JP6611905B2 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
JP6611905B2
JP6611905B2 JP2018502913A JP2018502913A JP6611905B2 JP 6611905 B2 JP6611905 B2 JP 6611905B2 JP 2018502913 A JP2018502913 A JP 2018502913A JP 2018502913 A JP2018502913 A JP 2018502913A JP 6611905 B2 JP6611905 B2 JP 6611905B2
Authority
JP
Japan
Prior art keywords
operation period
cooling operation
refrigerator
sensor
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018502913A
Other languages
English (en)
Other versions
JPWO2017149664A1 (ja
Inventor
孔明 仲島
雄亮 田代
剛 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017149664A1 publication Critical patent/JPWO2017149664A1/ja
Application granted granted Critical
Publication of JP6611905B2 publication Critical patent/JP6611905B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷蔵庫に関する。
従来の冷蔵庫として、貯蔵室と、圧縮機と、複数の凝縮器と、減圧装置と、蒸発器とが配管で接続された冷媒循環回路を備えたものがある。上記の構成で冷凍サイクルが構築され、圧縮機の駆動により貯蔵室は冷却される。
従来の冷蔵庫では、蒸発器によって空気を冷却して貯蔵室に保管された食品類を冷却する。その冷蔵庫内の温度は冷蔵用等では2〜5℃、冷凍用途では-20℃〜-15℃と低温にするため、蒸発器の温度を0℃以下とする必要がある。その結果、冷蔵庫内の空気中の水蒸気が蒸発器へ凝縮液となって付着し、その後冷却されて氷結(着霜)する。冷蔵庫を長時間運転していると着霜が進行し、蒸発器表面に霜が積層する。その結果、空気が通過しにくくなり、冷却性能が低下する。この問題を解決するため、蒸発器に付着した霜をヒータ等で融解させる除霜運転を定期的に行う。
除霜運転によって生じるドレン水は蒸発器下部に設けられた配管を通り冷蔵庫下部に設けられた機械室に排出される。機械室には、圧縮機と、送風機と、ドレン水を受け取るドレン水用皿と、ドレン水液に浸漬し、ドレン水によって放熱する第1凝縮器と、送風機によって吸引される庫外空気によって放熱する第2凝縮器とが設置されている(特許文献1を参照)。
特開昭58−221369号公報
除霜運転後、ドレン水用皿にはドレン水が溜まる。ドレン水は低温であるため、第1凝縮器の放熱量は増加する。送風機の単位時間当たりの回転数が変わらなければ、第2凝縮器の放熱量も変わらないため、2つの凝縮器全体としてみると第1凝縮器の放熱量の増加分だけ放熱量は増加する。放熱量が増えると凝縮温度が低下するため、圧縮機の動力が低減することができるので、省エネルギーとなる。
しかしながら、放熱量が過剰になると凝縮器側に液冷媒が寝込んでしまう。高圧側に液冷媒が溜まると高圧と低圧の差は広がり、冷凍サイクルのCOP(Coefficient of Performance)などの性能が悪化するという問題がある。
この発明は、上記のような問題点を解決するためになされたもので、除霜運転終了後に、冷凍サイクルの性能が悪化することなく、省エネルギーを実現した冷却運転が可能な冷蔵庫を提供することを目的とする。
本発明の冷蔵庫は、冷却運転期間に、冷媒が、圧縮機、第1の凝縮器、第2の凝縮器、減圧装置、および蒸発器の順に循環するように構成される冷凍サイクル装置と、蒸発器で発生したドレン水を貯めるドレンパンとを備える。第1の凝縮器がドレンパンに収容される。冷蔵庫は、さらに、第2の凝縮器へ空気を送るためのファンを備える。冷却運転期間は、蒸発器の除霜運転期間の後に続く第1の冷却運転期間と、第1の冷却運転期間の後に続く第2の冷却運転期間とを含む。第1の冷却運転期間の少なくとも一部におけるファンの回転速度は、第2の冷却運転期間におけるファンの回転速度よりも小さい。
本発明によれば、除霜運転後のドレン水がある第1の冷却運転期間には、ファンの回転数を小さくするので、適切に放熱量を調節することができる。これによって、性能の高い運転が可能となるとともに、省エネルギーを実現できる。
実施の形態1の冷蔵庫の断面の構造図である。 冷蔵庫の背面下部に設置される機械室を表わす図である。 冷蔵庫の全体を背面側から見た図である。 実施の形態1の制御手順を表わすタイミングチャートである。 実施の形態1の制御手順を表わすフローチャートである。 実施の形態2の冷蔵庫の断面の構造図である。 実施の形態2における機械室ファンの低回転数時間を求める手順を表わすフローチャートである。 図7のステップS204の処理の手順を表わすフローチャートである。 実施の形態3の冷蔵庫の断面図の構造図である。 実施の形態3における機械室ファンの低回転数時間を求める手順を表わすフローチャートである。 実施の形態4の冷蔵庫の断面図の構造図である。 実施の形態4における機械室ファンの低回転数時間を求める手順を表わすフローチャートである。 実施の形態5の冷蔵庫の断面図の構造図である。 着霜量と、除霜運転中の蒸発器4の温度上昇の速度との関係を表わす図である。 実施の形態5における機械室ファンの低回転数時間を求める手順を表わすフローチャートである。
以下、本発明の実施の形態について図面を用いて説明する。
[実施の形態1]
図1は、実施の形態1の冷蔵庫51の断面の構造図である。
図1に示すように、冷蔵庫51は、冷凍サイクル装置81を備える。
冷凍サイクル装置81は、連通された圧縮機1と、凝縮器2と、減圧器(キャピラリ)
3と、蒸発器4とを備える。冷却運転時に、冷媒が、圧縮機1、凝縮器2、減圧器3、蒸発器4の順に循環する。
蒸発器4は、冷却室10に配置される。圧縮機1、凝縮器2、減圧器3は、機械室11に配置される。機械室11は、これら以外にも配置されるものがあるが、図1では記載を省略し、図2において説明する。
この冷凍サイクル装置81内に流れる冷媒の動きを説明する。
圧縮機1から吐出された高温高圧ガス冷媒は、ドレン水蒸発用凝縮器(水冷式凝縮器:第1の凝縮器)、機械室凝縮器(空冷式凝縮器:第2の凝縮器)、側面パイプ類で構成される凝縮器2をこの順番で通過し、外気と熱交換することで高圧液冷媒となる。なお、図1では凝縮器2を簡略化し、空冷式凝縮器のみを表している。
凝縮した高圧液冷媒は、減圧弁で構成される減圧器3で減圧され、低圧低温の二相冷媒となる。
その後、冷媒は、冷蔵庫51内に設置された蒸発器4へ流入する。蒸発器4では、冷蔵庫51内の空気と冷媒とが熱交換する。冷蔵庫51内の空気は、冷媒によって冷却され、冷媒は低圧ガス冷媒となる。その後、低圧ガスとなった冷媒は、圧縮機1に流入し、再度加圧されて吐出される。
次に、実施の形態1における冷蔵庫51内の冷却空気の流れを説明する。図1において、実線の矢印は、冷却室10で冷却された空気の貯蔵室7a,7b,7cからの流れを表わす。点線の矢印は、貯蔵室7a,7b,7cを冷却した空気が、冷却室へ戻る流れを表わす。
冷却室10において冷媒との熱交換によって冷却された空気は、冷蔵庫内用ファン5aによって搬送され、貯蔵室7a,7b,7cに繋がっている風路を通り、貯蔵室7a,7b,7cへ流入し、貯蔵室7a,7b,7c内を冷却する。
冷蔵庫内用ファン5aの単位時間当たりの回転数(すなわち、回転速度)の変更、もしくは風量調節器6の操作(ダンパー)によって、冷却空気の風量を調節することよって、貯蔵室7a,7b,7cの温度を調節する。貯蔵室7a,7b,7cを冷却した冷却空気は戻り風路を通過し、再度冷却室へ流入し、再び、蒸発器4によって冷却される。
冷蔵庫51は、さらにコントローラ30を備える。コントローラ30は、冷蔵庫51内の各構成要素を制御する。
次に、機械室に配置される構成について説明する。
図2は、冷蔵庫51の背面下部に設置される機械室11を表わす図である。
機械室11には圧縮機1、ドレン水蒸発用皿(ドレンパン)8、ドレン水蒸発用凝縮器2a、機械室凝縮器2b、および機械室ファン5bが設置されている。
ラジアントヒータ38は、蒸発器4と、ドレン水蒸発用皿8との間に配置される。ラジアントヒータ38は、空気を暖めるための電熱線を備える。カチコミ式ヒータ37は、蒸発器4に直接、接触させた状態で設置される。蒸発器4の除霜運転時には、ラジアントヒータ38と、カチコミ式ヒータ37とが動作する。
ドレン水蒸発用皿8の上部には除霜運転によって蒸発器4において発生したドレン水を排出する穴12が設けられている。ドレン水が、重力によって穴12を通ってドレン水蒸発用皿8に落ちる。
水冷式の凝縮器であるドレン水蒸発用凝縮器2aは、ドレン水蒸発用皿8に収容され、ドレン水蒸発用皿8にドレン水がある場合にドレン水によって冷却されることができる。
機械室ファン5bが回転することによって、冷蔵庫51の側面から外気を取り入れ、外気を空冷式の凝縮器である機械室凝縮器2bに送り、機械室凝縮器2bを冷却する。また、機械室ファン5bの回転によって、圧縮機1と、ドレン水蒸発用凝縮器2aにも外気を送り、これらを冷却することができる。
図3は、冷蔵庫51の全体を背面側から見た図である。
冷蔵庫51の側面の板金内には、高圧冷媒が流通する側面パイプ2が設けられる。この側面を通じて、側面パイプ2を流れる冷媒と外部の空気とが熱交換している。なお、このような高圧冷媒が流通するパイプは側面に設置されるだけではなく、冷蔵庫51の天井を通過するように設置されてもよい。これによって、放熱面積を増やすことができる。
次に、実施の形態1における機械室ファン5bの単位時間当たりの回転数(回転速度)の制御方法について説明する。図4は、実施の形態1の制御手順を表わすタイミングチャートである。図5は、実施の形態1の制御手順を表わすフローチャートである。
図4および図5を参照して、ステップS101において、図示しない温度センサなどによって検出された蒸発器4の温度が所定の閾値TH1よりも小さくなったときには、処理がステップS102に進む。図4では、時刻t1において、蒸発器4の温度が所定の閾値TH1よりも小さくなったこととする。閾値TH1には、蒸発器4の表面に所定量の霜が積層され、冷却性能が一定量低下すると見込まれる温度が設定される。この閾値TH1は、実験またはシミュレーションなどから得られることができる。
ステップS102において、コントローラ30は、冷却運転を停止し、かつ除霜運転を開始する。すなわち、コントローラ30は、圧縮機1を停止させることによって、冷却運転を停止し、カチコミ式ヒータ37およびラジアンとヒータ38を通電させて、蒸発器4の除霜を行なう。さらに、コントローラ30は、機械室ファン5bを停止させる。
ステップS103において、蒸発器4の温度が所定の閾値TH2よりも大きくなったときには、処理がステップS104に進む。図4では、時刻t2において、蒸発器4の温度が所定の閾値TH2よりも大きくなったこととする。閾値TH2には、蒸発器4の除霜が完了したと見込まれる温度が定められる。この閾値TH2は、実験またはシミュレーションなどから得られることができる。
ステップS104において、コントローラ30は、除霜運転を停止し、冷却運転を開始する。すなわち、コントローラ30は、圧縮機1を動作させることによって、冷却運転を開始し、カチコミ式ヒータ37およびラジアントヒータ38を停止させて、蒸発器4の除霜を終了させる。これによって、冷蔵庫1内の冷却が再開される。
コントローラ30は、除霜運転期間の終了に続く冷却運転開始からΔtの時間の第1の冷却運転期間において、機械室ファンbの単位時間当たりの回転数を通常の単位時間当たりの回転数X2よりも小さな回転数X1に設定する。単位時間当たりの回転数を小さくする理由について説明する。時刻t2において、除霜により生じたドレン水がドレン水蒸発用皿8に溜まっているので、ドレン水蒸発用凝縮器2aの放熱量が増加する。このため、除霜運転停止後の時間Δtにおいて、機械室ファン5bの単位時間当たりの回転数を通常運転時に比べて低くする。その結果、通常時と同等の放熱量を確保しつつ、機械室ファン5bの動力を抑えた省エネルギーな運転を実現することができる。
ステップS105において、時刻t2から予め定められた固定の長さの時間Δtが経過した場合に、処理がステップS106に進む。時間Δtは、除霜により生じたドレン水がなくなるまで、あるいは一定量まで減少すると見込まれる時間である。この時間Δtとして、実施の形態1では、実験またはシミュレーションなどによる検討によって、予め定められた固定の長さを設定することができる。
ステップS106において、コントローラ30は、第1の冷却運転期間に引き続き、冷却運転が終了するまでの期間である第2の冷却運転期間において、機械室ファンbの単位時間当たりの回転数を通常の回転数X2に変化させる。
上記制御方法は、冷却運転開始から予め定められた固定の長さの時間Δtが経過したかどうかよって機械室ファン5bの単位時間当たりの回転数を制御しているため、機械室ファン5bの単位時間当たりの回転数の制御用のセンサを設けることなく、省エネルギーな運転ができるため、コストの低減化を図ることができる。
以上のように、本実施の形態では、ドレン水が存在する場合に、機械室ファン5bの単位時間当たりの回転数を下げることができるので、冷凍サイクルの性能が悪化することなく、省エネルギーを実現することができる。さらに、ドレン水が存在する場合に機械室ファン5bの単位時間当たりの回転数を下げるので、機械室ファン5bの騒音を低減することができる。
[実施の形態2]
実施の形態2の冷蔵庫の構成は、実施の形態1の冷蔵庫の構成とほぼ同様であるが、機械室ファン5bの制御方法が異なるため、その点について述べる。
除霜運転によって生じるドレン水の量は除霜運転する前までの冷蔵庫の運転状態、周囲環境によって変化する。そのドレン水の量に応じて除霜運転後の機械室ファン5bの単位時間当たりの回転数を下げた運転時間を変更することによって、ドレン水の冷熱源を有効に活用することができる。
実施の形態2〜5の冷蔵庫は、実施の形態1の冷蔵庫の機能に加えて、ドレン水の量を検出または推定し、ドレン水の量に応じて、機械室ファン5bの単位時間当たりの回転数を下げる時間(以下、低回転数時間)Δtを設定する機能を備える。
ドレン水が多くなるほど、ドレン水蒸発用凝縮器2aの放熱量が増える。なぜなら、ドレン水によってドレン水蒸発用凝縮器2aにおける放熱が促進させるからである。したがって、ドレン水が多いほど、機械室ファン5bの単位時間当たりの回転数を低くしても冷蔵庫51の全体の放熱量を維持することができる時間が長くなる。よって、ドレン水が多い場合は、低回転数時間Δtを長く設定し、ドレン水が少ない場合は、低回転数時間Δtを短く設定する。また、この際、Δtをドレン水の量に比例させるものとしてもよい。
図6は、実施の形態2の冷蔵庫52の断面図の構造図である。
本実施の形態の冷蔵庫52は、除霜運転終了後に、ドレン水蒸発用皿に蓄えられるドレン水の量を検出または推定するセンサとして、扉開閉センサ34a,34b,34cを備える。
蒸発器4に着霜する湿り空気は、扉の開閉によって外気が庫内に入ることによって生じる。このため、除霜運転が入る前までの運転区間において、扉の開閉回数が高く、扉が開いている時間が長いほど、着霜量が増加する。着霜量が多いと、除霜運転によって生じるドレン水の量が多くなる。
扉開閉センサ34aは、貯蔵室7aの扉が開いたときに、開いたことを表わす信号を出力し、貯蔵室7aの扉が閉じたときに、閉じたことを表わす信号を出力する。扉開閉センサ34bは、貯蔵室7bの扉が開いたときに、開いたことを表わす信号を出力し、貯蔵室7bの扉が閉じたときに、閉じたことを表わす信号を出力する。扉開閉センサ34cは、貯蔵室7cの扉が開いたときに、開いたことを表わす信号を出力し、貯蔵室7cの扉が閉じたときに、閉じたことを表わす信号を出力する。
コントローラ30は、1つ前の冷却運転期間における扉開閉センサ34a,34b,34cの出力信号に応じて、機械室ファン5bの今回の冷却運転期間の低回転数時間Δtを求める。
図7は、実施の形態2における機械室ファン5bの低回転数時間Δtを求める手順を表わすフローチャートである。
図7を参照して、ステップS201において、コントローラ30は、貯蔵室7aの扉の開いた回数Na、貯蔵室7bの扉の開いた回数Nb、貯蔵室7cの扉の開いた回数Ncを0に設定する。
ステップS202において、コントローラ30は、貯蔵室7aの扉が開いた時間の総計Ta、貯蔵室7bの扉が開いた時間の総計Tb、貯蔵室7cの扉が開いた時間の総計Tcを0に設定する。
ステップS203において、除霜運転が開始された場合に、処理がステップS207に進み、除霜運転が開始されていない場合に、処理がステップS204に進む。
ステップS204において、コントローラ30は、扉開閉センサ34aの出力信号に基づいて、貯蔵室7aの扉の開いた回数Naと、開いた時間の総計Taを求める。
ステップS205において、コントローラ30は、扉開閉センサ34bの出力信号に基づいて、貯蔵室7bの扉の開いた回数Nbと、開いた時間の総計Tbを求める。
ステップS206において、コントローラ30は、扉開閉センサ34cの出力信号に基づいて、貯蔵室7cの扉の開いた回数Ncと、開いた時間の総計Tcを求める。
ステップS207において、除霜運転が終了した場合に、処理がステップS208に進む。
ステップS208において、コントローラ30は、NaとNbとNcの加算値Nを求める。
ステップS209において、コントローラ30は、TaとTbとTcの加算値Tを求める。
ステップS210において、コントローラ30は、NとTの重み付け加算値Y(=w1×N+w2×T)を求める。
ステップS211において、コントローラ30は、Yの大きさに応じて、低回転数時間Δtを求める。たとえば、低回転数時間ΔtをYに比例した大きさにしてもよい。
ステップS212において、冷蔵庫52の電源がオフとなった場合に、処理が終了し、冷蔵庫52の電源がオンを維持している場合に、処理がステップS201に戻る。
図8は、図7のステップS204の処理の手順を表わすフローチャートである。図7のステップS205およびS206の処理の手順も、これと同様である。
ステップS301において、コントローラ30は、扉開閉センサ34aから貯蔵室7aの扉が開いたことを表わす信号を受信したときには、処理をステップS302に進ませる。
ステップS302において、コントローラ30は、タイマをスタートさせる。
ステップS303において、コントローラ30は、扉開閉センサ34aから貯蔵室7aの扉が閉じたことを表わす信号を受信したときには、処理をステップS304に進ませる。
ステップS304において、コントローラ30は、貯蔵室7aの扉が開いた時間の総計Taにタイマ値を加える。
ステップS305において、コントローラ30は、貯蔵室7aの扉が開いた回数Naを1つだけ増加させる。
以上のように、本実施の形態によれば、扉開閉センサの出力に基づいて、除霜運転によって生じたドレン水の量を推定して、機械室ファンの低回転数時間を設定することができる。
[実施の形態3]
実施の形態3の冷蔵庫の構成は、実施の形態1の冷蔵庫の構成と同様であるが、機械室ファン5bの制御方法が異なるため、その点について述べる。
図9は、実施の形態3の冷蔵庫53の断面図の構造図である。
本実施の形態の冷蔵庫53は、ドレン水の量を検出または推定するセンサとして、外気湿度センサ33を備える。
コントローラ30は、1つ前の冷却運転期間における湿度センサ33の出力信号に応じて、機械室ファン5bの今回の冷却運転期間の低回転数時間Δtを求める。
外気の湿度が高ければ扉開閉等により侵入する水蒸気も多くなるので、蒸発器4の着霜は外気の湿度によって変化する。よって、コントローラ30は、前回の冷却運転期間の外気の湿度の平均が高ければ機械室ファン5bの単位時間当たりの回転数を低くする低回転数時間Δtを長くし、湿度の平均が低ければ低回転数時間Δtを短くする。
図10は、実施の形態3における機械室ファン5bの低回転数時間Δtを求める手順を表わすフローチャートである。
図10を参照して、ステップS401において、コントローラ30は、外気の湿度の平均Mを0に設定する。
ステップS402において、除霜運転が開始された場合に、処理がステップS406に進み、除霜運転が開始されていない場合に、処理がステップS403に進む。
ステップS403において、コントローラ30は、前回の外部の湿度の測定から所定時間経過したときには、処理をステップS404に進ませる。
ステップS404において、コントローラ30は、外気湿度センサ33から出力される外気湿度を表わす信号を受信し、外気の湿度Sを取得する。
ステップS405において、コントローラ30は、取得した外気の湿度Sに基づいて、現在までの外気の湿度の平均Mを算出する。
ステップS406において、除霜運転が終了した場合に、処理がステップS407に進む。
ステップS407において、コントローラ30は、外気の湿度の平均Mの大きさに応じて、低回転数時間Δtを求める。たとえば、低回転数時間ΔtをMに比例した大きさにしてもよい。
ステップS408において、冷蔵庫53の電源がオフとなった場合に、処理が終了し、冷蔵庫53の電源がオンを維持している場合に、処理がステップS401に戻る。
以上のように、本実施の形態によれば、外気湿度センサの出力に基づいて、除霜運転によって生じたドレン水の量を推定して、機械室ファンの低回転数時間を設定することができる。
[実施の形態4]
実施の形態4の冷蔵庫の構成は、実施の形態1の冷蔵庫の構成と同様であるが、機械室ファン5bの制御方法が異なるため、その点について述べる。
図11は、実施の形態4の冷蔵庫54の断面図の構造図である。
本実施の形態の冷蔵庫54は、ドレン水の量を検出または推定するセンサとして、圧縮機1の回転数センサ31を備える。回転数センサ31は、圧縮機1の単位時間当たりの回転数(回転速度)を検出する。
コントローラ30は、1つ前の冷却運転期間における圧縮機1の回転数センサ31の出力信号に応じて、機械室ファン5bの今回の低回転数時間Δtを求める。
圧縮機1の単位時間当たりの回転数が高いと、それに比例した大きい冷凍能力で運転しているため、より多くの冷却を行っている。除霜運転以前の冷却運転期間の圧縮機1の単位時間当たりの回転数が高ければ高いほど、その分大きな冷却運転をしているため、蒸発器4への着霜量も増加する。よって、コントローラ30は、前回の冷却運転期間の圧縮機1の単位時間当たりの回転数の総計が高ければ、機械室ファン5bの単位時間当たりの回転数を低くする低回転数時間Δtを長くし、前回の冷却運転期間の圧縮機1の単位時間当たりの回転数の総計が低ければ、機械室ファン5bの単位時間当たりの回転数を低くする低回転数時間Δtを短くする。
図12は、実施の形態4における機械室ファン5bの低回転数時間Δtを求める手順を表わすフローチャートである。
図12を参照して、ステップS501において、コントローラ30は、圧縮機1の回転数の総計Rを0に設定する。
ステップS502において、除霜運転が開始された場合に、処理がステップS506に進み、除霜運転が開始されていない場合に、処理がステップS503に進む。
ステップS503において、コントローラ30は、前回の圧縮機1の単位時間当たりの回転数Pの取得から単位時間が経過したときには、処理をステップS504に進ませる。
ステップS504において、コントローラ30は、回転数センサ31から出力される圧縮機1の単位時間当たりの回転数を表わす信号を受信し、圧縮機1の単位時間当たりの回転数Pを取得する。
ステップS505において、コントローラ30は、圧縮機1の回転数の総計Rに取得した単位時間当たりの回転数Pを加える。
ステップS506において、除霜運転が終了した場合に、処理がステップS507に進む。
ステップS507において、コントローラ30は、圧縮機1の回転数の総計Rの大きさに応じて、低回転数時間Δtを求める。たとえば、低回転数時間ΔtをRに比例した大きさにしてもよい。
ステップS508において、冷蔵庫54の電源がオフとなった場合に、処理が終了し、冷蔵庫54の電源がオンを維持している場合に、処理がステップS501に戻る。
以上のように、本実施の形態によれば、圧縮機の回転センサの出力に基づいて、除霜運転によって生じたドレン水の量を推定して、機械室ファンの低回転数時間を設定することができる。
なお、圧縮機の単位時間当たりの回転数の総計に代えて、圧縮機の単位時間当たりの回転数の平均に基づいて、低回転数時間Δtを求めるものとしてもよい。
[実施の形態5]
実施の形態5の冷蔵庫の構成は、実施の形態1の冷蔵庫の構成と同様であるが、機械室ファン5bの制御方法が異なるため、その点について述べる。
図13は、実施の形態の冷蔵庫55の断面図の構造図である。
本実施の形態の冷蔵庫55は、ドレン水の量を検出または推定するセンサとして、蒸発器の温度を検出する温度センサ32を備える。
除霜運転する際、蒸発器4付近に設置されたヒータ37,38を用いて除霜するので、ヒータ37,38に通電をした時から温度が緩やかに上昇していく。この際、着霜量が多いと着霜分の熱容量が増加しているので蒸発器4の温度上昇が遅くなる。
図14は、着霜量と、除霜運転中の蒸発器4の温度上昇の速度との関係を表わす図である。
図14に示すように、着霜量が小さいと、除霜運転時に、蒸発器の温度上昇の速度は速く、着霜量が大きいと、除霜運転時に、蒸発器の温度上昇の速度は遅い
よって、蒸発器4の温度上昇の速度によって、着霜量を検出することができる。そして、除霜運転時に着霜量が多いほど、ドレン水の量も多いので、蒸発器4の温度上昇の速度を検出することによって、ドレン水の量も検出することができる。
本実施の形態では、コントローラ30は、蒸発器4の温度の上昇速度として、除霜運転開始後から温度センサ32で検出される蒸発器4の温度がΔTdefだけ上昇するのに要する時間tdを求める。コントローラ30は、1つ前の除霜運転期間におけるtdに基づいて、今回の冷却運転期間の低回転数時間Δtを求める。コントローラ30は、tdが長ければ(すなわち、温度上昇速度が小さければ)着霜量が多いため、低回転数時間Δtを長く設定し、tdが短ければ(すなわち、温度上昇速度が大きければ)着霜量が少ないため、低回転数時間Δtを短く設定する。
図15は、実施の形態5における機械室ファン5bの低回転数時間Δtを算出する手順を表わすフローチャートである。
図15を参照して、ステップS601において、除霜運転が開始された場合に、処理がステップS602に進む。
ステップS602において、コントローラ30は、タイマをスタートさせる。
ステップS603において、コントローラ30は、温度センサ32から出力される蒸発器4の温度を表わす信号を受信し、蒸発器4の温度を取得する。コントローラ30は、蒸発器4の温度が除霜運転開始時の温度から所定値ΔTdefだけ増加したときには、処理をステップS604に進ませる。
ステップS604において、コントローラ30は、タイマ値を温度上昇所要時間tdに設定する。
ステップS605において、コントローラ30は、温度上昇所要時間tdの大きさに応じて、低回転数時間Δtを求める。たとえば、低回転数時間Δtをtdに比例した大きさにしてもよい。
ステップS606において、除霜運転が終了した場合に、処理がステップS607に進む。
ステップS607において、冷蔵庫55の電源がオフとなった場合に、処理が終了し、冷蔵庫55の電源がオンを維持している場合に、処理がステップS501に戻る。
以上のように、本実施の形態によれば、蒸発器の温度を検出する温度センサの出力に基づいて、除霜運転によって生じたドレン水の量を推定して、機械室ファンの低回転数時間を設定することができる。
(変形例)
本発明は、上記の実施形態に限定されるものではなく、たとえば以下のような変形例も含む。
(1)複数のセンサの利用
上述の実施形態では、1種類のセンサの出力に基づいて、機械室ファンの低回転数時間Δを求めたが、複数種類のセンサの出力の組み合わせに基づいて、機械室ファンの低回転数時間Δtを求めてもよい。
(2)機械室ファンbの回転数の調整
上述の実施の形態では、除霜運転期間の終了に続く冷却運転開始からΔtの時間の第1の冷却運転期間の全部において、機械室ファンbの単位時間当たりの回転数を通常の単位時間当たりの回転数X2よりも小さな回転数X1に設定したが、これに限定するものではない。
第2の冷却運転期間の機械室ファンbの単位時間当たりの回転数を通常の単位時間当たりの回転数X2とし、第1の冷却運転期間のうちの一部の期間において、機械室ファンbの単位時間当たりの回転数を通常の単位時間当たりの回転数X2よりも小さな回転数X1に設定し、第1の冷却運転期間のうちの一部以外の期間において、機械室ファンbの単位時間当たりの回転数を通常の単位時間当たりの回転数X2と同じまたはよりも大きな回転数に設定するものとしてもよい。好ましくは、第1の冷却運転期間および第2の冷却運転期間において、このように機械室ファンbを動作させるのに要するエネルギーが、第1の冷却運転期間のおよび第2の冷却運転期間の全部において、機械室ファンbの単位時間当たりの回転数を通常の単位時間当たりの回転数X2で動作させるのに要するエネルギーよりも小さくなるものとしてもよい。
さらに、第1の冷却運転期間の少なくとも一部の機械室ファンbの単位時間当たりの回転数は固定値X1、第2の冷却運転期間の機械室ファンbの単位時間当たりの回転数は固定値X2に限定されるものではない。これらの値は固定値であることは必要ではなく、第1の冷却運転期間の少なくとも一部の機械室ファンbの単位時間当たりの回転数が、第2の冷却運転期間の機械室ファンbの単位時間当たりの回転数よりも小さいという条件を満たすものであればよい。
さらに、第1の冷却運転期間の少なくとも一部において、機械室ファンbを停止するものとしてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 圧縮機、2 凝縮器、2a ドレン水蒸発用凝縮器、2b 機械室凝縮器、2c 側面パイプ、3 減圧器、4 蒸発器、5 ファン、5a 冷蔵庫内用ファン、5b 機械室用ファン、6 風量調節器、7a,7b,7c 貯蔵室、8 ドレン水蒸発用皿、9 ドレン水、31 回転数センサ、32 温度センサ、33 外気湿度センサ、34a,34b,34c 扉開閉センサ、37 カチコミ式ヒータ、38 ラジアントヒータ、51〜55 冷蔵庫、81 冷凍サイクル装置。

Claims (8)

  1. 冷蔵庫であって、
    冷却運転期間に、冷媒が、圧縮機、第1の凝縮器、第2の凝縮器、減圧装置、および蒸発器の順に循環するように構成される冷凍サイクル装置と、
    前記蒸発器で発生したドレン水を貯めるドレンパンとを備え、前記第1の凝縮器が前記ドレンパンに収容され、
    前記冷蔵庫は、さらに、
    前記第2の凝縮器へ空気を送るためのファンを備え、
    前記冷却運転期間は、除霜運転期間の後に続く第1の冷却運転期間と、前記第1の冷却運転期間の後に続く第2の冷却運転期間とを含み、
    前記第1の冷却運転期間の前記ファンの回転速度は、第1の一定数であり、前記第2の冷却運転期間の前記ファンの回転速度は、前記第1の一定数よりも大きい第2の一定数であり、
    前記第1の冷却運転期間の長さが前記第1の冷却運転期間の開始前に決定される、冷蔵庫。
  2. 前記除霜運転期間の終了後に前記ドレンパンに蓄えられるドレン水の量に応じて、前記第1の冷却運転期間の長さが変化する、請求項1記載の冷蔵庫。
  3. 前記冷蔵庫の扉の開閉を検知するセンサと、
    前記センサの出力に基づいて、前回の前記冷却運転期間における前記扉の開いた回数および前記扉の開いた時間を求め、前記扉の開いた回数および前記扉の開いた時間に基づいて、前記第1の冷却運転期間の長さを決定する制御部とをさらに備える、請求項1記載の冷蔵庫。
  4. 前記冷蔵庫の外部の空気の湿度を検出するセンサと、
    前記センサの出力に基づいて、前回の前記冷却運転期間における外部の空気の湿度の平均を求め、前記外部の空気の湿度の平均に基づいて、前記第1の冷却運転期間の長さを決定する制御部とをさらに備える、請求項1記載の冷蔵庫。
  5. 前記圧縮機の単位時間当たりの回転数を検出するセンサと、
    前記センサの出力に基づいて、前回の前記冷却運転期間における前記圧縮機の単位時間当たりの回転数の平均または総計を求め、前記圧縮機の単位時間当たりの回転数の平均または総計に基づいて、前記第1の冷却運転期間の長さを決定する制御部とをさらに備える、請求項1記載の冷蔵庫。
  6. 前記蒸発器の温度を検出するセンサと、
    前記センサの出力に基づいて、前回の前記除霜運転期間における前記蒸発器の温度の変化速度を求め、前記温度の変化速度に基づいて、前記第1の冷却運転期間の長さを決定する制御部とをさらに備える、請求項1記載の冷蔵庫。
  7. ヒータをさら備え、
    前記除霜運転期間には、前記ヒータが動作し、前記冷却運転期間には、前記ヒータが停止する、請求項1記載の冷蔵庫。
  8. 前記除霜運転期間には、前記圧縮機が停止する、請求項1記載の冷蔵庫。
JP2018502913A 2016-03-01 2016-03-01 冷蔵庫 Active JP6611905B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056277 WO2017149664A1 (ja) 2016-03-01 2016-03-01 冷蔵庫

Publications (2)

Publication Number Publication Date
JPWO2017149664A1 JPWO2017149664A1 (ja) 2018-11-22
JP6611905B2 true JP6611905B2 (ja) 2019-11-27

Family

ID=59742644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018502913A Active JP6611905B2 (ja) 2016-03-01 2016-03-01 冷蔵庫

Country Status (4)

Country Link
JP (1) JP6611905B2 (ja)
CN (1) CN108885050B (ja)
TW (1) TWI683080B (ja)
WO (1) WO2017149664A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375477B (zh) * 2018-04-13 2024-04-19 青岛海尔制冷电器有限公司 制冷室位于冷冻间室底部的冰箱
KR20200062698A (ko) 2018-11-27 2020-06-04 엘지전자 주식회사 냉장고 및 그의 제어방법
CN109708394B (zh) * 2018-12-06 2020-10-30 青岛海尔股份有限公司 用于冰箱的散热风机的控制方法及控制***
EP3882546A4 (en) 2019-01-03 2021-11-17 Hefei Midea Refrigerator Co., Ltd. REFRIGERATOR AND CONTROL PROCESS AND CONTROL DEVICE FOR IT
CN111609633B (zh) * 2019-02-26 2022-03-25 海尔智家股份有限公司 风冷冰箱
CN113776254B (zh) * 2019-12-13 2022-10-11 广东哈士奇制冷科技股份有限公司 一种具有化霜功能的冰箱
CN115540436A (zh) * 2021-06-30 2022-12-30 青岛海尔电冰箱有限公司 制冷设备
CN115540435A (zh) * 2021-06-30 2022-12-30 青岛海尔电冰箱有限公司 冰箱
DE102021208479A1 (de) * 2021-08-04 2023-02-09 BSH Hausgeräte GmbH Kältegerät mit Verflüssiger-Ventilator und Verfahren zum Betrieb eines Kältegeräts mit einem Verflüssiger-Ventilator
CN113776268A (zh) * 2021-09-23 2021-12-10 珠海格力电器股份有限公司 一种冰箱冷凝风扇控制方法、***及冰箱

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221369A (ja) * 1982-06-17 1983-12-23 三菱電機株式会社 冷凍装置
JPH0634259A (ja) * 1992-07-21 1994-02-08 Fujitsu General Ltd 電気冷蔵庫
DE4418874A1 (de) * 1994-05-30 1996-03-21 Bosch Siemens Hausgeraete Steuereinrichtung zum Betrieb eines Kühl- oder Gefriergerätes
JP3083959B2 (ja) * 1994-07-25 2000-09-04 シャープ株式会社 冷蔵庫
JP2001255050A (ja) * 2000-03-10 2001-09-21 Toshiba Corp 冷蔵庫
KR100908021B1 (ko) * 2005-03-01 2009-07-15 아세릭 에이. 에스 냉각 장치
JP4912268B2 (ja) * 2007-09-28 2012-04-11 三菱電機株式会社 冷蔵庫
CN101598483A (zh) * 2008-12-05 2009-12-09 海信科龙电器股份有限公司 一种冰箱除霜控制***及其冰箱除霜控制方法
EP2711654A4 (en) * 2011-05-18 2015-08-12 Panasonic Corp FRIDGE
JP2014059109A (ja) * 2012-09-18 2014-04-03 Sharp Corp 冷蔵庫
CN105276900B (zh) * 2015-03-12 2018-10-26 合肥美的电冰箱有限公司 冰箱及其化霜控制方法

Also Published As

Publication number Publication date
CN108885050B (zh) 2022-02-01
TWI683080B (zh) 2020-01-21
CN108885050A (zh) 2018-11-23
TW201741609A (zh) 2017-12-01
WO2017149664A1 (ja) 2017-09-08
JPWO2017149664A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6611905B2 (ja) 冷蔵庫
JP4954484B2 (ja) 冷却貯蔵庫
JP5575192B2 (ja) 二元冷凍装置
RU2672995C1 (ru) Система и способ автономного и бесперебойного размораживания
JP4289427B2 (ja) 冷凍装置
US10753675B2 (en) Refrigerator and method of controlling the same
JP2007225158A (ja) 除霜運転制御装置および除霜運転制御方法
JP2013104606A (ja) 冷凍サイクル装置及び温水生成装置
WO2019129243A1 (zh) 提高冰箱蒸发能力的控制方法及冰箱
JP2008249239A (ja) 冷却装置の制御方法、冷却装置および冷蔵倉庫
KR102085832B1 (ko) 공기조화기 및 공기조화기의 제어방법
JPWO2012059957A1 (ja) 空気調和機
JPWO2017163296A1 (ja) 冷凍装置
JP2012255631A (ja) 冷凍装置
JP6342150B2 (ja) 空気調和システム
JP5105276B2 (ja) 冷蔵庫
WO2017179088A1 (ja) 冷凍装置および冷凍装置の制御方法
JP2008057863A (ja) 冷蔵庫
JP2007309585A (ja) 冷凍装置
JP2006090663A (ja) 冷蔵庫
US11549740B2 (en) Refrigerator and controlling method for the same
KR102151817B1 (ko) 냉장고 및 그의 제어방법
JP6562879B2 (ja) 冷蔵庫
JP2019191841A (ja) 温冷庫の温度制御装置
JP3505466B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191029

R150 Certificate of patent or registration of utility model

Ref document number: 6611905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250