JP6603142B2 - Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion - Google Patents

Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion Download PDF

Info

Publication number
JP6603142B2
JP6603142B2 JP2016008342A JP2016008342A JP6603142B2 JP 6603142 B2 JP6603142 B2 JP 6603142B2 JP 2016008342 A JP2016008342 A JP 2016008342A JP 2016008342 A JP2016008342 A JP 2016008342A JP 6603142 B2 JP6603142 B2 JP 6603142B2
Authority
JP
Japan
Prior art keywords
silica
composite fine
particles
particle dispersion
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016008342A
Other languages
Japanese (ja)
Other versions
JP2017043531A (en
Inventor
祐二 俵迫
義憲 若宮
真吾 柏田
一昭 井上
和洋 中山
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Publication of JP2017043531A publication Critical patent/JP2017043531A/en
Application granted granted Critical
Publication of JP6603142B2 publication Critical patent/JP6603142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明はシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリーに関し、特には高研磨速度と高い面精度を発揮する研磨用スラリーに関する。   The present invention relates to a silica-based composite fine particle dispersion, a method for producing the same, and a polishing slurry containing the silica-based composite fine particle dispersion, and particularly to a polishing slurry that exhibits a high polishing rate and high surface accuracy.

半導体基板、配線基板などの半導体デバイスなどにおいては、表面状態が半導体特性に影響するため、これらの部品の表面や端面を極めて高精度に研磨することが要求される。
従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
In semiconductor devices such as a semiconductor substrate and a wiring substrate, the surface state affects the semiconductor characteristics, and therefore, it is required to polish the surfaces and end faces of these components with extremely high accuracy.
Conventionally, as a polishing method for such a member, after performing a relatively rough primary polishing process, and then performing a precise secondary polishing process, a smooth surface or a highly accurate surface with few scratches such as scratches can be obtained. The way to get done.
Conventionally, for example, the following methods have been proposed for the abrasive used for the secondary polishing as the finish polishing.

特許文献1には、硝酸第一セリウムの水溶液と塩基とを、pHが5〜10となる量比で攪拌混合し、続いて70〜100℃に急速加熱し、その温度で熟成することを特徴とする粒径が10〜80nmの酸化セリウム単結晶からなる酸化セリウム超微粒子の製造方法が記載されている。そして、このような製造方法によって、平均粒径が10〜80nmになっているだけではなく、粒径が揃っており、且つ各粒子の形状ができるだけ同じに揃っている酸化セリウム超微粒子を提供できると記載されている。   Patent Document 1 is characterized in that an aqueous solution of cerium nitrate and a base are stirred and mixed in an amount ratio of pH 5 to 10, followed by rapid heating to 70 to 100 ° C. and aging at that temperature. Describes a method for producing ultrafine cerium oxide particles comprising a cerium oxide single crystal having a particle size of 10 to 80 nm. And by such a manufacturing method, it is possible to provide cerium oxide ultrafine particles that not only have an average particle size of 10 to 80 nm, but also have a uniform particle size and the same shape as possible. It is described.

また、非特許文献1には、特許文献1に記載の製造方法と類似している、セリアコートシリカの製造方法であって、特許文献1に記載の製造方法における焼成−分散工程を有さない製造方法が記載されている。   Further, Non-Patent Document 1 is a method for producing ceria-coated silica similar to the production method described in Patent Document 1, and does not have a firing-dispersing step in the production method described in Patent Document 1. A manufacturing method is described.

さらに、特許文献2には、非晶質のシリカ粒子Aの表面に、ジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。また、好ましい態様として、非晶質のシリカ粒子Aの表面に、アルミニウム等の元素を含む非晶質の酸化物層であって、非晶質のシリカ層とは異なる非晶質の酸化物層Cを有し、さらに、その上にジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。そして、このようなシリカ系複合粒子は、非晶質のシリカ粒子Aの表面に、結晶質の酸化物層Bを有するために、研磨速度を向上させることができ、かつ、シリカ粒子に前処理をすることにより、焼成時に粒子同士の焼結が抑制され研磨スラリー中での分散性を向上させることができ、さらに、酸化セリウムを含まない、あるいは酸化セリウムの使用量を大幅に低減することができるので、安価であって研磨性能の高い研磨材を提供することができると記載されている。また、シリカ系粒子Aと酸化物層Bの間にさらに非晶質の酸化物層Cを有するものは、粒子の焼結抑制効果と研磨速-度を向上させる効果に特に優れると記載されている。   Furthermore, Patent Document 2 discloses that the surface of the amorphous silica particles A has at least one selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium. A silica-based composite particle characterized by having a crystalline oxide layer B containing an element is described. As a preferred embodiment, an amorphous oxide layer containing an element such as aluminum on the surface of the amorphous silica particles A, which is different from the amorphous silica layer A crystalline oxide layer having C and further containing one or more elements selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium Silica-based composite particles characterized by having B are described. And since such a silica type composite particle has the crystalline oxide layer B on the surface of the amorphous silica particle A, it can improve a grinding | polishing speed and pre-process on a silica particle. By suppressing the sintering of particles during firing, the dispersibility in the polishing slurry can be improved, and further, the amount of cerium oxide used can be greatly reduced without containing cerium oxide. Therefore, it is described that it is possible to provide an abrasive that is inexpensive and has high polishing performance. Further, those having an amorphous oxide layer C between the silica-based particles A and the oxide layer B are described as being particularly excellent in the effect of suppressing the sintering of the particles and the effect of improving the polishing rate. Yes.

特許第2746861号公報Japanese Patent No. 2746861 特開2013−119131号公報JP 2013-119131 A

Seung−Ho Lee, Zhenyu Lu, S.V.Babu and Egon Matijevic、“Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria”、Journal of Materials Research、Volume 17、Issue 10、2002、pp2744−2749Seung-Ho Lee, Zhenyu Lu, S .; V. Babu and Egon Matijevic, “Chemical mechanical polishing of thermal oxide films using sir te sir te s i s e s s e s e s e n e s e s e n i e s e s e e n e s e n e s e n e i e n e s e i e n e e m e n e s e i e m e n e n i e n e n i e n i e n i e n i e n i e n i e n i e n i e n i e n i e n i e n i n e n e n i.

しかしながら、特許文献1に記載の酸化セリウム超微粒子について、本発明者が実際に製造して検討したところ、研磨速度が低く、さらに、研磨基材の表面に欠陥(面精度の悪化、スクラッチ増加、研磨基材表面への研磨材の残留)を生じやすいことが判明した。これは、液相より結晶化させたのみで、セリア粒子の結晶度が焼成法に比べて低いこと等により研磨基材の表面にこれが残留することが主要因であると、本発明者は推定している。   However, the cerium oxide ultrafine particles described in Patent Document 1 were actually manufactured and examined by the inventor, and the polishing rate was low. Further, the surface of the polishing base material had defects (deterioration of surface accuracy, increased scratches, It has been found that the residue of the abrasive on the surface of the polishing substrate tends to occur. The present inventor presumes that this is mainly due to the fact that the ceria particles are only crystallized from the liquid phase and remain on the surface of the polishing substrate due to the fact that the crystallinity of the ceria particles is low compared to the firing method. is doing.

また、非特許文献1に記載のセリアコートシリカは焼成していないため、現実の研磨速度は低いと考えられ、また、研磨基材の表面への粒子の残留も懸念される。   In addition, since the ceria-coated silica described in Non-Patent Document 1 is not fired, it is considered that the actual polishing rate is low, and there is a concern that particles remain on the surface of the polishing substrate.

さらに、特許文献2に記載の酸化物層Cを有する態様のシリカ系複合粒子を用いて研磨すると、アルミニウム等の不純物が半導体デバイスの表面に残留し、半導体デバイスへ悪影響を及ぼすこともあることを、本発明者は見出した。   Furthermore, when polishing using the silica-based composite particles having the oxide layer C described in Patent Document 2, impurities such as aluminum remain on the surface of the semiconductor device, which may adversely affect the semiconductor device. The inventor found out.

本発明は上記のような課題を解決することを目的とする。すなわち、本発明は、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、基板表面の低Ra)を達成でき、さらに不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリーを提供することを目的とする。   An object of the present invention is to solve the above problems. That is, according to the present invention, even a Si wafer or a difficult-to-process material can be polished at high speed, and at the same time, high surface accuracy (low scratch, low Ra on the substrate surface) can be achieved, and further, no impurities are contained. An object of the present invention is to provide a silica-based composite fine particle dispersion that can be preferably used for polishing the surface of a semiconductor device such as a substrate or a wiring substrate, a method for producing the same, and a polishing slurry containing the silica-based composite fine particle dispersion.

本発明者は上記の課題を解決するため鋭意検討し、本発明を完成させた。
本発明は、以下の(1)〜(5)である。
(1)非晶質シリカを主成分とする母粒子の表面に、結晶性セリアを主成分とする子粒子が結合していて、下記[1]から[4]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子は、X線回折に供すると、前記結晶性セリアの(111)面の結晶子径が10〜25nmであること。
[4]前記シリカ系複合微粒子は、画像解析法で測定された短径/長径比が0.8以下である粒子の個数割合が50%以上であること。
(2)前記シリカ系複合微粒子は、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率がそれぞれ100ppm以下であり、U、Th、Cl、NO3、SO4およびFの含有率がそれぞれ5ppm以下であることを特徴とする上記(1)記載のシリカ系複合微粒子分散液。
(3)上記(1)又は上記(2)に記載のシリカ系複合微粒子分散液を含む、研磨用スラリー。
(4)下記の工程1及び工程2を備える、シリカ系複合微粒子分散液の製造方法。
工程1:シリカ微粒子が溶媒に分散してなるシリカゾルを、撹拌条件下、温度5〜98℃、pH範囲7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液のpHを6.0〜7.0とした後、これを乾燥させ、400〜1,200℃で焼成し、その後、乾式による解砕・粉砕及び溶媒分散を行うか、又は、湿式による解砕・粉砕を行うことで、上記(1)に記載のシリカ系複合微粒子分散液を得る工程。
(5)前記工程1のシリカゾルとして、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率がそれぞれ100ppm以下であり、U、Th、Cl、NO3、SO4およびFの含有率がそれぞれ5ppm以下であるシリカ微粒子が溶媒に分散してなるシリカゾルを使用することを特徴とする上記(4)記載のシリカ系複合微粒子分散液の製造方法。
The inventor has intensively studied in order to solve the above problems, and has completed the present invention.
The present invention includes the following (1) to (5).
(1) An average particle diameter of 50 having the following characteristics [1] to [4], wherein child particles mainly composed of crystalline ceria are bonded to the surface of mother particles mainly composed of amorphous silica. A silica-based composite fine particle dispersion containing silica composite fine particles of ˜350 nm.
[1] The silica-based composite fine particles have a mass ratio of silica and ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] When the silica-based composite fine particles are subjected to X-ray diffraction, the crystallite diameter of the (111) plane of the crystalline ceria is 10 to 25 nm.
[4] The silica composite fine particles have a ratio of the number of particles having a minor axis / major axis ratio of 0.8 or less as measured by an image analysis method of 50% or more.
(2) In the silica-based composite fine particles, the content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr is 100 ppm or less, U, The silica-based composite fine particle dispersion as described in (1) above, wherein the contents of Th, Cl, NO 3 , SO 4 and F are each 5 ppm or less.
(3) A polishing slurry comprising the silica-based composite fine particle dispersion described in (1) or (2).
(4) A method for producing a silica-based composite fine particle dispersion, comprising the following step 1 and step 2.
Step 1: A silica sol in which silica fine particles are dispersed in a solvent is continuously or intermittently maintained while stirring at a temperature of 5 to 98 ° C. and a pH range of 7.0 to 9.0. Adding to obtain a precursor particle dispersion containing the precursor particles.
Step 2: After the pH of the precursor particle dispersion is adjusted to 6.0 to 7.0, the precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and then subjected to dry crushing / pulverization and solvent dispersion. The process of obtaining the silica type composite fine particle dispersion as described in said (1) by performing or crushing and grinding | pulverization by wet.
(5) As the silica sol in the step 1, the content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 100 ppm or less, U, The silica-based composite fine particle dispersion described in (4) above, wherein a silica sol in which silica fine particles each containing 5 ppm or less of Th, Cl, NO 3 , SO 4 and F are dispersed in a solvent is used. Manufacturing method.

本発明によれば、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、基板表面の低Ra)を達成でき、さらに不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリーを提供することができる。   According to the present invention, even a Si wafer or a difficult-to-process material can be polished at high speed, and at the same time, high surface accuracy (low scratch, low Ra on the substrate surface) can be achieved, and further, no impurities are contained. A silica-based composite fine particle dispersion that can be preferably used for polishing a surface of a semiconductor device such as a substrate or a wiring board, a method for producing the same, and a polishing slurry containing the silica-based composite fine particle dispersion can be provided.

図1(a)は実施例1において得られたSEM像であり、図1(b)および(c)は実施例1において得られたTEM像である。1A is an SEM image obtained in Example 1, and FIGS. 1B and 1C are TEM images obtained in Example 1. FIG. 実施例1において得られたX線回折パターンである。2 is an X-ray diffraction pattern obtained in Example 1. FIG. 図3(a)は実施例5において得られたSEM像であり、図3(b)は実施例6において得られたTEM像である。3A is an SEM image obtained in Example 5, and FIG. 3B is a TEM image obtained in Example 6. 実施例5において得られたX線回折パターンである。7 is an X-ray diffraction pattern obtained in Example 5. 図5(a)は比較例4において得られたSEM像であり、図5(b)は比較例4において得られたTEM像である。5A is an SEM image obtained in Comparative Example 4, and FIG. 5B is a TEM image obtained in Comparative Example 4. 比較例4において得られたX線回折パターンである。7 is an X-ray diffraction pattern obtained in Comparative Example 4.

本発明について説明する。
本発明は、非晶質シリカを主成分とする母粒子の表面に、結晶性セリアを主成分とする子粒子が結合していて、下記[1]から[4]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液である。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子は、X線回折に供すると、前記結晶性セリアの(111)面の結晶子径が10〜25nmであること。
[4]前記シリカ系複合微粒子は、画像解析法で測定された短径/長径比が0.8以下である粒子の個数割合が50%以上であること。
このようなシリカ系複合微粒子分散液を、以下では「本発明の分散液」ともいう。
また、本発明の分散液が含むシリカ系複合微粒子を、以下では「本発明の複合微粒子」ともいう。
The present invention will be described.
In the present invention, an average particle diameter having the following features [1] to [4], wherein child particles mainly composed of crystalline ceria are bonded to the surface of mother particles mainly composed of amorphous silica. A silica-based composite fine particle dispersion containing silica-based composite fine particles of 50 to 350 nm.
[1] The silica-based composite fine particles have a mass ratio of silica and ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] When the silica-based composite fine particles are subjected to X-ray diffraction, the crystallite diameter of the (111) plane of the crystalline ceria is 10 to 25 nm.
[4] The silica composite fine particles have a ratio of the number of particles having a minor axis / major axis ratio of 0.8 or less as measured by an image analysis method of 50% or more.
Hereinafter, such a silica-based composite fine particle dispersion is also referred to as “the dispersion of the present invention”.
Further, the silica-based composite fine particles contained in the dispersion of the present invention are also referred to as “composite fine particles of the present invention” below.

本発明のシリカ系複合微粒子分散液は、該シリカ系複合微粒子のNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率がそれぞれ100ppm以下であり、U、Th、Cl、NO3、SO4およびFの含有率がそれぞれ5ppm以下であることが好ましい。
更に、本発明は、本発明のシリカ系複合微粒子分散液を含む研磨用スラリーである。
In the silica-based composite fine particle dispersion of the present invention, the content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr of the silica-based composite fine particle is respectively It is preferably 100 ppm or less, and the contents of U, Th, Cl, NO 3 , SO 4 and F are each preferably 5 ppm or less.
Furthermore, the present invention is a polishing slurry containing the silica-based composite fine particle dispersion of the present invention.

また、本発明は、下記の工程1及び工程2を備え、本発明の分散液が得られる、シリカ系複合微粒子分散液の製造方法である。
工程1:シリカ微粒子が溶媒に分散してなるシリカゾルを、撹拌条件下、温度5〜98℃、pH範囲7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液のpHを6.0〜7.0とした後、これを乾燥させ、400〜1,200℃で焼成し、その後、乾式による解砕・粉砕及び溶媒分散を行うか、又は、湿式による解砕・粉砕を行うことで、本発明の分散液を得る工程。
このようなシリカ系複合微粒子分散液の製造方法を、以下では「本発明の製造方法」ともいう。
なお、本発明の製造方法における前記工程1のシリカゾルとして、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率がそれぞれ100ppm以下であり、U、Th、Cl、NO3、SO4およびFの含有率がそれぞれ5ppm以下であるシリカ微粒子が溶媒に分散してなるシリカゾルを使用することが好ましい。
Moreover, this invention is a manufacturing method of the silica type composite fine particle dispersion liquid which is equipped with the following process 1 and process 2, and the dispersion liquid of this invention is obtained.
Step 1: A silica sol in which silica fine particles are dispersed in a solvent is continuously or intermittently maintained while stirring at a temperature of 5 to 98 ° C. and a pH range of 7.0 to 9.0. Adding to obtain a precursor particle dispersion containing the precursor particles.
Step 2: After the pH of the precursor particle dispersion is adjusted to 6.0 to 7.0, the precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and then subjected to dry crushing / pulverization and solvent dispersion. The process of obtaining the dispersion liquid of this invention by performing or performing crushing and grinding | pulverization by wet.
Hereinafter, the method for producing such a silica-based composite fine particle dispersion is also referred to as “the production method of the present invention”.
In addition, as a silica sol of the said process 1 in the manufacturing method of this invention, the content rate of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr is 100 ppm or less, respectively. It is preferable to use a silica sol in which silica fine particles each containing 5 ppm or less of U, Th, Cl, NO 3 , SO 4 and F are dispersed in a solvent.

本発明の分散液は、本発明の製造方法によって製造することが好ましい。   The dispersion of the present invention is preferably produced by the production method of the present invention.

以下において、単に「本発明」と記した場合、本発明の分散液、本発明の複合微粒子及び本発明の製造方法のいずれをも意味するものとする。   In the following, the simple description of “the present invention” means any of the dispersion of the present invention, the composite fine particles of the present invention, and the production method of the present invention.

本発明の複合微粒子について説明する。   The composite fine particles of the present invention will be described.

<母粒子>
本発明の複合微粒子において、母粒子は非晶質シリカを主成分とする。
<Mother particles>
In the composite fine particles of the present invention, the mother particles are mainly composed of amorphous silica.

母粒子を乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、cristobaliteのような結晶性シリカのピークは現れない。すなわち、母粒子に含まれるシリカは非晶質であることを確認できる。なお、前記母粒子の粉砕は、通常、母粒子が溶媒に分散しているシリカゾルを乾燥させ、粉砕処理に適用する。   When the mother particles are pulverized using a mortar and an X-ray diffraction pattern is obtained using, for example, a conventionally known X-ray diffractometer (for example, RINT1400, manufactured by Rigaku Corporation), a crystalline silica peak such as cristobalite does not appear. . That is, it can be confirmed that the silica contained in the mother particles is amorphous. The pulverization of the mother particles is usually applied to a pulverization treatment by drying a silica sol in which the mother particles are dispersed in a solvent.

また「主成分」とは、含有率が90質量%以上であることを意味する。すなわち、母粒子において、非晶質シリカの含有率は90質量%以上である。
この含有率は95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99.5質量%以上であることが好ましく、100質量%であることがさらに好ましい。以下に示す本発明の説明において「主成分」は、このような意味で用いるものとする。
The “main component” means that the content is 90% by mass or more. That is, in the mother particles, the content of amorphous silica is 90% by mass or more.
This content is preferably 95% by mass or more, more preferably 98% by mass or more, preferably 99.5% by mass or more, and more preferably 100% by mass. In the following description of the present invention, “main component” is used in this sense.

母粒子は非晶質シリカを主成分とするが、本発明の効果を妨げない範囲で、結晶性シリカや不純物元素を含んでいても構わない。なお、母粒子におけるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、及びZrの各元素の含有率は、それぞれ100ppm以下であることが好ましく、50ppm以下であることがより好ましく、25ppm以下であることが更に好ましく、5ppm以下であることがいっそう好ましい。   Although the mother particles are mainly composed of amorphous silica, they may contain crystalline silica or an impurity element as long as the effects of the present invention are not hindered. The content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr in the mother particles is preferably 100 ppm or less, and 50 ppm or less. Is more preferably 25 ppm or less, even more preferably 5 ppm or less.

また、母粒子におけるU、Th、Cl、NO3、SO4およびFの各元素の含有率はそれぞれ5ppm以下であることが好ましい。 Further, the content of each element of U, Th, Cl, NO 3 , SO 4 and F in the mother particles is preferably 5 ppm or less.

母粒子における上記の各元素の含有率の測定方法については、実施例にて記したとおりである。   About the measuring method of the content rate of said each element in a mother particle, it is as having described in the Example.

後述のとおり本発明に係るシリカ系複合微粒子の平均粒子径は、50〜350nmの範囲にあり、その母粒子の平均粒子径は必然的に350nmより小さい値となる。なお、本願においては、後述の工程1で使用するシリカゾルの平均粒子径をもって母粒子の平均粒子径とする。この母粒子の平均粒子径が、30〜200nmの範囲のシリカ系複合微粒子が好適に使用される。
母粒子の平均粒子径が上記のような範囲にあると、本発明の分散液を研磨剤として用いた場合にスクラッチが少なくなる。母粒子の平均粒子径が小さすぎると研磨レートが不足する。平均粒子径が大きすぎると、スクラッチが生じ、基板の面精度が悪化する傾向がある。
As will be described later, the average particle size of the silica-based composite fine particles according to the present invention is in the range of 50 to 350 nm, and the average particle size of the mother particles is necessarily smaller than 350 nm. In addition, in this application, let the average particle diameter of the silica sol used at the below-mentioned process 1 be an average particle diameter of a mother particle. Silica-based composite fine particles having an average particle diameter of 30 to 200 nm are preferably used.
When the average particle diameter of the mother particles is in the above range, scratches are reduced when the dispersion of the present invention is used as an abrasive. If the average particle size of the mother particles is too small, the polishing rate will be insufficient. When the average particle diameter is too large, scratches are generated and the surface accuracy of the substrate tends to deteriorate.

母粒子の平均粒子径は、公知の動的光散乱法粒子径測定装置(例えば、日機装株式会社製、マイクロトラックUPA装置や大塚電子社製PAR−III)を用いて測定したものである。   The average particle diameter of the mother particles is measured using a known dynamic light scattering particle diameter measuring apparatus (for example, Nikkiso Co., Ltd., Microtrac UPA apparatus or Otsuka Electronics PAR-III).

母粒子の形状は特に限定されず、例えば、球状、俵状、短繊維状、四面体状(三角錐型)、六面体状、八面体状、板状、不定形の他に表面に疣状突起を有するものや、金平糖状のものであってもよく、また、多孔質状のものであってもよいが、球状のものが好ましい。球状とは、母粒子の短径/長径比が0.8以下の粒子個数比が10%以下のものである。母粒子は、短径/長径比が0.8以下の粒子個数比が5%以下のものであることがより好ましく、0%のものであることがさらに好ましい。
短径/長径比は、後述する本発明の複合微粒子の短径/長径比の測定方法(画像解析法)と同様の方法で測定する。
The shape of the mother particles is not particularly limited, and for example, spherical, bowl-like, short fiber-like, tetrahedron (triangular pyramid), hexahedron, octahedron, plate, indeterminate and hook-like projections on the surface It may be a saccharide, a confetti-like one, or a porous one, but a spherical one is preferred. Spherical shape means that the ratio of the number of particles with a minor axis / major axis ratio of 0.8 or less is 10% or less. The mother particles preferably have a minor axis / major axis ratio of 0.8 or less and a number ratio of particles of 5% or less, more preferably 0%.
The minor axis / major axis ratio is measured by the same method as the measuring method (image analysis method) of the minor axis / major axis ratio of the composite fine particles of the present invention described later.

<子粒子>
本発明の複合微粒子では、上記のような母粒子の表面に子粒子が結合している。
<Child particles>
In the composite fine particles of the present invention, the child particles are bonded to the surface of the mother particles as described above.

本発明の複合微粒子において、子粒子は結晶性セリアを主成分とする。   In the composite fine particles of the present invention, the child particles are mainly composed of crystalline ceria.

本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、セリアの結晶相のみが検出される。
セリアの結晶相としては、Cerianiteが挙げられる。なお、前記複合微粒子の粉砕は、通常、複合微粒子が溶媒に分散している複合微粒子分散液を乾燥させ、粉砕処理に適用する。
When the composite fine particles of the present invention are pulverized using a mortar and an X-ray diffraction pattern is obtained by, for example, a conventionally known X-ray diffraction apparatus (for example, RINT1400, manufactured by Rigaku Corporation), only the ceria crystal phase is detected. The
Ceriaite is an example of the ceria crystal phase. The pulverization of the composite fine particles is usually applied to a pulverization treatment by drying a composite fine particle dispersion in which the composite fine particles are dispersed in a solvent.

子粒子は結晶性セリア(結晶性Ce酸化物)を主成分とし、その他のもの、例えばセリウム以外の元素を含んでもよい。
ただし、上記のように、本発明の複合微粒子をX線回折に供するとセリアの結晶相のみが検出される。すなわち、セリア以外の結晶相を含んでいたとしても、その含有率は少ないため、X線回折による検出範囲外となる。
なお、「主成分」の定義は前述の通りである。
The child particles are mainly composed of crystalline ceria (crystalline Ce oxide), and may contain other elements, for example, elements other than cerium.
However, as described above, when the composite fine particles of the present invention are subjected to X-ray diffraction, only the ceria crystal phase is detected. That is, even if a crystal phase other than ceria is included, its content is small, and thus it is outside the detection range by X-ray diffraction.
The definition of “principal component” is as described above.

子粒子について、前記シリカ系複合微粒子をX線回折に供して測定される、結晶性セリアの(111)面の結晶子径は10〜25nmであり、14〜18nmであることが好ましく、15〜16nmであることがより好ましい。   As for the child particles, the crystallite diameter of the (111) plane of the crystalline ceria measured by subjecting the silica-based composite fine particles to X-ray diffraction is 10 to 25 nm, preferably 14 to 18 nm. More preferably, it is 16 nm.

結晶性セリアの(111)面の結晶子径は、次に説明する方法によって得られる値を意味するものとする。
初めに、本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、下記のScherrerの式により、結晶子径を求める。
D=Kλ/βcosθ
D:結晶子径(オングストローム)
K:Scherrer定数
λ:X線波長(1.7889オングストローム、Cuランプ)
β:半価幅(rad)
θ:反射角
The crystallite diameter of the (111) plane of crystalline ceria means a value obtained by the method described below.
First, the composite fine particles of the present invention are pulverized using a mortar, and an X-ray diffraction pattern is obtained by using, for example, a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Corporation). Then, the half width of the peak of the (111) plane near 2θ = 28 degrees in the obtained X-ray diffraction pattern is measured, and the crystallite diameter is obtained by the following Scherrer equation.
D = Kλ / βcos θ
D: Crystallite diameter (angstrom)
K: Scherrer constant λ: X-ray wavelength (1.7789 angstrom, Cu lamp)
β: Half width (rad)
θ: Reflection angle

子粒子の大きさは、母粒子より小さく、平均粒子径15〜25nmであることが好ましく、18〜23nmであることがより好ましい。
子粒子の大きさは、透過型電子顕微鏡を用いて30万倍に拡大した写真投影図(例えば後述する図1(C))において、各粒子の平均粒子径を得た後、任意の50個の粒子の平均粒子径を単純平均して得た値を意味する。
The size of the child particles is smaller than that of the mother particles, preferably an average particle size of 15 to 25 nm, and more preferably 18 to 23 nm.
The size of the child particles can be any 50 particles after obtaining an average particle diameter of each particle in a photograph projection view (for example, FIG. 1C described later) enlarged 300,000 times using a transmission electron microscope. Means a value obtained by simply averaging the average particle diameter of the particles.

<本発明の複合微粒子>
本発明の複合微粒子は、上記のような母粒子の表面に、上記のような子粒子が結合したものである。
<Composite fine particles of the present invention>
The composite fine particles of the present invention are obtained by binding the above child particles to the surface of the above mother particles.

本発明の複合微粒子において、シリカとセリアの質量比は100:11〜316であり、100:30〜150であることが好ましく、100:60〜120であることがより好ましい。シリカに対するセリアの量が少なすぎると、母粒子同士が結合し、粗大粒子が発生する場合がある。この場合に本発明の分散液を含む研磨剤(研磨スラリー)は、研磨基材の表面に欠陥(スクラッチの増加などの面精度の低下)を発生させる可能性がある。また、シリカに対するセリアの量が多すぎても、コスト的に高価になるばかりでなく、資源リスクが増大する。さらに、粒子同士の融着が進み、粗大化したり、あるいはセリア粒子が遊離しやすい。その結果、基板の表面粗度が上昇(Raの悪化)したり、スクラッチが増加する、更に遊離したセリアが基板に残留する、研磨装置の廃液配管等への付着といったトラブルを起こす原因ともなりやすい。   In the composite fine particles of the present invention, the mass ratio of silica to ceria is 100: 11 to 316, preferably 100: 30 to 150, and more preferably 100: 60 to 120. If the amount of ceria with respect to silica is too small, the mother particles may be bonded to generate coarse particles. In this case, the abrasive (polishing slurry) containing the dispersion of the present invention may cause defects (decrease in surface accuracy such as an increase in scratches) on the surface of the polishing substrate. Further, if the amount of ceria relative to silica is too large, not only is the cost high, but the resource risk increases. Further, the fusion of particles progresses, and the particles are coarsened or ceria particles are easily released. As a result, the surface roughness of the substrate rises (Ra deteriorates), scratches increase, free ceria remains on the substrate, and it may easily cause troubles such as adhesion to the waste liquid piping of the polishing apparatus. .

本発明の複合微粒子では、前記母粒子と前記子粒子とが結合している。具体的には、本発明の複合微粒子は、シリカ微粒子(母粒子)の表面に、粒子状の結晶性セリア(子粒子)が焼結等して結合したものであり、凹凸の表面形状を有している。
すなわち、母粒子と子粒子との少なくとも一方(好ましくは双方)が、それらの接点において溶着し、好ましくは双方が固着することで強固に結合している。
In the composite fine particle of the present invention, the mother particle and the child particle are bonded. Specifically, the composite fine particles of the present invention are those in which particulate crystalline ceria (child particles) are bonded to the surface of silica fine particles (mother particles) by sintering or the like, and have an uneven surface shape. is doing.
That is, at least one (preferably both) of the mother particle and the child particle is welded at their contact points, and preferably, both are firmly bonded together.

本発明の複合微粒子は粒子連結型であることが好ましい。粒子連結型とは、2個以上の母粒子同士が各々一部において結合しているものを意味する。母粒子同士は少なくとも一方(好ましくは双方)がそれらの接点において溶着し、好ましくは双方が固着することで強固に結合しているものと考えられる。ここで、母粒子同士が結合した後に、その表面に子粒子が結合した場合の他、母粒子の表面に子粒子が結合した後、他のものに結合した場合であっても、粒子連結型とする。
連結型であると基板との接触面積を多くとる事が出来るため、研磨エネルギーを効率良く基板へ伝えることが出来るため研磨速度が高い。また、粒子当たりの研磨圧力が単粒子よりも低くなるためスクラッチも少ない。
The composite fine particles of the present invention are preferably particle-linked. The particle connection type means that two or more mother particles are partially bonded to each other. It is considered that at least one (preferably both) of the mother particles are welded at their contact points, and preferably, both are firmly bonded together. Here, in addition to the case where the child particles are bonded to the surface after the mother particles are bonded to each other, and the case where the child particles are bonded to the surface of the mother particle and then bonded to the other particles, And
In the connection type, since a large contact area with the substrate can be obtained, polishing energy can be efficiently transmitted to the substrate, so that the polishing rate is high. Further, since the polishing pressure per particle is lower than that of a single particle, there is little scratching.

本発明の複合微粒子において、画像解析法で測定された短径/長径比が0.80以下(好ましくは0.67以下)である粒子の個数割合は50%以上である。
ここで、画像解析法で測定された短径/長径比が0.80以下である粒子は、原則的に粒子結合型のものと考えられる。
In the composite fine particles of the present invention, the number ratio of particles having a minor axis / major axis ratio measured by an image analysis method of 0.80 or less (preferably 0.67 or less) is 50% or more.
Here, particles having a minor axis / major axis ratio measured by an image analysis method of 0.80 or less are considered to be of a particle-binding type in principle.

画像解析法による短径/長径比の測定方法を説明する。透過型電子顕微鏡により、本発明の複合微粒子を倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。これより、短径/長径比(DS/DL)を求める。そして、写真投影図で観察される任意の50個の粒子において、短径/長径比が0.80以下である粒子の個数割合(%)を求める。   A method for measuring the minor axis / major axis ratio by the image analysis method will be described. In a photograph projection view obtained by photographing a composite fine particle of the present invention at a magnification of 250,000 times (or 500,000 times) with a transmission electron microscope, the maximum diameter of the particles is taken as the major axis, and the length is measured. The value is taken as the major axis (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to obtain a minor axis (DS). From this, the minor axis / major axis ratio (DS / DL) is obtained. Then, the number ratio (%) of particles having a minor axis / major axis ratio of 0.80 or less in any 50 particles observed in the photographic projection diagram is obtained.

本発明の複合微粒子では、短径/長径比が0.80以下(好ましくは0.67以下)である粒子の個数割合が50%以上であるが、55%以上であることが好ましく、65%以上であることがより好ましい。この範囲の複合微粒子は、研磨材として使用した際に、研磨速度が高くなり好ましい。   In the composite fine particles of the present invention, the number ratio of particles having a minor axis / major axis ratio of 0.80 or less (preferably 0.67 or less) is 50% or more, preferably 55% or more, and 65% More preferably. Composite fine particles in this range are preferable because the polishing rate increases when used as an abrasive.

本発明の複合微粒子は前述の粒子連結型であることがより好ましいが、その他の形状のもの、例えば球状粒子を含んでいてもよい。   The composite fine particles of the present invention are more preferably the above-mentioned particle-linked type, but may have other shapes, for example, spherical particles.

本発明の複合微粒子は、比表面積が4〜100m2/gであることが好ましく、30〜60m2/gであることがより好ましい。 The composite fine particles of the present invention preferably have a specific surface area of 4 to 100 m 2 / g, and more preferably 30 to 60 m 2 / g.

ここで、比表面積(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
Here, a method for measuring the specific surface area (BET specific surface area) will be described.
First, a dried sample (0.2 g) is put in a measurement cell, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is a mixed gas of 30% by volume of nitrogen and 70% by volume of helium. Liquid nitrogen temperature is maintained in a stream of air, and nitrogen is adsorbed to the sample by equilibrium. Next, the temperature of the sample is gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time is detected, and the specific surface area of the sample is measured using a calibration curve prepared in advance.
Such a BET specific surface area measurement method (nitrogen adsorption method) can be performed using, for example, a conventionally known surface area measurement device.
In the present invention, the specific surface area means a value obtained by such a method unless otherwise specified.

本発明の複合微粒子の平均粒子径は50〜350nmであることが好ましく、170〜260nmであることがより好ましい。複合微粒子の平均粒子径が50〜350nmの範囲にある場合、研磨材として適用した場合に、研磨速度が高くなり好ましい。   The average particle size of the composite fine particles of the present invention is preferably 50 to 350 nm, and more preferably 170 to 260 nm. When the average particle diameter of the composite fine particles is in the range of 50 to 350 nm, it is preferable because the polishing rate increases when applied as an abrasive.

本発明の複合微粒子の平均粒子径は、公知の動的光散乱法粒子径測定装置(例えば、日機装株式会社製、マイクロトラックUPA装置や大塚電子社製PAR−III)を用いて、測定したものである。   The average particle size of the composite fine particles of the present invention was measured using a known dynamic light scattering particle size measuring device (for example, Nikkiso Co., Ltd., Microtrac UPA device or Otsuka Electronics PAR-III). It is.

本発明に係る複合微粒子は、非晶質シリカを主成分とする母粒子と、結晶性セリアからなる子粒子から構成されるが、本発明の効果を妨げない範囲で、例えば、結晶性シリカや不純物元素を含んでいても構わない。なお、本発明の複合微粒子において、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率は、それぞれ100ppm以下であることが好ましく、50ppm以下であることがより好ましく、25ppm以下であることが更に好ましく、5ppm以下であることがいっそう好ましい。   The composite fine particles according to the present invention are composed of mother particles mainly composed of amorphous silica and child particles composed of crystalline ceria. For example, crystalline silica or An impurity element may be included. In the composite fine particles of the present invention, the content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is preferably 100 ppm or less. More preferably, it is 50 ppm or less, More preferably, it is 25 ppm or less, More preferably, it is 5 ppm or less.

また、本発明の複合微粒子におけるU、Th、Cl、NO3、SO4およびFの各元素の含有率は、それぞれ5ppm以下であることが好ましい。
本発明の複合微粒子分散液は、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率がそれぞれ100ppm以下であり、U、Th、Cl、NO3、SO4およびFの含有率がそれぞれ5ppm以下であることを特徴とする複合酸化物微粒子分散液である場合と、必ずしもこのような条件を満たさない複合酸化物微粒子分散液である場合がある。このうち、前者は、高純度な研磨剤の適用が求められる用途、例えば、半導体基板、配線基板などの半導体デバイスなどの研磨用途において研磨剤として好適に使用することができる。また、後者は、高純度な研磨剤の適用が求められない用途、例えば、ガラス研磨などに適用される。(前者は、高純度な研磨剤の適用が求められない用途にも当然に適用可能である。)
In addition, the content of each element of U, Th, Cl, NO 3 , SO 4 and F in the composite fine particles of the present invention is preferably 5 ppm or less.
In the composite fine particle dispersion of the present invention, the content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr is 100 ppm or less, and U, Th , Cl, NO 3 , SO 4, and F are each contained in a composite oxide fine particle dispersion characterized by being 5 ppm or less, and a composite oxide fine particle dispersion not necessarily satisfying such conditions. There may be. Among these, the former can be suitably used as an abrasive in applications where application of high-purity abrasives is required, for example, polishing applications such as semiconductor devices such as semiconductor substrates and wiring substrates. Moreover, the latter is applied to applications where application of a high-purity abrasive is not required, such as glass polishing. (The former can naturally be applied to applications where application of a high-purity abrasive is not required.)

本発明の複合微粒子について走査型電子顕微鏡(SEM)を用いて観察すると、母粒子(シリカ粒子)表面に子粒子(セリア結晶粒子)が結合している様子を確認することができるが、母粒子に子粒子が結合してなる粒子を覆うように、全体に薄い被膜が形成されており、さらにEDS分析を行うことで、この被膜がシリカ成分からなることを確認した。
このシリカ被膜は、子粒子(セリア結晶粒子)と母粒子(シリカ粒子)の結合(力)を助長すると考えられる。よって、例えば、本発明の分散液を研磨剤(研磨スラリー)として用いた場合、研磨中に母粒子(シリカ粒子)の表面から子粒子(セリア結晶粒子)が脱落するのを防ぐ効果があるものと考えられる。
この様な構造(現象)により、本発明の分散液を研磨剤として用いた場合、研磨速度が高く、面精度やスクラッチの悪化が少ないと考えられる。また、焼成されているため、粒子表面の−OH基が少なく、その影響によって、研磨基材への粒子残りも少ないと考えられる。例えば、被研磨基材がシリカ系材料の場合、被研磨基材表面にもシラノール基(SiOH)が存在するが、研磨粒子(シリカ)の表面にもSiOHが存在すると、両シラノール基が反応して研磨粒子が被研磨基材表面へ残留する場合があると考えられる。また遊離セリアは正の電荷をもつため基板へ付着しやすい。そのため本発明のようにセリア粒子表面へのシリカ被覆はセリア粒子に負の電荷を付与するため、基板への付着を低減化する効果もある。
When the composite fine particles of the present invention are observed using a scanning electron microscope (SEM), it can be confirmed that the child particles (ceria crystal particles) are bonded to the surfaces of the mother particles (silica particles). A thin coating was formed on the entire surface so as to cover the particles formed by binding the child particles to each other, and further EDS analysis confirmed that the coating was composed of a silica component.
This silica coating is considered to promote the bond (force) between the child particles (ceria crystal particles) and the mother particles (silica particles). Thus, for example, when the dispersion of the present invention is used as an abrasive (polishing slurry), it has an effect of preventing the child particles (ceria crystal particles) from falling off from the surface of the mother particles (silica particles) during polishing. it is conceivable that.
Due to such a structure (phenomenon), it is considered that when the dispersion liquid of the present invention is used as an abrasive, the polishing rate is high, and the surface accuracy and scratch are less deteriorated. Moreover, since it is baked, it is thought that there are few -OH groups on the particle | grain surface, and the particle | grain residue to a grinding | polishing base material is also few according to the influence. For example, when the substrate to be polished is a silica-based material, silanol groups (SiOH) are also present on the surface of the substrate to be polished, but when SiOH is also present on the surfaces of the abrasive particles (silica), both silanol groups react. Thus, it is considered that the abrasive particles may remain on the surface of the substrate to be polished. In addition, free ceria has a positive charge and is likely to adhere to the substrate. Therefore, the silica coating on the surface of the ceria particles as in the present invention imparts a negative charge to the ceria particles, and thus has an effect of reducing adhesion to the substrate.

<本発明の分散液>
本発明の分散液について説明する。
本発明の分散液は、上記のような本発明の複合微粒子が分散溶媒に分散しているものである。
<Dispersion of the present invention>
The dispersion liquid of the present invention will be described.
The dispersion liquid of the present invention is such that the composite fine particles of the present invention as described above are dispersed in a dispersion solvent.

本発明の分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の分散液は、添加剤として、研磨促進剤、界面活性剤、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を含んでいてもよい。   The dispersion of the present invention contains water and / or an organic solvent as a dispersion solvent. For example, water such as pure water, ultrapure water, or ion exchange water is preferably used as the dispersion solvent. Furthermore, the dispersion of the present invention may contain one or more selected from the group consisting of a polishing accelerator, a surfactant, a pH adjuster, and a pH buffer as an additive.

また、本発明の分散液を備える分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Examples of the dispersion solvent provided with the dispersion of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, and cyclohexanone. Ketones such as N; N-dimethylformamide, amides such as N, N-dimethylacetamide; ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, and 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxy Glycol ether acetates such as ethyl acetate; esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, and ethylene carbonate; aromatic hydrocarbons such as benzene, toluene, xylene; hexane, heptane, isooctane, Aliphatic hydrocarbons such as cyclohexane; Halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane and chlorobenzene; Sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl- Organic solvents such as pyrrolidones such as 2-pyrrolidone can be used. These may be used by mixing with water.

本発明の分散液に含まれるシリカ系複合微粒子の濃度(固形分濃度)は0.3〜50質量%の範囲にあることが好ましい。   The concentration (solid content concentration) of the silica-based composite fine particles contained in the dispersion of the present invention is preferably in the range of 0.3 to 50% by mass.

本発明の分散液の製造方法は特に限定されないが、次に説明する本発明の製造方法によって製造することが好ましい。   Although the manufacturing method of the dispersion liquid of this invention is not specifically limited, It is preferable to manufacture with the manufacturing method of this invention demonstrated below.

<本発明の製造方法>
発明の製造方法について説明する。
本発明の製造方法は、以下に説明する工程1及び工程2を備える。
<Production method of the present invention>
The production method of the invention will be described.
The manufacturing method of the present invention includes step 1 and step 2 described below.

<本発明の製造方法> <Production method of the present invention>

<工程1>
工程1では原料としてシリカ微粒子が溶媒に分散してなるシリカゾルを使用する。
使用するシリカゾルとしては、公知のシリカゾルを適用可能であり、例えば、水硝子を原料として調製したシリカ微粒子が溶媒に分散してなるシリカゾルやアルコキシシランを原料として合成したシリカ微粒子が溶媒に分散してなるシリカゾルなどを挙げることができる。
<Step 1>
In step 1, silica sol in which silica fine particles are dispersed in a solvent is used as a raw material.
As the silica sol to be used, a known silica sol can be applied. For example, silica sol prepared by dispersing silica fine particles prepared from water glass as a raw material or silica fine particles synthesized using alkoxysilane as a raw material are dispersed in a solvent. Examples thereof include silica sol.

一般に水硝子を原料として調製したシリカ微粒子は、原料水硝子に由来するNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びTh、Cl、NO3、SO4およびFの各元素又はイオン種を合計で数千ppm程度含有する。このようなシリカ微粒子を用いる場合、シリカ微粒子を溶媒に分散してなるシリカゾルとした後、イオン交換処理を行って前記各元素又はイオン種の含有率を下げることは可能であるが、その場合でも数百ppm程度の前記各元素又はイオン種が残留する。そのため水硝子を原料としたシリカ粒子を用いる場合は、酸処理等で不純分を低減化させることもできる。
他方、アルコキシシランを原料として合成したシリカ微粒子は、通常、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率は100ppm以下であり、U、Th、Cl、NO3、SO4およびFの各元素の含有率は5ppm以下であるので、特に半導体デバイスの製造分野に適用する研磨粒子としては、アルコキシシランの加水分解により製造したシリカ微粒子が溶媒に分散してなるシリカゾルを用いることが好ましい。
本発明に係るシリカ系複合微粒子は、前記各元素又はイオン種の含有量が極めて低い水準にあるため、半導体デバイスなどの研磨用途に好適に使用することができる。
なお、工程1で使用するシリカ微粒子が溶媒に分散してなるシリカゾルとしては、平均粒子径が350nmより小さいものが使用される。通常は、平均粒子径30〜200nmの範囲のシリカゾルが好適に使用される。
Generally, silica fine particles prepared using water glass as a raw material are Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U and Th, Cl, derived from raw water glass. Each element or ion species of NO 3 , SO 4 and F is contained in a total of about several thousand ppm. When such silica fine particles are used, it is possible to reduce the content of each element or ion species by performing an ion exchange treatment after making the silica sol formed by dispersing the silica fine particles in a solvent. About several hundred ppm of each element or ionic species remains. Therefore, when silica particles using water glass as a raw material are used, impurities can be reduced by acid treatment or the like.
On the other hand, silica fine particles synthesized using alkoxysilane as a raw material usually have a content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr of 100 ppm or less. Yes, since the content of each element of U, Th, Cl, NO 3 , SO 4 and F is 5 ppm or less, the abrasive particles particularly applied to the field of manufacturing semiconductor devices were produced by hydrolysis of alkoxysilane. It is preferable to use a silica sol in which silica fine particles are dispersed in a solvent.
The silica-based composite fine particles according to the present invention can be suitably used for polishing applications such as semiconductor devices because the content of each element or ionic species is at a very low level.
In addition, as a silica sol in which the silica fine particles used in Step 1 are dispersed in a solvent, those having an average particle diameter of less than 350 nm are used. Usually, silica sol having an average particle diameter of 30 to 200 nm is preferably used.

工程1では、上記のようなシリカ微粒子が溶媒に分散したシリカゾルを、撹拌条件下、温度5〜98℃(好ましくは50〜98℃)、pH範囲7.0〜9.0に維持しながらセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る。   In step 1, the silica sol in which the silica fine particles as described above are dispersed in a solvent is maintained under a stirring condition at a temperature of 5 to 98 ° C. (preferably 50 to 98 ° C.) and a pH range of 7.0 to 9.0. The metal salt of is added continuously or intermittently to obtain a precursor particle dispersion containing precursor particles.

前記シリカゾルにおける分散媒は水を含むことが好ましく、水ゾルを使用することが好ましい。   The dispersion medium in the silica sol preferably contains water, and a water sol is preferably used.

前記シリカゾルにおける固形分濃度は、SiO2換算基準で1〜40質量%であることが好ましい。この固形分濃度が低すぎると、製造工程でのシリカ濃度が低くなり生産性が悪くなり得る。 The solid content concentration in the silica sol is preferably 1 to 40% by mass in terms of SiO 2 . When this solid content concentration is too low, the silica concentration in the production process becomes low, and the productivity may deteriorate.

また、陽イオン交換樹脂又は陰イオン交換樹脂、あるいは鉱酸、有機酸等で不純物を抽出し、限外ろ過膜などを用いて、必要に応じて、シリカゾルの脱イオン処理を行うことができる。脱イオン処理により不純物イオンなどを除去したシリカゾルは表面にケイ素を含む水酸化物を形成させやすいのでより好ましい。   Further, impurities can be extracted with a cation exchange resin or an anion exchange resin, a mineral acid, an organic acid, or the like, and a silica sol can be deionized using an ultrafiltration membrane or the like as necessary. Silica sol from which impurity ions and the like are removed by deionization treatment is more preferable because a hydroxide containing silicon is easily formed on the surface.

工程1では、上記のようなシリカゾルに、撹拌条件下、温度5〜98℃、pH範囲7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加する。
セリウムの金属塩として、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。具体的には、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。なかでも、硝酸第一セリウムが好ましい。中和と同時に過飽和となった溶液から、結晶性セリウム酸化物が生成し、それらは速やかにシリカ微粒子に凝集沈着機構で付着するので結合性酸化物形成の効率が高く好ましい。
In step 1, a metal salt of cerium is continuously or intermittently added to the silica sol as described above while maintaining a temperature of 5 to 98 ° C. and a pH range of 7.0 to 9.0 under stirring conditions.
As the metal salt of cerium, cerium chloride, nitrate, sulfate, acetate, carbonate, metal alkoxide and the like can be used. Specific examples include cerium nitrate, cerium carbonate, cerium sulfate, and cerium chloride. Of these, ceric nitrate is preferred. Crystalline cerium oxides are formed from a solution that becomes supersaturated at the same time as neutralization, and they quickly adhere to the silica fine particles by an agglomeration and deposition mechanism.

シリカゾルに対するセリウムの金属塩の添加量は、得られる本発明の複合微粒子におけるシリカとセリアの比が、前述のように、100:11〜316の範囲となる量とする。   The amount of the cerium metal salt added to the silica sol is such that the ratio of silica to ceria in the obtained composite fine particles of the present invention is in the range of 100: 11 to 316 as described above.

シリカゾルにセリウムの金属塩を添加した後、撹拌する際の温度は5〜98℃であるが、50〜95℃であることが好ましい。この温度が低すぎると水酸化物との混合あるいは低酸化物を形成し、結晶化させる反応が著しく遅くなるので好ましくない。逆に、この温度が高すぎると反応器壁面にスケールなどが生じやすくなり好ましくない。   The temperature at the time of stirring after adding the metal salt of cerium to the silica sol is 5 to 98 ° C, preferably 50 to 95 ° C. If the temperature is too low, the reaction of mixing with a hydroxide or forming a low oxide and crystallizing is remarkably slow, which is not preferable. On the other hand, if this temperature is too high, scale and the like are easily generated on the reactor wall surface, which is not preferable.

また、撹拌する際の時間は0.5〜24時間であることが好ましく、0.5〜18時間であることがより好ましい。この時間が短すぎると結晶性の酸化セリウムが十分に形成できないため好ましくない。逆に、この時間が長すぎても結晶性の酸化セリウムの形成はそれ以上反応が進まず不経済となる。   Moreover, it is preferable that the time at the time of stirring is 0.5 to 24 hours, and it is more preferable that it is 0.5 to 18 hours. If this time is too short, crystalline cerium oxide cannot be formed sufficiently, which is not preferable. Conversely, even if this time is too long, the formation of crystalline cerium oxide is uneconomical because the reaction does not proceed any further.

また、シリカゾルにセリウムの金属塩を添加し、撹拌する際のシリカゾルのpH範囲は7.0〜9.0とするが、7.6〜7.9とすることが好ましい。この際、アルカリ等を添加しpH調整を行うことが好ましい。このようなアルカリの例としては、公知のアルカリを使用することができる。具体的には、アンモニア水溶液、水酸化アルカリ、アルカリ土類金属、アミン類の水溶液などが挙げられるが、これらに限定されるものではない。   Further, the pH range of the silica sol when a cerium metal salt is added to the silica sol and stirred is 7.0 to 9.0, but preferably 7.6 to 7.9. At this time, it is preferable to adjust the pH by adding an alkali or the like. A publicly known alkali can be used as an example of such an alkali. Specific examples include aqueous ammonia, alkali hydroxide, alkaline earth metal, and aqueous amines, but are not limited thereto.

このような工程1によって、本発明の複合微粒子の前駆体である粒子(前駆体粒子)を含む分散液(前駆体粒子分散液)が得られる。   By such step 1, a dispersion (precursor particle dispersion) containing particles (precursor particles) that are precursors of the composite fine particles of the present invention is obtained.

工程1で得られた前駆体粒子分散液を、工程2に供する前に、純水やイオン交換水などを用いて、さらに希釈あるいは濃縮して、次の工程2に供してもよい。   The precursor particle dispersion obtained in step 1 may be further diluted or concentrated using pure water, ion-exchanged water, or the like before being subjected to step 2, and may be subjected to the next step 2.

なお、前駆体粒子分散液における固形分濃度は1〜27質量%であることが好ましい。   In addition, it is preferable that the solid content concentration in a precursor particle dispersion is 1-27 mass%.

また、所望により、前駆体粒子分散液を、陽イオン交換樹脂、陰イオン交換樹脂、限外ろ過膜、イオン交換膜などを用いて脱イオン処理してもよい。   If desired, the precursor particle dispersion may be deionized using a cation exchange resin, an anion exchange resin, an ultrafiltration membrane, an ion exchange membrane, or the like.

<工程2>
工程2では、前駆体粒子分散液のpHを6.0〜7.0とした後、これを乾燥させた後、400〜1,200℃で焼成する。
<Step 2>
In step 2, the pH of the precursor particle dispersion is adjusted to 6.0 to 7.0 , dried, and then fired at 400 to 1,200 ° C.

乾燥する方法は特に限定されない。従来公知の乾燥機を用いて乾燥させることができる。具体的には、箱型乾燥機、バンド乾燥機、スプレードライアー等を使用することができる。
なお、さらに乾燥前の前駆体粒子分散液のpHを6.0〜7.0とする。乾燥前の前駆体粒子分散液のpHを6.0〜7.0とした場合、表面活性を抑制できるからである。
The method for drying is not particularly limited. It can be dried using a conventionally known dryer. Specifically, a box-type dryer, a band dryer, a spray dryer or the like can be used.
Incidentally, it shall be the 6.0-7.0 pH of the precursor particles dispersion before drying further. It is because surface activity can be suppressed when the pH of the precursor particle dispersion before drying is 6.0 to 7.0.

乾燥後、焼成する温度は400〜1200℃であるが、800〜1100℃であることが好ましく、1000〜1090℃であることがより好ましい。このような温度範囲において焼成すると、セリアの結晶化が十分に進行し、また、母粒子と子粒子とが強固に結合する。この温度が高すぎると、セリアの結晶が異常成長したり、母粒子を構成する非晶質シリカが結晶化したり、セリア同士の融着が進む可能性がある。   After drying, the firing temperature is 400 to 1200 ° C, preferably 800 to 1100 ° C, and more preferably 1000 to 1090 ° C. When firing in such a temperature range, crystallization of ceria proceeds sufficiently, and mother particles and child particles are firmly bonded. If this temperature is too high, ceria crystals may grow abnormally, amorphous silica constituting the mother particles may crystallize, or fusion between ceria may progress.

工程2では、焼成して得られたシリカ系複合微粒子について乾式による解砕・粉砕及び溶媒分散を行うか、又は、湿式による解砕・粉砕を行うことで、シリカ系複合微粒子分散液を得る。
乾式の解砕・粉砕装置としては従来公知の装置を使用することができるが、例えば、アトライター、ボールミル、振動ミル、振動ボールミル等を挙げることができる。湿式の解砕・粉砕装置としても従来公知の装置を使用することができるが、例えば、バスケットミル等のバッチ式ビーズミル、横型・縦型・アニュラー型の連続式のビーズミル、サンドグラインダーミル、ボールミル等の湿式媒体攪拌式ミル(湿式解砕機)が挙げられる。湿式媒体攪拌ミルに用いるビーズとしては、例えば、ガラス、アルミナ、ジルコニア、スチール、フリント石等を原料としたビーズを挙げることができる。
In Step 2, the silica-based composite fine particles obtained by firing are subjected to dry crushing / pulverization and solvent dispersion, or wet-type crushing / pulverization to obtain a silica-based composite fine particle dispersion.
Conventionally known devices can be used as the dry crushing / pulverizing device, and examples thereof include an attritor, a ball mill, a vibration mill, and a vibration ball mill. Conventionally known apparatus can be used as a wet crushing / pulverizing apparatus. For example, a batch type bead mill such as a basket mill, a horizontal type, a vertical type or an annular type continuous bead mill, a sand grinder mill, a ball mill, etc. And a wet medium stirring mill (wet crusher). Examples of the beads used in the wet medium stirring mill include beads made of glass, alumina, zirconia, steel, flint stone, and the like.

このような本発明の製造方法によって、本発明の分散液を得ることができる。   The dispersion of the present invention can be obtained by the production method of the present invention.

<研磨用スラリー>
本発明の分散液を含む液体は、研磨スラリー(以下では「本発明の研磨用スラリー」ともいう)として好ましく用いることができる。
<Slurry for polishing>
The liquid containing the dispersion of the present invention can be preferably used as a polishing slurry (hereinafter also referred to as “the polishing slurry of the present invention”).

本発明の研磨用スラリーは半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のキズ(スクラッチ)が少ないなどの効果に優れている。   The polishing slurry of the present invention is excellent in effects such as a high polishing rate when polishing a semiconductor substrate and the like, and few scratches (scratches) on the polishing surface during polishing.

本発明の研磨用スラリーは分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用スラリーは、添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を含んでいてもよい。   The polishing slurry of the present invention contains water and / or an organic solvent as a dispersion solvent. For example, water such as pure water, ultrapure water, or ion exchange water is preferably used as the dispersion solvent. Furthermore, the polishing slurry of the present invention may contain one or more selected from the group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer as an additive.

<研磨促進剤>
本発明に係る研磨用スラリーには、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素などおよびこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
<Polishing accelerator>
In the polishing slurry according to the present invention, a conventionally known polishing accelerator can be used as necessary, although it varies depending on the type of material to be polished. Examples of such include hydrogen peroxide, peracetic acid, urea peroxide and mixtures thereof. When such an abrasive composition containing a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is a metal.

研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、および酢酸などの有機酸、あるいはこれら酸のアンモニウム塩、アミン塩およびこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。   Other examples of polishing accelerators include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid, and hydrofluoric acid, and organic acids such as acetic acid, or ammonium salts, amine salts, and mixtures thereof. be able to. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished consisting of composite components, the polishing rate is accelerated for a specific component of the material to be polished, thereby finally achieving flat polishing. You can get a plane.

本発明に係る研磨用スラリーが研磨促進剤を含有する場合、その含有量としては、0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。   When the polishing slurry according to the present invention contains a polishing accelerator, the content thereof is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass.

<界面活性剤及び/又は親水性化合物>
研磨用スラリーの分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤または親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
<Surfactant and / or hydrophilic compound>
In order to improve the dispersibility and stability of the polishing slurry, a cationic, anionic, nonionic or amphoteric surfactant or a hydrophilic compound can be added. Both the surfactant and the hydrophilic compound have an action of reducing a contact angle to the surface to be polished and an action of promoting uniform polishing. As the surfactant and / or the hydrophilic compound, for example, those selected from the following groups can be used.

陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。   Examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt and phosphate ester salt. As the carboxylate salt, soap, N-acyl amino acid salt, polyoxyethylene or polyoxypropylene alkyl ether carboxyl Acid salt, acylated peptide; as sulfonate, alkyl sulfonate, alkyl benzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate; sulfate ester Salts include sulfated oil, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; phosphate ester salts such as alkyl phosphates, polyoxyethylene or polyoxy B pyrene alkyl allyl ether phosphate can be exemplified.

陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。   As cationic surfactant, aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium chloride salt, benzethonium chloride, pyridinium salt, imidazolinium salt; as amphoteric surfactant, carboxybetaine type, sulfobetaine type, Examples thereof include aminocarboxylates, imidazolinium betaines, lecithins, and alkylamine oxides.

非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキルおよびアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。   Nonionic surfactants include ether type, ether ester type, ester type and nitrogen-containing type. Ether type includes polyoxyethylene alkyl and alkylphenyl ether, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene poly Examples include oxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ether, ether ester type, glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester polyoxyethylene ether, ester type, Polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester Le, sucrose esters, nitrogen-containing type, fatty acid alkanolamides, polyoxyethylene fatty acid amide, polyoxyethylene alkylamide, and the like. In addition, a fluorine-type surfactant etc. are mentioned.

界面活性剤としては陰イオン界面活性剤もしくはノ非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩およびカリウム塩が好ましい。   As the surfactant, an anionic surfactant or a non-ionic surfactant is preferable, and as the salt, ammonium salt, potassium salt, sodium salt and the like can be mentioned, and ammonium salt and potassium salt are particularly preferable.

さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステルおよびアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。   Further, other surfactants and hydrophilic compounds include esters such as glycerin ester, sorbitan ester and alanine ethyl ester; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl Polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene Ethers such as glycol, alkyl polypropylene glycol alkyl ether, alkyl polypropylene glycol alkenyl ether, alkenyl polypropylene glycol; polysaccharides such as alginic acid, pectic acid, carboxymethyl cellulose, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; Polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), poly Acrylic acid, polyacrylamide, aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt Polycarboxylic acids such as polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt, and polyglyoxylic acid and salts thereof; vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyacrolein; methyl tauric acid ammonium salt, methyl tauric acid sodium salt , Methyl sulfate sodium salt, ethyl ammonium sulfate salt, butyl ammonium sulfate salt, vinyl sulfonic acid sodium salt, 1-allyl sulfonic acid sodium salt, 2-allyl sulfonic acid sodium salt, methoxymethyl sulfonic acid sodium salt, ethoxymethyl sulfonic acid ammonium salt Salts, sulfonic acids such as sodium 3-ethoxypropyl sulfonate and salts thereof; propionamide, acrylamide, methylurea, nicotinamide, succinic acid amide and sulfo Examples thereof include amides such as fanilamide.

なお、適用する被研磨基材がガラス基板等である場合は何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属またはハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。   In addition, when the substrate to be polished is a glass substrate or the like, any surfactant can be suitably used. However, in the case of a silicon substrate for a semiconductor integrated circuit or the like, alkali metal, alkaline earth When the influence of contamination by metals or halides is disliked, it is desirable to use an acid or an ammonium salt surfactant.

本発明に係る研磨用スラリーが界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用スラリーの1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。   When the polishing slurry according to the present invention contains a surfactant and / or a hydrophilic compound, the total content is preferably 0.001 to 10 g in 1 L of the polishing slurry. It is more preferable to set it as 01-5g, and it is especially preferable to set it as 0.1-3g.

界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用スラリーの1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。   In order to obtain a sufficient effect, the content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 L of the polishing slurry, and preferably 10 g or less from the viewpoint of preventing the polishing rate from being lowered.

界面活性剤または親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。   Only one type of surfactant or hydrophilic compound may be used, two or more types may be used, and different types may be used in combination.

<複素環化合物>
本発明の研磨用スラリーについては、被研磨基材に金属が含まれる場合に、金属に不動態層または溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
<Heterocyclic compound>
For the polishing slurry of the present invention, when the substrate to be polished contains a metal, a heterocyclic compound is formed for the purpose of suppressing the erosion of the substrate to be polished by forming a passive layer or a dissolution inhibiting layer on the metal. May be included. Here, the “heterocyclic compound” is a compound having a heterocyclic ring containing one or more heteroatoms. A hetero atom means an atom other than a carbon atom or a hydrogen atom. A heterocycle means a cyclic compound having at least one heteroatom. A heteroatom means only those atoms that form part of a heterocyclic ring system, either external to the ring system, separated from the ring system by at least one non-conjugated single bond, Atoms that are part of a further substituent of are not meant. Preferred examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. As examples of the heterocyclic compound, imidazole, benzotriazole, benzothiazole, tetrazole, and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino1,2,4-triazole, 3,5 -Diamino-1,2,4-triazole can be mentioned, but is not limited thereto.

本発明に係る研磨用スラリーに複素環化合物を配合する場合の含有量については、0.001〜1.0質量%であることが好ましく、0.001〜0.7質量%であることがより好ましく、0.002〜0.4質量%であることがさらに好ましい。   About content in the case of mix | blending a heterocyclic compound with the slurry for polishing which concerns on this invention, it is preferable that it is 0.001-1.0 mass%, and it is more that it is 0.001-0.7 mass%. Preferably, it is 0.002-0.4 mass%.

<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸または塩基を添加して研磨用組成物のpHを調節することができる。
<PH adjuster>
In order to enhance the effect of each of the above additives, an acid or a base can be added as necessary to adjust the pH of the polishing composition.

研磨用スラリーをpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。   When adjusting the polishing slurry to pH 7 or higher, an alkaline one is used as a pH adjuster. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, tetramethylamine are used.

研磨用スラリーをpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類が使用される。   When the polishing slurry is adjusted to a pH of less than 7, an acidic one is used as a pH adjuster. For example, hydroxy acids such as acetic acid, lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.

<pH緩衝剤>
研磨用スラリーのpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩及びホウ酸塩または有機酸などを使用することができる。
<PH buffering agent>
In order to keep the pH value of the polishing slurry constant, a pH buffer may be used. Examples of pH buffering agents that can be used include phosphates and borates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium tetraborate tetrahydrated water, and organic acids.

また、本発明の研磨用スラリーの分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Examples of the dispersion solvent for the polishing slurry of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, and cyclohexanone. Ketones such as N; N-dimethylformamide, amides such as N, N-dimethylacetamide; ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, and 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-but Glycol ether acetates such as ciethyl acetate; Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate and ethylene carbonate; Aromatic hydrocarbons such as benzene, toluene and xylene; Hexane, heptane and isooctane Aliphatic hydrocarbons such as cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl Organic solvents such as pyrrolidones such as -2-pyrrolidone can be used. These may be used by mixing with water.

本発明の研磨用スラリーに含まれる固形分濃度は0.3〜50質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ないので、不経済となり得る。   The solid content concentration contained in the polishing slurry of the present invention is preferably in the range of 0.3 to 50 mass%. If this solid content concentration is too low, the polishing rate may decrease. Conversely, even if the solid content concentration is too high, the polishing rate is rarely improved further, which can be uneconomical.

以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

初めに、実施例及び比較例における各測定方法及び試験方法の詳細について説明する。
各実施例及び比較例について、以下の各測定結果及び試験結果を第1表に記す。
First, details of each measurement method and test method in Examples and Comparative Examples will be described.
For each example and comparative example, the following measurement results and test results are shown in Table 1.

[Na等の含有率の測定]
[母粒子]
実施例及び比較例における母粒子のSiO2重量は、それぞれシリカ系複合微粒子分散液の製造工程で投入するシリカゾルに相当するシリカゾルを150℃で1時間乾燥させた後に秤量して求めた。なお、実施例5及び比較例3の母粒子においては、A液に相当するシリカゾルのSiO2重量を、1000℃灼熱減量を行って秤量により求めた。
次に、全ての実施例及び比較例の母粒子におけるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの含有率を次の方法で測定した。それぞれのシリカゾルサンプル約10g(固形分20質量%)を白金皿に採取し、弗化水素酸20mlと硝酸5mlを加えて、サンドバス上で加熱して乾固させた。乾固物に硝酸2mlを加えて溶解させ、100mlのメスフラスコに注入し、水を加えて100mlとした。この溶液でNa、Kについては原子吸光分光分析装置(日立製作所社製、Z−2310)で測定した。Ag、Al、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びThについてICPプラズマ発光分析装置(SII製SPS5520)にて測定した。
各陰イオン種の含有率は、以下の方法によって測定した。
<Cl>
シリカ微粒子(母粒子)を含有するシリカゾルからなる試料20g(固形分20質量%)に水50ml、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行った。
ブランクとして試料を除いて同様の処理をして、値を差し引いて測定値とした。
<NO3、SO4、F>
シリカ微粒子(母粒子)を含有するシリカゾルからなる試料5g(固形分20質量%)を水で希釈して100mlにおさめ、遠心分離機(日立製 HIMAC CT06E)にて4000rpmで20分遠心分離して、上澄液をイオンクロマトグラフ(DIONEX製 ICS−1100)にて分析した。
[Measurement of content of Na, etc.]
[Mother particles]
The SiO 2 weight of the mother particles in the examples and comparative examples was determined by weighing the silica sol corresponding to the silica sol introduced in the production process of the silica composite fine particle dispersion at 150 ° C. for 1 hour, respectively. In addition, in the mother particles of Example 5 and Comparative Example 3, the SiO 2 weight of the silica sol corresponding to the liquid A was determined by weighing after 1000 ° C. ignition loss.
Next, the contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, and Th in the mother particles of all examples and comparative examples are determined by the following method. Measured with About 10 g of each silica sol sample (solid content 20% by mass) was collected in a platinum dish, 20 ml of hydrofluoric acid and 5 ml of nitric acid were added, and the mixture was heated to dryness on a sand bath. Nitric acid (2 ml) was added to the dried product to dissolve it, poured into a 100 ml volumetric flask, and water was added to make 100 ml. In this solution, Na and K were measured with an atomic absorption spectrophotometer (manufactured by Hitachi, Ltd., Z-2310). Ag, Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, Zn, Zr, U, and Th were measured with an ICP plasma emission spectrometer (SPS5520 manufactured by SII).
The content of each anionic species was measured by the following method.
<Cl>
50 ml of water, 5 ml of acetic acid and 4 ml of 0.001 mol sodium chloride solution were added to 20 g of a sample of silica sol containing silica fine particles (mother particles) (solid content 20% by mass), and potentiometric titration with a 0.002 mol silver nitrate solution ( Analysis was carried out using a potentiometric titrator AT-610, manufactured by Kyoto Electronics.
The same processing was performed except for the sample as a blank, and the value was subtracted to obtain a measured value.
<NO 3 , SO 4 , F>
A 5 g sample (solid content of 20% by mass) made of silica sol containing silica fine particles (mother particles) was diluted with water to 100 ml, and centrifuged at 4000 rpm for 20 minutes in a centrifuge (HIMAC CT06E manufactured by Hitachi). The supernatant was analyzed with an ion chromatograph (ICS-1100, manufactured by DIONEX).

[シリカ系複合微粒子]
実施例及び比較例におけるシリカ系複合微粒子のCe、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4およびFの含有率を、次の方法で測定した。
それぞれのシリカ系複合微粒子分散液からなるサンプル約1g(固形分20質量%)を白金皿に採取した。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱した。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとした。
Na、Kは、この溶液について原子吸光分光分析装置(日立製作所社製、Z−2310)で測定した。
Ce、Ag、Al、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びThについてICPプラズマ発光分析装置(SII製SPS5520)にて測定した。Cl、NO3、SO4およびFの分析方法は次のとおり。
<Cl>
シリカ系複合微粒子分散液からなる試料20g(固形分20質量%)に水50ml、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行った。
ブランクとして試料を除いて同様の処理をして、値を差し引いて測定値とした。
<NO3、SO4、F>
シリカ系複合微粒子分散液からなる試料5g(固形分20質量%)を水で希釈して100mlにおさめ、遠心分離機(日立製 HIMAC CT06E)にて4000rpmで20分遠心分離して、上澄液をイオンクロマトグラフ(DIONEX製 ICS−1100)にて分析した。
なお、SiO2重量は、シリカ系複合微粒子分散液の1000℃灼熱減量により求めた固形分重量から、上記で求めたCe濃度をCeO2に換算した重量を減じることにより求めた。そして、得られたSiO2重量とCeO2重量から、シリカ系複合微粒子におけるシリカとセリアの質量比を求めた。
[Silica composite fine particles]
Ce, Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, Th, Cl, NO 3 , SO 4 of silica-based composite fine particles in Examples and Comparative Examples And the content rate of F was measured with the following method.
About 1 g (solid content 20% by mass) of each silica-based composite fine particle dispersion was collected in a platinum dish. 3 ml of phosphoric acid, 5 ml of nitric acid and 10 ml of hydrofluoric acid were added and heated on a sand bath. Once dry, a small amount of water and 50 ml of nitric acid were added and dissolved, placed in a 100 ml volumetric flask, and water was added to make 100 ml.
Na and K were measured for this solution with an atomic absorption spectrophotometer (manufactured by Hitachi, Ltd., Z-2310).
Ce, Ag, Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, Zn, Zr, U and Th were measured with an ICP plasma emission spectrometer (SPS5520 manufactured by SII). Analytical methods for Cl, NO 3 , SO 4 and F are as follows.
<Cl>
50 ml of water, 5 ml of acetic acid and 4 ml of a 0.001 molar sodium chloride solution were added to 20 g of a sample composed of a silica-based composite fine particle dispersion (solid content: 20% by mass), and potentiometric titration method (manufactured by Kyoto Electronics Co., Ltd.) with a 0.002 molar silver nitrate solution. Analysis was conducted with a potentiometric titrator AT-610).
The same processing was performed except for the sample as a blank, and the value was subtracted to obtain a measured value.
<NO 3 , SO 4 , F>
A 5 g sample (solid content: 20% by mass) composed of a silica-based composite fine particle dispersion is diluted with water to 100 ml, centrifuged at 4000 rpm for 20 minutes in a centrifuge (HIMAC CT06E manufactured by Hitachi), and the supernatant. Was analyzed with an ion chromatograph (ICS-1100, manufactured by DIONEX).
The SiO 2 weight was determined by subtracting the Ce concentration determined above from CeO 2 from the solid content determined by 1000 ° C. ignition loss of the silica-based composite fine particle dispersion. Then, from the obtained SiO 2 weight and CeO 2 weight, the mass ratio of silica and ceria in the silica-based composite fine particles was determined.

[X線回折法、結晶子径の測定]
前述の方法に則り、実施例及び比較例で得られたシリカ系複合微粒子分散液を乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、結晶型を特定した。
また、前述のように、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、Scherrerの式により、結晶子径を求めた。
[X-ray diffraction method, measurement of crystallite diameter]
In accordance with the method described above, the silica-based composite fine particle dispersions obtained in the examples and comparative examples were dried, and the obtained powder was pulverized in a mortar for 10 minutes to obtain an X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.). , RINT 1400) to obtain an X-ray diffraction pattern to identify the crystal form.
Further, as described above, the half width of the peak of the (111) plane in the vicinity of 2θ = 28 degrees in the obtained X-ray diffraction pattern was measured, and the crystallite diameter was determined by the Scherrer equation.

<平均粒子径>
実施例及び比較例で得られたシリカゾル及びシリカ系複合微粒子分散液について、これに含まれる粒子の平均粒子径を前述の方法で測定した。具体的にはシリカ母粒子は大塚電子社製PAR−IIIを用い、シリカ系複合微粒子については日機装株式会社製マイクロトラックUPA装置を用いた。
<Average particle size>
For the silica sol and silica-based composite fine particle dispersion obtained in the examples and comparative examples, the average particle size of the particles contained therein was measured by the method described above. Specifically, PAR-III manufactured by Otsuka Electronics Co., Ltd. was used as the silica mother particle, and a Microtrac UPA apparatus manufactured by Nikkiso Co., Ltd. was used as the silica composite fine particle.

<短径/長径比率>
実施例及び比較例で得られたシリカゾル及びシリカ系複合微粒子分散液が含む各粒子について、透過型電子顕微鏡(Transmission Electron Microscope;日立製作所社製、型番「S−5500」日立製作所社製、型番:S−5500を用いて倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とした。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とした。そして、比(DS/DL)を求めた。この測定を任意の50個の粒子について行い、短径/長径比が0.8以下の粒子の個数比率(%)を求めた。
<Short diameter / Long diameter ratio>
About each particle | grains which the silica sol and silica type composite fine particle dispersion liquid which were obtained in the Example and the comparative example contain, a transmission electron microscope (Transmission Electron Microscope; Hitachi Ltd. make, model number "S-5500" Hitachi Ltd. make, model number: In a photographic projection obtained by taking a photograph at a magnification of 250,000 times (or 500,000 times) using S-5500, the maximum diameter of the particles is taken as the major axis, the length is measured, and the value is taken as the major diameter ( In addition, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to determine the minor axis ( The ratio (DS / DL) was determined, and this measurement was performed on any 50 particles, and the number ratio (%) of particles having a minor axis / major axis ratio of 0.8 or less was obtained. .

[研磨試験方法]
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含むスラリー(研磨用スラリー)を調整した。ここで固形分濃度は9質量%とした。
次に、被研磨基板として、ハードディスク用アルミノシリケート製ガラス基板を準備した。この基板はドーナツ形状で、外径65mm、内径20mm、厚み0.635mmである。この基板は一次研磨ずみで、表面粗さ(Ra)は0.3nmであった。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「ポリテックスφ12」)を使用し、基板荷重0.18MPa、テーブル回転速度30rpmで研磨用スラリーを20ml/分の速度で10分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
また、研磨基材の表面の平滑性(表面粗さRa)を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。
スクラッチ(線状痕)の測定については、アルミニウムディスク用基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「ポリテックスφ12」)を使用し、基板荷重0.05MPa、テーブル回転速度30rpmで研磨用スラリーを20ml/分の速度で5分間供給して研磨を行い、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Micro−MAX)を使用し、Zoom15にて全面観察し、65.97cm2に相当する研磨処理された基板表面に存在するスクラッチ(線状痕)の個数を数えて合計し、次の基準に従って評価した。
線状痕の個数 評 価
80個未満 「少ない」
80個以上 「多い」
少なくとも80個以上で総数をカウントできない程多い 「※」
[Polishing test method]
A slurry (polishing slurry) containing the silica-based composite fine particle dispersion obtained in each of Examples and Comparative Examples was prepared. Here, the solid content concentration was 9% by mass.
Next, an aluminosilicate glass substrate for a hard disk was prepared as a substrate to be polished. This substrate has a donut shape, an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.635 mm. This substrate was pre-polished and had a surface roughness (Ra) of 0.3 nm.
Next, the substrate to be polished is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad (“Polytex φ12” manufactured by Nitta Haas) is used, with a substrate load of 0.18 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the polishing slurry at a rate of 20 ml / min for 10 minutes.
And the grinding | polishing speed | rate was calculated by calculating | requiring the weight change of the to-be-polished base material before and behind grinding | polishing.
Moreover, the smoothness (surface roughness Ra) of the surface of the polishing substrate was measured using an atomic force microscope (AFM, manufactured by Hitachi High-Tech Science Co., Ltd.).
For measurement of scratches (line marks), an aluminum disk substrate was set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad (“Polytex φ12” manufactured by Nitta Haas) was used. Polishing is performed by supplying polishing slurry at a rate of 20 ml / min for 5 minutes at a table rotation speed of 30 MPa at .05 MPa, using an ultra-fine defect / visualization macro apparatus (product name: Micro-MAX) manufactured by VISION PSYTEC. The entire surface was observed with Zoom 15, and the number of scratches (linear traces) present on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled, and evaluated according to the following criteria.
Number of linear marks Evaluation Less than 80
80 or more "Many"
At least 80 and so many that the total number cannot be counted

<実施例1>
《シリカゾル(60nm)》の調製
エタノール12,090gと正珪酸エチル6,363.9gとを混合し、混合液a1とした。
次に、超純水6,120gと29%アンモニア水444.9gとを混合し、混合液b1とした。
次に、超純水192.9gとエタノール444.9gとを混合して敷き水とした。
そして、敷き水を撹拌しながら75℃に調整し、ここへ、混合液a1及び混合液b1を、各々10時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を75℃のまま3時間保持して熟成させた後、固形分濃度を調整し、SiO2固形分濃度19質量%、レーザー回折・散乱法大塚電子社製のPAR−IIIにより測定された平均粒子径60nmのシリカゾルを9,646.3g得た。
<Example 1>
"Silica sol (60 nm)" were mixed and prepared ethanol 12,090g and ethyl orthosilicate 6,363.9g of was a mixture a 1.
Next, 6,120 g of ultrapure water and 444.9 g of 29% ammonia water were mixed to obtain a mixed solution b 1 .
Next, 192.9 g of ultrapure water and 444.9 g of ethanol were mixed and used as bedding water.
Then, the stirring water was adjusted to 75 ° C. while stirring, and the mixed solution a 1 and the mixed solution b 1 were simultaneously added so that the addition was completed in 10 hours each. When the addition is completed, the liquid temperature is kept at 75 ° C. for 3 hours and ripened, then the solid content concentration is adjusted, and the SiO 2 solid content concentration is 19% by mass. Laser diffraction / scattering method PAR- manufactured by Otsuka Electronics Co., Ltd. 9,646.3 g of silica sol having an average particle diameter of 60 nm measured by III was obtained.

《シリカゾル(平均粒子径108nm)》の調製
メタノール2,733.3gと正珪酸エチル1,822.2gとを混合し、混合液a2とした。
次に、超純水1,860.7gと29%アンモニア水40.6gとを混合し、混合液b2とした。
次に、超純水59gとメタノール1,208.9gとを混合して敷き水として、前工程で得た平均粒子径60nmのシリカゾル922.1gを加えた。
そして、シリカゾルを含んだ敷き水を撹拌しながら65℃に調整し、ここへ、混合液a2及び混合液b2を、各々18時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を65℃のまま3時間保持して熟成させた後、固形分濃度(SiO2固形分濃度)を19質量%に調整し、3,600gの高純度シリカゾルを得た。
この高純度シリカゾルの含まれる粒子は大塚電子社製のPAR−IIIにより測定した平均粒子径が108nmであった。
また、ICP測定によるアルカリ金属、アルカリ土類金属等の含有率は1ppm以下であった。母粒子に含まれる各種元素又はイオン種の分析結果を第1表に記す。(以下の実施例及び比較例も同様)
"Silica sol (average particle size 108 nm)" was mixed with the preparation of methanol 2,733.3g of the ethyl orthosilicate 1,822.2G, was mixed solution a 2.
Next, 1,860.7 g of ultrapure water and 40.6 g of 29% ammonia water were mixed to obtain a mixed solution b 2 .
Next, 592.1 g of ultrapure water and 1,208.9 g of methanol were mixed and used as a covering water, and 922.1 g of silica sol having an average particle diameter of 60 nm obtained in the previous step was added.
Then, the water containing the silica sol was adjusted to 65 ° C. while stirring, and the mixed solution a 2 and the mixed solution b 2 were simultaneously added so that the addition was completed in 18 hours. When the addition was completed, the liquid temperature was kept at 65 ° C. for 3 hours for aging, and then the solid content concentration (SiO 2 solid content concentration) was adjusted to 19% by mass to obtain 3,600 g of high-purity silica sol. .
The particles contained in the high-purity silica sol had an average particle diameter of 108 nm as measured by PAR-III manufactured by Otsuka Electronics Co., Ltd.
Further, the content of alkali metals, alkaline earth metals, and the like by ICP measurement was 1 ppm or less. Table 1 shows the analysis results of various elements or ionic species contained in the mother particles. (The following examples and comparative examples are also the same)

次に、この高純度シリカゾル1,053gに陽イオン交換 三菱化学社製SK−1BH)114gを徐々に添加して30分間攪拌し樹脂を分離した。この時のpHは5.1であった。
得られたシリカゾルに超純水を加えて、SiO2固形分濃度3質量%のA液6,000gを得た。(以下、シリカ系複合微粒子分散液の製造工程において、後記B液に対して投入するシリカゾルを「A液」とする。)
Next, 114 g of cation exchange SK-1BH (manufactured by Mitsubishi Chemical Corporation) was gradually added to 1,053 g of this high-purity silica sol and stirred for 30 minutes to separate the resin. The pH at this time was 5.1.
Ultrapure water was added to the obtained silica sol to obtain 6,000 g of Liquid A having a SiO 2 solid content concentration of 3% by mass. (Hereinafter, in the manufacturing process of the silica-based composite fine particle dispersion, the silica sol to be added to the B liquid described later is referred to as “A liquid”.)

次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB液を得た。(以下、セリウム金属塩分散液を「B液」とする。) Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc., 4N high-purity reagent) to obtain 2.5 mass% B liquid in terms of CeO 2 . (Hereinafter, the cerium metal salt dispersion is referred to as “Liquid B”.)

次に、A液(6,000g)を50℃まで昇温して、撹拌しながら、ここへB液(8,453g、SiO2の100質量部に対して、CeO2が117.4質量部に相当)を18時間かけて添加した。この間、液温を50℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.85を維持するようにした。
そして、B液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が7質量%、pHが9.1(25℃にて)、電導度が67μs/cm(25℃にて)であった。
Next, the liquid A (6,000 g) was heated to 50 ° C. and stirred, while the liquid B (8,453 g, 100 parts by mass of SiO 2) was equivalent to 117.4 parts by mass of CeO 2. Was added over 18 hours. During this time, the liquid temperature was maintained at 50 ° C., and 3% ammonia water was added as necessary to maintain pH 7.85.
And when addition of B liquid was complete | finished, the liquid temperature was raised to 93 degreeC and ageing | curing | ripening was performed for 4 hours. After aging, the product was allowed to cool by allowing it to stand indoors, and after cooling to room temperature, washing was performed while supplying ion-exchanged water with an outer membrane. The precursor particle dispersion obtained after the washing was finished had a solid content concentration of 7% by mass, a pH of 9.1 (at 25 ° C.), and an electric conductivity of 67 μs / cm (at 25 ° C.). .

次に得られた前駆体粒子分散液に5質量%酢酸を加えてpHを6.5に調整して、120℃の乾燥機中で16時間乾燥させた後、1090℃のマッフル炉を用いて2時間焼成を行い、粉体を得た。   Next, 5% by mass acetic acid was added to the obtained precursor particle dispersion to adjust the pH to 6.5, followed by drying in a 120 ° C. dryer for 16 hours, and then using a 1090 ° C. muffle furnace. Firing was performed for 2 hours to obtain a powder.

得られた粉体125gにイオン交換水375gを加え、さらに3%アンモニア水溶液を用いてpHを9に調整した後、φ0.22mmの高純度シリカビーズ(大研化学工業株式会社製)にて湿式解砕、粉砕を行い、固形分濃度20質量%のシリカ系複合微粒子分散液540gを得た。   After adding 375 g of ion-exchanged water to 125 g of the obtained powder and further adjusting the pH to 9 using a 3% aqueous ammonia solution, it was wetted with high-purity silica beads of φ0.22 mm (manufactured by Daiken Chemical Co., Ltd.). Crushing and pulverization were performed to obtain 540 g of a silica-based composite fine particle dispersion having a solid content concentration of 20% by mass.

得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子について、各種元素又はイオン種の分析結果(含有率)を第1表に記す。(以下の実施例及び比較例も同様)   Table 1 shows the analysis results (content ratios) of various elements or ion species for the silica-based composite particles contained in the obtained silica-based composite particle dispersion. (The following examples and comparative examples are also the same)

得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子についてX線回折法によって測定したところ、Cerianiteの回折パターンが見られた。   When the silica-based composite fine particles contained in the obtained silica-based composite fine particle dispersion were measured by an X-ray diffraction method, a Ceriaite diffraction pattern was observed.

次にシリカ系複合微粒子分散液をロータリーエバポレーターで濃縮し、次いでイオン交換水で希釈して濃度調整を行い、9質量%の研磨用スラリーを得て、研磨試験を行った。また、研磨スラリーに含まれるシリカ系複合微粒子の短径/長径比を測定した。結果を第1表に示す。
また、シリカ系複合微粒子の平均粒子径は、日機装株式会社製の動的光散乱法測定装置マイクトラックUPAを用いて測定した。結果を第1表に示す
Next, the silica-based composite fine particle dispersion was concentrated with a rotary evaporator, then diluted with ion-exchanged water to adjust the concentration, to obtain a 9% by mass polishing slurry, and a polishing test was performed. Moreover, the minor axis / major axis ratio of the silica-based composite fine particles contained in the polishing slurry was measured. The results are shown in Table 1.
Further, the average particle size of the silica-based composite fine particles was measured using a dynamic light scattering measurement device, Microtrack UPA, manufactured by Nikkiso Co., Ltd. The results are shown in Table 1.

また、実施例1で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子についてSEM,TEMを用いて観察した。SEM像とTEM像(100,000倍)を図1(a)、(b)に示す。
また、子粒子の粒子径を測定した透過電顕像(300,000倍)を図1(c)に示す。
Further, the silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained in Example 1 were observed using SEM and TEM. An SEM image and a TEM image (100,000 times) are shown in FIGS.
Further, FIG. 1C shows a transmission electron microscope image (300,000 times) obtained by measuring the particle diameter of the child particles.

さらに、実施例1で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子のX線回折パターンを図2に示す。   Furthermore, FIG. 2 shows an X-ray diffraction pattern of the silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained in Example 1.

図2のX線回折パターンでは、かなりシャープなCerianiteの結晶であり、TEMやSEM像からセリア結晶粒子がシリカ表面と強く焼結しているように見える。
また、図1からは、シリカ粒子の表面は薄い被膜状のもので覆われている様子が観察される。
In the X-ray diffraction pattern of FIG. 2, it is a fairly sharp Ceriaite crystal, and it appears that ceria crystal particles are strongly sintered with the silica surface from TEM and SEM images.
Further, from FIG. 1, it is observed that the surface of the silica particles is covered with a thin film.

<実施例2>
実施例1ではB液の添加量の条件を8,453g(SiO2の100質量部に対して、CeO2が117.4質量部に相当)としたが、実施例2ではB液の添加量の条件を2,153g、SiO2の100質量部に対して、CeO2が29.9質量部に相当)とし、その他の操作については実施例1と同様に行い、同様の測定等を行った。
結果を第1表に示す。
<Example 2>
In Example 1, the condition of the addition amount of the B solution was 8,453 g (CeO 2 was equivalent to 117.4 parts by mass with respect to 100 parts by mass of SiO 2 ). In Example 2, the addition amount of the B solution was The other conditions were the same as those in Example 1 and the same measurements were performed, with 2153 g, 100 parts by mass of SiO 2 and CeO 2 equivalent to 29.9 parts by mass). .
The results are shown in Table 1.

<実施例3>
実施例1ではB液の添加量の条件を8,453g(SiO2の100質量部に対して、CeO2が117.4質量部に相当)としたが、実施例3ではB液の添加量の条件を1,080g、SiO2の100質量部に対して、CeO2が15質量部に相当)とし、その他の操作については実施例1と同様に行い、同様の測定等を行った。
結果を第1表に示す。
<Example 3>
In Example 1, the condition of the addition amount of the B liquid was 8,453 g (CeO 2 was equivalent to 117.4 parts by mass with respect to 100 parts by mass of SiO 2 ). The above conditions were 1,080 g, and CeO 2 was equivalent to 15 parts by mass with respect to 100 parts by mass of SiO 2. The other operations were performed in the same manner as in Example 1, and the same measurements were performed.
The results are shown in Table 1.

<実施例4>
《異形シリカゾル(平均粒子径35nm)》の調製
エタノール7,100gと正珪酸エチル3,742gとを混合し、混合液a2とした。
次に、超純水1,060gと29%アンモニア水128gとを混合し、混合液b2とした。
次に、エタノール1,868gを敷き水とした。
そして、敷き水を撹拌しながら75℃に調整し、ここへ、混合液a2および混合液b2を、各々6時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を75℃のまま3時間保持して熟成させた後、固形分濃度を調整し、SiO2固形分濃度19質量%、大塚電子社製PAR−IIIにより測定された平均粒子径35nmのシリカゾルを5,400g得た。
得られた異形シリカゾルに超純水を加えて、SiO2固形分濃度3質量%のA液を得た。
<Example 4>
"Variant silica sol (average particle size 35 nm)" was mixed with the preparation of ethanol 7,100g of the ethyl orthosilicate 3,742G, was mixed solution a 2.
Next, 1,060 g of ultrapure water and 128 g of 29% ammonia water were mixed to obtain a mixed solution b 2 .
Next, 1,868 g of ethanol was used as water.
Then, the stirring water was adjusted to 75 ° C. while stirring, and the mixed solution a 2 and the mixed solution b 2 were added simultaneously so that the addition was completed in 6 hours each. After the addition was completed, the liquid temperature was kept at 75 ° C. for 3 hours and ripened, then the solid content concentration was adjusted, and the average of SiO 2 solid content concentration 19% by mass, measured by PAR-III manufactured by Otsuka Electronics Co., Ltd. 5,400 g of silica sol having a particle diameter of 35 nm was obtained.
Ultrapure water was added to the obtained irregular shaped silica sol to obtain a liquid A having a SiO 2 solid content concentration of 3% by mass.

次に、B液の添加量の条件を2,398g(SiO2の100質量部に対して、CeO2が33.3質量部に相当)とし、他の条件は実施例1と同じ条件にしてシリカ・セリア複合酸化物を含むシリカ系複合粒子分散液を調製した。そして、実施例1と同様の操作を行い、同様の測定を行った。結果を第1表に示す。 Next, the condition for the addition amount of the liquid B is 2,398 g (corresponding to 33.3 parts by mass of CeO 2 with respect to 100 parts by mass of SiO 2 ), and other conditions are the same as those in Example 1. A silica-based composite particle dispersion containing silica-ceria composite oxide was prepared. And operation similar to Example 1 was performed and the same measurement was performed. The results are shown in Table 1.

<実施例5>
《高純度珪酸液》の調製
SiO2濃度が24.06質量%、Na2O濃度が7.97質量%の珪酸ナトリウム水溶液を用意した。そして、この珪酸ナトリウム水溶液にSiO2濃度が5.0質量%となるように純水を添加した。
<Example 5>
<Preparation of High-Purity Silicic Acid Solution> An aqueous sodium silicate solution having an SiO 2 concentration of 24.06% by mass and an Na 2 O concentration of 7.97% by mass was prepared. Then, pure water was added so that SiO 2 concentration of 5.0 wt% to the aqueous solution of sodium silicate.

[酸性珪酸液]
得られた5.0質量%の珪酸ナトリウム水溶液18kgを、6Lの強酸性陽イオン交換樹脂(SK1BH、三菱化学社製)に空間速度3.0h-1で通液させ、pHが2.7の酸性珪酸液18kgを得た。
得られた酸性珪酸液のSiO2濃度は4.7質量%であった。
[Acid silicic acid solution]
18 kg of the obtained 5.0 mass% sodium silicate aqueous solution was passed through 6 L of strongly acidic cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.0 h −1 , and the pH was 2.7. 18 kg of acidic silicic acid solution was obtained.
The obtained acidic silicic acid solution had a SiO 2 concentration of 4.7% by mass.

[高純度珪酸液]
次に、酸性珪酸液を、強酸性陽イオン交換樹脂(SK1BH、三菱化学社製)に空間速度3.0h-1で通液させ、pHが2.7の高純度珪酸液を得た。得られた高純度珪酸液のSiO2濃度は4.4質量%であった。
[High purity silicic acid solution]
Next, the acidic silicic acid solution was passed through a strongly acidic cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.0 h −1 to obtain a high purity silicic acid solution having a pH of 2.7. The high-purity silicic acid solution obtained had a SiO 2 concentration of 4.4% by mass.

《シリカゾル(平均粒子径25nm)》の調製
純水42gに高純度珪酸液を攪拌しながら514.5g添加し、次いで15%のアンモニア水を1,584.6g添加し、その後83℃に昇温して30分保持した。
次に高純度珪酸液13,700gを18時間かけて添加し、添加終了後に83℃を保持したまま熟成を行い、平均粒子径25nmのシリカゾルを得た。
得られたシリカゾルを40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度が12%まで濃縮した。
<Preparation of silica sol (average particle size 25 nm)> While stirring a high-purity silicic acid solution in 42 g of pure water, 514.5 g was added, and then 1558% ammonia water was added in 1,584.6 g. And held for 30 minutes.
Next, 13,700 g of high-purity silicic acid solution was added over 18 hours, and after completion of the addition, aging was carried out while maintaining 83 ° C. to obtain a silica sol having an average particle diameter of 25 nm.
The obtained silica sol was cooled to 40 ° C., and the SiO 2 concentration was concentrated to 12% with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei).

《シリカゾル(平均粒子径45nm)》の調製
純水991gに攪拌しながら12%の25nmシリカゾルを963g加えた。次いで15%アンモニア水1,414gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液12,812gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、平均粒子径45nmのシリカゾルを得た。
得られたシリカゾルを40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度が12%まで濃縮した。
Preparation of << Silica Sol (Average Particle Diameter 45 nm) 963 g of 12% 25 nm silica sol was added to 991 g of pure water with stirring. Next, 1,414 g of 15% aqueous ammonia was added, and then the temperature was raised to 87 ° C. and held for 30 minutes.
Next, 12,812 g of high-purity silicic acid solution was added over 18 hours, and after completion of the addition, aging was performed while maintaining 87 ° C. to obtain a silica sol having an average particle diameter of 45 nm.
The obtained silica sol was cooled to 40 ° C., and the SiO 2 concentration was concentrated to 12% with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei).

《シリカゾル(平均粒子径70nm)》の調製
純水705gに攪拌しながら12%の平均粒子径45nmシリカゾルを705g加えた。次いで15%アンモニア水50gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液7,168gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、平均粒子径70nmのシリカゾルを得た。
得られたシリカゾルを40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度が12%まで濃縮した。
Preparation of << Silica Sol (Average Particle Diameter 70nm) 705g of 12% average particle diameter 45nm silica sol was added to 705g of pure water with stirring. Next, 50 g of 15% aqueous ammonia was added, and then the temperature was raised to 87 ° C. and held for 30 minutes.
Next, 7,168 g of high-purity silicic acid solution was added over 18 hours, and after completion of the addition, aging was carried out while maintaining 87 ° C. to obtain a silica sol having an average particle diameter of 70 nm.
The obtained silica sol was cooled to 40 ° C., and the SiO 2 concentration was concentrated to 12% with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei).

《シリカゾル(96nm)》の調製
純水1,081gに攪拌しながら12質量%の平均粒子径70nmシリカゾルを1,081g加えた。次いで15%アンモニア水50gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液6,143gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、大塚電子社製PAR−IIIで平均粒子径96nmのシリカゾルを得た。
得られたシリカゾルを40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度が12%まで濃縮した。濃縮後のシリカゾルに陰イオン交換樹脂 三菱化学社製 SANUP Bを添加して陰イオンを除去した。
得られたシリカゾルに超純水を加えて、SiO2固形分濃度3質量%のA液を得た。
B液の添加量の条件を8,453g(SiO2の100質量部に対して、CeO2が117.4質量部に相当)とし、他の条件は実施例1と同じ条件にしてシリカ・セリア複合酸化物を含むシリカ系複合粒子分散液を調製した。そして、実施例1と同様の操作を行い、同様の測定を行った。結果を第1表に示す。
Preparation of <Silica sol (96 nm)> 1081 g of silica sol having an average particle diameter of 70% by mass of 12% by mass was added to 1,081 g of pure water. Next, 50 g of 15% aqueous ammonia was added, and then the temperature was raised to 87 ° C. and held for 30 minutes.
Next, 6,143 g of high-purity silicic acid solution was added over 18 hours, and after completion of the addition, aging was performed while maintaining 87 ° C., and a silica sol having an average particle size of 96 nm was obtained with PAR-III manufactured by Otsuka Electronics Co., Ltd.
The obtained silica sol was cooled to 40 ° C., and the SiO 2 concentration was concentrated to 12% with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei). Anion exchange resin SANUP B manufactured by Mitsubishi Chemical Corporation was added to the silica sol after concentration to remove anions.
Ultrapure water was added to the obtained silica sol to obtain a liquid A having a SiO 2 solid content concentration of 3% by mass.
The condition of the addition amount of the liquid B is 8,453 g (CeO 2 is equivalent to 117.4 parts by mass with respect to 100 parts by mass of SiO 2 ), and the other conditions are the same as those in Example 1, and silica ceria. A silica-based composite particle dispersion containing a composite oxide was prepared. And operation similar to Example 1 was performed and the same measurement was performed. The results are shown in Table 1.

また、実施例5で得られたシリカ系複合微粒子分散液についてSEM、TEMを用いて観察した。SEM像とTEM像(100,000倍)を図3(a)、(b)に示す。   Further, the silica-based composite fine particle dispersion obtained in Example 5 was observed using SEM and TEM. An SEM image and a TEM image (100,000 times) are shown in FIGS.

さらに、実施例5で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子のX線回折パターンを図4に示す。   Furthermore, the X-ray diffraction pattern of the silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained in Example 5 is shown in FIG.

図3(a)、(b)のSEM像、TEM像や図4のX線回折ピークから、実施例1とほぼ同じ粒子が得られていることが分かる。また、実施例1の粒子に比べ実施例5の粒子はケイ酸ナトリウムを原料としているために若干Naが高く、このためにシリカ系複合微粒子の焼成は若干低めの温度で行わないと結晶子径が大きくなりすぎる傾向があるため、1,070℃で実施した。   From the SEM images and TEM images of FIGS. 3A and 3B and the X-ray diffraction peak of FIG. In addition, the particles of Example 5 are slightly higher in Na than the particles of Example 1 because sodium silicate is used as a raw material. For this reason, the silica-based composite fine particles must be fired at a slightly lower temperature. Since it tends to be too large, it was carried out at 1,070 ° C.

<実施例6>
実施例1ではB液の添加量の条件を8,453g(SiO2の100質量部に対して、CeO2が117.4質量部に相当)としたが、実施例7ではB液の添加量の条件を14,400g、SiO2の100質量部に対して、CeO2が200質量部に相当)とし、その他の操作については実施例1と同様に行い、同様の測定等を行った。
結果を第1表に示す。
<Example 6>
In Example 1, the condition of the addition amount of B liquid was 8,453 g (CeO 2 was equivalent to 117.4 parts by mass with respect to 100 parts by mass of SiO 2 ). In Example 7, the addition amount of B liquid was 14400 g, with respect to 100 parts by mass of SiO 2 , CeO 2 corresponds to 200 parts by mass), and other operations were performed in the same manner as in Example 1 and the same measurements were performed.
The results are shown in Table 1.

<実施例7>
実施例1ではB液の添加量の条件を8,453g(SiO2の100質量部に対して、CeO2が117.4質量部に相当)としたが、実施例7ではB液の添加量の条件を1,8000g、SiO2の100質量部に対して、CeO2が250質量部に相当)とし、その他の操作については実施例1と同様に行い、同様の測定等を行った。
結果を第1表に示す。
<Example 7>
In Example 1, the condition of the addition amount of B liquid was 8,453 g (CeO 2 was equivalent to 117.4 parts by mass with respect to 100 parts by mass of SiO 2 ). In Example 7, the addition amount of B liquid was The condition was 18000 g, and CeO 2 was equivalent to 250 parts by mass with respect to 100 parts by mass of SiO 2 .
The results are shown in Table 1.

<比較例1>
実施例1で得られた母粒子について(すなわち、アルコキシシランを原料とした平均粒子径108nmの母粒子をシリカ系複合微粒子として扱って)、研磨試験を行った。
結果を第1表に示す。
<Comparative Example 1>
A polishing test was performed on the base particles obtained in Example 1 (that is, base particles having an average particle diameter of 108 nm using alkoxysilane as a raw material were treated as silica-based composite fine particles).
The results are shown in Table 1.

<比較例2>
実施例4で得られた母粒子について(すなわち、アルコキシシランを原料とした平均粒子径35nmの異形シリカ母粒子をシリカ系複合微粒子として扱って)、研磨試験を行った。
結果を第1表に示す。
<Comparative Example 2>
A polishing test was carried out on the mother particles obtained in Example 4 (that is, irregularly shaped silica mother particles having an average particle diameter of 35 nm using alkoxysilane as a raw material were treated as silica-based composite fine particles).
The results are shown in Table 1.

<比較例3>
実施例5で得られた母粒子について(すなわち、水硝子を原料とした平均粒子径96nmの母粒子をシリカ系複合微粒子として扱って)、研磨試験を行った。
結果を第1表に示す。
<Comparative Example 3>
A polishing test was performed on the base particles obtained in Example 5 (that is, base particles having an average particle diameter of 96 nm made from water glass as a raw material were treated as silica-based composite fine particles).
The results are shown in Table 1.

<比較例4>
実施例1ではB液の添加量の条件を8,453g(SiO2の100質量部に対して、CeO2が117.4質量部に相当)としたが、比較例4ではB液の添加量の条件を360g、SiO2の100質量部に対して、CeO2が5質量部に相当)とし、その他の操作については実施例1と同様に行った。しかし、粒子が異常成長しているため湿式粉砕が困難で収率がかなり悪かった。結果を第1表に示す。
<Comparative Example 4>
In Example 1, the condition of the addition amount of the B solution was 8,453 g (CeO 2 was equivalent to 117.4 parts by mass with respect to 100 parts by mass of SiO 2 ). In Comparative Example 4, the addition amount of the B solution was These conditions were 360 g, and CeO 2 was equivalent to 5 parts by mass with respect to 100 parts by mass of SiO 2. The other operations were performed in the same manner as in Example 1. However, since the particles grew abnormally, wet pulverization was difficult and the yield was considerably poor. The results are shown in Table 1.

また、比較例4で得られたシリカ系複合微粒子分散液についてSEM、TEMを用いて観察した。SEM像とTEM像(100,000倍)を図5(a)、(b)に示す。   Further, the silica composite fine particle dispersion obtained in Comparative Example 4 was observed using SEM and TEM. An SEM image and a TEM image (100,000 times) are shown in FIGS.

さらに、比較例4で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子のX線回折パターンを図6に示す。   Furthermore, the X-ray diffraction pattern of the silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained in Comparative Example 4 is shown in FIG.

図5(a)、(b)より、比較例4の粒子は元の球状粒子の形が崩れ、大きな異形の粒子になっている。
これは、被覆するセリアの量が少ないため、母粒子同士の融着が起こり易いためと考えられる。
5 (a) and 5 (b), the particles of Comparative Example 4 lose their original spherical particle shape and become large irregularly shaped particles.
This is presumably because the amount of ceria to be coated is small and the mother particles are likely to be fused together.

また、図6のX線回折より酸化セリウムの結晶以外にCristobaliteが生成しており、これも被覆するセリアの量が少ないため、母粒子同士の融着が起こり易いために変形したり、母粒子が結晶化したと考えられる。   In addition to the cerium oxide crystals, Cristobalite is generated from the X-ray diffraction of FIG. 6, and this also has a small amount of ceria to be coated, so that the mother particles are likely to be fused with each other. Is considered to have crystallized.

<比較例5>
実施例1ではB液の添加量の条件を8,453g(SiO2の100質量部に対して、CeO2が117.4質量部に相当)としたが、比較例5ではB液の添加量の条件を28801g、SiO2の100質量部に対して、CeO2が400質量部に相当)とし、その他の操作については実施例1と同様に行った。
<Comparative Example 5>
In Example 1, the condition of the addition amount of the B solution was 8,453 g (CeO 2 was equivalent to 117.4 parts by mass with respect to 100 parts by mass of SiO 2 ). In Comparative Example 5, the addition amount of the B solution was The conditions were 28801 g, and CeO 2 was equivalent to 400 parts by mass with respect to 100 parts by mass of SiO 2. The other operations were performed in the same manner as in Example 1.

本発明の複合粒子は、不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。   Since the composite particle of the present invention does not contain impurities, it can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate.

Claims (5)

非晶質シリカを主成分とする母粒子の表面に、結晶性セリアを主成分とする子粒子が結合していて、下記[1]から[4]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子は、X線回折に供すると、前記結晶性セリアの(111)面の結晶子径が10〜25nmであること。
[4]前記シリカ系複合微粒子は、画像解析法で測定された短径/長径比が0.8以下である粒子の個数割合が50%以上であること。
Child particles mainly composed of crystalline ceria are bonded to the surface of mother particles mainly composed of amorphous silica, and have an average particle diameter of 50 to 350 nm having the following features [1] to [4] A silica-based composite fine particle dispersion containing silica-based composite fine particles.
[1] The silica-based composite fine particles have a mass ratio of silica and ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] When the silica-based composite fine particles are subjected to X-ray diffraction, the crystallite diameter of the (111) plane of the crystalline ceria is 10 to 25 nm.
[4] The silica composite fine particles have a ratio of the number of particles having a minor axis / major axis ratio of 0.8 or less as measured by an image analysis method of 50% or more.
前記シリカ系複合微粒子は、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率がそれぞれ100ppm以下であり、U、Th、Cl、NO3、SO4およびFの含有率がそれぞれ5ppm以下であることを特徴とする請求項1記載のシリカ系複合微粒子分散液。 The silica-based composite fine particles have Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr element contents of 100 ppm or less, and U, Th, Cl 2. The silica-based composite fine particle dispersion according to claim 1, wherein the contents of NO 3 , SO 4 and F are each 5 ppm or less. 請求項1又は請求項2に記載のシリカ系複合微粒子分散液を含む、研磨用スラリー。   A polishing slurry comprising the silica-based composite fine particle dispersion according to claim 1. 下記の工程1及び工程2を備える、シリカ系複合微粒子分散液の製造方法。
工程1:シリカ微粒子が溶媒に分散してなるシリカゾルを、撹拌条件下、温度5〜98℃、pH範囲7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液のpHを6.0〜7.0とした後、これを乾燥させ、400〜1,200℃で焼成し、その後、乾式による解砕・粉砕及び溶媒分散を行うか、又は、湿式による解砕・粉砕を行うことで、請求項1に記載のシリカ系複合微粒子分散液を得る工程。
A method for producing a silica-based composite fine particle dispersion, comprising the following step 1 and step 2.
Step 1: A silica sol in which silica fine particles are dispersed in a solvent is continuously or intermittently maintained while stirring at a temperature of 5 to 98 ° C. and a pH range of 7.0 to 9.0. Adding to obtain a precursor particle dispersion containing the precursor particles.
Step 2: After the pH of the precursor particle dispersion is adjusted to 6.0 to 7.0, the precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and then subjected to dry crushing / pulverization and solvent dispersion. The process of obtaining the silica type composite fine particle dispersion of Claim 1 by performing or performing crushing and grinding | pulverization by wet.
前記工程1のシリカゾルとして、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率がそれぞれ100ppm以下であり、U、Th、Cl、NO3、SO4およびFの含有率がそれぞれ5ppm以下であるシリカ微粒子が溶媒に分散してなるシリカゾルを使用することを特徴とする請求項4記載のシリカ系複合微粒子分散液の製造方法。 As the silica sol of step 1, the content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr is 100 ppm or less, and U, Th, Cl The method for producing a silica-based composite fine particle dispersion according to claim 4, wherein a silica sol in which silica fine particles each containing 5 ppm or less of NO 3 , SO 4 and F are dispersed in a solvent is used.
JP2016008342A 2015-01-20 2016-01-19 Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion Active JP6603142B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015008438 2015-01-20
JP2015008438 2015-01-20
JP2015169967 2015-08-31
JP2015169967 2015-08-31

Publications (2)

Publication Number Publication Date
JP2017043531A JP2017043531A (en) 2017-03-02
JP6603142B2 true JP6603142B2 (en) 2019-11-06

Family

ID=58209710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008342A Active JP6603142B2 (en) 2015-01-20 2016-01-19 Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion

Country Status (1)

Country Link
JP (1) JP6603142B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267715B2 (en) 2017-06-01 2022-03-08 Jgc Catalysts And Chemicals Ltd. Ceria-based composite fine particle dispersion, production method therefor, and polishing abrasive grain dispersion including ceria-based composite fine particle dispersion
US20190127607A1 (en) 2017-10-27 2019-05-02 Versum Materials Us, Llc Composite Particles, Method of Refining and Use Thereof
JP7037918B2 (en) * 2017-11-13 2022-03-17 日揮触媒化成株式会社 Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
US11427730B2 (en) 2017-11-16 2022-08-30 Jgc Catalysts And Chemicals Ltd. Dispersion liquid of silica particles and production method therefor
JP7002350B2 (en) * 2018-01-23 2022-01-20 日揮触媒化成株式会社 Abrasive grain dispersion for polishing containing ceria-based composite hollow fine particle dispersion, its manufacturing method, and ceria-based composite hollow fine particle dispersion.
US11718767B2 (en) 2018-08-09 2023-08-08 Versum Materials Us, Llc Chemical mechanical planarization composition for polishing oxide materials and method of use thereof
JPWO2021241626A1 (en) * 2020-05-27 2021-12-02

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645265B1 (en) * 2002-07-19 2003-11-11 Saint-Gobain Ceramics And Plastics, Inc. Polishing formulations for SiO2-based substrates
JP4618974B2 (en) * 2002-12-25 2011-01-26 日揮触媒化成株式会社 Abrasive particles, method for producing the abrasive particles, and abrasive
JP5188175B2 (en) * 2007-12-28 2013-04-24 日揮触媒化成株式会社 Silica sol and method for producing the same
JP2012116734A (en) * 2010-12-03 2012-06-21 Jgc Catalysts & Chemicals Ltd Crystalline silica sol and method for producing the same
JP6352060B2 (en) * 2014-06-06 2018-07-04 花王株式会社 Polishing liquid composition for polishing silicon oxide film

Also Published As

Publication number Publication date
JP2017043531A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6948423B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
JP6603142B2 (en) Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion
US10920120B2 (en) Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion
WO2017183452A1 (en) Silica-based composite fine particle dispersion and method for manufacturing same
JP6829007B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
JP2019081672A (en) Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
JP6703437B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing the silica-based composite fine particle dispersion
JP6710100B2 (en) Method for producing silica-based composite fine particle dispersion
JP6385307B2 (en) Plate-like particle and polishing composition containing the plate-like particle
JP2019089670A (en) Ceria-based composite fine particle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite fine particle dispersion
JP6371193B2 (en) Method for producing silica-based composite particle dispersion
JP6598719B2 (en) Method for producing silica-based composite particle dispersion
JP6616794B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and abrasive abrasive dispersion containing silica-based composite fine particle dispersion
JP2019127405A (en) Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion
JP6648064B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion
JP7038031B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP7117225B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP6588050B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP6616795B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP2018168063A (en) Method for producing silica composite particle dispersion
JP2020023408A (en) Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
JP2021014375A (en) Ceria-based fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing ceria-based fine particle dispersion

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191010

R150 Certificate of patent or registration of utility model

Ref document number: 6603142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250