JP6605348B2 - Compressed air storage generator - Google Patents

Compressed air storage generator Download PDF

Info

Publication number
JP6605348B2
JP6605348B2 JP2016022122A JP2016022122A JP6605348B2 JP 6605348 B2 JP6605348 B2 JP 6605348B2 JP 2016022122 A JP2016022122 A JP 2016022122A JP 2016022122 A JP2016022122 A JP 2016022122A JP 6605348 B2 JP6605348 B2 JP 6605348B2
Authority
JP
Japan
Prior art keywords
heat
compressed air
lubricating oil
oil
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016022122A
Other languages
Japanese (ja)
Other versions
JP2017141696A (en
Inventor
洋平 久保
正剛 戸島
浩樹 猿田
正樹 松隈
佳直美 坂本
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016022122A priority Critical patent/JP6605348B2/en
Publication of JP2017141696A publication Critical patent/JP2017141696A/en
Application granted granted Critical
Publication of JP6605348B2 publication Critical patent/JP6605348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、圧縮空気貯蔵発電装置に関する。   The present invention relates to a compressed air storage power generator.

風力発電や太陽光発電などの再生可能エネルギーを利用した発電は、気象条件に依存するため、出力が変動し安定しないことがある。このような出力変動に対し、出力を平準化するシステムとして圧縮空気貯蔵(Compressed Air Energy Storage:CAES)システムが知られている。   Since power generation using renewable energy such as wind power generation and solar power generation depends on weather conditions, the output may fluctuate and be unstable. A compressed air energy storage (CAES) system is known as a system for leveling the output against such output fluctuations.

このCAESシステムを利用した圧縮空気貯蔵(CAES)発電装置は、電力プラントのオフピーク時間中に電気エネルギーを圧縮空気として蓄圧タンクに蓄え、高電力需要時間中に圧縮空気により膨張機を駆動して発電機を動作させて電気エネルギーを生成して出力を平準化する。また、発電効率を向上させるために、圧縮熱を蓄熱媒体に回収し、蓄熱タンク等に貯蔵し、回収した圧縮熱を用いて膨張前の圧縮空気を加熱するシステムが知られている。これにより、圧縮時の動力増加を防止し、膨張時の回収動力を増加させると同時に、蓄圧タンク貯蔵時の熱放出を防止するものがある。   A compressed air storage (CAES) power generation device using this CAES system stores electric energy as compressed air in an accumulator tank during off-peak hours of a power plant, and drives an expander with compressed air during high power demand time to generate electricity. The machine is operated to generate electrical energy and level the output. In order to improve power generation efficiency, a system is known in which compressed heat is recovered in a heat storage medium, stored in a heat storage tank or the like, and the compressed air before expansion is heated using the recovered compressed heat. As a result, there is one that prevents an increase in power during compression and increases recovery power during expansion, and at the same time, prevents heat release during storage of the accumulator tank.

このようなCAES発電装置として、例えば特許文献1には、熱エネルギー貯蔵システムを利用したものが開示されている。   As such a CAES power generator, for example, Patent Document 1 discloses a device using a thermal energy storage system.

特表2013−509530号公報Special table 2013-509530 gazette

空気圧縮機には潤滑油が混入したままで空気を圧縮する油冷式と呼ばれるものと、潤滑油を用いないタイプのオイルフリー式と呼ばれるものがある。特許文献1には圧縮機の種類についての記載がないものの、CAESシステムには、圧縮空気の取り扱い易さの面からオイルフリー式圧縮機が用いられることが多い。油冷式圧縮機ないし油冷式膨張機を用いた場合、運転には潤滑油を要するが、特許文献1は、潤滑油を利用したCAES発電装置の充放電効率向上について特段の示唆を含んでいない。   There are two types of air compressors, one called an oil-cooled type that compresses air while the lubricating oil is mixed, and the other one called an oil-free type that does not use lubricating oil. Although Patent Document 1 does not describe the type of the compressor, an oil-free compressor is often used for the CAES system from the viewpoint of easy handling of compressed air. When an oil-cooled compressor or an oil-cooled expander is used, lubricating oil is required for operation. However, Patent Document 1 includes a special suggestion for improving the charge / discharge efficiency of a CAES power generator using the lubricating oil. Not in.

本発明は、油冷式圧縮機を使用した圧縮空気貯蔵発電装置における充放電効率の向上を課題とする。   An object of the present invention is to improve charge and discharge efficiency in a compressed air storage power generation apparatus using an oil-cooled compressor.

本発明は、再生可能エネルギーを用いて発電した電力により駆動される電動機と、前記電動機により駆動される油冷式圧縮機と、前記油冷式圧縮機により圧縮された圧縮空気を蓄える蓄圧部と、前記蓄圧部から供給される圧縮空気によって駆動される膨張機と、前記膨張機により駆動される発電機と、前記油冷式圧縮機で発生した熱を潤滑油と熱媒とに回収する圧縮側熱交換部と、前記圧縮側熱交換部で熱を回収した前記潤滑油と前記熱媒とを蓄える蓄熱部と、前記蓄熱部で蓄えられた前記潤滑油と前記熱媒とにより前記膨張機に供給される前記圧縮空気を加熱する膨張側熱交換部とを備える、圧縮空気貯蔵発電装置を提供する。   The present invention includes an electric motor driven by electric power generated using renewable energy, an oil-cooled compressor driven by the electric motor, and a pressure accumulating unit that stores compressed air compressed by the oil-cooled compressor. , An expander driven by compressed air supplied from the pressure accumulator, a generator driven by the expander, and a compression for recovering heat generated in the oil-cooled compressor into lubricating oil and a heat medium The expander includes a side heat exchange unit, a heat storage unit that stores the lubricating oil and heat medium that have recovered heat at the compression side heat exchange unit, and the lubricating oil and heat medium that are stored in the heat storage unit. A compressed air storage power generator comprising: an expansion-side heat exchange unit that heats the compressed air supplied to the air.

この構成によれば、油冷式圧縮機における圧縮熱や摩擦熱などを圧縮側熱交換部により蓄熱部に回収し、膨張側熱交換部により膨張前の圧縮空気を加熱することで充放電効率を向上できる。具体的には、圧縮側熱交換部において蓄圧部への圧縮空気の貯蔵前に熱媒で圧縮熱を回収することで、貯蔵する圧縮空気の温度が低下して密度が増加するため、蓄圧部内の圧縮空気量が増加し、充電効率(圧縮効率)が向上している。さらに、圧縮熱を回収した熱媒および摩擦熱を回収した潤滑油を膨張側熱交換部において膨張前の圧縮空気の加熱に使用することで発電効率(膨張効率)が向上している。   According to this configuration, the compression heat or friction heat in the oil-cooled compressor is collected in the heat storage unit by the compression side heat exchange unit, and the compressed air before expansion is heated by the expansion side heat exchange unit, thereby charging and discharging efficiency. Can be improved. Specifically, in the compression side heat exchange unit, by collecting the compression heat with the heat medium before storing the compressed air in the pressure accumulating unit, the temperature of the compressed air to be stored decreases and the density increases. The amount of compressed air increases and charging efficiency (compression efficiency) is improved. Furthermore, the power generation efficiency (expansion efficiency) is improved by using the heat medium recovering the compression heat and the lubricating oil recovering the frictional heat for heating the compressed air before the expansion in the expansion side heat exchange section.

前記圧縮側熱交換部は、前記油冷式圧縮機で発生した熱を潤滑油に回収する潤滑油熱回収部を備え、前記膨張側熱交換部は、前記蓄圧部から前記膨張機に供給される圧縮空気と前記蓄熱部から前記油冷式圧縮機に供給される潤滑油とで熱交換する膨張側第1熱交換器を備えることが好ましい。   The compression side heat exchange unit includes a lubricating oil heat recovery unit that recovers heat generated in the oil-cooled compressor into lubricating oil, and the expansion side heat exchange unit is supplied from the pressure accumulating unit to the expander. It is preferable to provide an expansion side first heat exchanger that exchanges heat between the compressed air and the lubricating oil supplied from the heat storage unit to the oil-cooled compressor.

この構成によれば、潤滑油を媒体として、潤滑油熱回収部において油冷式圧縮機で発生した熱を回収し、回収した熱を膨張側第1熱交換器において膨張前の圧縮空気の加熱に利用できるため、充放電効率を向上できる。   According to this configuration, using the lubricating oil as a medium, the heat generated by the oil-cooled compressor is recovered in the lubricating oil heat recovery section, and the recovered heat is heated in the expansion side first heat exchanger before the expansion by the compressed air. Therefore, charging / discharging efficiency can be improved.

前記圧縮側熱交換部は、前記油冷式圧縮機から前記蓄圧部に供給される前記圧縮空気と前記膨張側熱交換部から前記蓄熱部に供給される前記熱媒とで熱交換する圧縮側熱交換器を備え、前記膨張側熱交換部は、前記蓄圧部から前記膨張機に供給される前記圧縮空気と前記蓄熱部から前記圧縮側熱交換部に供給される前記熱媒とで熱交換する膨張側第2熱交換器を備えることが好ましい。   The compression side heat exchange unit is a compression side that exchanges heat between the compressed air supplied from the oil-cooled compressor to the pressure storage unit and the heat medium supplied from the expansion side heat exchange unit to the heat storage unit. A heat exchanger, wherein the expansion side heat exchanging unit exchanges heat between the compressed air supplied from the pressure accumulating unit to the expander and the heat medium supplied from the heat accumulating unit to the compression side heat exchanging unit. It is preferable to provide an expansion side second heat exchanger.

この構成によれば、熱媒を媒体として、圧縮側熱交換器において油冷式圧縮機で発生した熱を回収し、回収した熱を膨張側第2熱交換器において膨張前の圧縮空気の加熱に利用できるため、充放電効率を向上できる。   According to this configuration, using the heat medium as a medium, the heat generated in the oil-cooled compressor is recovered in the compression side heat exchanger, and the recovered heat is heated in the expansion side second heat exchanger before compressed air is expanded. Therefore, charging / discharging efficiency can be improved.

前記膨張側第1熱交換器および前記膨張側第2熱交換器のうち、前記膨張側第1熱交換器が前記蓄圧部から前記膨張機に向かう前記圧縮空気の流れにおいて上流側に設けられ、前記膨張側第2熱交換器が前記蓄圧部から前記膨張機に向かう前記圧縮空気の流れにおいて下流側に設けられていることが好ましい。   Among the expansion side first heat exchanger and the expansion side second heat exchanger, the expansion side first heat exchanger is provided on the upstream side in the flow of the compressed air from the pressure accumulating part to the expander, It is preferable that the expansion-side second heat exchanger is provided on the downstream side in the flow of the compressed air from the pressure accumulating unit toward the expander.

この構成によれば、膨張側熱交換部において熱媒と潤滑油とを用いて膨張前の圧縮空気を加熱する際、先に潤滑油の熱交換を行うことで潤滑油温度をより低下させている。従って、油冷式圧縮機での効率的な潤滑油の再利用が可能となる。特に、潤滑油と熱媒とでは、潤滑油の方が油冷式圧縮機の機能に直接作用するため、潤滑油の温度を低下させることが好ましいためである。   According to this configuration, when the compressed air before expansion is heated using the heat medium and the lubricating oil in the expansion side heat exchanging section, the lubricating oil temperature is further reduced by heat exchange of the lubricating oil first. Yes. Accordingly, it is possible to efficiently reuse the lubricating oil in the oil-cooled compressor. This is because, in particular, with lubricating oil and a heat medium, the lubricating oil directly acts on the function of the oil-cooled compressor, so it is preferable to lower the temperature of the lubricating oil.

潤滑油および熱媒は同じ流体であり、前記膨張側第1熱交換器および前記膨張側第2熱交換器は同じ一つの熱交換器であることが好ましい。   It is preferable that the lubricating oil and the heat medium are the same fluid, and the expansion side first heat exchanger and the expansion side second heat exchanger are the same one heat exchanger.

この構成によれば、潤滑油と熱媒が同じ流体であることから潤滑油と熱媒を混合して使用できる。そのため、膨張側熱交換部を一つの熱交換器から構成でき、膨張側熱交換部の構成を簡易化できる。   According to this configuration, since the lubricating oil and the heat medium are the same fluid, the lubricating oil and the heat medium can be mixed and used. Therefore, an expansion side heat exchange part can be comprised from one heat exchanger, and the structure of an expansion side heat exchange part can be simplified.

前記膨張機の排気口の下流に加熱部を備えることが好ましい。   It is preferable that a heating unit is provided downstream of the exhaust port of the expander.

油冷式圧縮機は、オイルフリー式圧縮機に比べて吐出する圧縮空気の温度が低い。そのため、油冷式圧縮機では圧縮側熱交換部を通じて圧縮熱を高温で熱媒に回収できないため、蓄熱部における蓄熱温度がオイルフリー式圧縮機に比べて低下する。蓄熱温度が低いため、膨張側熱交換部を通じて膨張前の圧縮空気を高温に加熱することができない。そのため、膨張後の空気は、膨張吸熱によりゼロ度以下の低温となる場合があり、膨張機の排気口で空気中の水分が氷結し、排気口を閉塞する場合がある。従って、加熱部で排気口を加熱することで除霜し、閉塞を防止する。   The oil-cooled compressor has a lower temperature of the compressed air discharged compared to the oil-free compressor. For this reason, the oil-cooled compressor cannot recover the compression heat to the heat medium at a high temperature through the compression-side heat exchange unit, and therefore the heat storage temperature in the heat storage unit is lower than that in the oil-free compressor. Since the heat storage temperature is low, the compressed air before expansion cannot be heated to a high temperature through the expansion side heat exchange section. Therefore, the air after expansion may become a low temperature of zero degrees or less due to expansion heat absorption, and moisture in the air may freeze at the exhaust port of the expander, which may block the exhaust port. Therefore, it defrosts by heating an exhaust port with a heating part, and obstruction | occlusion is prevented.

本発明によれば、油冷式圧縮機における圧縮熱や摩擦熱などを圧縮側熱交換部により蓄熱部に回収し、膨張側熱交換部により膨張前の圧縮空気を加熱することで、油冷式圧縮機を使用した圧縮空気貯蔵発電装置において充放電効率を向上できる。   According to the present invention, the oil-cooled compressor recovers the compression heat, friction heat, and the like in the heat storage part by the compression side heat exchange part, and heats the compressed air before expansion by the expansion side heat exchange part. Charge / discharge efficiency can be improved in a compressed air storage power generator using a compressor.

本発明の第1実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic structure figure of the compressed air storage power generator concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generation apparatus which concerns on 2nd Embodiment of this invention. 図2の変形例の圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generator of the modification of FIG. 図2の他の変形例の圧縮空気貯蔵発電装置の概略構成図。The schematic block diagram of the compressed air storage power generator of the other modification of FIG.

以下、添付図面を参照して本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

(第1実施形態)
圧縮空気貯蔵(CAES:compressed air energy storage)発電装置2は、再生可能エネルギーを利用する発電装置4の出力変動を平準化して電力系統6に電力を供給するとともに、電力系統6における電力需要の変動に合わせた電力を供給する。
(First embodiment)
A compressed air energy storage (CAES) power generation device 2 equalizes the output fluctuation of the power generation device 4 that uses renewable energy and supplies power to the power system 6, and changes in power demand in the power system 6 Supply power that is suitable for.

図1を参照して、CAES発電装置2の構成を説明する。本実施形態のCAES発電装置2は、空気流路8a〜8d(破線で示す)と熱媒流路10a〜10d(実線で示す)と潤滑油流路12a〜12e(一点鎖線で示す)とを有する。   With reference to FIG. 1, the structure of the CAES power generator 2 is demonstrated. The CAES power generator 2 of the present embodiment includes air flow paths 8a to 8d (shown by broken lines), heat medium flow paths 10a to 10d (shown by solid lines), and lubricating oil flow paths 12a to 12e (shown by dashed lines). Have.

空気流路8a〜8dについて説明する。   The air flow paths 8a to 8d will be described.

空気流路8a〜8dには、モータ(電動機)14で駆動される油冷式圧縮機(以降、単に圧縮機という場合がある)16、油分離器18a,18b、蓄圧タンク(蓄圧部)20、発電機24を駆動する膨張機22、圧縮側熱交換部26、および膨張側熱交換部28が設けられている。   In the air flow paths 8 a to 8 d, an oil-cooled compressor (hereinafter sometimes simply referred to as a compressor) 16 driven by a motor (electric motor) 14, oil separators 18 a and 18 b, an accumulator tank (accumulator) 20. An expander 22 that drives the generator 24, a compression side heat exchange unit 26, and an expansion side heat exchange unit 28 are provided.

再生可能エネルギーを利用する発電装置4はモータ14と電気的に接続されており(二点鎖線で示す)、発電装置4により発電された電力はモータ14に供給され、モータ14が駆動される。モータ14は、圧縮機16に機械的に接続されており、圧縮機16を駆動する。   The power generation device 4 that uses renewable energy is electrically connected to the motor 14 (indicated by a two-dot chain line), and the electric power generated by the power generation device 4 is supplied to the motor 14 and the motor 14 is driven. The motor 14 is mechanically connected to the compressor 16 and drives the compressor 16.

圧縮機16は、油冷式であり、潤滑油の供給により冷却および潤滑される。圧縮機16は、モータ14によって駆動されると、空気流路8aを介して吸気口16aより空気を吸気し、内部で圧縮して吐出口16bより圧縮空気を吐出する。圧縮機16の吐出口16bは空気流路8bを通じて蓄圧タンク20と流体的に接続されており、吐出口16bから吐出された圧縮空気は、空気流路8bを通じて蓄圧タンク20に圧送される。空気流路8bにはバルブ30aが設けられており、バルブ30aの開閉により圧縮機16から蓄圧タンク20への圧縮空気の供給を許容又は遮断できる。なお、圧縮機16の種類は油冷式であれば特に限定されず、例えば、スクリュ式、スクロール式、ターボ式、およびレシプロ式などであってもよい。   The compressor 16 is oil-cooled, and is cooled and lubricated by supplying lubricating oil. When driven by the motor 14, the compressor 16 sucks air from the air intake port 16a through the air flow path 8a, compresses the air inside, and discharges compressed air from the discharge port 16b. The discharge port 16b of the compressor 16 is fluidly connected to the pressure accumulation tank 20 through the air flow path 8b, and the compressed air discharged from the discharge port 16b is pumped to the pressure accumulation tank 20 through the air flow path 8b. A valve 30a is provided in the air flow path 8b, and the supply of compressed air from the compressor 16 to the pressure accumulating tank 20 can be permitted or blocked by opening and closing the valve 30a. The type of the compressor 16 is not particularly limited as long as it is oil-cooled, and may be, for example, a screw type, a scroll type, a turbo type, a reciprocating type, or the like.

圧縮機16の吐出口16bから蓄圧タンク20に延びる空気流路8bには、油分離器18aが介設されている。油冷式圧縮機16を使用すると、吐出口16bから油分を含む圧縮空気が吐出される。油分離器18aは、吐出された圧縮空気から油分を分離する。   An oil separator 18 a is interposed in the air flow path 8 b extending from the discharge port 16 b of the compressor 16 to the pressure accumulation tank 20. When the oil-cooled compressor 16 is used, compressed air containing oil is discharged from the discharge port 16b. The oil separator 18a separates oil from the discharged compressed air.

また、油分離器18aは、空気流路8b内を流れる圧縮空気から分離した油分の蓄積部である油溜まり(図示せず)を備え、この油溜まりは後述の潤滑油流路12aに流体的に接続されている。油分離器18aで圧縮空気から分離された油は潤滑油として潤滑油流路12aに供給される。   The oil separator 18a includes an oil sump (not shown) that is an oil accumulation part separated from the compressed air flowing in the air flow path 8b. The oil sump is fluidly connected to a lubricating oil flow path 12a described later. It is connected to the. The oil separated from the compressed air by the oil separator 18a is supplied to the lubricating oil passage 12a as lubricating oil.

圧縮機16の吐出口16bから蓄圧タンク20に延びる空気流路8bには冷却器として圧縮側熱交換器26aが介設されている。圧縮側熱交換器26aは本発明の圧縮側熱交換部26に含まれる。圧縮側熱交換器26aに供給される圧縮空気は圧縮の際に生じる圧縮熱により高温となる。圧縮側熱交換器26aでは、熱媒と圧縮空気の間の熱交換により圧縮空気を冷却し、熱媒を加熱している。   A compression side heat exchanger 26 a is interposed as a cooler in the air flow path 8 b extending from the discharge port 16 b of the compressor 16 to the pressure accumulating tank 20. The compression side heat exchanger 26a is included in the compression side heat exchange unit 26 of the present invention. The compressed air supplied to the compression side heat exchanger 26a becomes a high temperature due to the compression heat generated during compression. In the compression side heat exchanger 26a, the compressed air is cooled by heat exchange between the heat medium and the compressed air, and the heat medium is heated.

蓄圧タンク20は、圧縮空気を蓄えてエネルギーとして蓄積できる。蓄圧タンク20には、上述のように油分離器18aにより油分が分離された圧縮空気が供給される。蓄圧タンク20は、空気流路8cを通じて膨張機22と流体的に接続されており、蓄圧タンク20から送出された圧縮空気は空気流路8cを通じて膨張機22に供給される。空気流路8cにはバルブ30bが設けられており、バルブ30bの開閉により蓄圧タンク20から膨張機22への圧縮空気の供給を許容又は遮断できる。   The accumulator tank 20 can store compressed air and store it as energy. The accumulator tank 20 is supplied with compressed air from which oil has been separated by the oil separator 18a as described above. The pressure accumulation tank 20 is fluidly connected to the expander 22 through the air flow path 8c, and the compressed air sent from the pressure accumulation tank 20 is supplied to the expander 22 through the air flow path 8c. A valve 30b is provided in the air flow path 8c, and the supply of compressed air from the pressure accumulation tank 20 to the expander 22 can be permitted or blocked by opening and closing the valve 30b.

また、蓄圧タンク20から膨張機22の給気口22aに延びる空気流路8cには、膨張側第1熱交換器28aおよび膨張側第2熱交換器28bが介設されている。膨張側第1熱交換器28aおよび膨張側第2熱交換器28bは、本発明の膨張側熱交換部28を構成する。膨張側第1熱交換器28aでは、潤滑油と圧縮空気の間の熱交換により、圧縮空気が加熱され潤滑油が冷却されている。膨張側第2熱交換器28bでは、熱媒と圧縮空気の間の熱交換により圧縮空気が加熱され熱媒が冷却されている。   An expansion side first heat exchanger 28a and an expansion side second heat exchanger 28b are interposed in the air flow path 8c extending from the pressure accumulation tank 20 to the air supply port 22a of the expander 22. The expansion side first heat exchanger 28a and the expansion side second heat exchanger 28b constitute the expansion side heat exchange unit 28 of the present invention. In the expansion side first heat exchanger 28a, the compressed air is heated and the lubricating oil is cooled by heat exchange between the lubricating oil and the compressed air. In the expansion side second heat exchanger 28b, the compressed air is heated and the heat medium is cooled by heat exchange between the heat medium and the compressed air.

膨張機22は、油冷式であり、潤滑油の供給により冷却および潤滑される。膨張機22は、発電機24と機械的に接続されており、給気口22aから圧縮空気を給気された膨張機22は、給気された圧縮空気により作動し、発電機24を駆動する。発電機24は電力系統6に電気的に接続されており(二点鎖線で示す)、発電機24で発電した電力は電力系統6に供給される。また、膨張機22で膨張された空気は、排気口22bから空気流路8dを通じて排気される。空気流路8dには油分離器18bが設けられており、排気口22bから排出された空気は油分離器18bによって油分が除去される。膨張機22の種類は、例えば、スクリュ式、スクロール式、ターボ式、およびレシプロ式などであってもよい。さらに言えば、膨張機22は油冷式に限定されず、オイルフリー式であってもよい。   The expander 22 is oil-cooled, and is cooled and lubricated by supplying lubricating oil. The expander 22 is mechanically connected to the generator 24, and the expander 22 supplied with compressed air from the air supply port 22 a is operated by the supplied compressed air and drives the generator 24. . The generator 24 is electrically connected to the power system 6 (indicated by a two-dot chain line), and the power generated by the generator 24 is supplied to the power system 6. The air expanded by the expander 22 is exhausted from the exhaust port 22b through the air flow path 8d. An oil separator 18b is provided in the air flow path 8d, and oil is removed from the air discharged from the exhaust port 22b by the oil separator 18b. The type of the expander 22 may be, for example, a screw type, a scroll type, a turbo type, and a reciprocating type. Furthermore, the expander 22 is not limited to the oil-cooled type, but may be an oil-free type.

空気流路8dには、除霜用のヒータ(加熱部)32が設けられている。ヒータ32は、本実施形態では電力を供給されて発熱する電気式であるが、熱媒流路10a〜10d中の熱媒および潤滑油流路12a〜12e中の潤滑油のような高温の熱源と熱交換する熱交換式であってもよい。   A defrosting heater (heating unit) 32 is provided in the air flow path 8d. In the present embodiment, the heater 32 is an electric type that is supplied with electric power and generates heat, but a high-temperature heat source such as the heat medium in the heat medium flow paths 10a to 10d and the lubricating oil in the lubricating oil flow paths 12a to 12e. It may be a heat exchange type that exchanges heat with.

CAES発電装置2の圧縮機16をオイルフリー式ではなく本実施形態のように油冷式とした場合、圧縮機16内に注油される潤滑油が圧縮時の熱を奪うため、吐出口16bから吐出される圧縮空気はオイルフリー式の場合と比べて温度が低い。潤滑油の温度は吐出される圧縮空気と概ね同程度となることから、オイルフリー式のような高温の熱回収ができない。そのため、高温の熱媒が得られず膨張前の空気を高温に加熱できないため、膨張機22で膨張された空気は大気放出される段階では氷点下となることがある。従って膨張機22の排気口22bで空気中の水分が氷結し、排気口22bを閉塞する場合がある。これを解決するために、本実施形態では除霜用のヒータ32が設けられている。   When the compressor 16 of the CAES power generation device 2 is not oil-free but oil-cooled as in the present embodiment, the lubricating oil injected into the compressor 16 takes heat during compression, so the discharge port 16b The discharged compressed air has a lower temperature than the oil-free type. Since the temperature of the lubricating oil is approximately the same as the compressed air that is discharged, high-temperature heat recovery as in the oil-free type cannot be performed. Therefore, since a high-temperature heating medium cannot be obtained and the air before expansion cannot be heated to a high temperature, the air expanded by the expander 22 may become below freezing at the stage where it is released to the atmosphere. Accordingly, moisture in the air may freeze at the exhaust port 22b of the expander 22 and block the exhaust port 22b. In order to solve this, a heater 32 for defrosting is provided in the present embodiment.

熱媒流路10a〜10dについて説明する。   The heat medium flow paths 10a to 10d will be described.

熱媒流路10a〜10dには、圧縮側熱交換器26a、高温熱媒タンク(蓄熱部)34、膨張側第2熱交換器28b、および低温熱媒タンク36が順に設けられている。熱媒はこれらの間で循環して流動している。熱媒の種類は特に限定されておらず、例えばグリコール系の熱媒を使用してもよい。   In the heat medium passages 10a to 10d, a compression side heat exchanger 26a, a high temperature heat medium tank (heat storage unit) 34, an expansion side second heat exchanger 28b, and a low temperature heat medium tank 36 are sequentially provided. The heat medium circulates and flows between them. The kind of the heat medium is not particularly limited, and for example, a glycol heat medium may be used.

圧縮側熱交換器26aでは、油冷式圧縮機16から蓄圧タンク20に延びる空気流路8b内の圧縮空気と、低温熱媒タンク36から高温熱媒タンク34に延びる熱媒流路10d,10a内の熱媒とで熱交換している。具体的には、空気流路8b内を流れる圧縮空気は、圧縮機16での圧縮の際に生じる圧縮熱により高温となっており、圧縮側熱交換器26aでの熱交換により、圧縮空気を冷却している。即ち、圧縮側熱交換器26aでは圧縮空気の温度は低下し、熱媒の温度は上昇する。圧縮側熱交換器26aは熱媒流路10aを通じて高温熱媒タンク34と流体的に接続されており、温度上昇した熱媒は高温熱媒タンク34に供給され蓄えられる。   In the compression side heat exchanger 26a, the compressed air in the air flow path 8b extending from the oil-cooled compressor 16 to the accumulator tank 20 and the heat medium flow paths 10d and 10a extending from the low temperature heat medium tank 36 to the high temperature heat medium tank 34 are obtained. Heat is exchanged with the internal heating medium. Specifically, the compressed air flowing in the air flow path 8b is heated to a high temperature due to the compression heat generated during the compression in the compressor 16, and the compressed air is exchanged by the heat exchange in the compression side heat exchanger 26a. It is cooling. That is, in the compression side heat exchanger 26a, the temperature of the compressed air decreases and the temperature of the heat medium increases. The compression side heat exchanger 26a is fluidly connected to the high temperature heat medium tank 34 through the heat medium flow path 10a, and the heat medium whose temperature has been increased is supplied to the high temperature heat medium tank 34 and stored therein.

高温熱媒タンク34は、圧縮側熱交換器26aから供給された高温の熱媒を保温して蓄える。そのため、高温熱媒タンク34は断熱されていることが好ましい。高温熱媒タンク34は、熱媒流路10bを通じて膨張側第2熱交換器28bに流体的に接続されており、高温熱媒タンク34で蓄えられた熱媒は熱媒流路10bを通じて膨張側第2熱交換器28bに供給される。   The high temperature heat medium tank 34 retains and stores the high temperature heat medium supplied from the compression side heat exchanger 26a. Therefore, it is preferable that the high-temperature heat medium tank 34 is insulated. The high temperature heat medium tank 34 is fluidly connected to the expansion side second heat exchanger 28b through the heat medium flow path 10b, and the heat medium stored in the high temperature heat medium tank 34 is expanded side through the heat medium flow path 10b. It is supplied to the second heat exchanger 28b.

膨張側第2熱交換器28bでは、蓄圧タンク20から膨張機22に延びる空気流路8c内の圧縮空気と、高温熱媒タンク34から低温熱媒タンク36に延びる熱媒流路10b,10c内の熱媒とで熱交換している。具体的には、高温熱媒タンク34内の高温の熱媒を利用して膨張機22による膨張の前に圧縮空気の温度を上昇させて膨張効率を向上させている。即ち、膨張側第2熱交換器28bでは、圧縮空気の温度は上昇し、熱媒の温度は低下する。膨張側第2熱交換器28bは熱媒流路10cを通じて低温熱媒タンク36に流体的に接続されており、温度低下した熱媒は熱媒流路10cを通じて低温熱媒タンク36に供給され蓄えられる。   In the expansion side second heat exchanger 28b, the compressed air in the air flow path 8c extending from the accumulator tank 20 to the expander 22 and the heat medium flow paths 10b and 10c extending from the high temperature heat medium tank 34 to the low temperature heat medium tank 36 are obtained. The heat exchange with the heat medium. Specifically, the high-temperature heat medium in the high-temperature heat medium tank 34 is used to increase the temperature of the compressed air before expansion by the expander 22 to improve the expansion efficiency. That is, in the expansion side second heat exchanger 28b, the temperature of the compressed air increases and the temperature of the heat medium decreases. The expansion-side second heat exchanger 28b is fluidly connected to the low-temperature heat medium tank 36 through the heat medium flow path 10c, and the heat medium whose temperature has decreased is supplied to and stored in the low-temperature heat medium tank 36 through the heat medium flow path 10c. It is done.

低温熱媒タンク36は、膨張側第2熱交換器28bから供給された低温の熱媒を蓄える。低温熱媒タンク36は熱媒流路10dを通じて圧縮側熱交換器26aに流体的に接続されており、低温熱媒タンク36で蓄えられた熱媒は熱媒流路10dを通じて圧縮側熱交換器26aに供給される。   The low-temperature heat medium tank 36 stores the low-temperature heat medium supplied from the expansion side second heat exchanger 28b. The low temperature heat medium tank 36 is fluidly connected to the compression side heat exchanger 26a through the heat medium flow path 10d, and the heat medium stored in the low temperature heat medium tank 36 is compressed to the compression side heat exchanger through the heat medium flow path 10d. 26a.

このように熱媒流路10a〜10dでは、熱媒が循環している。熱媒の循環は、熱媒流路10dに介設されたポンプ38aによりなされている。本実施形態では、ポンプ38aは低温熱媒タンク36の下流に設けられているが、その位置は特に限定されない。   Thus, the heat medium circulates in the heat medium flow paths 10a to 10d. The heat medium is circulated by a pump 38a interposed in the heat medium flow path 10d. In the present embodiment, the pump 38a is provided downstream of the low-temperature heat medium tank 36, but the position thereof is not particularly limited.

潤滑油流路12a〜12eについて説明する。   The lubricating oil passages 12a to 12e will be described.

潤滑油流路12a〜12eには、圧縮機16、高温潤滑油タンク(蓄熱部)40、膨張側第1熱交換器28a、および低温潤滑油タンク42が順に設けられている。潤滑油はこれらの間で循環して流動している。潤滑油の種類は特に限定されておらず、例えば鉱物油系の潤滑油を使用してもよい。   In the lubricating oil passages 12a to 12e, a compressor 16, a high temperature lubricating oil tank (heat storage unit) 40, an expansion side first heat exchanger 28a, and a low temperature lubricating oil tank 42 are provided in this order. The lubricating oil circulates and flows between them. The type of lubricating oil is not particularly limited, and for example, a mineral oil based lubricating oil may be used.

膨張側第1熱交換器28aでは、蓄圧タンク20から膨張機22に延びる空気流路8c内の圧縮空気と、高温潤滑油タンク40から低温潤滑油タンク42に延びる潤滑油流路12b,12c内の潤滑油とで熱交換している。具体的には、空気流路8c内を流れる圧縮空気は、潤滑油との熱交換により加熱されている。即ち、膨張側第1熱交換器28aでは圧縮空気の温度は上昇し、潤滑油の温度は低下する。膨張側第1熱交換器28aは潤滑油流路12cを通じて低温潤滑油タンク42と流体的に接続されており、温度低下した熱媒は低温潤滑油タンク42に供給され蓄えられる。   In the expansion side first heat exchanger 28a, the compressed air in the air flow path 8c extending from the pressure accumulation tank 20 to the expander 22 and the lubricating oil flow paths 12b and 12c extending from the high temperature lubricating oil tank 40 to the low temperature lubricating oil tank 42 are obtained. Heat exchange with other lubricants. Specifically, the compressed air flowing in the air flow path 8c is heated by heat exchange with the lubricating oil. That is, in the expansion side first heat exchanger 28a, the temperature of the compressed air increases and the temperature of the lubricating oil decreases. The expansion side first heat exchanger 28a is fluidly connected to the low temperature lubricating oil tank 42 through the lubricating oil flow path 12c, and the heat medium whose temperature has decreased is supplied to and stored in the low temperature lubricating oil tank 42.

低温潤滑油タンク42は、膨張側第1熱交換器28aから供給された低温の潤滑油を蓄える。低温潤滑油タンク42は、潤滑油流路12dを通じて膨張機22に流体的に接続されており、低温潤滑油タンク42で蓄えられた熱媒は潤滑油流路12dを通じて膨張機22に供給される。   The low temperature lubricating oil tank 42 stores the low temperature lubricating oil supplied from the expansion side first heat exchanger 28a. The low temperature lubricating oil tank 42 is fluidly connected to the expander 22 through the lubricating oil flow path 12d, and the heat medium stored in the low temperature lubricating oil tank 42 is supplied to the expander 22 through the lubricating oil flow path 12d. .

膨張機22では、潤滑油流路12dを通じて供給された低温の潤滑油によって内部の膨張要素が潤滑および冷却される。本実施形態ではスクリュ式の膨張機22を使用しているため、例えば内部の膨張要素はスクリュロータ(図示せず)である。ここで、潤滑及び加熱に使用された潤滑油は、膨張要素における冷熱等を受けて温度が低下する。膨張機22で使用された潤滑油は、潤滑油流路12dを通じて再び低温潤滑油タンク42に戻される。なお、膨張機22が油冷式でない場合、膨張機22と低温潤滑油タンク42とを流体的に接続する潤滑油流路12dは省略される。   In the expander 22, the internal expansion element is lubricated and cooled by the low-temperature lubricating oil supplied through the lubricating oil passage 12d. Since the screw type expander 22 is used in the present embodiment, for example, the internal expansion element is a screw rotor (not shown). Here, the temperature of the lubricating oil used for lubrication and heating is lowered by receiving cold heat or the like in the expansion element. The lubricating oil used in the expander 22 is returned again to the low temperature lubricating oil tank 42 through the lubricating oil flow path 12d. When the expander 22 is not oil-cooled, the lubricating oil passage 12d that fluidly connects the expander 22 and the low-temperature lubricating oil tank 42 is omitted.

また、低温潤滑油タンク42は、潤滑油流路12eを通じて圧縮機16に流体的に接続されており、低温潤滑油タンク42で蓄えられた熱媒は潤滑油流路12eを通じて圧縮機16に供給される。   The low temperature lubricating oil tank 42 is fluidly connected to the compressor 16 through the lubricating oil passage 12e, and the heat medium stored in the low temperature lubricating oil tank 42 is supplied to the compressor 16 through the lubricating oil passage 12e. Is done.

圧縮機16では、潤滑油流路12eを通じて供給された低温の潤滑油によって内部の圧縮要素が潤滑および冷却される。本実施形態ではスクリュ式の圧縮機16を使用しているため、例えば内部の圧縮要素はスクリュロータ(図示せず)である。ここで、潤滑及び冷却に使用された潤滑油は、圧縮要素における暖熱等を受けて温度が上昇する。このように、本実施形態では、圧縮機16は圧縮側熱交換部26に含まれる本発明の潤滑油熱回収部を構成する。圧縮機16は潤滑油流路12aを通じて高温潤滑油タンク40に流体的に接続されており、圧縮機16で温度上昇した潤滑油は潤滑油流路12aを通じて高温潤滑油タンク40に供給される。   In the compressor 16, the internal compression element is lubricated and cooled by the low-temperature lubricating oil supplied through the lubricating oil passage 12e. Since the screw type compressor 16 is used in the present embodiment, for example, the internal compression element is a screw rotor (not shown). Here, the temperature of the lubricating oil used for lubrication and cooling rises due to warm heat in the compression element. Thus, in the present embodiment, the compressor 16 constitutes the lubricating oil heat recovery unit of the present invention included in the compression side heat exchange unit 26. The compressor 16 is fluidly connected to the high temperature lubricating oil tank 40 through the lubricating oil flow path 12a, and the lubricating oil whose temperature has risen in the compressor 16 is supplied to the high temperature lubricating oil tank 40 through the lubricating oil flow path 12a.

高温潤滑油タンク40は、圧縮機16から供給された高温の潤滑油を保温して蓄える。そのため、高温潤滑油タンク40は断熱されていることが好ましい。高温潤滑油タンク40は、潤滑油流路12bを通じて膨張側第1熱交換器28aに流体的に接続されており、高温潤滑油タンク40で蓄えられた熱媒は潤滑油流路12bを通じて膨張側第1熱交換器28aに供給される。   The high temperature lubricating oil tank 40 retains and stores the high temperature lubricating oil supplied from the compressor 16. Therefore, the high temperature lubricating oil tank 40 is preferably insulated. The high temperature lubricating oil tank 40 is fluidly connected to the expansion side first heat exchanger 28a through the lubricating oil flow path 12b, and the heat medium stored in the high temperature lubricating oil tank 40 is expanded through the lubricating oil flow path 12b. It is supplied to the first heat exchanger 28a.

このように潤滑油流路12a〜12eでは、潤滑油が循環している。潤滑油の循環は、潤滑油流路12d,12eに介設されたポンプ38b,38cによりなされている。本実施形態では、ポンプ38b,38cは低温潤滑油タンク42の下流に設けられているが、その位置は特に限定されない。   Thus, the lubricating oil circulates in the lubricating oil flow paths 12a to 12e. The lubricating oil is circulated by pumps 38b and 38c provided in the lubricating oil flow paths 12d and 12e. In the present embodiment, the pumps 38b and 38c are provided downstream of the low temperature lubricating oil tank 42, but their positions are not particularly limited.

本実施形態のCAES発電装置2の構成によれば、油冷式圧縮機16における圧縮熱や摩擦熱などを圧縮側熱交換部26により高温熱媒タンク34および高温潤滑油タンク40に回収し、膨張側熱交換部28により膨張前の圧縮空気を加熱することで充放電効率を向上できる。具体的には、圧縮側熱交換部26において蓄圧タンク20への圧縮空気の貯蔵前に熱媒で圧縮熱を回収することで、貯蔵する圧縮空気の温度が低下して密度が増加するため、蓄圧タンク20内の圧縮空気量が増加し、充電効率(圧縮効率)が向上している。さらに、圧縮熱を回収した熱媒および摩擦熱を回収した潤滑油を膨張側熱交換部28において膨張前の圧縮空気の加熱に使用することで発電効率(膨張効率)が向上している。   According to the configuration of the CAES power generator 2 of the present embodiment, the compression heat or frictional heat in the oil-cooled compressor 16 is recovered in the high-temperature heat medium tank 34 and the high-temperature lubricating oil tank 40 by the compression-side heat exchange unit 26, Charging / discharging efficiency can be improved by heating the compressed air before expansion by the expansion side heat exchange unit 28. Specifically, by collecting the compression heat with the heat medium before storing the compressed air in the pressure accumulating tank 20 in the compression side heat exchanging unit 26, the temperature of the stored compressed air is lowered and the density is increased. The amount of compressed air in the pressure accumulating tank 20 is increased, and charging efficiency (compression efficiency) is improved. Furthermore, the heat generation efficiency (expansion efficiency) is improved by using the heat medium recovering the compression heat and the lubricating oil recovering the frictional heat for heating the compressed air before expansion in the expansion side heat exchanging section 28.

また、潤滑油を媒体として、潤滑油熱回収部において油冷式圧縮機16で発生した熱を回収し、回収した熱を膨張側第1熱交換器28aにおいて膨張前の圧縮空気の加熱に利用できるため、充放電効率を向上できる。   Further, using the lubricating oil as a medium, the heat generated by the oil-cooled compressor 16 is recovered in the lubricating oil heat recovery section, and the recovered heat is used for heating the compressed air before expansion in the expansion side first heat exchanger 28a. Therefore, charge / discharge efficiency can be improved.

また、熱媒を媒体として、圧縮側熱交換器26aにおいて油冷式圧縮機16で発生した熱を回収し、回収した熱を膨張側第2熱交換器28bにおいて膨張前の圧縮空気の加熱に利用できるため、充放電効率を向上できる。   Further, using the heat medium as a medium, the heat generated in the oil-cooled compressor 16 is recovered in the compression side heat exchanger 26a, and the recovered heat is used to heat the compressed air before expansion in the expansion side second heat exchanger 28b. Since it can be used, charge / discharge efficiency can be improved.

特に、空気流路8cにおける膨張側第1熱交換器28aおよび膨張側第2熱交換器28bの配置については、潤滑油用の膨張側第1熱交換器28aが上流に設置され、熱媒用の膨張側第2熱交換器28bが下流に設置されている。   In particular, regarding the arrangement of the expansion side first heat exchanger 28a and the expansion side second heat exchanger 28b in the air flow path 8c, the expansion side first heat exchanger 28a for lubricating oil is installed upstream, The expansion side second heat exchanger 28b is installed downstream.

この構成によれば、膨張側熱交換部28において熱媒および潤滑油を用いて膨張前の圧縮空気を加熱する際、先に潤滑油の熱交換を行うことで潤滑油温度をより低下させている。特に、潤滑油と熱媒では、潤滑油の方が油冷式圧縮機16の機能に直接作用するため、潤滑油の温度を低下させることが好ましいためである。   According to this configuration, when the compressed air before expansion is heated using the heat medium and the lubricating oil in the expansion side heat exchanging unit 28, the lubricating oil temperature is further lowered by performing heat exchange of the lubricating oil first. Yes. In particular, in the case of the lubricating oil and the heat medium, the lubricating oil directly affects the function of the oil-cooled compressor 16, and therefore it is preferable to lower the temperature of the lubricating oil.

(第2実施形態)
図2に示す第2実施形態のCAES発電装置2では、熱媒と潤滑油とに同じ流体が使用されている。本実施形態は、この点を除いて図1の第1実施形態と実質的に同様である。従って、図1に示した構成と同様の部分については同様の符号を付して説明を省略する。以降、熱媒と潤滑油の両方の記載を使用するが本実施形態では熱媒と潤滑油は区別されないものとする。
(Second Embodiment)
In the CAES power generator 2 of the second embodiment shown in FIG. 2, the same fluid is used for the heat medium and the lubricating oil. Except for this point, the present embodiment is substantially the same as the first embodiment of FIG. Therefore, the same parts as those shown in FIG. Hereinafter, descriptions of both the heat medium and the lubricating oil are used, but in the present embodiment, the heat medium and the lubricating oil are not distinguished.

本実施形態のCAES発電装置2は、高温熱媒タンク34および高温潤滑油タンク40が一体となった高温蓄熱タンク(蓄熱部)46を備える。即ち、高温蓄熱タンク46中では、熱媒と潤滑油が混合されて蓄えられている。上述のように、本実施形態では、熱媒と潤滑油とは同じ流体であるため両流体を混合して使用できるためである。   The CAES power generator 2 of the present embodiment includes a high-temperature heat storage tank (heat storage unit) 46 in which the high-temperature heat medium tank 34 and the high-temperature lubricating oil tank 40 are integrated. That is, in the high-temperature heat storage tank 46, the heat medium and the lubricating oil are mixed and stored. As described above, in the present embodiment, since the heat medium and the lubricating oil are the same fluid, both fluids can be mixed and used.

高温蓄熱タンク46は、第1実施形態における熱媒流路10b(図1参照)と潤滑油流路12b(図1参照)が一体となった合流流路11aを通じて三方弁44aと流体的に接続されている。三方弁44aは、潤滑油流路12fを通じて膨張側第1熱交換器28aと流体的に接続され、熱媒流路10eを通じて膨張側第2熱交換器28bと流体的に接続されている。従って、三方弁44aにより高温蓄熱タンク46から膨張側第1熱交換器28aまたは膨張側第2熱交換器28bのいずれに熱媒(潤滑油)を供給するかを切り替え可能である。   The high-temperature heat storage tank 46 is fluidly connected to the three-way valve 44a through the merging passage 11a in which the heat medium passage 10b (see FIG. 1) and the lubricating oil passage 12b (see FIG. 1) in the first embodiment are integrated. Has been. The three-way valve 44a is fluidly connected to the expansion side first heat exchanger 28a through the lubricating oil flow path 12f, and is fluidly connected to the expansion side second heat exchanger 28b through the heat medium flow path 10e. Therefore, the heat medium (lubricating oil) can be switched from the high temperature heat storage tank 46 to the expansion side first heat exchanger 28a or the expansion side second heat exchanger 28b by the three-way valve 44a.

この構成によれば、潤滑油と熱媒が同じ流体であることから潤滑油と熱媒が混合されて使用されても問題がない。そのため、膨張側熱交換部28を1つの膨張側第3熱交換器28cから構成でき、膨張側熱交換部28の構成を簡易化できる。   According to this configuration, since the lubricating oil and the heat medium are the same fluid, there is no problem even if the lubricating oil and the heat medium are mixed and used. Therefore, the expansion side heat exchange part 28 can be comprised from the one expansion side 3rd heat exchanger 28c, and the structure of the expansion side heat exchange part 28 can be simplified.

図3は、図2に示す第2実施形態のCAES発電装置2の変形例を示している。本変形例では、図2に示す第2実施形態のCAES発電装置2の膨張側第1熱交換器28a(図2参照)と膨張側第2熱交換器28b(図2参照)とが一体となった膨張側第3熱交換器(膨張側熱交換部)28cが設けられている。これに伴い、三方弁44bの配置も図2に示す第2実施形態のCAES発電装置2の三方弁44aの配置と異なっている。   FIG. 3 shows a modification of the CAES power generator 2 of the second embodiment shown in FIG. In this modification, the expansion side first heat exchanger 28a (see FIG. 2) and the expansion side second heat exchanger 28b (see FIG. 2) of the CAES power generator 2 of the second embodiment shown in FIG. An expansion side third heat exchanger (expansion side heat exchanging part) 28c is provided. Accordingly, the arrangement of the three-way valve 44b is also different from the arrangement of the three-way valve 44a of the CAES power generator 2 of the second embodiment shown in FIG.

具体的には、高温蓄熱タンク46は、合流流路11aを通じて膨張側第3熱交換器28cと流体的に接続されている。さらに、膨張側第3熱交換器28cは、合流流路11bを通じて三方弁44bと流体的に接続されている。三方弁44bは、潤滑油流路12gを通じて低温潤滑油タンク42と流体的に接続され、熱媒流路10fを通じて低温熱媒タンク36と流体的に接続されている。   Specifically, the high-temperature heat storage tank 46 is fluidly connected to the expansion side third heat exchanger 28c through the merging channel 11a. Furthermore, the expansion side third heat exchanger 28c is fluidly connected to the three-way valve 44b through the merging channel 11b. The three-way valve 44b is fluidly connected to the low temperature lubricating oil tank 42 through the lubricating oil passage 12g, and is fluidly connected to the low temperature heating medium tank 36 through the heating medium passage 10f.

このように、熱媒と潤滑油とが同じ流体の場合、膨張側熱交換部28を一つの膨張側第3熱交換器28cで構成することもできる。   Thus, when the heat medium and the lubricating oil are the same fluid, the expansion-side heat exchange unit 28 can be configured by one expansion-side third heat exchanger 28c.

図4は、図2に示す第2実施形態のCAES発電装置2の他の変形例を示している。本変形例では、図3に示すCAES発電装置2と同様に膨張側第3熱交換器28cが設けられている。さらに、本変形例では、低温熱媒タンク36(図2参照)と低温潤滑油タンク42(図2参照)とが一体となった低温蓄熱タンク48が設けられている。これに伴い、三方弁44cの配置も図2および図3に示す第2実施形態のCAES発電装置2と異なっている。   FIG. 4 shows another modification of the CAES power generator 2 of the second embodiment shown in FIG. In the present modification, an expansion side third heat exchanger 28c is provided in the same manner as the CAES power generator 2 shown in FIG. Furthermore, in this modification, a low-temperature heat storage tank 48 in which a low-temperature heat medium tank 36 (see FIG. 2) and a low-temperature lubricating oil tank 42 (see FIG. 2) are integrated is provided. Accordingly, the arrangement of the three-way valve 44c is also different from the CAES power generator 2 of the second embodiment shown in FIGS.

具体的には、膨張側第3熱交換器28cは、合流流路11bを通じて低温蓄熱タンク48と流体的に接続されている。低温蓄熱タンク48は、合流流路11cを通じて三方弁44cと流体的に接続されている。三方弁44cは、潤滑油流路12hを通じて圧縮機16と流体的に接続され、熱媒流路10gを通じて圧縮側熱交換器26aと流体的に接続されている。   Specifically, the expansion-side third heat exchanger 28c is fluidly connected to the low-temperature heat storage tank 48 through the merge channel 11b. The low-temperature heat storage tank 48 is fluidly connected to the three-way valve 44c through the merge channel 11c. The three-way valve 44c is fluidly connected to the compressor 16 through the lubricating oil passage 12h and fluidly connected to the compression side heat exchanger 26a through the heat medium passage 10g.

このように、熱媒と潤滑油とが同じ流体の場合、低温熱媒タンク36(図2参照)と低温潤滑油タンク42(図2参照)とを一つの低温蓄熱タンク48で構成することもできる。   Thus, when the heat medium and the lubricating oil are the same fluid, the low-temperature heat medium tank 36 (see FIG. 2) and the low-temperature lubricating oil tank 42 (see FIG. 2) may be configured by one low-temperature heat storage tank 48. it can.

以上より、本発明の具体的な実施形態やその変形例について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、個々の実施形態の内容を適宜組み合わせたものを、この発明の一実施形態としてもよい。   As mentioned above, although specific embodiment and its modification example of this invention were described, this invention is not limited to the said form, A various change can be implemented within the scope of this invention. For example, what combined suitably the content of each embodiment is good also as one Embodiment of this invention.

また、発電に利用できる再生可能エネルギーは、例えば、風力、太陽光、太陽熱、波力又は潮力、流水又は潮汐、及び地熱等、自然の力で定常的(もしくは反復的)に補充されるエネルギーの全てを含む。   In addition, renewable energy that can be used for power generation is energy that is constantly (or repetitively) supplemented by natural forces such as wind, sunlight, solar heat, wave or tidal power, running water or tide, and geothermal heat. Including all.

2 圧縮空気貯蔵発電装置(CAES発電装置)
4 再生可能エネルギーを利用する発電装置
6 電力系統
8a,8b,8c,8d 空気流路
10a,10b,10c,10d,10e,10f,10g 熱媒流路
11a,11b,11c 合流流路
12a,12b,12c,12d,12e,12f,12g,12h 潤滑油流路
14 モータ(電動機)
16 油冷式圧縮機(圧縮機)(潤滑油熱回収部)(圧縮側熱交換部)
16a 吸気口
16b 吐出口
18a,18b 油分離器
20 蓄圧タンク(蓄圧部)
22 膨張機
22a 給気口
22b 排気口
24 発電機
26 圧縮側熱交換部
26a 圧縮側熱交換器(圧縮側熱交換部)
28 膨張側熱交換部
28a 膨張側第1熱交換器(膨張側熱交換部)
28b 膨張側第2熱交換器(膨張側熱交換部)
28c 膨張側第3熱交換器(膨張側熱交換部)
30a,30b バルブ
32 ヒータ(加熱部)
34 高温熱媒タンク(蓄熱部)
36 低温熱媒タンク
38a,38b,38c ポンプ
40 高温潤滑油タンク(蓄熱部)
42 低温潤滑油タンク
44a,44b,44c 三方弁
46 高温蓄熱タンク(蓄熱部)
48 低温蓄熱タンク
2 Compressed air storage generator (CAES generator)
4 Power generation device using renewable energy 6 Electric power system 8a, 8b, 8c, 8d Air flow path 10a, 10b, 10c, 10d, 10e, 10f, 10g Heat medium flow path 11a, 11b, 11c Merge flow path 12a, 12b , 12c, 12d, 12e, 12f, 12g, 12h Lubricating oil passage 14 Motor (electric motor)
16 Oil-cooled compressor (compressor) (lubricant oil heat recovery part) (compression side heat exchange part)
16a Intake port 16b Discharge port 18a, 18b Oil separator 20 Accumulation tank (accumulation part)
22 expander 22a air supply port 22b exhaust port 24 generator 26 compression side heat exchange part 26a compression side heat exchanger (compression side heat exchange part)
28 Expansion side heat exchange part 28a Expansion side 1st heat exchanger (expansion side heat exchange part)
28b Expansion side second heat exchanger (Expansion side heat exchange part)
28c Expansion side third heat exchanger (Expansion side heat exchange part)
30a, 30b Valve 32 Heater (heating part)
34 High-temperature heat medium tank (heat storage part)
36 Low temperature heating medium tank 38a, 38b, 38c Pump 40 High temperature lubricating oil tank (heat storage part)
42 Low temperature lubricating oil tank 44a, 44b, 44c Three-way valve 46 High temperature heat storage tank (heat storage section)
48 Low temperature heat storage tank

Claims (6)

再生可能エネルギーを用いて発電した電力により駆動される電動機と、
前記電動機により駆動される油冷式圧縮機と、
前記油冷式圧縮機により圧縮された圧縮空気を蓄える蓄圧部と、
前記蓄圧部から供給される圧縮空気によって駆動される膨張機と、
前記膨張機により駆動される発電機と、
前記油冷式圧縮機で発生した熱を潤滑油と熱媒とに回収する圧縮側熱交換部と、
前記圧縮側熱交換部で熱を回収した前記潤滑油と前記熱媒とを蓄える蓄熱部と、
前記蓄熱部で蓄えられた前記潤滑油と前記熱媒とにより前記膨張機に供給される前記圧縮空気を加熱する膨張側熱交換部と
を備える、圧縮空気貯蔵発電装置。
An electric motor driven by electric power generated using renewable energy;
An oil-cooled compressor driven by the electric motor;
A pressure accumulator for storing compressed air compressed by the oil-cooled compressor;
An expander driven by compressed air supplied from the pressure accumulator;
A generator driven by the expander;
A compression-side heat exchange unit that recovers heat generated by the oil-cooled compressor into a lubricating oil and a heat medium;
A heat storage section for storing the lubricating oil and the heat medium that have recovered heat in the compression side heat exchange section;
A compressed air storage power generator comprising: an expansion side heat exchange unit that heats the compressed air supplied to the expander by the lubricating oil stored in the heat storage unit and the heat medium.
前記圧縮側熱交換部は、前記油冷式圧縮機で発生した熱を前記潤滑油に回収する潤滑油熱回収部を備え、
前記膨張側熱交換部は、前記蓄圧部から前記膨張機に供給される前記圧縮空気と前記蓄熱部から前記油冷式圧縮機に供給される前記潤滑油とで熱交換する膨張側第1熱交換器を備える、請求項1に記載の圧縮空気貯蔵発電装置。
The compression side heat exchange unit includes a lubricating oil heat recovery unit that recovers heat generated in the oil-cooled compressor to the lubricating oil,
The expansion side heat exchanging unit is configured to exchange heat between the compressed air supplied from the pressure accumulating unit to the expander and the lubricating oil supplied from the heat accumulating unit to the oil-cooled compressor. The compressed air storage power generation device according to claim 1, comprising a exchanger.
前記圧縮側熱交換部は、前記油冷式圧縮機から前記蓄圧部に供給される前記圧縮空気と前記膨張側熱交換部から前記蓄熱部に供給される前記熱媒とで熱交換する圧縮側熱交換器と、
前記膨張側熱交換部は、前記蓄圧部から前記膨張機に供給される前記圧縮空気と前記蓄熱部から前記圧縮側熱交換部に供給される前記熱媒とで熱交換する膨張側第2熱交換器を備える、請求項2に記載の圧縮空気貯蔵発電装置。
The compression side heat exchange unit is a compression side that exchanges heat between the compressed air supplied from the oil-cooled compressor to the pressure storage unit and the heat medium supplied from the expansion side heat exchange unit to the heat storage unit. A heat exchanger,
The expansion side heat exchanging unit is configured to exchange heat between the compressed air supplied from the pressure accumulating unit to the expander and the heat medium supplied from the heat accumulating unit to the compression side heat exchanging unit. The compressed air storage power generator according to claim 2 provided with an exchange.
前記膨張側第1熱交換器および前記膨張側第2熱交換器のうち、前記膨張側第1熱交換器が前記蓄圧部から前記膨張機に向かう前記圧縮空気の流れにおいて上流側に設けられ、前記膨張側第2熱交換器が前記蓄圧部から前記膨張機に向かう前記圧縮空気の流れにおいて下流側に設けられている、請求項3に記載の圧縮空気貯蔵発電装置。   Among the expansion side first heat exchanger and the expansion side second heat exchanger, the expansion side first heat exchanger is provided on the upstream side in the flow of the compressed air from the pressure accumulating part to the expander, The compressed air storage power generator according to claim 3, wherein the expansion side second heat exchanger is provided on the downstream side in the flow of the compressed air from the pressure accumulating unit toward the expander. 前記潤滑油および前記熱媒は同じ流体であり、前記膨張側第1熱交換器および前記膨張側第2熱交換器は同じ一つの熱交換器である、請求項3または請求項4に記載の圧縮空気貯蔵発電装置。   The said lubricating oil and the said heat medium are the same fluids, The said expansion side 1st heat exchanger and the said expansion side 2nd heat exchanger are the same one heat exchanger, The claim 3 or Claim 4 characterized by the above-mentioned. Compressed air storage power generator. 前記膨張機の排気口の下流に加熱部を備える、請求項1から請求項5のいずれか1項に記載の圧縮空気貯蔵発電装置。   The compressed air storage power generator according to any one of claims 1 to 5, further comprising a heating unit downstream of an exhaust port of the expander.
JP2016022122A 2016-02-08 2016-02-08 Compressed air storage generator Active JP6605348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016022122A JP6605348B2 (en) 2016-02-08 2016-02-08 Compressed air storage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016022122A JP6605348B2 (en) 2016-02-08 2016-02-08 Compressed air storage generator

Publications (2)

Publication Number Publication Date
JP2017141696A JP2017141696A (en) 2017-08-17
JP6605348B2 true JP6605348B2 (en) 2019-11-13

Family

ID=59627103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022122A Active JP6605348B2 (en) 2016-02-08 2016-02-08 Compressed air storage generator

Country Status (1)

Country Link
JP (1) JP6605348B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107741172A (en) * 2017-11-10 2018-02-27 清华大学 Compressed air cold energy reclamation device and its application method
JP6913044B2 (en) * 2018-02-23 2021-08-04 株式会社神戸製鋼所 Compressed air storage power generator
JP6913045B2 (en) * 2018-02-26 2021-08-04 株式会社神戸製鋼所 Compressed air storage power generator
CN108386235A (en) * 2018-04-18 2018-08-10 贵州电网有限责任公司 A kind of compressed-air energy storage accumulation of heat heat regenerative system
CN108952862B (en) 2018-07-25 2019-09-20 清华大学 Back-heating type compressed-air energy-storage system and its application method
JP6889752B2 (en) * 2019-05-10 2021-06-18 株式会社神戸製鋼所 Compressed air storage power generator
CN114754519B (en) * 2022-03-21 2023-03-14 西安交通大学 Pumped compressed air energy storage system and method for storing energy and heat by using geothermal well
CN115898829A (en) * 2022-11-04 2023-04-04 中国电力工程顾问集团中南电力设计院有限公司 CAES system shared by modularly configured heat exchange systems and use method
CN116804381A (en) * 2023-06-29 2023-09-26 米奇科技(北京)有限公司 Liquid air energy storage power generation system and equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115859A (en) * 1999-10-19 2001-04-24 Toshiba Corp Caes power generating system
US7086231B2 (en) * 2003-02-05 2006-08-08 Active Power, Inc. Thermal and compressed air storage system
JP5495293B2 (en) * 2009-07-06 2014-05-21 株式会社日立産機システム Compressor
JP5885439B2 (en) * 2011-09-16 2016-03-15 アネスト岩田株式会社 Waste heat utilization equipment for air compressor
JP6368577B2 (en) * 2014-07-31 2018-08-01 株式会社神戸製鋼所 Compressed air storage power generation apparatus and compressed air storage power generation method

Also Published As

Publication number Publication date
JP2017141696A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6605348B2 (en) Compressed air storage generator
CN102536352B (en) Compressed-air actuated system and method in preheating senior adiabatic compression air energy-storage system
JP5981704B2 (en) Intake cooling and moisture removal apparatus and method for advanced adiabatic compressed air energy storage system
JP6571491B2 (en) heat pump
US9829254B2 (en) Installation for storing thermal energy
JP6456236B2 (en) Compressed air storage generator
US10892642B2 (en) Compressed air energy storage power generation apparatus and compressed air energy storage power generation method
US20180258798A1 (en) Apparatus, systems, and methods for low grade waste heat management
US10794278B2 (en) Compressed air storage power generation device
JP2016142272A (en) System for storing and discharging electric energy
JP6475107B2 (en) Compressed air storage power generation apparatus and compressed air storage power generation method
WO2016203980A1 (en) Compressed air energy storage power generation device, and compressed air energy storage power generation method
WO2016181884A1 (en) Compressed air energy storage and power generation device
JP2016211436A (en) Compressed air energy storage power generation device
US10711653B2 (en) Process and system for extracting useful work or electricity from thermal sources
JP6689616B2 (en) Compressed air storage power generation device and compressed air storage power generation method
US11092075B2 (en) High-capacity electric energy storage system for gas turbine based power plants
JP2019027385A (en) Compressed air storage power generation device and method
JP5299656B1 (en) Thermal energy recovery system, thermal energy recovery method, and next generation solar power generation system using the same
JP6577384B2 (en) Compressed air storage generator
JP6906013B2 (en) heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R151 Written notification of patent or utility model registration

Ref document number: 6605348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151