次Bスプラインとを用いて、目標経路となる曲線を生成する。最初に、一様(ユニフォーム)な3次Bスプラインによる曲線生成手法について概説する。図2は、一様な3次Bスプラインによる曲線生成手法を説明する図である。
一様な3次Bスプラインは、制御点Qと曲線パラメータt(0≦t≦1)を用いて表現される。ノット点(ベクトル)をP(t)、自然数iとすると、ノット点P(t)は、以下の式(1)〜式(5)を用いて計算される。
Figure 0006617582

Figure 0006617582

Figure 0006617582

Figure 0006617582

Figure 0006617582
まず、図2に示される曲線セグメントPについて説明する。曲線セグメントPは、制御点Q0,1,2,を用いて生成される。ノット点Pはi=1,ノット点Pはi=2であり、曲線パラメータt=0のとき、ノット点Pとなり、曲線パラメータt=1のとき、ノット点Pとなる。ノット点Pは、式(1)〜式(5)を用いて以下の式6のように表現される。
Figure 0006617582

同様にノット点Pも算出することができる。また、曲線パラメータtに対する曲線上のノット点P(t)=(x(t),y(t))の曲率κ(t)は次の式(7)で表現される。
Figure 0006617582
式(1)を用いて、曲線セグメントPが生成される。曲線セグメントPは、曲線パラメータt=0の場合にノット点Pとし、曲線パラメータt=1の場合にノット点Pとし、制御点Q1,2,3,を用いて生成される。このように、複数の制御点を用いて曲線セグメントを順次生成する。
次に、ECU5の具体的な機能について説明する。ECU5は、機能部として、走路算出部10、設定部11、横位置調整部12、経路生成部13及び操舵制御部14を備えている。
走路算出部10は、車載センサ4の検出結果に基づいて車両2の前方の走行可能領域である走路を算出する。走路とは、車両2が走行する道路に設定された車両2の前方の領域であり、車両2が物体と干渉することなく走行できる領域である。走路算出部10は、車載センサ4である外部センサによって検出されたレーンの境界線の位置及び物体の位置に基づいて、車両2の経路を複数算出し、車両2の経路ごとに車両2と物体との干渉リスクを算出する。走路算出部10は、干渉リスクを評価することにより、レーン内において車両2が物体と干渉しない領域を走行可能領域として算出する。なお、物体が移動障害物である場合には、走路算出部10は、車載センサ4である内部センサにより検出された車両2の速度、及び車載センサ4である外部センサによって検出された移動障害物との相対速度をさらに用いて、車両2及び移動障害物それぞれの経路を算出し、移動障害物との干渉リスクを評価することで、走行可能領域を算出する。
図3は、走行可能領域および制御点の一例である。図3の(A)に示されるように、走路算出部10は、車載センサ4によって検出されたレーン境界線L1,L2、及び、物体A1の位置に基づいて、車両2の前方の走行可能領域である走路を算出する。走路は、レーン境界線L1,L2よりも内側に設定された境界線L3,L4で規定された領域である。境界線L3,L4は、図中の白丸印を通る線で表現されている。
設定部11は、車両2の走路に対して目標経路を生成するための複数の制御点を設定する。制御点とは、3次Bスプラインなどの曲線関数を当てはめるための点である。設定部11は、車両2の進行方向に沿って等間隔になるように走路内に複数の制御点を設定する。図3の(B)に示されるように、設定部11は、走路の中心線に沿って等間隔に複数の制御点Qを設定する。
さらに、設定部11は、初回以降の処理において前回処理にて算出された目標経路(前回の目標経路)を参照し、複数の制御点Qの設定を行う。車両2が操舵制御を行う場合、車両2は、応答速度や通信遅れなどを考慮して定まるプレビュー時間(例えば0.7秒)と、車両2の速度とを用いて前方距離を算出し、算出された前方距離の目標経路を参照して操舵を制御する。このため、ECU5は、目標経路のうち車両2から前方距離に至るまでの経路(制御対象経路)については変更しない。設定部11は、前回の目標経路を参照して制御対象経路を生成するために用いた制御点Qを認識し、当該制御点Qの位置を変更しないことにより、制御対象経路を変更しないことを実現する。これにより、制御対象経路を変更しないことを他の公知の手法に比べて高速で実現できる。
設定部11は、初回以降の処理において、制御対象経路よりも遠方の区間については、前回の目標経路で用いられた制御点Qを利用するのではなく、制御対象経路を生成するために用いられた最も遠方の制御点Qを起点として制御点Qを再サンプリングする。図4は、再サンプリングを説明する図である。図4の(A)に示されるように、前方距離は、プレビュー時間Tpreと車両2の現在の速度Vとの積である。SP1は、前回の目標経路である。設定部11は、この前方距離を導出するために利用された制御点Q〜Q(図中の白丸印)ついては、位置を変更しない。そして、設定部11は、制御対象経路を生成するために用いられた最も遠方の制御点Qを起点として、以降の制御点Q〜Q11を再サンプリングする。設定部11は、制御点Qから走路の中心線に沿ったユークリッド距離の積算値が予め定められた値となった位置に、制御点Qを設定する。次に、設定部11は、制御点Qを起点として走路の中心線に沿ったユークリッド距離の積算値が予め定められた値となった位置に、制御点Qを設定する。このようにして、以降の制御点を順次再サンプリングする。図4の(B)は、初回以降の処理において再サンプリングされた制御点の例である。
横位置調整部12は、設定部11により設定された複数の制御点Qの横位置を、走路の中心線に対するオフセット量と経路形状とをパラメータとする目的関数を最適化することによって調整する。横位置とは、レーンに直交する方向(車両2の進行方向に直交する方向)の位置である。目的関数の一例は、以下の式(8)である。
Figure 0006617582

nは点列番号、Offsetは走路の中心線からの距離(オフセット量)、Gyは横G(曲率と車両2の速度の二乗との積)、Gyは横ジャーク(曲率変化率と車両2の速度の二乗との積)、Distは曲線長、Woffs_LinearはOffset線形項に対する重み係数、Woffs_SquareはOffset二乗項に対する重み係数、WGyは横Gに対する重み係数、WGyは横ジャークに対する重み係数である。横位置調整部12は、式(8)が最小となるJを公知の最適化手法により求め、最小となるJの評価パラメータに基づいて制御点Qの横位置を調整する。オフセット量を評価パラメータに含めることで、実際の走路の中心線に近い曲線となる制御点の横位置を求めることできる。横G、横ジャーク及び曲線長は、経路形状に関する評価パラメータであり、経路形状に関する評価パラメータに含めることで、実際の走路の経路形状を考慮して制御点Qの横位置を調整することができる。
上述したオフセット量(Offset)、横G(Gy)、横ジャーク(Gy)及び曲線長(Dist)について詳細を説明する。図5は、制御点の横位置の調整を説明する図である。図5に示されるように、オフセット量(Offset)は、ノット点Pと走路の中心線L5との距離である。曲線長(Dist)は、ノット点間のユークリッド距離である。横G及び横ジャークで用いる速度は、車両2の現在の速度である。横Gで用いる曲率は、5点の曲線パラメータt(図中の曲線パラメータt=0,1/5,2/5,3/5,4/5)における曲率の平均値である。横ジャークで用いる曲率変化率は、5点の曲線パラメータt(図中の曲線パラメータt=0,1/5,2/5,3/5,4/5)における曲率変化率の平均値である。曲率変化率uは以下の式(9)で表現される。
Figure 0006617582

tは曲線パラメータ、κ(t)は曲率、Vは車両2の速度、Distはノット点間のユークリッド距離、つまり曲線長である。平均値を用いることで、曲線をより滑らかとすることができる。
図3の(B)において、制御点Qからレーン幅方向に延びる矢印は、横方向への調整を図示したものである。図3の(B)は、前回の目標経路が無い場合、つまり、設定部11による初回の制御点設定処理の場合であるため、全ての制御点Qが調整されることを図示している。図4の(B)は、前回の目標経路が存在し、制御対象経路については制御点Qを調整しないため、車両2に近い制御点Qについては横方向の調整が行われず、それ以降の制御点Qについて調整されることを図示している。
経路生成部13は、横位置調整部12により調整された複数の制御点Q、及び、3次Bスプラインに基づいて、目標経路を生成する。経路生成部13は、図2を用いて説明された一様な3次Bスプラインによる曲線生成手法により、目標経路を生成する。目標経路には、操舵制御部14が利用するパラメータが含まれる。パラメータの一例としては、座標、曲率、ヨー角などである。
操舵制御部14は、経路生成部13により生成された目標経路に基づいて車両2の操舵を制御する。操舵制御部14は、目標経路をトレースするように車両2のアクチュエータ6を制御する。アクチュエータ6は、操舵アクチュエータであり、車両2の操舵トルクを制御する。
次に、車両操舵制御装置1の制御処理について説明する。図6は、車両操舵制御装置1の制御処理のフローチャートである。図6に示す制御処理は、車両操舵制御装置1の作動開始の信号を取得したときに開始される。
図6に示されるように、車両操舵制御装置1の走路算出部10は、走路算出処理(S10)として、車載センサ4の検出結果に基づいて車両2の前方の走行可能領域である走路を算出する。これにより、例えば、図3の(A)に示される走行可能領域R1が取得される。
次に、車両操舵制御装置1の設定部11は、判定処理(S12)として、前回の目標経路が存在するか否かを判定する。設定部11は、前回の目標経路が存在しないと判定した場合、制御点設定処理(S16)を行う。設定部11は、制御点設定処理(S16)として、車両2の進行方向に沿って等間隔になるように走路内に複数の制御点Qを設定する。これにより、図3の(B)に示される制御点Qが設定される。
設定部11は、前回の目標経路が存在すると判定した場合、決定処理(S14)を行う。最初に、設定部11は、プレビュー時間と車両2の速度とを用いて前方距離を算出し、算出された前方距離に基づいて、制御対象経路の制御点Qを認識する。そして、設定部11は、決定処理(S14)として、認識された制御点Qを変更しない制御点として決定する。続いて、設定部11は、制御点設定処理(S16)として、変更しない制御点以外の制御点を、車両2の進行方向に沿って等間隔になるように走路内に設定する。これにより、図4の(B)に示される制御点Q(横方向を調整する制御点)が設定される。
続いて、車両操舵制御装置1の横位置調整部12は、調整処理(S18)として、制御点設定処理(S16)で設定された複数の制御点Qの横位置を、上述した式8の目的関数を最適化することによって調整する。
続いて、車両操舵制御装置1の経路生成部13は、経路生成処理(S20)として、調整処理(S18)にて調整された複数の制御点Q、及び、3次Bスプラインに基づいて、目標経路を生成する。
続いて、車両操舵制御装置1の操舵制御部14は、操舵制御処理(S22)として、経路生成処理(S20)にて生成された目標経路に基づいて車両2の操舵を制御する。車両操舵制御装置1は、操舵制御処理(S22)を終了すると、図6に示された制御処理を終了する。制御処理が終了した場合に、車両操舵制御装置1の作動終了の信号を取得していないときには、再び走路算出処理(S10)から処理が開始される。このように、図6に示す制御処理は、車両操舵制御装置1の作動終了の信号を取得するまで、繰り返し実行される。
ここで、本実施形態に係る車両操舵制御装置1の効果を説明するために、離散点を最適化して曲線関数を当てはめた場合を説明する。図7は、離散点の2つの配置パターンそれぞれに曲線関数を当てはめたときの曲率を説明する図である。車両2の速度を一定とし、隣接する3点で円を生成した。そして、下記の式(10)で示す目的関数Jを最小とする経路上の参照点を求めた。
Figure 0006617582

nは点列番号、Offsetは旋回半径10mの円からの距離、Gyは横G(曲率と車両2の速度の二乗との積)、Gyは横ジャーク(曲率変化率と車両2の速度の二乗との積)、WoffsはOffsetに対する重み係数、WGyは横Gに対する重み係数、WGyは横ジャークに対する重み係数である。
得られた参照点を図7の(A)に示す。図7の(A)では、菱形印の参照点が7つ配置されたパターンと、白丸印の参照点が7つ配置されたパターンが示されている。図7の(B)は、上記2つの配置パターンに対して、参照点を元に経路生成したときの曲率と曲線長との関係を示す図である。横軸は曲線長であり、縦軸は曲率である。菱形印の参照点に対応するグラフは実線のグラフであり、白丸印の参照点に対応するグラフが点線のグラフである。図7の(B)に示されるように、目的関数は同じ最小値となるにも関わらず、曲線の滑らかさが大きく異なる。このように、離散点を最適化して曲線関数を当てはめた場合、曲線関数によっては曲線の滑らかさが損なわれることがある。
これに対して、本実施形態に係る車両操舵制御装置1は、走路内に複数の制御点Qを走路延在方向(進行方向)に等間隔にサンプリングすることにより、曲率変化を低減させた目標経路、つまり、滑らかな目標経路を生成することができる。
また、本実施形態に係る車両操舵制御装置1は、車載センサ4の検出結果に基づいて車両2の走路を算出し、走路内に制御点Qを等間隔に配置すること、及び、制御点Qの横位置を調整する目的関数のパラメータに走路に関する情報を反映することにより、実際に車両2が走行する経路形状を考慮して経路生成をすることができる。これにより、車両2の運転者の意図に沿った目標経路を生成することができる。また、本実施形態に係る車両操舵制御装置1を備えた車両2は、操舵制御のための目標経路を走行前に用意する必要がない。
また、本実施形態に係る車両操舵制御装置1は、車両2の進行方向の制御点Qの位置調整と、制御点Qの横位置の最適化とを別々に実施するため、全て纏めて行う場合に比べて高速に実施することができる。また、本実施形態に係る車両操舵制御装置1は、車両2の進行方向の制御点Qの位置調整において目的関数を用いた最適化を行わず、制御点の横位置の調整においてのみ目的関数の最適化を実施することにより、車両2の運転者の意図に沿った目標経路を生成し易くすることができる。
本発明は、上述した実施形態に基づいて、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、下記の実施例の変形例を構成することも可能である。各実施形態の構成を適宜組み合わせて使用してもよい。
(曲線関数の変形例)
上述した実施形態においては、曲線関数が3次Bスプラインである例を説明したが、これに限定されない。曲線関数は、ベジエ、次数違いのBスプライン、NURBS(Non Uniform Rational B-Spline)、スプライン補間曲線などのパラメトリック曲線であってもよい。
(車両構成の変形例)
上述した実施形態において、走路算出部10は、センサ情報だけでなく、地図情報を参照して走行可能領域を算出してもよい。つまり、車両2は地図情報を含む地図データベースを備えてもよい。また、車載センサ4は、上述したセンサに限定されない。車載センサ4は、後述する変形例でヨー角を用いるために、ヨーレートセンサを含んでもよい。さらに、後述する変形例で道路種別や天候などを取得するために、外部サーバと通信する通信部を備えてもよい。
(設定部11の変形例)
上述した実施形態において、経路の曲率変化を小さくするために設定部11が等間隔でサンプリングする例を説明したが、種々の変形が可能である。つまり、設定部11は所定の間隔になるように走路内に複数の制御点を設定することができる。経路の曲率変化を小さくするためには、隣接する4つの制御点間隔比率を1.0、つまり、等間隔に近づける必要がある。制御点間隔比率とは、隣接する制御点間隔の比率である。図8は、制御点間隔比率と制御点数との関係を示すグラフである。図8の(A)は、実施形態で説明した内容を示しており、制御点間隔比率が1.0固定の場合である。また、図8の(B)は、制御点間隔比率を等間隔とみなせる許容範囲(例えば0.95〜1.05)内で調整したグラフである。図8の(B)は、走路の中心線上の隣接する2点のうちヨー角変化が最大となる点が制御点として選択されるように調整された結果である。
また、上述した実施形態において、設定部11は、経路の局所変更が可能なこと及び演算負荷を軽減することを考慮して再サンプリングしてもよい。上述した実施形態のとおり、ECU5は、目標経路のうち車両2から前方距離に至るまでの経路(制御対象経路)については変更しない。つまり設定部11は、前回の目標経路を参照して制御対象経路を生成するために用いた制御点Qを認識し、当該制御点Qの位置を変更しない。このため、経路の局所変更性を確保するためには、制御点間隔を短くする必要がある。しかし、制御点間隔を短くして制御点数が増えると演算負荷が増加するという背反がある。このため、設定部11は、経路の局所変更性の必要に応じて制御点間隔を変更する。一例として、設定部11は、道路種別、周辺環境、天候などに応じて、進行方向に対する制御点間隔を設定する。具体的な一例としては、設定部11は、高速道路の制御点間隔よりも一般道路の制御点間隔を短くする。あるいは、設定部11は、閑散時の制御点間隔よりも混雑時の制御点間隔を短くする。あるいは、設定部11は、晴天時の制御点間隔よりも雨天時の制御点間隔を短くする。あるいは、設定部11は、車両2からの距離に応じて制御点間隔を設定してもよい。一例として、図8の(C)に示されるように、設定部11は、車両2に近い区間(例えば所定値以下)では制御点比率を1.0つまり等間隔とし、それよりも遠い区間では制御点の間隔を若干大きくした等比率間隔(制御点比率を1.05)としてもよい。このように制御点が設定された場合、経路の曲率変化が小さいことと演算負荷を軽減することを両立することができる。
(横位置調整部12の変形例)
上述した実施形態において、横位置調整部12は、目的関数の重み係数を、道路種別、周辺環境、天候、制御性などに応じて変更してもよい。横位置調整部12は、例えば、物体との干渉やレーン逸脱などのリスクが高い場合には、走路の中心線からのオフセット項の重みを大きくする。具体的な一例としては、横位置調整部12は、一般道路のオフセット項の重みよりも高速道路のオフセット項の重みを大きくする。あるいは、横位置調整部12は、閑散時のオフセット項の重みよりも混雑時のオフセット項の重みを大きくする。あるいは、横位置調整部12は、雨天時のオフセット項の重みよりも晴天時のオフセット項の重みを大きくする。あるいは、横位置調整部12は、制御性が良い場合のオフセット項の重みよりも、制御性が悪い場合のオフセット項の重みを大きくする。
図6のフローチャートの演算周期は例えば200msecといった短い周期で演算される。このため、上述した実施形態で説明したとおり、横G及び横ジャークで用いる速度を車両2の現在の速度とすることができる。横位置調整部12は、横G及び横ジャークで用いる速度を種々の方法で調整してもよい。例えば、横位置調整部12は、横G及び横ジャークで用いる速度の下限値を設定しておき(例えば30km/h)、車両2の現在の速度が下限値を下回った場合、横位置調整部12は、車両2の現在の速度に替えて、設定された下限値の速度を横G及び横ジャークで用いる速度として採用する。車両2の速度が低くなるほど横G及び横ジャークの影響が小さくなる。このため、経路は、走路の中心線に沿う傾向となり、実際に走行する車両2の運転者の感覚と異なる経路になるおそれがある。横位置調整部12は、下限値を設定することにより、上記の課題を解決し、実際に走行する車両2の運転者の感覚に近い経路を生成することができる。
また、横位置調整部12は、横G及び横ジャークで用いる速度の上限値を設定しておき(例えば80km/h)、車両2の現在の速度が上限値を上回った場合、横位置調整部12は、車両2の現在の速度に替えて、設定された上限値の速度を横G及び横ジャークで用いる速度として採用する。車両2の速度が高くなるほど横G及び横ジャークの影響が大きくなる。このため、経路は、走路の中心線から剥離する傾向となり、実際に走行する車両2の運転者の感覚と異なる経路になるおそれがある。横位置調整部12は、上限値を設定することにより、上記の課題を解決し、実際に走行する車両2の運転者の感覚に近い経路を生成することができる。
また、上述した実施形態においては、横位置調整部12は、横Gで用いる曲率、及び、横ジャークで用いる曲率変化率を得るために5点の曲線パラメータを評価点としたが、5点に限定されることはなく、6点であってもよい。また、横位置調整部12は、Bスプラインの次数に応じて評価する曲線パラメータの数を変更してもよい。例えば、横位置調整部12は、4次Bスプラインを用いる場合には、評価する曲線パラメータの数を6点としてもよい。曲線の複雑さに応じて評価する曲線パラメータの数を変更することで、演算負荷を抑えることができる。
(操舵制御部14の変形例)
操舵制御部14は、車両2の操舵を自動で行う場合のみならず、運転者の操舵入力を考慮して目標経路をトレースするように操舵を制御してもよい。
(制御点の位置最適化の変形例)
上述した実施形態では、車両操舵制御装置1は、車両2の進行方向の制御点Qの位置調整と、制御点Qの横位置の最適化とを別々に実施したが、走路を進行方向に沿って分割し、分割された領域内において、車両2の進行方向の制御点Qの位置調整と、制御点Qの横位置の最適化とを順次行ってもよい。また、上述した実施形態では、車両操舵制御装置1は、車両2の進行方向に制御点Qを等間隔で配置する例を説明したが、車両2の進行方向の制御点Qの位置調整を、目的関数を最適化することにより実施してもよい。この場合、隣接する制御点間の距離の差分絶対値の積算値を目的関数に含ませることにより、運転者の感覚に合った経路を生成することができる。
1…車両操舵制御装置、2…車両、4…車載センサ、10…走路算出部、11…設定部、12…横位置調整部、13…経路生成部、14…操舵制御部。

Claims (2)

  1. 両の操舵を制御する車両操舵制御装置であって、
    車載センサの検出結果に基づいて前記車両の前方の走行可能領域である走路を算出する走路算出部と、
    前記車両の進行方向に沿って等間隔又は所定の間隔になるように前記走路内に複数の制御点を設定する設定部と、
    前記設定部により設定された前記複数の制御点の横位置を、前記走路の中心線に対するオフセット量と経路形状とをパラメータとする目的関数を最適化することによって調整する横位置調整部と、
    前記横位置調整部により調整された前記複数の制御点曲線関数に当てはめることにより目標経路を生成する経路生成部と、
    前記経路生成部により生成された前記目標経路に基づいて前記車両の操舵を制御する操舵制御部と、
    を備える車両操舵制御装置。
  2. 前記曲線関数は、3次Bスプラインである請求項1に記載の車両操舵制御装置。
JP2016015504A 2016-01-29 2016-01-29 車両操舵制御装置 Active JP6617582B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015504A JP6617582B2 (ja) 2016-01-29 2016-01-29 車両操舵制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015504A JP6617582B2 (ja) 2016-01-29 2016-01-29 車両操舵制御装置

Publications (2)

Publication Number Publication Date
JP2017134724A JP2017134724A (ja) 2017-08-03
JP6617582B2 true JP6617582B2 (ja) 2019-12-11

Family

ID=59502864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015504A Active JP6617582B2 (ja) 2016-01-29 2016-01-29 車両操舵制御装置

Country Status (1)

Country Link
JP (1) JP6617582B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10816977B2 (en) * 2018-01-26 2020-10-27 Baidu Usa Llc Path and speed optimization fallback mechanism for autonomous vehicles
DE112018008026T5 (de) 2018-09-26 2021-07-08 Mitsubishi Electric Corporation Fahrtrouten-erzeugungseinrichtung und fahrzeug-steuerungseinrichtung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586795B2 (ja) * 2006-12-07 2010-11-24 トヨタ自動車株式会社 車両用制御装置

Also Published As

Publication number Publication date
JP2017134724A (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
CN111681452B (zh) 一种基于Frenet坐标系下的无人驾驶汽车动态换道轨迹规划方法
CN107851392B (zh) 路径生成装置、路径生成方法及存储路径生成程序的介质
JP5977203B2 (ja) 車両制御装置
US10775798B2 (en) Running track determining device and automatic driving apparatus
CN110678915B (zh) 车辆控制装置
CN108256233A (zh) 基于驾驶员风格的智能车轨迹规划及跟踪方法和***
CN105292116A (zh) 自动驾驶车辆的车道变换路径规划算法
CN113721637B (zh) 智能车动态避障路径连续规划方法、***及存储介质
CN110053619A (zh) 车辆控制装置
JP2016203882A (ja) 自動運転車両システム
CN111712414A (zh) 车辆控制装置
WO2017077794A1 (ja) 車両の走行支援装置
JP7112658B2 (ja) 車両運転支援システム及び方法
WO2016110733A1 (ja) 目標経路生成装置およぴ走行制御装置
KR20230009949A (ko) 경로 제어 모듈, 연관된 경로 제어 디바이스 및 연관된 방법
CN114302839A (zh) 用于确定机动车辆的避让路径的方法
JP2020111300A (ja) 車両運転支援システム及び方法
JP6617582B2 (ja) 車両操舵制御装置
CN114291092B (zh) 车辆换道控制方法、装置、电子控制单元及存储介质
JP2004114954A (ja) 車両用運転操作補助装置
CN112305911A (zh) 一种复杂环境下的反馈预测控制方法及其装置、车辆
CN115718496A (zh) 一种路径规划方法、装置和域控制器
JP2020111302A (ja) 車両運転支援システム及び方法
JP3991843B2 (ja) 車両用推奨操作量生成装置
CN113741179B (zh) 一种面向异构车辆的统一运动规划方法和***

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R151 Written notification of patent or utility model registration

Ref document number: 6617582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151