JP6603729B2 - Thermal spraying of repair and protective coatings - Google Patents

Thermal spraying of repair and protective coatings Download PDF

Info

Publication number
JP6603729B2
JP6603729B2 JP2017550536A JP2017550536A JP6603729B2 JP 6603729 B2 JP6603729 B2 JP 6603729B2 JP 2017550536 A JP2017550536 A JP 2017550536A JP 2017550536 A JP2017550536 A JP 2017550536A JP 6603729 B2 JP6603729 B2 JP 6603729B2
Authority
JP
Japan
Prior art keywords
powder
graphene
flakes
graphene oxide
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017550536A
Other languages
Japanese (ja)
Other versions
JP2018516311A (en
Inventor
サディップタ シール
デイヴィッド ワード
シャシャンク サラフ
アンクール グプタ
Original Assignee
ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド filed Critical ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド
Publication of JP2018516311A publication Critical patent/JP2018516311A/en
Application granted granted Critical
Publication of JP6603729B2 publication Critical patent/JP6603729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes

Description

本発明は概して、グラファイトの分野に関し、より詳細には、修復及び保護コーティングの溶射の組成物及び方法に関する。   The present invention relates generally to the field of graphite, and more particularly to compositions and methods for thermal spraying of repair and protective coatings.

本発明の範囲を限定することなく、複合材料に関連してその背景を説明する。   Without limiting the scope of the invention, the background will be described in relation to composite materials.

溶射コーティング技術:プラズマスプレーは、溶射プロセスの最も汎用性がある形態の1つである。プラズマは、噴霧可能と考えられる全ての材料を噴霧することができる。   Thermal spray coating technology: Plasma spraying is one of the most versatile forms of thermal spraying process. The plasma can spray all materials that are considered sprayable.

プラズマスプレーデバイスでは、通常アルゴン/水素又はアルゴン/ヘリウムのいずれかからなるプラズマ形成ガス中の2つの電極の間にアークが形成される。プラズマガスがアークによって加熱されるにつれて、それは膨張し、成形ノズルを通って加速され、最大でマッハ2の速度が生じる。アークゾーン内の温度は、36,000°F(19,982℃)に達し得る。プラズマジェット内の温度は、ノズルの出口から数センチメートルで依然として18,000°F(9,982℃)であり得る。粉末は、プラズマの後に投入することができる。この技術は、ときに遠隔プラズマ堆積(remote plasma deposition)と呼ばれる。これは、粉末をジェット流中に入れることに基づき、そこではガスはもはやイオン化されないが、高エネルギー種である。   In a plasma spray device, an arc is formed between two electrodes in a plasma forming gas, usually composed of either argon / hydrogen or argon / helium. As the plasma gas is heated by the arc, it expands and is accelerated through the shaping nozzle, resulting in a maximum Mach 2 velocity. The temperature in the arc zone can reach 36,000 ° F. (19,982 ° C.). The temperature in the plasma jet may still be 18,000 ° F. (9,982 ° C.) a few centimeters from the nozzle exit. The powder can be introduced after the plasma. This technique is sometimes referred to as remote plasma deposition. This is based on putting the powder in a jet stream where the gas is no longer ionized but is a high energy species.

コールドスプレーコーティング技術では、粉末粒子は、ドラバル型のノズル(de Laval type of nozzle)を通って大きな差圧(最大3.5MPa)下で流れているキャリアガスによって超音速(600〜1500m/s)まで加速され、基板上に衝突させる。コールドスプレーには、酸化、粒子粗大化又は相変化のような噴霧された材料への影響が最小であることにより高密度のコーティングが生成され、基板がコーティングプロセス中に影響を受けない、などの独特の利点がある。   In cold spray coating technology, powder particles are supersonic (600-1500 m / s) by a carrier gas flowing under a large differential pressure (up to 3.5 MPa) through a de Laval type of nozzle. Is accelerated and collides with the substrate. Cold spray produces a dense coating with minimal impact on the sprayed material, such as oxidation, particle coarsening or phase change, and the substrate is unaffected during the coating process, etc. There are unique advantages.

コールドスプレープロセスの欠点は、再利用しない限り大量のキャリアガスが失われ、塑性変形可能な材料だけが堆積され得ることである。   The disadvantage of the cold spray process is that a large amount of carrier gas is lost and only plastically deformable material can be deposited unless reused.

コールドスプレープロセスでは、粒子の融解はなく、結合は、粒子/基板及び粒子/粒子界面での熱軟化から生じる断熱剪断不安定性に起因すると考えられている。コールドスプレーは、純金属、合金及び複合材料を含む多くのタイプの材料を堆積させるために使用されてきた。複合体コーティングを噴霧するこれら全ての場合には、第2相がマトリックス内に均一に分布していることが観察された。コールド又はプラズマスプレー技術を用いて補強としてナノフィラーを含有する複合体を噴霧することが、研究者の願いである。   In the cold spray process, there is no particle melting and bonding is believed to be due to adiabatic shear instability resulting from thermal softening at the particle / substrate and particle / particle interfaces. Cold spray has been used to deposit many types of materials, including pure metals, alloys and composites. In all these cases of spraying the composite coating, it was observed that the second phase was evenly distributed in the matrix. It is the researcher's wish to spray composites containing nanofillers as reinforcement using cold or plasma spray technology.

以前の研究では、コールドプラズマスプレーを使用して、アルミニウム−ケイ素及びCNTを含む粉末の凝集であったアルミニウム粉末のブレンドを堆積させた。使用した粉末供給装置は、Praxair 1264HPであった。粉末供給装置の最大圧力能力は、3.4MPaである。主ガス圧力は、粉末送達のための追加のアルゴン又は窒素キャリアガスを用いて2.9MPaの圧力に保持された。キャリアガスは、噴流への粉末の投入を促進するために0.1MPaに保持された。ノズルは、フレームに固定され、基板は、X−Yトラバース表上に固定され、その動きはコンピューターを使ってプログラム可能であった。8層を噴霧して、6061アルミニウム合金基板上にコーティング厚さを増大させ、強度の向上及び防食の強化をもたらした。   In previous studies, a cold plasma spray was used to deposit a blend of aluminum powder that was an agglomeration of a powder comprising aluminum-silicon and CNTs. The powder feeder used was Praxair 1264HP. The maximum pressure capacity of the powder feeder is 3.4 MPa. The main gas pressure was maintained at a pressure of 2.9 MPa with additional argon or nitrogen carrier gas for powder delivery. The carrier gas was maintained at 0.1 MPa to facilitate the introduction of powder into the jet. The nozzle was fixed to the frame, the substrate was fixed on the XY traverse table, and its movement was programmable using a computer. Eight layers were sprayed to increase the coating thickness on the 6061 aluminum alloy substrate, resulting in increased strength and enhanced corrosion protection.

溶射コーティングには、数多くの固有の欠陥がある。コーティングには、体積強度が不足している。残留応力の発生により、厚さが高いときに付着力が低下する。堆積中の高温により、不要な酸化物が生成される。グラフェン又は酸化グラフェンの添加は、モデル組成物、ニッケル−5%アルミニウムにおいて厚さが大きいときの粘着及び付着力(cohesion and adhesion strength)を増大させることが証明されている。それは、コーティング内の不要な(金属)酸化物含有量を減少させることも証明されている。   Thermal spray coatings have a number of inherent defects. The coating lacks volume strength. Due to the occurrence of residual stress, the adhesive force decreases when the thickness is high. The high temperature during deposition produces unwanted oxides. The addition of graphene or graphene oxide has been shown to increase the cohesion and adhesion strength at high thicknesses in the model composition, nickel-5% aluminum. It has also been demonstrated to reduce unwanted (metal) oxide content in the coating.

何百もの市販の溶射粉末がある。それらの粉末組成物の多くは、ジェットエンジン構成部品の特定の修復のためにOEMによって承認されている。これらの特定の修復の多くは、強度及び耐摩耗性の増大の恩恵を受けるであろう。   There are hundreds of commercially available spray powders. Many of these powder compositions have been approved by the OEM for specific repairs of jet engine components. Many of these specific repairs will benefit from increased strength and wear resistance.

プラズマスプレー堆積技術は、大面積用途に直接に移せるものである。カーボンナノチューブは、プラズマスプレープロセスを用いて堆積させて、機械的強度及び防食を強化することができる。このプロセスは、ポリマー懸濁液中に置かれたカーボンナノチューブを使用した。次いで懸濁液を噴霧乾燥機中でエアロゾル化して、ミクロンスケールのポリマーカーボンナノチューブ複合粒子を形成させた。複合粒子は、プラズマのピークエネルギー部分を越えて投入され、ここでプラズマの活発な運動性(energetic kinetic)は、ポリマーホストを蒸発させ、且つ過熱されたカーボンナノチューブを超音速に加速させてから基板の表面に衝突させる。プラズマ自体も活発な単調に減衰するイオン化粒子を基板の表面に注ぐ。加速されたカーボンナノチューブからのエネルギーと単調に減衰するイオン化粒子の組合せは、基板の表面とカーボンナノチューブ並びにナノチューブ間の両方(両方とも堆積面の内外)に結合を達成するのに十分である。   Plasma spray deposition technology can be transferred directly to large area applications. Carbon nanotubes can be deposited using a plasma spray process to enhance mechanical strength and corrosion protection. This process used carbon nanotubes placed in a polymer suspension. The suspension was then aerosolized in a spray dryer to form micron-scale polymer carbon nanotube composite particles. The composite particles are injected beyond the peak energy portion of the plasma, where the energetic kinetics of the plasma evaporates the polymer host and accelerates the superheated carbon nanotubes to supersonic velocity before the substrate. Collide with the surface. The ion itself, which is also active and monotonically decaying, is poured onto the surface of the substrate. The combination of energy from accelerated carbon nanotubes and monotonically decaying ionized particles is sufficient to achieve a bond both on the surface of the substrate and between the carbon nanotubes and the nanotubes, both inside and outside the deposition surface.

グラフェン又は酸化グラフェン(G/GO,graphene or graphene oxide)強化複合体は、溶射を用いて達成された。グラフェン又は酸化グラフェンをプラズマスプレーシステムに投入するためには、2つの送達方法がある。第1の方法は、複合材料の全ての成分(components)をミル中で乾式混合することを用いて、粉末中の全ての要素(elements)の均質な分散を形成する。次いで粉末を、プラズマをちょうど越えた(just beyond the plasma)、プラズマ流中の火炎部(flame section)と呼ばれるもの中に投入する。プラズマ流は、粉末を加熱し、且つそれを高速に加速させる。高速で移動する加熱した粒子の組合せは、粉末を基板上に堆積させ、複合コーティングを形成する。第2の手法は、懸濁液をエアロゾル化させ、プラズマガス流のより冷たい部分に投入することが可能になる濃度でG/GOを溶媒に懸濁することである。両方の場合において、不活性ガスシュラウドの使用は、酸素の存在下でG/GOを燃焼させることから過熱された粉末を除去し、堆積した複合体中の不要な金属酸化物相の形成を防止する。   Graphene or graphene oxide (G / GO, graphene or graphene oxide) reinforced composites have been achieved using thermal spraying. There are two delivery methods for introducing graphene or graphene oxide into a plasma spray system. The first method uses dry blending of all the components of the composite material in a mill to form a homogeneous dispersion of all elements in the powder. The powder is then thrown into what is called a flame section in the plasma stream, just beyond the plasma. The plasma flow heats the powder and accelerates it at high speed. The combination of heated particles moving at high speed deposits the powder onto the substrate, forming a composite coating. The second approach is to aerosolize the suspension and suspend G / GO in the solvent at a concentration that allows it to be injected into the cooler part of the plasma gas stream. In both cases, the use of an inert gas shroud removes the superheated powder from burning G / GO in the presence of oxygen and prevents the formation of unwanted metal oxide phases in the deposited composite. To do.

本発明によって作製されたコーティングは、ストックNi−185粉末だけを使用して作製したコーティングよりも高い強度及び優れた耐摩耗性を有する。粉末組成の簡単な変更により、得られたコーティングの機械的特性が向上した。不活性シュラウド又は溶液懸濁液のいずれかを用いて従来の溶射構成を変更することにより、これらの特性がさらに向上し、コーティング内の添加物の保持が最大になる。   The coatings made according to the present invention have higher strength and superior wear resistance than coatings made using only stock Ni-185 powder. A simple change in powder composition improved the mechanical properties of the resulting coating. By modifying the conventional thermal spray configuration with either inert shrouds or solution suspensions, these properties are further improved and the retention of additives in the coating is maximized.

一実施形態では、本発明は、表面上に複合体を堆積させる方法であって、表面を用意するステップ;グラフェン/酸化グラフェンフレークを用意するステップ;金属及び/又は金属酸化物粉末を用意するステップ;並びにグラフェン/酸化グラフェンフレークを金属及び/又は金属酸化物材料と一緒に前記表面上に溶射するステップを含み、それによって得られた複合体が高い機械的特性及び耐食特性を有する、方法を含む。一態様では、グラフェン/酸化グラフェンフレークと金属及び/又は金属酸化物材料が、噴霧前に乾式混合される。別の態様では、金属及び/又は金属酸化物粉末は、Ni/Al粉末である。別の態様では、グラフェン/酸化グラフェンフレークは、金属粉末とは別に懸濁液を霧化して導入される。別の態様では、グラフェン/酸化グラフェンフレークは、水又は別の極性溶媒中に懸濁される。別の態様では、グラフェン/酸化グラフェンフレーク懸濁液の濃度は、0.1〜0.5重量%である。別の態様では、グラフェンは、酸化レベルが1重量%を超える。別の態様では、グラフェン/酸化グラフェンフレークは、エタノール又は別の非極性溶媒中に懸濁される。別の態様では、グラフェン/酸化グラフェンフレーク懸濁液の濃度は、0.1〜0.5重量%である。別の態様では、グラフェンは、酸化レベルが1重量%を超える。 In one embodiment, the present invention is a method of depositing a composite on a surface comprising providing a surface; providing graphene / graphene oxide flakes; providing a metal and / or metal oxide powder And spraying graphene / graphene oxide flakes with the metal and / or metal oxide material onto the surface, whereby the resulting composite has high mechanical and corrosion resistance properties . In one aspect, the graphene / graphene oxide flakes and the metal and / or metal oxide material are dry mixed prior to spraying. In another aspect, the metal and / or metal oxide powder is a Ni / Al 2 O 3 powder. In another embodiment, the graphene / graphene oxide flakes are introduced by atomizing the suspension separately from the metal powder. In another aspect, the graphene / graphene oxide flakes are suspended in water or another polar solvent. In another aspect, the concentration of the graphene / graphene oxide flake suspension is 0.1-0.5 wt%. In another aspect, the graphene has an oxidation level greater than 1% by weight. In another aspect, the graphene / graphene oxide flakes are suspended in ethanol or another non-polar solvent. In another aspect, the concentration of the graphene / graphene oxide flake suspension is 0.1-0.5 wt%. In another aspect, the graphene has an oxidation level greater than 1% by weight.

別の実施形態では、本発明は、表面上に複合体を堆積させる方法であって、表面を用意するステップ;水又は別の極性溶媒中に懸濁させた結晶性グラフェン/酸化グラフェンフレークを用意するステップ;金属及び/又は金属酸化物粉末を用意するステップ;並びに結晶性グラフェン/酸化グラフェンフレークを金属及び/又は金属酸化物材料と一緒に前記表面上に溶射するステップを含み、それによって得られた複合体が高い機械的特性及び耐食特性を有する、方法を含む。一態様では、結晶性グラフェン/酸化グラフェンフレークと金属及び/又は金属酸化物材料が、噴霧前に乾式混合される。別の態様では、金属及び/又は金属酸化物粉末は、Ni/Al粉末である。別の態様では、結晶性グラフェン/酸化グラフェンフレークは、金属粉末とは別に懸濁液を霧化して導入される。別の態様では、結晶性グラフェン/酸化グラフェンフレークは、水中に懸濁されており、体積に対して0.1〜0.5重量%である。別の態様では、結晶性グラフェン/酸化グラフェンフレーク懸濁液の濃度は、極性溶媒中で体積に対して0.1〜0.5重量%である。別の態様では、結晶性グラフェン/酸化グラフェンフレークは、酸化レベルが1重量%を超える。別の態様では、グラフェンフレークは、エタノール又は別の非極性溶媒中に懸濁される。別の態様では、結晶性グラフェン/酸化グラフェンフレーク懸濁液の濃度は、0.1〜0.5重量%である。別の態様では、グラフェンは、酸化レベルが1重量%を超える。 In another embodiment, the present invention is a method of depositing a composite on a surface comprising providing a surface; providing crystalline graphene / graphene oxide flakes suspended in water or another polar solvent Providing a metal and / or metal oxide powder; and spraying crystalline graphene / graphene oxide flakes with the metal and / or metal oxide material onto the surface And the composite has high mechanical and corrosion resistance properties. In one aspect, the crystalline graphene / graphene oxide flakes and the metal and / or metal oxide material are dry mixed prior to spraying. In another aspect, the metal and / or metal oxide powder is a Ni / Al 2 O 3 powder. In another aspect, the crystalline graphene / graphene oxide flakes are introduced by atomizing the suspension separately from the metal powder. In another aspect, the crystalline graphene / graphene oxide flakes are suspended in water and are 0.1-0.5 wt% based on volume. In another embodiment, the concentration of the crystalline graphene / graphene oxide flake suspension is 0.1 to 0.5% by weight with respect to volume in a polar solvent. In another aspect, the crystalline graphene / graphene oxide flakes have an oxidation level greater than 1% by weight. In another aspect, the graphene flakes are suspended in ethanol or another non-polar solvent. In another embodiment, the concentration of the crystalline graphene / graphene oxide flake suspension is 0.1-0.5 wt%. In another aspect, the graphene has an oxidation level greater than 1% by weight.

本発明の特質及び利点をより完全に理解するために、次に、添付の図と共に、本発明の詳細な説明を参照する。
G/GO保持の効率が非常に高いコーティングを示すTEMを示す図である。 他の強化された特性を示すSEMである。 プラズマスプレー複合材料のターフェルプロットを示す図である。
For a more complete understanding of the nature and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures.
FIG. 6 shows a TEM showing a coating with very high G / GO retention efficiency. Figure 2 is an SEM showing other enhanced properties. It is a figure which shows the Tafel plot of a plasma spray composite material.

本発明の種々の実施形態の製造及び使用が以下に詳細に論じられているが、本発明は、多種多様な特定の状況において具体化され得る多くの適用可能な本発明の概念を提供するものであると理解されたい。本明細書で論じた特定の実施形態は、本発明を製造及び使用するための特定の方法の例示に過ぎず、本発明の範囲を限定するものではない。   Although the manufacture and use of various embodiments of the present invention are discussed in detail below, the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific situations. I want to be understood. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.

本発明の理解を容易にするため、いくつかの用語が以下に定義されている。本明細書で定義されている用語は、本発明に関連する分野の当業者によって一般的に理解される意味を有する。「a」、「an」及び「the」などの用語は、単数の物だけを指すものではなく、例示のために具体例を使用できる全般的な類を含む。本明細書の専門用語は、本発明の特定の実施形態を説明するのに使用されているが、それらの使用は、特許請求の範囲に概説されているものを除いて、本発明の範囲を定めるものではない。   In order to facilitate understanding of the invention, several terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” do not refer to only a singular thing, but include a general class that can be used for illustration purposes. The terminology used herein is used to describe specific embodiments of the invention, but their use does not depart from the scope of the invention, except as outlined in the claims. It is not defined.

複合体の成分を含む粉末を、水平ジャーミル(jar mill)を用いて20RPM〜1000RPM、好ましくは100RPMの速度で、2〜10時間、ただし少なくとも6時間連続的にプラスチック容器中で混合した。粉末構成成分は、10:1の比のニッケル対アルミナ粉末と少量(0.05〜4.0重量%)のグラフェン及び/又は酸化グラフェンを含む。一例では、グラフェン及び/又は酸化グラフェンは、結晶性グラフェン及び/又は酸化グラフェンである。混合粉末(G/GO/Al)は、プラズマを越えてガス流に投入される。この領域はしばしばプラズマの火炎(plasma’s flame)と呼ばれ、イオン化された種と高エネルギー分子の組合せからなる。不活性なアルゴンガスシュラウドを使用して、G/GOの酸化又は燃焼を防止する。G/GOは、酸素の存在下で400℃超の温度で酸化又は燃焼させ、不要な金属(ニッケル)酸化物の形成を防止することができる。G/GO/Al粉末の挿入は、プラズマから0.5mm〜20mm下流の領域で起こる。粉末の挿入は、ガス流中に少量の乱流を生じさせ、粉末のさらなる混合を誘発する。これは、Ni/Al堆積の全体にわたってG/GOの均一な分布を有するコーティングを生成する。GO/Ni/Al複合体コーティングは、改善された微細構造、減少した不要な(金属)酸化物相、強化された機械的特性、及び耐摩耗特性を有する。 The powder containing the components of the composite was mixed in a plastic container continuously using a horizontal jar mill at a rate of 20 RPM to 1000 RPM, preferably 100 RPM, for 2 to 10 hours, but at least 6 hours. The powder components include a 10: 1 ratio of nickel to alumina powder and a small amount (0.05-4.0 wt%) of graphene and / or graphene oxide. In one example, the graphene and / or graphene oxide is crystalline graphene and / or graphene oxide. The mixed powder (G / GO / Al 2 O 3 ) is injected into the gas stream beyond the plasma. This region, often called a plasma's flame, consists of a combination of ionized species and high-energy molecules. An inert argon gas shroud is used to prevent G / GO oxidation or combustion. G / GO can be oxidized or burned at temperatures in excess of 400 ° C. in the presence of oxygen to prevent the formation of unnecessary metal (nickel) oxides. Insertion of G / GO / Al 2 O 3 powder occurs in the region 0.5 mm to 20 mm downstream from the plasma. The insertion of the powder creates a small amount of turbulence in the gas stream and induces further mixing of the powder. This produces a coating with a uniform distribution of G / GO throughout the Ni / Al 2 O 3 deposition. The GO / Ni / Al 2 O 3 composite coating has improved microstructure, reduced unwanted (metal) oxide phase, enhanced mechanical properties, and anti-wear properties.

或いは、G/GOは、金属粉末とは別にG/GO材料の懸濁液の霧化によって複合体に導入することができる。G/GOフレークは、溶液中に懸濁させ、超音波処理して均一な分散を達成することができる。GO懸濁溶液は、水又は別の極性溶媒であり、その場合GOは酸化レベルが1重量%を超える。GO懸濁溶液は、エタノール又は別の非極性溶媒であり、その場合GOは酸化レベルが1重量%未満である。G/GO懸濁液の濃度は、0.1〜0.5重量%であることが実証された。1重量%超の濃度は、容易にエアロゾル化させるには粘性が高すぎる。エアロゾル化させた液滴は、5mL/分〜200mL/分の流量、ただし名目上40mL/分及び90mL/分の流量でガス流に投入される。エアロゾル化させた液滴は、液体を気化させるのに十分なエネルギーを有するが、G/GO添加物を燃焼させる又はその他の方法で損なうことはない領域において、プラズマスプレーシステムの非イオン化ガス流に投入される。G/GO液滴の挿入ポイントは、プラズマプルーム(plume)から0.5mm〜40mm下流の領域に生じる。Ni/Al粉末は、均一な融解を確実にするための従来の方法を用いて、プラズマプルーム又は火炎の最も熱い部分に挿入される。Ni/Al粉末及びG/GO液滴の挿入は、ガス流中に少量の乱流を生じさせ、さらなる混合を空中で誘発し、同時に堆積される。プラズマ火炎/プルームは、不活性ガスシュラウドに囲まれていて、不要な金属酸化物の形成を防止し、空気中のG/GOの燃焼を減少させる。 Alternatively, G / GO can be introduced into the composite by atomizing a suspension of G / GO material separately from the metal powder. G / GO flakes can be suspended in solution and sonicated to achieve uniform dispersion. The GO suspension is water or another polar solvent, in which case GO has an oxidation level greater than 1% by weight. The GO suspension is ethanol or another non-polar solvent, in which case GO has an oxidation level of less than 1% by weight. The concentration of the G / GO suspension was demonstrated to be 0.1-0.5% by weight. Concentrations above 1% by weight are too viscous for easy aerosolization. Aerosolized droplets are injected into the gas stream at a flow rate of 5 mL / min to 200 mL / min, but nominally 40 mL / min and 90 mL / min. The aerosolized droplets have sufficient energy to vaporize the liquid, but in the non-ionized gas stream of the plasma spray system in an area where the G / GO additive is not burned or otherwise damaged. It is thrown. The insertion point of the G / GO droplet occurs in a region 0.5 mm to 40 mm downstream from the plasma plume. The Ni / Al 2 O 3 powder is inserted into the hottest part of the plasma plume or flame using conventional methods to ensure uniform melting. The insertion of Ni / Al 2 O 3 powder and G / GO droplets creates a small amount of turbulence in the gas flow, induces further mixing in the air and is deposited simultaneously. The plasma flame / plume is surrounded by an inert gas shroud, preventing the formation of unwanted metal oxides and reducing the combustion of G / GO in the air.

得られたコーティングは、G/GO保持の効率が非常に高いことが観察された;これはTEMで見ることができる(図1参照)。別の分析技術、SEMの結果を図2で見ることができる。堆積した複合材料は、Ni/Al及び他の材料に比べて、微細構造が改善され、機械的特性が強化され、海水に対する耐食性が向上していた。図3は、プラズマスプレー複合材料のターフェルプロットを示す。 The resulting coating was observed to have a very high G / GO retention efficiency; this can be seen with TEM (see FIG. 1). The results of another analysis technique, SEM, can be seen in FIG. The deposited composite material had improved microstructure, enhanced mechanical properties and improved corrosion resistance to seawater compared to Ni / Al 2 O 3 and other materials. FIG. 3 shows a Tafel plot of a plasma spray composite.

したがって、本発明では、グラフェン又は酸化グラフェン(G/GO)強化複合体は、溶射を用いて達成された。2つの送達方法を用いて、グラフェン又は酸化グラフェンをプラズマスプレーシステムに投入した。第1の方法は、複合材料の全ての成分(components)をミル中で乾式混合して、粉末中の全ての要素(elements)の均質な分散を形成することを用いた。次いで粉末を、プラズマをちょうど越えた、プラズマ流中、例えば、火炎部と呼ばれるプラズマの領域中に投入する。プラズマ流は、粉末を加熱し、且つそれを高速に加速させる。高速で移動する加熱した粒子の組合せは、粉末を基板上に堆積させ、複合コーティングを形成する。使用した第2の方法では、懸濁液をエアロゾル化させ、プラズマガス流のより冷たい部分に投入することが可能になる濃度でG/GOを溶媒に懸濁する。両方の場合において、不活性ガスは、酸素の存在下でG/GOを燃焼させることから過熱された粉末を除去し、堆積した複合体中の不要な金属酸化物相の形成を防止するシュラウドとして加えることができる。   Thus, in the present invention, graphene or graphene oxide (G / GO) reinforced composites have been achieved using thermal spraying. Graphene or graphene oxide was introduced into the plasma spray system using two delivery methods. The first method used dry mixing in the mill all the components of the composite material to form a homogeneous dispersion of all the elements in the powder. The powder is then injected into the plasma stream, just above the plasma, for example into a region of the plasma called the flame. The plasma flow heats the powder and accelerates it at high speed. The combination of heated particles moving at high speed deposits the powder onto the substrate, forming a composite coating. In the second method used, the suspension is aerosolized and G / GO is suspended in the solvent at a concentration that allows it to be injected into the cooler portion of the plasma gas stream. In both cases, the inert gas removes the superheated powder from burning the G / GO in the presence of oxygen and serves as a shroud that prevents the formation of unwanted metal oxide phases in the deposited composite. Can be added.

本発明によって作製されたコーティングは、ストックNi−185粉末だけを使用して作製したコーティングよりも高い強度及び優れた耐摩耗性を有することが判明した。粉末組成の変更により、得られたコーティングの機械的特性が向上した。不活性シュラウド又は溶液懸濁液のいずれかを用いて従来の溶射構成を変更することにより、これらの特性がさらに向上し、コーティング内の添加物の保持が最大になる。   It has been found that the coatings made according to the present invention have higher strength and superior wear resistance than coatings made using only stock Ni-185 powder. By changing the powder composition, the mechanical properties of the resulting coating were improved. By modifying the conventional thermal spray configuration with either inert shrouds or solution suspensions, these properties are further improved and the retention of additives in the coating is maximized.

本発明及びその利点が詳細に記載されてきたが、添付の特許請求の範囲によって定義された本発明の精神及び範囲から逸脱することなく、本明細書において種々の修正、置換及び改変を行うことができることを理解されたい。さらに、本出願の範囲は、本明細書に記載されたプロセス、機械、製造、物の組成物、手段、方法及びステップの特定の実施形態に限定されるものではない。当業者が本発明の開示から容易に理解するように、本明細書に記載された実施形態に対応するものと実質的に同じ機能を果たすか又は実質的に同じ結果を達成する、現在ある又はその後開発される、プロセス、機械、製造、物の組成物、手段、方法、又はステップは、本発明に基づいて利用することができる。したがって、添付の特許請求の範囲は、それらの範囲内にそのようなプロセス、機械、製造、物の組成物、手段、方法、又はステップを含むものである。   Although the invention and its advantages have been described in detail, various modifications, substitutions and alterations may be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Please understand that you can. Further, the scope of the present application is not limited to the specific embodiments of the processes, machines, manufacture, product compositions, means, methods and steps described herein. As those skilled in the art will readily appreciate from the disclosure of the present invention, perform substantially the same function or achieve substantially the same results as those corresponding to the embodiments described herein, or Any subsequently developed process, machine, manufacture, product composition, means, method or step may be utilized in accordance with the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

本明細書中で論じられたいかなる実施形態も、本発明のいかなる方法、キット、試薬、又は組成物に関して実施可能であり、逆の場合も同様であると考えられる。さらに、本発明の組成物は、本発明の方法の達成に使用することができる。   Any embodiment discussed herein can be implemented with respect to any method, kit, reagent, or composition of the invention, and vice versa. Furthermore, the compositions of the present invention can be used to accomplish the methods of the present invention.

本明細書に記載された特定の実施形態は、例示として示されており、本発明を限定するものとして示されていないことを理解されたい。本発明の主要な特質は、本発明の範囲から逸脱することなく種々の実施形態で使用することができる。当業者は、ただルーチン実験を使用することによって、本明細書に記載された特定の手順に対する多くの均等形態を認識、又は確認することができるであろう。このような均等形態は、本発明の範囲内であると考えられ、特許請求の範囲に包含される。   It should be understood that the specific embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalent forms for the particular procedure described herein. Such equivalent forms are considered to be within the scope of this invention and are covered by the claims.

本明細書で言及した全ての刊行物及び特許出願は、本発明が関連する技術分野の当業者の技術レベルを示すものである。全ての刊行物及び特許出願は、個々の刊行物又は特許出願が具体的及び個別に参照により組み込まれていることが示されているのと同程度まで、参照により本明細書に組み込まれる。   All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are hereby incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

特許請求の範囲及び/又は本明細書において用語「含む(comprising)」と併用する場合、単語「a」又は「an」の使用は、「1つ」を意味することができるが、「1又は2以上」、「少なくとも1つ」、及び「1又は1超」の意味にも一致する。特許請求の範囲における用語「又は(or)」の使用は、選択肢のみを指すことが明確に示されていない限り、又は選択肢が相互排他的でない限り、「及び/又は(and/or)」を意味するのに使用されるが、本開示は選択肢のみ及び「及び/又は」を指す定義を支持する。本出願の全体にわたって、用語「約」は、値に、デバイス、その値を決定するのに使用される方法の誤差の固有のばらつき、又は研究対象間に存在するばらつきが含まれることを示すのに用いられる。   When used in conjunction with the term “comprising” in the claims and / or herein, the use of the word “a” or “an” can mean “one”, but “1 or It also matches the meanings of “two or more”, “at least one”, and “one or more than one”. The use of the term “or” in the claims refers to “and / or” unless it is expressly stated to refer only to an option, or unless an option is mutually exclusive. While used to mean, this disclosure supports the choices only and definitions that refer to “and / or”. Throughout this application, the term “about” indicates that a value includes the inherent variability of errors in the device, the method used to determine the value, or the variability that exists between study subjects. Used for.

本明細書及び請求項で用いられているように、単語「含む(comprising)」(と「comprise」及び「comprises」などの「comprising」のいかなる形態)、「有する(having)」(と「have」及び「has」などの「having」のいかなる形態)、「含む(including)」(と「includes」及び「include」などの「including」のいかなる形態)又は「含有する(containing)」(と「contains」及び「contain」などの「containing」のいかなる形態)は、包括的又は開放的であり、列挙されていないさらなる要素又は方法ステップを除外するものではない。本明細書で提供される組成物及び方法のいずれかの実施形態では、「含む(comprising)」は、「から本質的になる(consisting essentially of)」又は「からなる(consisting of)」で置き換えることができる。本明細書では、句「から本質的になる(consisting essentially of)」は、指定された必須のもの(integer)(複数可)又はステップ並びに特許請求した発明の特徴又は機能に著しくは影響を及ぼさないものを要求する。本明細書では、用語「なる(consisting)」は、列挙された必須のもの(例えば、特質、要素、特徴、性質、方法/プロセスステップ又は制限)又は必須のもののグループ(例えば、各特質、各要素、各特徴、各性質、各方法/各プロセスステップ又は各制限)だけの存在を示すのに用いられる。   As used herein and in the claims, the words “comprising” (and any form of “comprising” such as “comprise” and “comprises”), “having” (and “have” Any form of “having” such as “and“ has ”),“ including ”(and any form of“ including ”such as“ includes ”and“ include ”) or“ containing ”(and“ Any form of “containing” such as “contains” and “contain” is inclusive or open and does not exclude further elements or method steps not listed. In any embodiment of the compositions and methods provided herein, “comprising” is replaced with “consisting essentially of” or “consisting of”. be able to. As used herein, the phrase “consisting essentially of” significantly affects the specified integer (s) or steps as well as the features or functions of the claimed invention. Request something not. As used herein, the term “consisting” includes the listed essentials (eg, attributes, elements, features, properties, methods / process steps or restrictions) or groups of essentials (eg, each characteristic, each Elements, features, properties, methods / process steps or restrictions).

用語「又はそれらの組合せ(or combinations thereof)」は、本明細書では、この用語に先立って列挙された項目の全ての順列及び組合せを指す。例えば、「A、B、C又はそれらの組合せ」は、A、B、C、AB、AC、BC、又はABC、及び特定の状況において順序が重要である場合には、さらにBA、CA、CB、CBA、BCA、ACB、BAC、又はCABの少なくとも1つを含むものである。この例に続いて、明確に含まれているのは、1つ又は2つ以上の項目又は用語の繰り返し、例えばBB、AAA、AB、BBC、AAABCCCC、CBBAAA、CABABBなどを含有する組合せである。当業者は、特に文脈から明らかでない限り、いかなる組合せの項目又は用語の数に通常制限がないことを理解されよう。   The term “or combinations thereof” as used herein refers to all permutations and combinations of the items listed prior to this term. For example, “A, B, C, or a combination thereof” means A, B, C, AB, AC, BC, or ABC, and if the order is important in a particular situation, then BA, CA, CB , CBA, BCA, ACB, BAC, or CAB. Continuing with this example, explicitly included are combinations containing one or more items or term repetitions such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and the like. One skilled in the art will understand that there is usually no limit on the number of items or terms in any combination, unless otherwise apparent from the context.

本明細書では、それだけには限らないが、「約」、「実質的な」又は「実質的に」などの近似を示す単語は、そのように修飾された場合、必ずしも絶対でも完全でもないと理解される条件であるが、その条件が存在すると指定することを当業者が保証するのに十分近いと考えられる条件を指す。説明が変化し得る範囲は、どれほど大きな変化が起こり得るかによって決まり、修飾された特質が、修飾前の特質に必要とされる特徴及び能力を依然としてもつことを当業者にさらに認識させる。一般に、前述の議論の対象となるが、「約」などの近似の単語で修飾される本明細書の数値は、記載された値から少なくとも±1、2、3、4、5、6、7、10、12又は15%変化し得る。   As used herein, words such as, but not limited to, approximations such as “about”, “substantial”, or “substantially” are not necessarily absolute or complete when so modified. A condition that is considered to be close enough to ensure that one of ordinary skill in the art will specify that the condition exists. The extent to which the description can change is determined by how much change can occur and will further recognize those skilled in the art that the modified attributes still have the features and capabilities required for the characteristics before modification. In general, the numerical values herein, subject to the discussion above, but modified by an approximate word such as “about” are at least ± 1, 2, 3, 4, 5, 6, 7 from the stated value. It can vary by 10, 12, or 15%.

さらに、本明細書におけるセクションの見出しは、37 CFR 1.77に基づく提案との一貫性のために、又はそうでなければ構成上の手がかりが得られるように設けられている。これらの見出しは、本開示から生じ得るいかなる請求項に定められた本発明を制限しない又は特徴付けないものとする。具体的に、且つ一例として、見出しは「技術分野」を示しているが、請求項は、いわゆる技術分野を説明するためにこの見出しの言語によって制限されるべきではない。さらに、「背景技術」セクションにおける技術の説明は、技術が本開示におけるいかなる発明の先行技術であると認められた事実として受け取るべきではない。「発明の概要」も、生じた請求項に記載されている本発明の特徴付けと考えるべきではない。その上、本開示における単数での「発明」へのいかなる言及も、本開示に単一点のみの新規性があることを主張するために使用すべきではない。複数の発明は、本開示から生じる複数の請求項の制限に従って記載されていることがあり、そのような請求項は、したがって、本発明、及びそれによって保護されるそれらの等価物を定義する。全ての例において、そのような請求項の範囲は、本開示に照らしてそれら自体のメリットについて考慮すべきであるが、本明細書に記載されている見出しによって制約されるべきではない。   In addition, section headings in this specification are provided for consistency with proposals under 37 CFR 1.77, or to provide other structural clues. These headings shall not limit or characterize the invention as defined in any claim that may arise from this disclosure. Specifically and by way of example, the heading indicates “technical field”, but the claims should not be limited by the language of this heading to describe the so-called technical field. Further, the description of technology in the “Background” section should not be taken as a fact that the technology is recognized as prior art to any invention in this disclosure. "Summary of the invention" should not be considered as a characterization of the invention as set forth in the claims that follow. Moreover, any reference to “invention” in the singular in this disclosure should not be used to claim that this disclosure is only a single point of novelty. Multiple inventions may be set forth according to the limitations of the multiple claims arising from this disclosure, and such claims thus define the invention and their equivalents protected thereby. In all instances, the scope of such claims should be considered for their own merits in light of this disclosure, but should not be limited by the headings provided herein.

本明細書に開示され、特許請求された全ての組成物及び/又は方法は、本開示に照らして過度の実験を行わずに製造及び実施することができる。本発明の組成物及び方法を好ましい実施形態に関して説明してきたが、本発明の概念、精神及び範囲から逸脱することなく、本明細書に記載された、組成物及び/又は方法、並びに方法のステップ又は一連のステップに変更を加えてもよいことは、当業者には明らかであろう。当業者に明らかなそのような同様の置換形態及び変更形態は全て、添付の特許請求の範囲によって定義された本発明の精神、範囲及び概念の範囲内にあると考えられる。   All of the compositions and / or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. Although the compositions and methods of the present invention have been described with reference to preferred embodiments, the compositions and / or methods and method steps described herein can be described without departing from the concept, spirit and scope of the present invention. It will be apparent to those skilled in the art that changes may be made to the series of steps. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Claims (9)

表面上に複合体を堆積させる方法であって、
表面を用意するステップ、
グラフェンフレーク及び酸化グラフェンフレークを用意するステップ、
Ni粉末及びAl 粉末を用意するステップ、並びに
前記グラフェンフレーク及び前記酸化グラフェンフレークを前記Ni粉末及び前記Al 粉末と一緒に前記表面上にプラズマスプレーするステップ
を含み、それによって得られた複合体が高い機械的特性及び耐食特性を有する、前記方法。
A method of depositing a composite on a surface, comprising:
Preparing a surface,
Preparing graphene flakes and oxidized graphene flakes;
Providing a Ni powder and an Al 2 O 3 powder, and plasma spraying the graphene flakes and the oxidized graphene flakes together with the Ni powder and the Al 2 O 3 powder onto the surface, thereby obtaining Said method, wherein the resulting composite has high mechanical and corrosion resistance properties.
グラフェンフレーク及び酸化グラフェンフレーク並びにNi粉末及びAl 粉末が、スプレー前に乾式混合される、請求項1に記載の方法。 The method of claim 1, wherein the graphene flakes and graphene oxide flakes and Ni powder and Al 2 O 3 powder are dry mixed prior to spraying . グラフェンフレーク及び酸化グラフェンフレークが、Ni粉末及びAl 粉末とは別に懸濁液を霧化して導入される、請求項1に記載の方法。 Graphene flakes and graphene oxide flakes, Ru is introduced by atomization separately suspension with Ni powder and Al 2 O 3 powder, the method described in Motomeko 1. グラフェンフレーク及び酸化グラフェンフレークが水又は別の極性溶媒中に懸濁される、請求項3に記載の方法。4. The method of claim 3, wherein the graphene flakes and oxidized graphene flakes are suspended in water or another polar solvent. グラフェンフレーク及び酸化グラフェンフレークを合わせて懸濁液中での濃度が、0.1〜0.5重量%である、請求項4に記載の方法。 Graphene flakes and concentration in the suspension combined graphene oxide flakes, 0.1 to 0.5 wt%, The method of claim 4. グラフェンフレーク及び酸化グラフェンフレークが、エタノール又は別の非極性溶媒中に懸濁される、請求項に記載の方法。 4. The method of claim 3 , wherein the graphene flakes and oxidized graphene flakes are suspended in ethanol or another non-polar solvent. グラフェンフレーク及び酸化グラフェンフレークを合わせて懸濁液中での濃度が、0.1〜0.5重量%である、請求項に記載の方法。 Graphene flakes and concentrations in the suspension combined graphene oxide flakes, 0.1 to 0.5 wt%, The method of claim 6. 表面上に複合体を堆積させる方法であって、
表面を用意するステップ、
水又は別の極性溶媒中に懸濁させた結晶性酸化グラフェンフレークを用意するステップ、Ni粉末及びAl 粉末を用意するステップ、並びに
前記結晶性酸化グラフェンフレークを前記Ni粉末及び前記Al 粉末と一緒に前記表面上にプラズマスプレーするステップ
を含み、それによって得られた複合体が高い機械的特性及び耐食特性を有する、前記方法。
A method of depositing a composite on a surface, comprising:
Preparing a surface,
Preparing crystalline graphene oxide flakes suspended in water or another polar solvent, preparing Ni powder and Al 2 O 3 powder , and treating said crystalline graphene oxide flakes with said Ni powder and said Al 2 Said method comprising plasma spraying onto said surface together with O 3 powder , whereby the resulting composite has high mechanical and corrosion resistance properties.
結晶性酸化グラフェンフレークが、Ni粉末及びAlCrystalline graphene oxide flakes contain Ni powder and Al 2 O 3 粉末とは別に懸濁液を霧化して導入される、請求項8に記載の方法。9. The method according to claim 8, wherein the suspension is introduced by atomizing separately from the powder.
JP2017550536A 2015-03-27 2016-03-21 Thermal spraying of repair and protective coatings Expired - Fee Related JP6603729B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562139006P 2015-03-27 2015-03-27
US62/139,006 2015-03-27
PCT/US2016/023435 WO2016160400A1 (en) 2015-03-27 2016-03-21 Thermal spray of repair and protective coatings

Publications (2)

Publication Number Publication Date
JP2018516311A JP2018516311A (en) 2018-06-21
JP6603729B2 true JP6603729B2 (en) 2019-11-06

Family

ID=57007228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017550536A Expired - Fee Related JP6603729B2 (en) 2015-03-27 2016-03-21 Thermal spraying of repair and protective coatings

Country Status (3)

Country Link
US (1) US20180105918A1 (en)
JP (1) JP6603729B2 (en)
WO (1) WO2016160400A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101625311B1 (en) 2011-10-27 2016-05-27 갈모어, 인코포레이티드 Composite graphene structures
US10535443B2 (en) 2013-03-08 2020-01-14 Garmor Inc. Graphene entrainment in a host
CA2903987C (en) 2013-03-08 2018-05-01 Richard Blair Large scale oxidized graphene production for industrial applications
WO2016028756A1 (en) 2014-08-18 2016-02-25 Garmor, Inc. Graphite oxide entrainment in cement and asphalt composite
WO2020214226A1 (en) 2019-01-27 2020-10-22 Lyten, Inc. Covetic materials
CN110777277B (en) * 2019-11-11 2020-08-11 沈阳航空航天大学 Graphene oxide aluminum-based composite material manufactured by laser deposition and preparation method thereof
CN111139424B (en) * 2019-12-31 2021-08-27 陕西斯瑞新材料股份有限公司 Stainless steel wet hydrogen preparation method for improving thermal emissivity and application
CN111394681A (en) * 2020-04-24 2020-07-10 中石化石油工程技术服务有限公司 Anti-erosion graphene composite gradient coating on outer cylinder surface of MWD (measurement while drilling) instrument
CN114405797B (en) * 2021-12-21 2022-10-28 苏州大学 Graphene coating based on liquid material plasma spraying technology and spraying process thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052581A (en) * 1983-09-02 1985-03-25 Hitachi Ltd Metallic member having superior resistance to steam oxidation
JPH0745542Y2 (en) * 1990-11-30 1995-10-18 山村硝子株式会社 Gob guide passage member in bottle making machine
KR100494239B1 (en) * 2002-09-11 2005-06-13 한국기계연구원 Process for Manufacturing Aluminium Matrix Composite Sheets Reinforced with High Volume Fraction of SiC
FR2900351B1 (en) * 2006-04-26 2008-06-13 Commissariat Energie Atomique PROCESS FOR PREPARING A NANOPOROUS LAYER OF NANOPARTICLES AND THE LAYER THUS OBTAINED
US8693079B2 (en) * 2008-01-31 2014-04-08 Ajjer, Llc Sealants and conductive busbars for chromogenic devices
US8114375B2 (en) * 2008-09-03 2012-02-14 Nanotek Instruments, Inc. Process for producing dispersible nano graphene platelets from oxidized graphite
JP5146402B2 (en) * 2009-05-19 2013-02-20 トヨタ自動車株式会社 Method for forming carbon particle-containing coating, heat transfer member, power module, and vehicle inverter
DE102009026655B3 (en) * 2009-06-03 2011-06-30 Linde Aktiengesellschaft, 80331 Method of making a metal matrix composite, metal matrix composite and its use
JP2013527553A (en) * 2009-10-07 2013-06-27 モレキュラー ナノシステムズ,インコーポレイテッド Method and system for manufacturing a battery electrode and device resulting from this method and system
KR101516610B1 (en) * 2010-02-19 2015-05-04 가부시키가이샤 인큐베이션 얼라이언스 Carbon material and method for producing same
US8574677B2 (en) * 2010-05-12 2013-11-05 James L. Lee Layer-by-layer fabrication method of sprayed nanopaper
JP5569933B2 (en) * 2010-06-28 2014-08-13 株式会社倉本鉄工所 Thermal spray material and ceramic particle dispersed MMC coating using the thermal spray material
CN102530926A (en) * 2010-12-10 2012-07-04 东丽纤维研究所(中国)有限公司 Method for preparing graphene based on hydrosulfite
CN103249862B (en) * 2010-12-15 2016-09-21 苏舍美特科(美国)公司 Liquid based on pressure for suspending liquid plasma spraying coating feeds system
RU2456361C1 (en) * 2011-01-11 2012-07-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Metal-matrix composite
ES2540462T3 (en) * 2011-02-16 2015-07-09 Grupo Antolín-Ingeniería, S.A. Process to obtain graphene oxide nanoplates and graphene nanoplates
JP5995523B2 (en) * 2012-05-23 2016-09-21 大阪瓦斯株式会社 Graphene sheet aqueous dispersion, production method thereof, and graphene-containing structure
US20140117745A1 (en) * 2012-10-26 2014-05-01 Trek Bicycle Corp. Enhanced bicycle braking surfaces
KR102014992B1 (en) * 2013-03-06 2019-10-21 삼성전자주식회사 Islands-in-sea type photorefractive polymer composite, photorefractive device and optical device including the same
US20140272199A1 (en) * 2013-03-14 2014-09-18 Yi-Jun Lin Ultrasonic spray coating of conducting and transparent films from combined graphene and conductive nano filaments
US10006141B2 (en) * 2013-06-20 2018-06-26 Baker Hughes, A Ge Company, Llc Method to produce metal matrix nanocomposite
US20150064451A1 (en) * 2013-08-29 2015-03-05 General Electric Company Coating, coating method, and coated article
DE102013014915A1 (en) * 2013-09-11 2015-03-12 Airbus Defence and Space GmbH Contact materials for high-voltage DC systems

Also Published As

Publication number Publication date
WO2016160400A1 (en) 2016-10-06
US20180105918A1 (en) 2018-04-19
JP2018516311A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6603729B2 (en) Thermal spraying of repair and protective coatings
JP2014522913A5 (en)
JP2013087363A (en) Improved hybrid methodology for producing composite, multi-layered and graded coatings by plasma spraying utilizing powder and solution precursor feedstock
US20110039024A1 (en) Cold Gas Spraying Method
Lima et al. Assessment of abrasive wear of nanostructured WC-Co and Fe-based coatings applied by HP-HVOF, flame, and wire arc spray
JP2017122275A (en) Coated article and method for production
JP2010284646A5 (en)
JP5017675B2 (en) Film manufacturing method
Li et al. Microstructure evolution of laser remelted Al2O3–13 wt.% TiO2 coatings
JP2007291523A (en) Coating formed by thermal spraying, and its forming method
Keshri et al. Structural transformations in carbon nanotubes during thermal spray processing
Lu et al. Phase evolution of plasma sprayed Al2O3− 13% TiO2 coatings derived from nanocrystalline powders
Porcayo-Calderon et al. Corrosion performance of Fe-Al intermetallic coatings in 1.0 M NaOH solution
US20120251885A1 (en) High power, wide-temperature range electrode materials, electrodes, related devices and methods of manufacture
RU2542218C2 (en) Method of production of nanostructured coating
JP2012519775A (en) How to prevent metal oxidation during thermal spraying
EP2956566B1 (en) Method for depositing a corrosion-protection coating
US20180030586A1 (en) Outer Airseal Abradable Rub Strip Manufacture Methods and Apparatus
CN106854744A (en) A kind of surface plasma spraying coating process of blade of aviation engine
Yoo et al. Hafnium carbide coatings deposited by suspension vacuum plasma spraying for ultra-high-temperature oxidation barrier on carbon composites
Manjunath et al. Dry Sliding Wear Behaviour of Plasma SprayedAl2O3-30% Mo and Mo Coating
Lu et al. Microstructure analysis of laser remelting for thermal barrier coatings on the surface of titanium alloy
JP2019094565A (en) Film deposition apparatus and film deposition method
CN114293127B (en) Composite sealing coating, preparation method thereof, mechanical part and power device
Salman et al. Titanium based composite coatings deposited by high velocity oxygen fuel (HVOF) and plasma spraying methods

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191011

R150 Certificate of patent or registration of utility model

Ref document number: 6603729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees