JP6615970B1 - Blood pressure estimation device and blood pressure estimation program - Google Patents

Blood pressure estimation device and blood pressure estimation program Download PDF

Info

Publication number
JP6615970B1
JP6615970B1 JP2018183913A JP2018183913A JP6615970B1 JP 6615970 B1 JP6615970 B1 JP 6615970B1 JP 2018183913 A JP2018183913 A JP 2018183913A JP 2018183913 A JP2018183913 A JP 2018183913A JP 6615970 B1 JP6615970 B1 JP 6615970B1
Authority
JP
Japan
Prior art keywords
blood pressure
mnpv
pulse wave
map
sbp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018183913A
Other languages
Japanese (ja)
Other versions
JP2020049134A (en
Inventor
健弘 山越
健弘 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
fukuokakougyoudaigaku
Original Assignee
fukuokakougyoudaigaku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by fukuokakougyoudaigaku filed Critical fukuokakougyoudaigaku
Priority to JP2018183913A priority Critical patent/JP6615970B1/en
Application granted granted Critical
Publication of JP6615970B1 publication Critical patent/JP6615970B1/en
Publication of JP2020049134A publication Critical patent/JP2020049134A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】特別な装置や煩雑な校正手順を必要とせず、循環動態(血圧、心拍出量、及び全末梢血管抵抗の関係性)の理論的な背景を基盤に、合理的な精度で血圧を推定することが可能な血圧推定装置および血圧推定プログラムの提供。【解決手段】光電容積脈波測定により心拍数(HR;heart rate)および修正規準化脈波容積(mNPV;modified normalized pulse volume)を得る測定手段2と、測定手段により得られた心拍数(HR)および修正規準化脈波容積(mNPV)から血圧(BP;blood pressure)をBP=exp[a(ln HR)+b(ln mNPV)+c](但し、a,b,cは補正係数)により算出する演算手段3とを含む。【選択図】図1[PROBLEMS] To provide blood pressure with reasonable accuracy based on the theoretical background of circulatory dynamics (relationship between blood pressure, cardiac output, and total peripheral vascular resistance) without the need for special equipment or complicated calibration procedures. Of blood pressure estimation device and blood pressure estimation program capable of estimating blood pressure SOLUTION: Measurement means 2 for obtaining a heart rate (HR) and a modified normalized pulse volume (mNPV) by photoelectric volume pulse measurement, and a heart rate (HR) obtained by the measurement means. ) And the corrected normalized pulse wave volume (mNPV), the blood pressure (BP; blood pressure) is calculated by BP = exp [a (ln HR) + b (ln mNPV) + c] (where a, b, and c are correction coefficients) And calculating means 3 for performing the above. [Selection] Figure 1

Description

本発明は、医療やヘルスケア等の分野において血圧を推定するための血圧推定装置および血圧推定プログラムに関する。   The present invention relates to a blood pressure estimation device and a blood pressure estimation program for estimating blood pressure in fields such as medical care and healthcare.

超高齢社会の進行に伴い高血圧患者が増加し続けており、予防および治療のための血圧管理が重要となっている。しかしながら、現状では一般的に血圧値の参考とされるのは外来血圧または家庭血圧であり、加えて年に1回ないしは数回の健康診断で測定するのみに留まっている人の割合が大きい。これでは短期的な血圧変動等の重要な指標を見逃してしまうことになる。   Hypertensive patients continue to increase as the super-aged society progresses, and blood pressure management for prevention and treatment is important. However, at present, blood pressure values are generally referred to as outpatient blood pressure or home blood pressure, and in addition, a large percentage of people only have to make measurements once or several times a year. This misses important indicators such as short-term blood pressure fluctuations.

従来、最も利用されている血圧測定方法は、上腕または手首にカフを巻いて測定するカフ式血圧計を使用する方法(カフ振動法)である。しかしながら、この血圧測定方法では、カフ適用部分を圧迫するため、被験者に不快感を与えてしまうという問題がある。また、カフ付属の専用の血圧測定装置(カフ式血圧計)が必要になるため、血圧を日常的に測定するには向いていないと言える。そこで、カフを使用せずに血圧を測定するカフレス血圧測定方法として、例えば特許文献1〜3に記載のものが開発されている。   Conventionally, the most widely used blood pressure measurement method is a method using a cuff sphygmomanometer (cuff vibration method) in which a cuff is measured around an upper arm or a wrist. However, in this blood pressure measurement method, there is a problem that the subject is uncomfortable because the cuff application portion is compressed. Moreover, since a dedicated blood pressure measurement device (cuff sphygmomanometer) attached to the cuff is required, it can be said that it is not suitable for daily blood pressure measurement. Therefore, for example, the methods described in Patent Documents 1 to 3 have been developed as cuff blood pressure measurement methods for measuring blood pressure without using a cuff.

特許文献1に記載のカフレス血圧測定方法は、心電図および光電容積脈波(PPG;Photo-plethysmogram)を測定するものであり、被験者に装着された生体信号検出センサによって得られる生体信号(心電図と脈波)から脈波伝搬時間(PTT;pulse transit time)を算出し、血管に関する特性を表す2つの定数パラメータ(B1,B2)を用いて収縮期血圧を算出する。
ここで、定数パラメータ(B1,B2)は、あらかじめ被験者の血圧を変動させながら取得した参照データセットを用いて決定しておく(キャリブレーション)必要がある。
The caffres blood pressure measuring method described in Patent Document 1 measures an electrocardiogram and a photoelectric volume pulse wave (PPG; Photo-plethysmogram), and a biosignal (electrocardiogram and pulse) obtained by a biosignal detection sensor attached to the subject. The pulse transit time (PTT) is calculated from the wave), and the systolic blood pressure is calculated using the two constant parameters (B1, B2) representing the blood vessel characteristics.
Here, the constant parameters (B1, B2) need to be determined (calibration) using a reference data set acquired in advance while varying the blood pressure of the subject.

特許文献2に記載のカフレス血圧測定方法は、光電容積脈波(PPG)の周波数特性を使用するものであり、生体の動脈における脈波から得られる心拍数情報から、低周波信号成分LFと高周波信号成分HFとの比を算出し、交感神経の活動状態および副交感神経の活動状態を判定し、血圧推定に利用する。   The caffres blood pressure measurement method described in Patent Document 2 uses the frequency characteristics of photoelectric volumetric pulse wave (PPG). From the heart rate information obtained from a pulse wave in a living artery, a low-frequency signal component LF and a high-frequency signal are measured. The ratio with the signal component HF is calculated, the sympathetic nerve activity state and the parasympathetic nerve activity state are determined, and used for blood pressure estimation.

特許文献3に記載のカフレス血圧測定方法は、光電容積脈波(PPG)のみを測定するものであり、脈波を測定した後、各波高値、波高値の比、脈波立ち上がり点間の時間、各波相互の時間間隔、脈波の積分値、脈拍数などの特徴量を計算し、同様に速度脈波や加速度脈波についても特徴量を計算する。このカフレス血圧測定方法は、これらを用いて血圧の基準値との関係を現場で徐々に学習させ、徐々に精度を向上させる手法である。   The caffres blood pressure measuring method described in Patent Document 3 measures only a photoelectric volume pulse wave (PPG), and after measuring the pulse wave, each peak value, the ratio of peak values, and the time between pulse wave rise points. Then, feature quantities such as the time interval between the waves, the integrated value of the pulse wave, and the pulse rate are calculated. Similarly, the feature quantities are calculated for the velocity pulse wave and the acceleration pulse wave. This caffres blood pressure measurement method is a method of gradually learning the relationship with the reference value of blood pressure on-site using these to gradually improve accuracy.

特許第5984088号公報Japanese Patent No. 5984088 特許第3213278号公報Japanese Patent No. 3321278 特開平10−295657号公報Japanese Patent Laid-Open No. 10-295657

上記特許文献1,2に記載のカフレス血圧測定方法では、合理的な精度で血圧を推定することを可能にしているが、心電図と光電容積脈波を測定する特別な装置が必要になってしまうことに加え、前述のカフ式血圧計を用いた煩雑な校正手順を必要とするため、実用的とは言い難い。   In the caffres blood pressure measuring methods described in Patent Documents 1 and 2 described above, it is possible to estimate blood pressure with reasonable accuracy, but a special device for measuring an electrocardiogram and a photoelectric volumetric pulse wave is required. In addition, since a complicated calibration procedure using the above-described cuff type sphygmomanometer is required, it is difficult to say that it is practical.

また、上記特許文献3に記載のカフレス血圧測定方法では、血圧推定のプロセスにおいて根拠とする生理学的背景がはっきりしておらず、現時点では使用の限界や適合性を見積もることが難しいという問題がある。   In addition, the caffres blood pressure measurement method described in Patent Document 3 has a problem that the physiological background on which the blood pressure estimation process is based is not clear, and it is difficult to estimate the limit of use and suitability at present. .

そこで、本発明においては、特別な装置や煩雑な校正手順を必要とせず、循環動態(血圧、心拍出量、及び全末梢血管抵抗の関係性)の理論的な背景を基盤に、合理的な精度で血圧を推定することが可能な血圧推定装置および血圧推定プログラムを提供することを目的とする。   Therefore, in the present invention, a special apparatus and a complicated calibration procedure are not required, and it is rational based on the theoretical background of circulatory dynamics (relationship between blood pressure, cardiac output, and total peripheral vascular resistance). It is an object to provide a blood pressure estimation device and a blood pressure estimation program capable of estimating blood pressure with high accuracy.

本発明の血圧推定装置は、光電容積脈波測定により心拍数(HR;heart rate)および修正規準化脈波容積(mNPV;modified normalized pulse volume)を得る測定手段と、測定手段により得られた心拍数(HR)および修正規準化脈波容積(mNPV)から血圧(BP;blood pressure)を
BP=exp[a(ln HR)+b(ln mNPV)+c]
(但し、a,b,cは補正係数)
により算出する演算手段とを含むものである。
The blood pressure estimation device of the present invention includes a measuring means for obtaining a heart rate (HR) and a modified normalized pulse volume (mNPV) by photoelectric volume pulse measurement, and a heart rate obtained by the measuring means. The blood pressure (BP) is calculated from the number (HR) and the modified normalized pulse wave volume (mNPV). BP = exp [a (ln HR) + b (ln mNPV) + c]
(Where a, b, and c are correction coefficients)
And calculating means for calculating by the above.

循環生理学の知見(循環器系をおおざっぱに線形系と考える)によれば、血行力学は概してオームの法則を満たしており、オームの法則「電圧(V)=電流(I)×抵抗(R)」になぞらえれば、心臓血管系において血圧(BP)は、心拍出量(CO;cardiac output)と全末梢血管抵抗(TPR;total peripheral resistance)の積により次のように求められる。
BP=CO×TPR
この方程式の両辺に対数変換(ln)を施すと次のようになる。
ln BP=ln CO+ln TPR
According to the knowledge of circulatory physiology (the circulatory system is roughly regarded as a linear system), hemodynamics generally satisfies Ohm's law, and Ohm's law "voltage (V) = current (I) x resistance (R) In the cardiovascular system, blood pressure (BP) is obtained as follows by the product of cardiac output (CO) and total peripheral resistance (TPR).
BP = CO × TPR
When logarithmic transformation (ln) is applied to both sides of this equation, the result is as follows.
ln BP = ln CO + ln TPR

ここで、心拍出量(CO)と心拍数(HR)は、両方ともβ−アドレナリン作動***感神経活動の影響を受ける点で、心拍数(HR)に関連する。同様に、全末梢血管抵抗(TPR)と修正規準化脈波容積(mNPV)は両方ともα−アドレナリン作動性の交感神経活動の影響を受けるという点で、指の血管の緊張度(収縮度)を反映する測定値である。したがって、血圧(BP)は単純な線形多項式によって推定することができる。   Here, cardiac output (CO) and heart rate (HR) are related to heart rate (HR) in that both are affected by β-adrenergic sympathetic nerve activity. Similarly, total blood vessel resistance (TPR) and modified normalized pulse wave volume (mNPV) are both affected by α-adrenergic sympathetic nerve activity, and the vascular tone (contraction) of the finger. Is a measurement value that reflects Therefore, blood pressure (BP) can be estimated by a simple linear polynomial.

すなわち、
ln BP=a×ln HR+b×ln mNPV+c
(但し、a,b,cは補正係数)
これを変形して、
BP=exp[a(ln HR)+b(ln mNPV)+c]
ここで、心拍数(HR)および修正規準化脈波容積(mNPV)の両方は、光電容積脈波を使用して測定できる生理学的変数である。
That is,
ln BP = a × ln HR + b × ln mNPV + c
(Where a, b, and c are correction coefficients)
Transform this,
BP = exp [a (ln HR) + b (ln mNPV) + c]
Here, both heart rate (HR) and modified normalized pulse wave volume (mNPV) are physiological variables that can be measured using photoelectric volume pulse waves.

すなわち、血圧推定に必要なものは、光電容積脈波測定から得られる心拍数(HR)と修正規準化脈波容積(mNPV)だけであるため、光電容積脈波による心拍数(HR)と修正規準化脈波容積(mNPV)を測定できさえすれば、手軽に血圧を推定することができ、本発明の血圧推定装置によれば、光電容積脈波測定により得られた心拍数(HR)および修正規準化脈波容積(mNPV)から、前述の循環動態の理論的な背景(BP=CO×TPR)を基盤に合理的な精度で血圧(BP)を推定することができる。   That is, since only the heart rate (HR) obtained from photoelectric volume pulse wave measurement and the corrected normalized pulse wave volume (mNPV) are necessary for blood pressure estimation, the heart rate (HR) by photoelectric volume pulse wave is corrected. As long as the normalized pulse wave volume (mNPV) can be measured, blood pressure can be estimated easily. According to the blood pressure estimation device of the present invention, the heart rate (HR) obtained by photoelectric volume pulse wave measurement and From the corrected normalized pulse wave volume (mNPV), the blood pressure (BP) can be estimated with reasonable accuracy based on the theoretical background of circulatory dynamics (BP = CO × TPR).

ここで、血圧(BP)として、平均動脈圧(MAP;mean arterial pressure)を算出する場合、カフを用いた上腕測定による平均動脈圧(MAP)を独立変数とし、心拍数(HR)および修正規準化脈波容積(mNPV)を従属変数として、
MAP=exp[aMAP(ln HR)+bMAP(ln mNPV)+cMAP
を重回帰分析して得られた補正係数aMAP,bMAP,cMAPを用いることにより、合理的な精度で平均動脈圧(MAP)を推定することができる。
Here, when calculating the mean arterial pressure (MAP) as the blood pressure (BP), the mean arterial pressure (MAP) by the upper arm measurement using the cuff is an independent variable, and the heart rate (HR) and the correction criterion are calculated. With the pulse wave volume (mNPV) as the dependent variable,
MAP = exp [a MAP (ln HR) + b MAP (ln mNPV) + c MAP ]
By using the correction coefficients a MAP , b MAP , and c MAP obtained by multiple regression analysis, it is possible to estimate the mean arterial pressure (MAP) with reasonable accuracy.

さらに、収縮期血圧(SBP;systolic BP)は心拍数(HR)および心拍出量(CO)と密接に関連し、拡張期血圧(DBP;diastolic BP)は全末梢血管抵抗(TPR)および修正規準化脈波容積(mNPV)と密接に関連していることが知られており、収縮期血圧(SBP)は心拍数(HR)のより高い寄与により、また、拡張期血圧(DBP)は修正規準化脈波容積(mNPV)のより高い寄与により推定することができる。すなわち、平均動脈圧(MAP)、収縮期血圧(SBP)および拡張期血圧(DBP)のそれぞれに関して、補正係数a,b,cを個別に用意することで、上記の方程式1つで3つの血圧値を推定することが可能となる。   In addition, systolic blood pressure (SBP; systolic BP) is closely related to heart rate (HR) and cardiac output (CO), and diastolic blood pressure (DBP; diastoric BP) is related to total peripheral vascular resistance (TPR) and correction. It is known to be closely related to normalized pulse wave volume (mNPV), systolic blood pressure (SBP) is due to higher contribution of heart rate (HR), and diastolic blood pressure (DBP) is modified It can be estimated by the higher contribution of normalized pulse wave volume (mNPV). That is, for each of the mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP), the correction coefficients a, b, and c are separately prepared, so that three blood pressures can be obtained using the above equation. The value can be estimated.

また、本発明の血圧推定プログラムは、光電容積脈波測定により心拍数(HR)および修正規準化脈波容積(mNPV)を得る測定手段と、測定手段により得られた心拍数(HR)および修正規準化脈波容積(mNPV)から血圧(BP)を、
BP=exp[a(ln HR)+b(ln mNPV)+c]
(但し、a,b,cは補正係数)
により算出する演算手段としてコンピュータを機能させるためのものである。このプログラムを実行したコンピュータによれば、上記本発明の血圧推定装置と同様の作用、効果を奏することができる。
The blood pressure estimation program of the present invention includes a measuring means for obtaining a heart rate (HR) and a corrected normalized pulse wave volume (mNPV) by photoelectric volume pulse wave measurement, and a heart rate (HR) obtained by the measuring means and correction. Blood pressure (BP) from normalized pulse wave volume (mNPV),
BP = exp [a (ln HR) + b (ln mNPV) + c]
(Where a, b, and c are correction coefficients)
This is for causing a computer to function as a calculation means for calculating by the above. According to the computer which executed this program, the same operation and effect as the above-mentioned blood pressure estimating device of the present invention can be produced.

本発明によれば、ユーザはカフによる圧迫という負荷から解放され、かつ特別な装置も煩雑な校正手順も必要とすることなく、スマートフォン(小型携帯端末機器)をはじめとする日常的な機器を利用することで、容易に血圧を推定することが可能となる。   According to the present invention, a user is freed from the load of cuff pressure and uses a daily device such as a smartphone (small portable terminal device) without requiring a special device or a complicated calibration procedure. By doing so, it is possible to easily estimate the blood pressure.

本発明の実施の形態における血圧推定装置の機能ブロック図である。It is a functional block diagram of the blood pressure estimation device in the embodiment of the present invention. 図1の血圧推定装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the blood-pressure estimation apparatus of FIG. 図2の血圧推定装置の使用時の様子を示す図であって、(A)は血圧推定装置の外観を示す図、(B)は血圧測定時の持ち方を示す図である。It is a figure which shows the mode at the time of use of the blood-pressure estimation apparatus of FIG. 2, Comprising: (A) is a figure which shows the external appearance of a blood-pressure estimation apparatus, (B) is a figure which shows how to hold at the time of blood-pressure measurement. 本実施形態における血圧推定装置による血圧推定のフローチャートである。It is a flowchart of the blood pressure estimation by the blood pressure estimation apparatus in this embodiment. 実験手順を示す説明図である。It is explanatory drawing which shows an experiment procedure. 実験結果を示す図である。It is a figure which shows an experimental result.

図1は本発明の実施の形態における血圧推定装置の機能ブロック図、図2は図1の血圧推定装置のハードウェア構成を示すブロック図、図3は図2の血圧推定装置の使用時の様子を示す図であって、(A)は血圧推定装置の外観を示す図、(B)は血圧測定時の持ち方を示す図である。   1 is a functional block diagram of a blood pressure estimation device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a hardware configuration of the blood pressure estimation device of FIG. 1, and FIG. 3 is a state when the blood pressure estimation device of FIG. (A) is a figure which shows the external appearance of a blood-pressure estimation apparatus, (B) is a figure which shows how to hold at the time of blood-pressure measurement.

図1に示すように、本発明の実施の形態における血圧推定装置1は、光電容積脈波測定により心拍数(HR)および修正規準化脈波容積(mNPV)を得る測定手段2と、測定手段2により得られた心拍数(HR)および修正規準化脈波容積(mNPV)から血圧(BP)を算出する演算手段3と、演算手段3により算出した血圧(BP)を出力する出力手段4とを有する。   As shown in FIG. 1, a blood pressure estimation device 1 according to an embodiment of the present invention includes a measurement unit 2 that obtains a heart rate (HR) and a corrected normalized pulse wave volume (mNPV) by photoelectric volume pulse measurement, and a measurement unit. Calculating means 3 for calculating the blood pressure (BP) from the heart rate (HR) and the corrected normalized pulse wave volume (mNPV) obtained by 2, and the output means 4 for outputting the blood pressure (BP) calculated by the calculating means 3; Have

血圧推定装置1は、図2に示すように、光源10、駆動回路11、光検出器12、フィルタ13、A/D変換器14、CPU15、RAM16、ROM17、通信手段18、表示器19や電源20等を備える。血圧推定装置1は、例えば図3に示すスマートフォン21により構成される。スマートフォン21は、光源10としてLED(フラッシュ用白色LED)22を備えている。また、光検出器12としてカメラ(CMOSカメラ)23を備えている。   As shown in FIG. 2, the blood pressure estimation apparatus 1 includes a light source 10, a drive circuit 11, a photodetector 12, a filter 13, an A / D converter 14, a CPU 15, a RAM 16, a ROM 17, a communication means 18, a display 19 and a power source. 20 etc. The blood pressure estimation device 1 includes, for example, a smartphone 21 shown in FIG. The smartphone 21 includes an LED (white LED for flash) 22 as the light source 10. Further, a camera (CMOS camera) 23 is provided as the photodetector 12.

スマートフォン21はコンピュータの一種であり、ROM17に記憶されたOSをCPU15によって実行する。また、スマートフォン21は、OS上で上記測定手段2、演算手段3および出力手段4として機能させるための血圧推定プログラムを実行することにより、本実施形態における血圧推定装置1として機能する。血圧推定プログラムはRAM16に記憶され、CPU15によって実行される。   The smartphone 21 is a kind of computer, and the CPU 15 executes the OS stored in the ROM 17. Further, the smartphone 21 functions as the blood pressure estimation device 1 in the present embodiment by executing a blood pressure estimation program for causing the measurement unit 2, the calculation unit 3, and the output unit 4 to function on the OS. The blood pressure estimation program is stored in the RAM 16 and executed by the CPU 15.

血圧測定時には、スマートフォン21を片手で持ち、1本の指でLED22とカメラ23の両方を覆うようにする。測定手段2は、駆動回路11を制御することでLED22(光源10)から光電容積脈波を取得するための光を発し、カメラ23(光検出器12)を制御して反射光画像を撮影し、フィルタ13およびA/D変換器14を介して入力する。スマートフォン21は、1本の指でLED22とカメラ23の両方を覆って生体によって多重散乱された反射光を撮影するため、LED22とカメラ23の位置は比較的近くにあることが必要である。   At the time of blood pressure measurement, the smartphone 21 is held with one hand so as to cover both the LED 22 and the camera 23 with one finger. The measuring means 2 controls the drive circuit 11 to emit light for acquiring a photoelectric volume pulse wave from the LED 22 (light source 10), and controls the camera 23 (light detector 12) to take a reflected light image. , And input via the filter 13 and the A / D converter 14. The smartphone 21 covers both the LED 22 and the camera 23 with one finger and photographs the reflected light that is multiply scattered by the living body. Therefore, the positions of the LED 22 and the camera 23 need to be relatively close to each other.

測定手段2は、この入力した反射光画像に基づいて光電容積脈波を取得し、心拍数(HR)および修正規準化脈波容積(mNPV)を得る。この光電容積脈波測定により心拍数(HR)および修正規準化脈波容積(mNPV)を得る方法については公知(K. Matsumura and T. Yamakoshi, iPhysioMeter: A new approach for measuring heart rate and normalized pulse volume using only a smartphone. Behavior Research Methods, 45(4), 1272-1278, 2013. doi:10.3758/s13428-012-0312-z)であり、その詳細な説明は省略する。   The measuring means 2 acquires a photoelectric volume pulse wave based on the input reflected light image, and obtains a heart rate (HR) and a corrected normalized pulse wave volume (mNPV). A method for obtaining a heart rate (HR) and a modified normalized pulse wave volume (mNPV) by this photoelectric volume pulse wave measurement is known (K. Matsumura and T. Yamakoshi, iPhysioMeter: A new approach for measuring heart rate and normalized pulse volume). using only a smartphone. Behavior Research Methods, 45 (4), 1272-1278, 2013. doi: 10.3758 / s13428-012-0312-z), and detailed description thereof is omitted.

演算手段3は、測定手段2により得られた心拍数(HR)および修正規準化脈波容積(mNPV)から血圧(BP)を
BP=exp[a(ln HR)+b(ln mNPV)+c]
により算出する。
The calculation means 3 calculates the blood pressure (BP) from the heart rate (HR) and the corrected normalized pulse wave volume (mNPV) obtained by the measurement means 2 BP = exp [a (ln HR) + b (ln mNPV) + c]
Calculated by

ここで、a,b,cは補正係数であり、予めカフを用いた上腕測定による血圧(BP)を独立変数とし、心拍数(HR)および修正規準化脈波容積(mNPV)を従属変数として、
BP=exp[a(ln HR)+b(ln mNPV)+c]
を重回帰分析して得られたものを用いる。
Here, a, b, and c are correction coefficients, and the blood pressure (BP) measured by the upper arm using a cuff in advance is an independent variable, and the heart rate (HR) and the corrected normalized pulse wave volume (mNPV) are dependent variables. ,
BP = exp [a (ln HR) + b (ln mNPV) + c]
Is obtained by multiple regression analysis.

例えば、血圧(BP)として平均動脈圧(MAP)を算出する場合、カフを用いた上腕測定による平均動脈圧(MAP)を独立変数とし、心拍数(HR)および修正規準化脈波容積(mNPV)を従属変数として、
MAP=exp[aMAP(ln HR)+bMAP(ln mNPV)+cMAP
を重回帰分析して得られた補正係数aMAP,bMAP,cMAPを用いる。
For example, when calculating the mean arterial pressure (MAP) as the blood pressure (BP), the mean arterial pressure (MAP) measured by the upper arm using a cuff is an independent variable, and the heart rate (HR) and the corrected normalized pulse wave volume (mNPV) ) As the dependent variable
MAP = exp [a MAP (ln HR) + b MAP (ln mNPV) + c MAP ]
Correction coefficients a MAP , b MAP , and c MAP obtained by multiple regression analysis are used.

また、血圧(BP)として収縮期血圧(SBP)を算出する場合には、カフを用いた上腕測定による収縮期血圧(SBP)を独立変数とし、心拍数(HR)および修正規準化脈波容積(mNPV)を従属変数として、
SBP=exp[aSBP(ln HR)+bSBP(ln mNPV)+cSBP
を重回帰分析して得られた補正係数aSBP,bSBP,cSBPを用いる。
In addition, when systolic blood pressure (SBP) is calculated as blood pressure (BP), systolic blood pressure (SBP) measured by an upper arm using a cuff is an independent variable, and heart rate (HR) and corrected normalized pulse wave volume are used. (MNPV) as a dependent variable
SBP = exp [a SBP (ln HR) + b SBP (ln mNPV) + c SBP ]
Correction coefficients a SBP , b SBP , and c SBP obtained by multiple regression analysis are used.

さらに、血圧(BP)として拡張期血圧(DBP)を算出する場合には、カフを用いた上腕測定による拡張期血圧(DBP)を独立変数とし、心拍数(HR)および修正規準化脈波容積(mNPV)を従属変数として、
DBP=exp[aDBP(ln HR)+bDBP(ln mNPV)+cDBP
を重回帰分析して得られた補正係数aDBP,bDBP,cDBPを用いる。
Furthermore, when calculating the diastolic blood pressure (DBP) as the blood pressure (BP), the diastolic blood pressure (DBP) by the upper arm measurement using the cuff is an independent variable, and the heart rate (HR) and the corrected normalized pulse wave volume (MNPV) as a dependent variable
DBP = exp [a DBP (In HR) + b DBP (In mNPV) + c DBP ]
Correction coefficients a DBP , b DBP , and c DBP obtained by multiple regression analysis are used.

出力手段4は、この演算手段3により算出した平均動脈圧(MAP)、収縮期血圧(SBP)および拡張期血圧(DBP)の各血圧(BP)を、通信手段18や表示器19により出力する。   The output means 4 outputs the mean arterial pressure (MAP), systolic blood pressure (SBP) and diastolic blood pressure (DBP) blood pressure (BP) calculated by the computing means 3 through the communication means 18 and the display 19. .

図4は本実施形態における血圧推定装置1による血圧推定のフローチャートである。
図4に示すように、まず測定手段2の初期化を行い(S101)、測定手段2により光電容積脈波測定を行う(S102)。撮影した画像の明るさ判定を行い(S103)、明るさが規定範囲を超えているかどうか判定し(S104)、超えている場合にはカメラ23(光検出器12)のゲインを変更する(S105)。
FIG. 4 is a flowchart of blood pressure estimation by the blood pressure estimation apparatus 1 in the present embodiment.
As shown in FIG. 4, first, the measurement means 2 is initialized (S101), and the photoelectric volume pulse wave measurement is performed by the measurement means 2 (S102). The brightness of the photographed image is determined (S103), and it is determined whether the brightness exceeds a specified range (S104). If the brightness exceeds, the gain of the camera 23 (light detector 12) is changed (S105). ).

そして、測定手段2により心拍数(HR)および修正規準化脈波容積(mNPV)を算出し(S106)、演算手段3により平均動脈圧(MAP)、収縮期血圧(SBP)および拡張期血圧(DBP)の各血圧(BP)を推定する(S107)。演算手段3の結果は表示器19に表示したり、通信手段18により外部へ出力したりする(S108)。   Then, the heart rate (HR) and the corrected normalized pulse wave volume (mNPV) are calculated by the measuring means 2 (S106), and the mean arterial pressure (MAP), systolic blood pressure (SBP) and diastolic blood pressure ( Each blood pressure (BP) of DBP) is estimated (S107). The result of the calculation means 3 is displayed on the display 19 or outputted to the outside by the communication means 18 (S108).

この血圧推定装置1では、ユーザはカフによる圧迫という負荷から解放され、かつ特別な装置も煩雑な校正手順も必要とすることなく、スマートフォン21をはじめとする日常的な機器を利用することで、容易に血圧を推定することが可能である。   In this blood pressure estimation device 1, the user is released from the load of cuff compression, and without using a special device or a complicated calibration procedure, by using daily equipment such as the smartphone 21, Blood pressure can be estimated easily.

なお、スマートフォン21以外に、例えば、光電容積脈波測定を行うことが可能な以下の機器を利用することが可能である。
・補聴器、イヤホン(耳周辺に固定することができ、比較的安定した光電容積脈波測定が可能)
・ポインティングデバイスとしてのマウス(指が当たる部分にセンサを実装することで、比較的良好な光電容積脈波測定が可能)
・指輪
・スマートウォッチ(常時身に着けるものであり、無意識的な光電容積脈波測定が可能)
In addition to the smartphone 21, for example, the following devices that can perform photoelectric volumetric pulse wave measurement can be used.
・ Hearing aids and earphones (can be fixed around the ears, enabling relatively stable measurement of photoelectric volumetric pulse)
・ Mouse as a pointing device (by mounting a sensor on the part where the finger hits, relatively good photoelectric volume pulse wave measurement is possible)
・ Ring ・ Smart watch (Wear it all the time and can measure unconscious photoelectric volumetric pulse wave)

健常成人13名(女性6名、男性7名、平均年齢20.6歳)により実験を行った。実験に用いた計測装置は、上記血圧推定装置1として動作するiPhone 6s(アップル社製)と、従来のカフ式血圧計としての上腕式自動血圧計(DS−S10(日本精密測定器株式会社製))である。計測部位は、iPhone 6sが左手第2指、カフ式血圧計が右上腕部である。   The experiment was conducted with 13 healthy adults (6 women, 7 men, average age 20.6 years). The measurement device used in the experiment is an iPhone 6s (manufactured by Apple) that operates as the blood pressure estimation device 1, and an upper arm automatic blood pressure monitor (DS-S10 (manufactured by Nippon Seimitsu Keiki Co., Ltd.) as a conventional cuff sphygmomanometer. )). As for the measurement site, iPhone 6s is the second finger of the left hand, and the cuff sphygmomanometer is the upper right arm.

図5は実験手順を示している。図5に示すように、計測装置の取付け完了後、同時に計測を行い、その後、3分間の安静状態と、3分間の課題実施を行い、カフ式血圧計により90秒ごとに計4回血圧を測定した。なお、血圧推定装置1(iPhone 6s)では連続計測を行った。課題実施は、血圧を変動させるために実施するものであり、5000から13を引いていく暗算課題(能動的ストレッサー課題)を行った。   FIG. 5 shows the experimental procedure. As shown in FIG. 5, after completing the installation of the measuring device, the measurement is performed at the same time. Thereafter, the resting state for 3 minutes and the task for 3 minutes are performed, and the blood pressure is measured four times every 90 seconds by the cuff type sphygmomanometer. It was measured. The blood pressure estimation device 1 (iPhone 6s) performed continuous measurement. The task implementation is performed to vary the blood pressure, and a mental arithmetic task (active stressor task) of subtracting 13 from 5000 was performed.

この実験によりカフ式血圧計から得られた平均動脈圧(MAP)、収縮期血圧(SBP)および拡張期血圧(DBP)をそれぞれ独立変数とし、血圧推定装置1(iPhone 6s)により得られた心拍数(HR)および修正規準化脈波容積(mNPV)を従属変数として前述の重回帰分析を行い、平均動脈圧(MAP)、収縮期血圧(SBP)および拡張期血圧(DBP)の補正係数aMAP,aSBP,aDBP,bMAP,bSBP,bDBP,cMAP,cSBP,cDBPをそれぞれ得た。 The heart rate obtained by the blood pressure estimation device 1 (iPhone 6s) with the mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) obtained from the cuff sphygmomanometer obtained from this experiment as independent variables, respectively. The above multiple regression analysis is performed with the number (HR) and the modified normalized pulse wave volume (mNPV) as dependent variables, and the correction coefficient a for mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) MAP , a SBP , a DBP , b MAP , b SBP , b DBP , c MAP , c SBP , and c DBP were obtained, respectively.

図6(A)は平均動脈圧(MAP)、収縮期血圧(SBP)および拡張期血圧(DBP)の血圧推定装置1(iPhone 6s)だけを用いて推定した値と従来のカフ式血圧計で測定した値の散布図(N=49)を示している。上列の実線は回帰直線を表しており、その式をr値(Pearsonの相関係数)とともに各散布図に示している。下列は対応するBland-Altman plots(誤差分析)であり、実線および破線はそれぞれM(平均)およびM+SD(標準偏差)の範囲を示している。平均=(推定血圧+上腕血圧)/2、差=上腕血圧−推定血圧である。   FIG. 6A shows a value estimated using only the blood pressure estimation device 1 (iPhone 6s) for mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP), and a conventional cuff sphygmomanometer. A scatter diagram (N = 49) of the measured values is shown. The solid line in the upper row represents the regression line, and the equation is shown in each scatter diagram together with the r value (Pearson's correlation coefficient). The bottom row is the corresponding Bland-Altman plots (error analysis), and the solid and dashed lines indicate the range of M (mean) and M + SD (standard deviation), respectively. Average = (estimated blood pressure + upper arm blood pressure) / 2, difference = upper arm blood pressure-estimated blood pressure.

図6(B)は平均動脈圧(MAP)、収縮期血圧(SBP)および拡張期血圧(DBP)を近赤外光(810 nm)の従来式光電容積脈波(PPG)を用いて推定した値と従来のカフ式血圧計で測定した値の散布図(N=51)を示している。上列と下列の精度評価図は上と同じである。   FIG. 6 (B) estimated mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) using conventional photoelectric volumetric pulse wave (PPG) of near infrared light (810 nm). A scatter diagram (N = 51) of values and values measured with a conventional cuff sphygmomanometer is shown. The upper and lower row accuracy evaluation diagrams are the same as above.

図6(A)から分かるように、血圧推定装置1では、構成を伴い,かつ理論的根拠の乏しい図6(B)のPWVベースの手法{|r|s>>0.74(X. Ding et al.: Pulse transit time based continuous cuffless blood pressure estimation: A new extension and a comprehensive evaluation. Scientific Reports, 7, 11554, 2017. doi:10.1038/s41598-017-11507-3),|r|s<0.67(R. A. Payne, et al.: Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. Journal of Applied Physiology, 100, 136-141, 2006. doi:10.1152/japplphysiol.00657.2005)}と比較しても、遜色ない結果を得ることができる。   As can be seen from FIG. 6A, in the blood pressure estimation device 1, the PWV-based method {| r | s >> 0.74 (X. Ding) shown in FIG. et al .: Pulse transit time based continuous cuffless blood pressure estimation: A new extension and a comprehensive evaluation. Scientific Reports, 7, 11554, 2017. doi: 10.1038 / s41598-017-11507-3), | r | s <0 67 (RA Payne, et al .: Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. Journal of Applied Physiology, 100, 136-141, 2006.doi: 10.1152 / japplphysiol.00657.2005 )}, Comparable results can be obtained.

本発明の血圧推定装置および血圧推定プログラムは、医療やヘルスケア等の分野において血圧を推定するための装置およびプログラムとして有用である。   The blood pressure estimation apparatus and blood pressure estimation program of the present invention are useful as an apparatus and a program for estimating blood pressure in the fields of medical care and healthcare.

1 血圧推定装置
2 測定手段
3 演算手段
4 出力手段
10 光源
11 駆動回路
12 光検出器
13 フィルタ
14 A/D変換器
15 CPU
16 RAM
17 ROM
18 通信手段
19 表示器
20 電源
21 スマートフォン
22 LED
23 カメラ
DESCRIPTION OF SYMBOLS 1 Blood pressure estimation apparatus 2 Measuring means 3 Calculation means 4 Output means 10 Light source 11 Drive circuit 12 Photo detector 13 Filter 14 A / D converter 15 CPU
16 RAM
17 ROM
18 Communication means 19 Display 20 Power supply 21 Smartphone 22 LED
23 Camera

Claims (5)

光電容積脈波測定により心拍数(HR)および修正規準化脈波容積(mNPV)を得る測定手段と、
前記測定手段により得られた心拍数(HR)および修正規準化脈波容積(mNPV)から血圧(BP)を
BP=exp[a(ln HR)+b(ln mNPV)+c]
(但し、a,b,cは補正係数)
により算出する演算手段と
を含む血圧推定装置。
A measuring means for obtaining a heart rate (HR) and a modified normalized pulse wave volume (mNPV) by photoelectric volume pulse wave measurement;
From the heart rate (HR) and the corrected normalized pulse wave volume (mNPV) obtained by the measuring means, the blood pressure (BP) is calculated as follows: BP = exp [a (ln HR) + b (ln mNPV) + c]
(Where a, b, and c are correction coefficients)
A blood pressure estimation device including a calculation means for calculating by the above.
前記演算手段は、カフを用いた上腕測定による平均動脈圧(MAP)を独立変数とし、前記心拍数(HR)および前記修正規準化脈波容積(mNPV)を従属変数として、
MAP=exp[aMAP(ln HR)+bMAP(ln mNPV)+cMAP
を重回帰分析して得られた補正係数aMAP,bMAP,cMAPを用いることにより、前記血圧(BP)としての平均動脈圧(MAP)を算出するものである
請求項1記載の血圧推定装置。
The arithmetic means has an average arterial pressure (MAP) by an upper arm measurement using a cuff as an independent variable, and the heart rate (HR) and the modified normalized pulse wave volume (mNPV) as dependent variables.
MAP = exp [a MAP (ln HR) + b MAP (ln mNPV) + c MAP ]
The blood pressure estimation according to claim 1, wherein the mean arterial pressure (MAP) as the blood pressure (BP) is calculated by using correction coefficients a MAP , b MAP , c MAP obtained by multiple regression analysis of the blood pressure. apparatus.
前記演算手段は、カフを用いた上腕測定による収縮期血圧(SBP)を独立変数とし、前記心拍数(HR)および前記修正規準化脈波容積(mNPV)を従属変数として、
SBP=exp[aSBP(ln HR)+bSBP(ln mNPV)+cSBP
を重回帰分析して得られた補正係数aSBP,bSBP,cSBPを用いることにより、前記血圧(BP)としての収縮期血圧(SBP)を算出するものである
請求項1または2に記載の血圧推定装置。
The calculation means uses systolic blood pressure (SBP) by an upper arm measurement using a cuff as an independent variable, the heart rate (HR) and the modified normalized pulse wave volume (mNPV) as dependent variables,
SBP = exp [a SBP (ln HR) + b SBP (ln mNPV) + c SBP ]
The systolic blood pressure (SBP) as the blood pressure (BP) is calculated by using correction coefficients a SBP , b SBP , and c SBP obtained by performing multiple regression analysis on the blood pressure. Blood pressure estimation device.
前記演算手段は、カフを用いた上腕測定による拡張期血圧(DBP)を独立変数とし、前記心拍数(HR)および前記修正規準化脈波容積(mNPV)を従属変数として、
DBP=exp[aDBP(ln HR)+bDBP(ln mNPV)+cDBP
を重回帰分析して得られた補正係数aDBP,bDBP,cDBPを用いることにより、前記血圧(BP)としての拡張期血圧(DBP)を算出するものである
請求項1から3のいずれか1項に記載の血圧推定装置。
The computing means uses the diastolic blood pressure (DBP) measured by the upper arm using a cuff as an independent variable, the heart rate (HR) and the modified normalized pulse wave volume (mNPV) as dependent variables,
DBP = exp [a DBP (In HR) + b DBP (In mNPV) + c DBP ]
The diastolic blood pressure (DBP) as the blood pressure (BP) is calculated by using correction coefficients a DBP , b DBP , and c DBP obtained by performing multiple regression analysis on the blood pressure. The blood pressure estimation apparatus according to claim 1.
光電容積脈波測定により心拍数(HR)および修正規準化脈波容積(mNPV)を得る測定手段と、
前記測定手段により得られた心拍数(HR)および修正規準化脈波容積(mNPV)から血圧(BP)を、
BP=exp[a(ln HR)+b(ln mNPV)+c]
(但し、a,b,cは補正係数)
により算出する演算手段と
してコンピュータを機能させるための血圧推定プログラム。
A measuring means for obtaining a heart rate (HR) and a modified normalized pulse wave volume (mNPV) by photoelectric volume pulse wave measurement;
The blood pressure (BP) from the heart rate (HR) and the corrected normalized pulse wave volume (mNPV) obtained by the measuring means,
BP = exp [a (ln HR) + b (ln mNPV) + c]
(Where a, b, and c are correction coefficients)
A blood pressure estimation program for causing a computer to function as a calculation means for calculating by the above.
JP2018183913A 2018-09-28 2018-09-28 Blood pressure estimation device and blood pressure estimation program Expired - Fee Related JP6615970B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018183913A JP6615970B1 (en) 2018-09-28 2018-09-28 Blood pressure estimation device and blood pressure estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018183913A JP6615970B1 (en) 2018-09-28 2018-09-28 Blood pressure estimation device and blood pressure estimation program

Publications (2)

Publication Number Publication Date
JP6615970B1 true JP6615970B1 (en) 2019-12-04
JP2020049134A JP2020049134A (en) 2020-04-02

Family

ID=68763377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018183913A Expired - Fee Related JP6615970B1 (en) 2018-09-28 2018-09-28 Blood pressure estimation device and blood pressure estimation program

Country Status (1)

Country Link
JP (1) JP6615970B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171070A (en) * 2021-03-05 2021-07-27 上海立阖泰医疗科技有限公司 Dynamic continuous blood pressure measuring method based on PWTT
CN113171069A (en) * 2021-03-05 2021-07-27 上海立阖泰医疗科技有限公司 Embedded graphic blood pressure measuring system
JP2021132728A (en) * 2020-02-25 2021-09-13 株式会社メディックアルファ Blood pressure estimation program and blood pressure estimation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021132728A (en) * 2020-02-25 2021-09-13 株式会社メディックアルファ Blood pressure estimation program and blood pressure estimation device
JP7075600B2 (en) 2020-02-25 2022-05-26 株式会社メディックアルファ Blood pressure estimation program and blood pressure estimation device
CN113171070A (en) * 2021-03-05 2021-07-27 上海立阖泰医疗科技有限公司 Dynamic continuous blood pressure measuring method based on PWTT
CN113171069A (en) * 2021-03-05 2021-07-27 上海立阖泰医疗科技有限公司 Embedded graphic blood pressure measuring system
CN113171070B (en) * 2021-03-05 2022-02-18 上海立阖泰医疗科技有限公司 Dynamic continuous blood pressure measurement watch based on PWTT
CN113171069B (en) * 2021-03-05 2024-01-26 上海立阖泰医疗科技有限公司 Embedded graphic blood pressure measurement system

Also Published As

Publication number Publication date
JP2020049134A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
RU2674087C2 (en) Personal health data collection
KR100871230B1 (en) Method and?apparatus for the cuffless and non-invasive device connected to communication device which measures blood pressure from a wrist
US20190159685A1 (en) Biological information analyzing device, system, and program
US20180279965A1 (en) Ambulatory Blood Pressure and Vital Sign Monitoring Apparatus, System and Method
US20210030372A1 (en) Methods to estimate the blood pressure and the arterial stiffness based on photoplethysmographic (ppg) signals
US8834378B2 (en) Systems and methods for determining respiratory effort
US20150182132A1 (en) Mobile device system for measurement of cardiovascular health
KR20180029072A (en) Biological data processing
Mukherjee et al. A literature review on current and proposed technologies of noninvasive blood pressure measurement
WO2022120656A1 (en) Blood pressure measurement method and apparatus, and electronic device
WO2018201395A1 (en) Apparatus and method for determining a blood pressure of a subject
JP6615970B1 (en) Blood pressure estimation device and blood pressure estimation program
US20180206734A1 (en) Wrist type apparatus for measurement of cardiovascular health, system, and method thereof
KR100855043B1 (en) Method for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
CN112890790B (en) Wearable noninvasive dynamic blood pressure tracking and monitoring method
CN112426141A (en) Blood pressure detection method and device and electronic equipment
JP7235120B2 (en) Sphygmomanometer
KR100855042B1 (en) Apparatus for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
JP7462572B2 (en) Apparatus, system for determining stress and/or pain levels, method of operating said system, and computer readable medium having computer readable code for carrying out the method of operating said system
CN114983347A (en) Processing method and device of multi-modal physiological signal, electronic equipment and storage medium
KR100877212B1 (en) Apparatus for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
Anchan Estimating pulse wave velocity using mobile phone sensors
Panula et al. Development and clinical validation of a miniaturized finger probe for bedside hemodynamic monitoring
Almahouzi et al. An integrated biosignals wearable system for low-cost blood pressure monitoring
Mohamed et al. The use of photoplethysmography for assessing hypertension

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191106

R150 Certificate of patent or registration of utility model

Ref document number: 6615970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees