JP6603033B2 - High Mn content Fe-Cr-Ni alloy and method for producing the same - Google Patents

High Mn content Fe-Cr-Ni alloy and method for producing the same Download PDF

Info

Publication number
JP6603033B2
JP6603033B2 JP2015072236A JP2015072236A JP6603033B2 JP 6603033 B2 JP6603033 B2 JP 6603033B2 JP 2015072236 A JP2015072236 A JP 2015072236A JP 2015072236 A JP2015072236 A JP 2015072236A JP 6603033 B2 JP6603033 B2 JP 6603033B2
Authority
JP
Japan
Prior art keywords
less
mgo
alloy
cao
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015072236A
Other languages
Japanese (ja)
Other versions
JP2016191124A (en
Inventor
史明 桐原
秀和 轟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2015072236A priority Critical patent/JP6603033B2/en
Priority to CN201610174969.XA priority patent/CN106011688B/en
Publication of JP2016191124A publication Critical patent/JP2016191124A/en
Application granted granted Critical
Publication of JP6603033B2 publication Critical patent/JP6603033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、表面品質に優れた高Mn含有Fe-Cr-Ni合金に関するものである。さらに、高Mn含有Fe-Cr-Ni合金の精錬方法に関し、スラグ組成および溶鋼中微量成分を制御することにより、溶鋼中の表面品質に悪影響を及ぼす非金属介在物の生成を抑制して、表面品質に優れた高Mn含有Fe-Cr-Ni合金を製造する技術に関する。   The present invention relates to a high Mn content Fe—Cr—Ni alloy having excellent surface quality. Furthermore, regarding the refining method of Fe-Cr-Ni alloy with high Mn content, by controlling the slag composition and trace components in the molten steel, the formation of non-metallic inclusions that adversely affect the surface quality in the molten steel is suppressed, and the surface The present invention relates to a technology for producing high-quality, high-Mn-containing Fe—Cr—Ni alloys.

SUS304に代表されるFe-Cr-Ni合金は、優れた耐食性を有しており、さらに合金元素を加えることにより、さまざまな特性を持たせることができる優れた合金である。たとえば、Mnは、脱酸に有効な元素であるため、Fe-Cr-Ni合金に対して、汎用的に使用されている元素であるが、4%以上含有させると、Nの固溶度を上げ、鋼材を硬質化させることや、強度の冷間加工を加えても非磁性を保持させることができる。そのため、高Mn含有Fe-Cr -Ni合金は、電子機器部品や服飾用金属部品、化学プラントといった用途に使用されている。しかしながら、高Mn含有Fe-Cr-Ni合金は、非金属介在物により、加工割れや表面欠陥が生じるといった問題があった。   An Fe—Cr—Ni alloy represented by SUS304 has excellent corrosion resistance, and is an excellent alloy that can have various properties by adding alloy elements. For example, since Mn is an element effective for deoxidation, it is an element that is widely used for Fe-Cr-Ni alloys. However, if 4% or more is contained, the solid solubility of N is reduced. It is possible to maintain non-magnetism even if the steel material is hardened and the steel material is hardened or cold working is performed. Therefore, high Mn content Fe-Cr-Ni alloys are used in applications such as electronic equipment parts, metal parts for clothing, and chemical plants. However, the high Mn content Fe—Cr—Ni alloy has a problem that non-metallic inclusions cause work cracks and surface defects.

このような高Mn含有Fe-Cr-Ni合金の製造方法に関して、介在物形態を制御して普通造塊により鋳造する技術が、特許文献1等にて開示されている。特許文献1では、高Mn含有Fe-Cr-Ni合金において、Alによる脱酸を実施して酸素濃度を35ppm以下とし、介在物をMnO-SiO2-Cr2O3-Al2O3系に制御することを提案している。 With regard to a method for producing such a high Mn-containing Fe—Cr—Ni alloy, Patent Document 1 discloses a technique for casting by ordinary ingot control while controlling the inclusion form. In Patent Document 1, in a high Mn content Fe—Cr—Ni alloy, deoxidation with Al is performed to reduce the oxygen concentration to 35 ppm or less, and inclusions are changed to MnO—SiO 2 —Cr 2 O 3 —Al 2 O 3 system. Propose to control.

しかしながら、MnO-SiO2-Cr2O3-Al2O3系介在物は、MnOとCr2O3が凝集する作用を誘発して大型介在物を形成することがあり、最終的に鋼板製品に表面欠陥を引き起こす傾向があるため、避けるべき介在物であった。 However, MnO-SiO 2 -Cr 2 O 3 -Al 2 O 3 inclusions may induce the aggregation of MnO and Cr 2 O 3 to form large inclusions. It was an inclusion to be avoided because it tends to cause surface defects.

さらに、非金属介在物形態を制御して表面性状、耐食性、溶接性を改善する方法が、特許文献2および3に開示されている。しかし、これらの技術はMn含有量が3%以下のステンレス鋼に適用できるものであり、高Mn含有Fe-Cr-Ni合金には適用できなかった。   Furthermore, Patent Documents 2 and 3 disclose methods for improving the surface properties, corrosion resistance, and weldability by controlling the form of non-metallic inclusions. However, these techniques can be applied to stainless steel having an Mn content of 3% or less, and cannot be applied to a high Mn content Fe—Cr—Ni alloy.

特開2002−146429号公報JP 2002-146429 A 特開2004−149833号公報JP 2004-149833 A 特開2004−149830号公報JP 2004-149830 A

上記のように、従来の方法では、MnO-SiO2-Cr2O3-Al2O3系介在物の生成を抑制し、表面性状の優れた高Mn含有Fe-Cr-Ni合金を製造することは困難であった。本発明の目的は表面性状に優れた高Mn含有Fe-Ni-Cr合金を提供するとともに、該合金を汎用の設備を用いて安価に製造する方法を提案することにある。 As described above, the conventional method suppresses the formation of MnO—SiO 2 —Cr 2 O 3 —Al 2 O 3 inclusions, and produces a high Mn content Fe—Cr—Ni alloy with excellent surface properties. It was difficult. An object of the present invention is to provide a high-Mn-containing Fe—Ni—Cr alloy having excellent surface properties, and to propose a method for producing the alloy at low cost using general-purpose equipment.

発明者らは、上記課題を解決するために、鋭意研究を重ねた。まず、本発明者らは、高Mn含有Fe-Cr-Ni合金における表面欠陥部の調査を実施した。すなわち、表面欠陥部をSEM観察し、表面欠陥の起点となった異物組成を特定した。その結果、表面欠陥より検出された異物は、粗大なMnO-SiO2-Cr2O3-Al2O3系酸化物およびMgO・Al2O3酸化物が主体であった。これらの酸化物は、表面欠陥が発生した製品中に含まれる非金属介在物と同等の成分であった。したがって、表面欠陥の発生を防ぐためには、MnO-SiO2-Cr2O3-Al2O3系介在物およびMgO・Al2O3系介在物の生成を抑制しなければならないという指針が得られた。 Inventors repeated earnest research in order to solve the said subject. First, the present inventors conducted an investigation of surface defects in a high Mn content Fe—Cr—Ni alloy. That is, the surface defect portion was observed by SEM, and the foreign material composition that became the starting point of the surface defect was specified. As a result, the foreign matters detected from the surface defects were mainly coarse MnO—SiO 2 —Cr 2 O 3 —Al 2 O 3 oxide and MgO · Al 2 O 3 oxide. These oxides were components equivalent to non-metallic inclusions contained in the product in which surface defects occurred. Therefore, in order to prevent the occurrence of surface defects, there is a guideline that the formation of MnO-SiO 2 -Cr 2 O 3 -Al 2 O 3 inclusions and MgO · Al 2 O 3 inclusions must be suppressed. It was.

さらに研究を進めて、(Mg,Mn)O、(Mg,Mn)O・Al2O3、CaO-SiO2-MgO-Al2O3系酸化物の1種または2種以上を含み、(Mg,Mn)O・Al2O3を個数比率で50%以下とすれば表面欠陥を防止できることを突き止めた。ここで、MgO・Al2O3酸化物は凝集して大型介在物を形成する傾向が強いが、(Mg,Mn)O・Al2O3系に制御する方がその傾向が弱まることも明らかとなった。ここで、(Mg,Mn)Oに示すような括弧で示したのは、主成分であるMgOに対しMnOが固溶体を形成していることを意味する。(Mg,Mn)O・Al2O3も同様であり、主成分であるMgO・Al2O3に対しMnO・Al2O3が固溶体を形成していることを意味する。 In further research, including (Mg, Mn) O, (Mg, Mn) O.Al 2 O 3 , CaO-SiO 2 -MgO-Al 2 O 3 based oxide, or (2) It was found that surface defects can be prevented if the number ratio of Mg, Mn) O · Al 2 O 3 is 50% or less. Here, MgO · Al 2 O 3 oxide tends to aggregate to form large inclusions, but it is also clear that the tendency is weakened by controlling to (Mg, Mn) O · Al 2 O 3 system It became. Here, the parentheses as shown in (Mg, Mn) O mean that MnO forms a solid solution with respect to MgO as the main component. (Mg, Mn) O · Al 2 O 3 is also similar, which means that to MgO · Al 2 O 3 as the main component is MnO · Al 2 O 3 to form a solid solution.

次に、本発明者らは、この表面欠陥の発生有無と操業条件との相関関係を精査した。その結果、合金中の微量成分は、Si:0.1〜1%、Al:0.001〜0.1%以下、Mg:0.0001〜0.01%、Ca:0.0001〜0.01%、O:0.0005〜0.01%の範囲に制御する必要があることを明確にした。   Next, the inventors examined the correlation between the occurrence of surface defects and the operating conditions. As a result, the minor components in the alloy are controlled within the ranges of Si: 0.1 to 1%, Al: 0.001 to 0.1% or less, Mg: 0.0001 to 0.01%, Ca: 0.0001 to 0.01%, O: 0.0005 to 0.01%. Clarified that there is a need.

すなわち、本願発明はC:0.2%以下、Si:0.1〜1%、Mn:4〜20%、S:0.01%以下、Ni:4.37〜25%、Cr:16.22〜25%、Al:0.001〜0.1%以下、Mg:0.0001〜0.01%、Ca:0.0001〜0.01%、O:0.0005〜0.01%、残部がFeおよび不可避的不純物からなる合金において該合金中に含まれる非金属介在物が、MgO、MgO・Al2O3、CaO-SiO2-MgO-Al2O3系酸化物の1種または2種以上であり、MgO・Al2O3を個数比率で50%以下とする高Mn含有Fe-Cr-Ni合金である。 That is, the present invention is C: 0.2% or less, Si: 0.1-1%, Mn: 4-20%, S: 0.01% or less, Ni: 4.37-25% , Cr: 16.22-25% , Al: 0.001-0.1 % Or less, Mg: 0.0001 to 0.01%, Ca: 0.0001 to 0.01%, O: 0.0005 to 0.01%, and the balance of Fe and unavoidable impurities, the nonmetallic inclusions contained in the alloy are MgO, MgO・ Highly Mn-containing Fe- with one or more of Al 2 O 3 and CaO-SiO 2 -MgO-Al 2 O 3 oxides, with MgO / Al 2 O 3 being 50% or less by number ratio Cr-Ni alloy.

また、上記記載の成分に加えて、Mo:3%以下、Cu:3%以下、N:0.4%以下の1種または2種以上を含んでも良い。   In addition to the components described above, one or more of Mo: 3% or less, Cu: 3% or less, and N: 0.4% or less may be included.

上記において、上記MgOは、主成分MgO中にMnOが固溶してなる(Mg,Mn)Oであり、上記MgO・Al2O3は、主成分MgO・Al2O3中にMnO・Al2O3が固溶してなる(Mg,Mn)O・Al2O3ある In the above, the MgO is the main component MgO MnO is in solid solution in the (Mg, Mn) O, the MgO · Al 2 O 3 is MnO · Al in the main component MgO · Al 2 O 3 2 O 3 is formed by a solid solution (Mg, Mn) is O · Al 2 O 3.

さらに非金属介在物のうち、(Mg,Mn)O は、MgO:95%以上、MnO:5%以下、(Mg,Mn)O・Al2O3はMgO:10〜40%、MnO:0.1〜3%、Al2O3:60〜90%であり、CaO-SiO2-Al2O3-MgO系酸化物は、CaO:20〜60%、SiO2:10〜40%、Al2O3:40%以下、MgO:40%以下であることが好ましい。 Among non-metallic inclusions, (Mg, Mn) O is MgO: 95% or more, MnO: 5% or less, (Mg, Mn) O · Al 2 O 3 is MgO: 10-40%, MnO: 0.1 ~3%, Al 2 O 3: a 60~90%, CaO-SiO 2 -Al 2 O 3 -MgO based oxide, CaO: 20~60%, SiO 2 : 10~40%, Al 2 O 3 : It is preferable that it is 40% or less and MgO: 40% or less.

本願発明では本合金の製造方法も提案する。すなわち、電気炉にて、原料を溶解し、次いで、AODおよび/またはVODにおいて脱炭した後に、石灰、蛍石、フェロシリコン合金または、フェロシリコン合金および/またはAlを投入し、CaO/SiO2比:1.5〜10、MgO:3〜15%、Al2O3:15%未満からなるCaO-SiO2-MgO-Al2O3-F系スラグを用い、C:0.2%以下、Si:0.1〜1%、Mn:4〜20%、S:0.01%以下、Ni:4.37〜25%、Cr:16.22〜25%、Al:0.001〜0.1%以下、Mg:0.0001〜0.01%、Ca:0.0001〜0.01%、O:0.0005〜0.01%、残部がFeおよび不可避的不純物からなる合金に調整するものである。特に本願発明は、連続鋳造機にて鋳造してスラブを製造する場合により効果を発揮する。 In this invention, the manufacturing method of this alloy is also proposed. That is, after melting raw materials in an electric furnace and then decarburizing in AOD and / or VOD, lime, fluorite, ferrosilicon alloy or ferrosilicon alloy and / or Al are added, and CaO / SiO 2 ratio: 1.5~10, MgO: 3~15%, Al 2 O 3: using a CaO-SiO 2 -MgO-Al 2 O 3 -F -based slag consisting of less than 15%, C: 0.2% or less, Si: 0.1 -1 %, Mn: 4-20%, S: 0.01% or less, Ni: 4.37-25% , Cr: 16.22-25% , Al: 0.001-0.1% or less, Mg: 0.0001-0.01%, Ca: 0.0001- 0.01%, O: 0.0005 to 0.01%, the balance being adjusted to an alloy composed of Fe and inevitable impurities. In particular, the present invention is more effective when a slab is manufactured by casting with a continuous casting machine.

まず、本発明の高Mn含有Fe-Cr-Ni系合金について説明する。以下に化学成分の限定理由について説明する。なお、本願では「%」は「質量%」を意味する。   First, the high Mn content Fe—Cr—Ni alloy of the present invention will be described. The reason for limiting the chemical components will be described below. In the present application, “%” means “mass%”.

C:0.2%以下
Cはオーステナイト安定化元素であるが、多量に存在すると、CrおよびMo等と結合して炭化物を形成し、母材に含まれる固溶CrおよびMo量を低下させ、耐食性を劣化させる。そのため、C含有量は0.2%以下とした。
C: 0.2% or less
C is an austenite stabilizing element, but when present in a large amount, it combines with Cr and Mo to form carbides, lowers the amount of solid solution Cr and Mo contained in the base material, and degrades corrosion resistance. Therefore, the C content is set to 0.2% or less.

Si:0.1%〜1%
Siは脱酸に有効な元素であり、酸素濃度を0.01%以下に制御するためには、0.1%は必要である。さらに、CaO-SiO2-MgO-Al2O3-F系スラグ中のCaOやMgOを還元し、溶鋼中にCaやMgをそれぞれ0.0001%以上供給する役割もある。その観点からも0.1%は必要である。一方、1%を超えて含有すると、スラグ中のCaOやMgOを還元しすぎてしまい、Ca、Mgを0.01%超供給してしまう。その結果Caは、CaO単体の介在物を形成させてしまい、製品に表面欠陥を発生させてしまう。また、Mgはスラブ中にMg気泡を形成して表面欠陥をもたらす危険がある。そのため、Si含有量は、0.1%〜1%と規定した。好ましくは0.4〜0.8%である。
Si: 0.1% to 1%
Si is an element effective for deoxidation, and 0.1% is necessary to control the oxygen concentration to 0.01% or less. Furthermore, CaO and MgO in the CaO—SiO 2 —MgO—Al 2 O 3 —F slag are reduced, and there is also a role of supplying 0.0001% or more of Ca and Mg to the molten steel, respectively. From that point of view, 0.1% is necessary. On the other hand, if the content exceeds 1%, CaO and MgO in the slag are excessively reduced, and Ca and Mg are supplied in excess of 0.01%. As a result, Ca forms inclusions of CaO alone and causes surface defects in the product. Further, Mg has a risk of forming surface bubbles by forming Mg bubbles in the slab. Therefore, the Si content is defined as 0.1% to 1%. Preferably it is 0.4 to 0.8%.

Mn:4%〜20%
本願発明においてMnは重要な元素である。つまり、高Mn含有Fe-Cr-Ni合金においては、Nの固溶度を上げるため、鋼材を硬質化させることや、強度の冷間加工を加えても非磁性を保持させる。さらに、MgOおよびMgO・Al2O3介在物を、それぞれ、(Mg,Mn)O、(Mg,Mn)O・Al2O3に改質するためにも有用な元素である。これらのことを考慮して、4%以上の添加が必要である。しかしながら、20%以上添加すると、透磁性が上昇し非磁性を維持できない。さらには、有害なMnO-SiO2-Cr2O3-Al2O3系介在物を形成してしまう。これらの観点から、上限を20%とした。好ましくは8%〜19%である。より好ましくは、10%〜18%である。
Mn: 4% to 20%
In the present invention, Mn is an important element. In other words, in a high Mn-containing Fe—Cr—Ni alloy, in order to increase the solid solubility of N, non-magnetism is maintained even when the steel is hardened or subjected to strong cold working. Furthermore, MgO and MgO.Al 2 O 3 inclusions are useful elements for modifying (Mg, Mn) O and (Mg, Mn) O.Al 2 O 3 , respectively. In consideration of these matters, addition of 4% or more is necessary. However, if added in an amount of 20% or more, the permeability increases and the non-magnetic property cannot be maintained. Furthermore, harmful MnO—SiO 2 —Cr 2 O 3 —Al 2 O 3 inclusions are formed. From these viewpoints, the upper limit was made 20%. Preferably, it is 8% to 19%. More preferably, it is 10% to 18%.

S:0.01%以下
Sは熱間加工性を阻害する元素であると同時に、MnSを形成して耐食性を低下させる元素である。そのため、極力低下させるべきであり、S含有量は0.01%以下とした。好ましくは0.005%以下である。さらに好ましくは0.003%以下である。
S: 0.01% or less
S is an element that inhibits hot workability, and at the same time, is an element that forms MnS and lowers corrosion resistance. Therefore, it should be reduced as much as possible, and the S content is set to 0.01% or less. Preferably it is 0.005% or less. More preferably, it is 0.003% or less.

Ni:4.37〜25%
Niはオーステナイト相を安定にする元素である。また、対酸性とともに塩化物イオンを含む環境での耐食性を向上させる。さらには、Mnとともに非磁性の特性に有効な元素でもある。そのため、4.37〜25%の含有が必要である。
Ni: 4.37-25%
Ni is an element that stabilizes the austenite phase. Moreover, corrosion resistance in an environment containing chloride ions as well as acidity is improved. In addition to Mn, it is an effective element for nonmagnetic properties. Therefore, the content of 4.37-25% is necessary.

Cr:16.22〜25%
Crは耐食性を確保するために有効な元素である。不動態皮膜を合金表面に形成し、耐孔食性、対隙間腐食性ならびに耐応力腐食割れ性、耐酸性を改善するため、16.22〜25%の含有が必要である。
Cr: 16.22-25%
Cr is an effective element for ensuring corrosion resistance. In order to form a passive film on the alloy surface and improve pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and acid resistance, it is necessary to contain 16.22-25% .

Al:0.001%〜0.1%
Alは、脱酸に必要不可欠な元素であり、Al含有量が0.001%未満では、酸素濃度の上昇を招き(O>0.01%)、清浄度を悪化させ表面欠陥を引き起こす。しかし、0.1%を超えて含有すると、介在物組成がAl2O3アルミナとなり、クラスター起因の表面欠陥をもたらすばかりか、黒点を発生して溶接性を低下させる。さらに、0.1%を超えて含有すると、凝集し易い性質を持つ、MnOを含まないMgO・Al2O3介在物の生成を助長する傾向もある。そのため、Al含有量は、0.001%〜0.1%とした。好ましくは、0.001%〜0.02%である。より好ましくは0.001%〜0.01%である。
Al: 0.001% to 0.1%
Al is an indispensable element for deoxidation. If the Al content is less than 0.001%, the oxygen concentration increases (O> 0.01%), and the cleanliness is deteriorated to cause surface defects. However, if the content exceeds 0.1%, the inclusion composition becomes Al 2 O 3 alumina, which not only causes surface defects due to clusters, but also generates black spots and decreases weldability. Furthermore, when the content exceeds 0.1%, there is a tendency to promote the formation of MgO · Al 2 O 3 inclusions that do not contain MnO and that tend to aggregate. Therefore, the Al content is set to 0.001% to 0.1%. Preferably, it is 0.001% to 0.02%. More preferably, it is 0.001% to 0.01%.

Mg:0.0001%〜0.01%
Mgは鋼中の非金属介在物の組成を、クラスターを形成せず、表面品質に悪影響の無い酸化物系(Mg,Mn)OあるいはCaO-SiO2-Al2O3-MgO系酸化物に制御するために有効な元素である。その効果は、含有量が0.0001%未満では得られず、逆に、0.01%を超えて含有させると、スラブ中にMg気泡を形成するため、最終製品に表面欠陥をもたらす。そのため、Mg含有量は、0.0001%〜0.01%と規定した。好ましくは、0.0002〜0.005%である。より好ましくは、0.0003〜0.003%である。
溶鋼中に効果的にMgを添加させるには、下記の反応を利用することが好ましい。
2(MgO)+Si=(SiO2)+2Mg (1)
ここでの括弧内はスラグ中成分を示し、下線は溶鋼中成分を示す。
上記の範囲にMgを制御するには、スラグ塩基度を1.5〜10に制御するとともに、スラグ中MgO濃度を3〜15%に調整すればよい。
Mg: 0.0001% to 0.01%
Mg and the composition of nonmetallic inclusions in the steel, without forming clusters, oxides without adverse effect on surface quality system (Mg, Mn) in O or CaO-SiO 2 -Al 2 O 3 -MgO based oxide It is an effective element for controlling. The effect cannot be obtained when the content is less than 0.0001%. Conversely, when the content exceeds 0.01%, Mg bubbles are formed in the slab, resulting in surface defects in the final product. Therefore, the Mg content is defined as 0.0001% to 0.01%. Preferably, it is 0.0002 to 0.005%. More preferably, it is 0.0003 to 0.003%.
In order to effectively add Mg to the molten steel, it is preferable to use the following reaction.
2 (MgO) + Si = (SiO 2 ) + 2 Mg (1)
The parentheses here indicate the components in the slag, and the underline indicates the components in the molten steel.
In order to control Mg within the above range, the slag basicity may be controlled to 1.5 to 10 and the MgO concentration in the slag may be adjusted to 3 to 15%.

Ca:0.0001%〜0.01%
Caは鋼中の非金属介在物の組成を、クラスターを形成せず、表面品質に悪影響の無いCaO-SiO2-Al2O3-MgO系酸化物に制御するために有効な元素である。その効果は、含有量が0.0001%未満では得られず、逆に、0.01%を超えて含有させると、CaO単体の介在物が形成し、最終製品に表面欠陥をもたらす。そのためCa含有量は、0.0001%〜0.01%と規定した。好ましくは、0.0002〜0.005%である。より好ましくは、0.0003〜0.003%である。
溶鋼中に効果的にCaを添加させるには、下記の反応を利用することが好ましい。
2(CaO)+Si=(SiO2)+2Ca (2)
上記の範囲にCaを制御するには、スラグ塩基度を1.5〜10に制御すればよい。
Ca: 0.0001% to 0.01%
Ca is an effective element for controlling the composition of nonmetallic inclusions in steel to a CaO—SiO 2 —Al 2 O 3 —MgO oxide that does not form clusters and does not adversely affect the surface quality. The effect cannot be obtained when the content is less than 0.0001%. Conversely, when the content exceeds 0.01%, inclusions of simple CaO are formed, resulting in surface defects in the final product. Therefore, the Ca content is defined as 0.0001% to 0.01%. Preferably, it is 0.0002 to 0.005%. More preferably, it is 0.0003 to 0.003%.
In order to effectively add Ca into the molten steel, it is preferable to use the following reaction.
2 (CaO) + Si = (SiO 2 ) + 2 Ca (2)
In order to control Ca within the above range, the slag basicity may be controlled to 1.5 to 10.

O:0.0005%〜0.01%
Oは、鋼中に0.01%を超えて存在すると脱硫を阻害し、溶鋼中S濃度が0.01%を超えてしまう。逆に0.0005%未満と低くなると、Siがスラグ中のMgOやCaOを還元する能力を高めすぎてしまう。つまり、上記の(1)および(2)式の反応が進行しすぎてしまうことにより、溶鋼中のMgやCaがそれぞれ、0.01%を超えて高くなってしまう。そのため、O含有量は、0.0005%〜0.01%と規定した。この範囲に制御するためには、Si濃度を0.1%〜1%に調整することと、スラグの塩基度を1.5〜10に調整することが必要である。好ましくは、0.0006〜0.005%未満であり、さらに好ましくは、0.001〜0.004%である。
なお、このO含有量の値により、合金中の酸化物の総量を把握することができる。Oは、Mg、Al、Ca、Si等と酸化物を形成しているため、酸化物含有量はOの含有量の約1.3倍であることが知られている。このようにして酸化物の含有量を概算することができる。
O: 0.0005% to 0.01%
If O is present in the steel in an amount exceeding 0.01%, desulfurization is inhibited, and the S concentration in the molten steel exceeds 0.01%. On the other hand, if it is less than 0.0005%, Si will increase the ability to reduce MgO and CaO in the slag too much. In other words, when the reactions of the above formulas (1) and (2) progress too much, Mg and Ca in the molten steel become higher than 0.01%, respectively. Therefore, the O content is defined as 0.0005% to 0.01%. In order to control within this range, it is necessary to adjust the Si concentration to 0.1% to 1% and to adjust the basicity of the slag to 1.5 to 10. Preferably, it is 0.0006 to less than 0.005%, More preferably, it is 0.001 to 0.004%.
Note that the total amount of oxides in the alloy can be grasped from the value of the O content. Since O forms an oxide with Mg, Al, Ca, Si, etc., it is known that the oxide content is about 1.3 times the O content. In this way, the oxide content can be estimated.

さらに本願発明鋼は、下記の元素を1種または2種以上含有してもよい。
Mo:3%以下
Moは耐食性を向上する元素である。3%を超えると、σ相の形成傾向が強まり、脆化する傾向がある。そのため、3%以下に留めるのが望ましい。好ましくは2%以下である。
Furthermore, the present invention steel may contain one or more of the following elements.
Mo: 3% or less
Mo is an element that improves corrosion resistance. If it exceeds 3%, the tendency to form a σ phase becomes strong and tends to become brittle. Therefore, it is desirable to keep it below 3%. Preferably it is 2% or less.

Cu:3%以下
Cuは加工硬化を抑えて成形性を高めたるため有用な元素である。さらに、抗菌性や硫酸に対する耐食性を向上する元素でもある。しかし、多量に添加すると熱間加工性が低下すると共に靱性も低下する。そのため、3%以下が望ましい。より望ましくは2%以下である。
Cu: 3% or less
Cu is a useful element because it suppresses work hardening and improves formability. It is also an element that improves antibacterial properties and corrosion resistance to sulfuric acid. However, when added in a large amount, hot workability is lowered and toughness is also lowered. Therefore, 3% or less is desirable. More desirably, it is 2% or less.

N:0.4%以下
Nは、固溶強化元素であり、多量に含まれると鋼の硬さ及び耐食性を向上させる。しかしながら、過剰になると、Crの窒化物を形成し、加工性に悪影響を及ぼす。したがって、N含有量の上限を、0.4%以下とした。
N: 0.4% or less N is a solid solution strengthening element, and when contained in a large amount, improves the hardness and corrosion resistance of steel. However, if it is excessive, Cr nitride is formed, which adversely affects workability. Therefore, the upper limit of the N content is set to 0.4% or less.

非金属介在物
本発明では、(Mg,Mn)O(以下、MgOのみである場合も含む)、(Mg,Mn)O・Al2O3(以下、MgO・Al2O3のみである場合も含む)、CaO-SiO2-MgO-Al2O3系酸化物の1種または2種以上を含み、(Mg,Mn)O・Al2O3を個数比率で50%以下であることを好ましい態様としている。以下、非金属介在物の個数比率限定の根拠を示す。
Non-metallic inclusions In the present invention, (Mg, Mn) O (hereinafter also including only MgO), (Mg, Mn) O.Al 2 O 3 (hereinafter, only MgO.Al 2 O 3) Including one or more of CaO-SiO 2 -MgO-Al 2 O 3 type oxides, and (Mg, Mn) O · Al 2 O 3 in a number ratio of 50% or less This is a preferred embodiment. Hereinafter, the grounds for limiting the number ratio of non-metallic inclusions will be shown.

非金属介在物組成は、(Mg,Mn)O、(Mg,Mn)O・Al 2 O 3 、CaO-SiO 2 -MgO-Al 2 O 3 系酸化物の1種または2種以上を含み、(Mg,Mn)O・Al 2 O 3 を個数比率で50%以下
本発明に係るステンレス鋼は、鋼のSi、Al、Mg、Caの含有量に従い、(Mg,Mn)O、(Mg,Mn)O・Al2O3、CaO-SiO2-MgO-Al2O3系酸化物の1種または2種以上を含む。これらの介在物を含有させる理由は、まず、(Mg,Mn)Oは融点が2750〜2800℃と高いために、連続鋳造機のタンディッシュから鋳型に溶融合金を注ぐための浸漬ノズル内で焼結しないため付着堆積しない。そのため、表面欠陥を引き起こさない。
CaO-SiO2-MgO-Al2O3系酸化物は、融点が1300℃程度と低いため、これも焼結しない。そのため、表面欠陥を引き起こさない。
(Mg,Mn)O・Al2O3はMgO・Al2O3よりはノズル内に凝集し難いものの、表面欠陥を引き起こす介在物であるので、極力少ない方が好ましい。ただし、その含有量が個数割合で50%以下であれば、(Mg,Mn)O・Al2O3はノズル内に付着しないことから、個数比率で50%以下と定めた。
また、本願発明では、MnO-SiO2-Cr2O3-Al2O3系介在物は、大型介在物を形成して表面欠陥を引き起こす傾向があるため、本発明により生成を抑制させた。同様にAl2O3介在物、CaO介在物も凝集して表面欠陥を引き起こす傾向があるため、本発明により生成を抑制させた。
The non-metallic inclusion composition includes one or more of (Mg, Mn) O, (Mg, Mn) O.Al 2 O 3 , CaO-SiO 2 -MgO-Al 2 O 3 oxide, (Mg, Mn) O.Al 2 O 3 in a number ratio of 50% or less The stainless steel according to the present invention has (Mg, Mn) O, (Mg, Mn) O · Al 2 O 3 , CaO—SiO 2 —MgO—Al 2 O 3 Oxide-based oxides are included. The reason for including these inclusions is that (Mg, Mn) O has a high melting point of 2750 to 2800 ° C., so that it is fired in an immersion nozzle for pouring molten alloy from the tundish of a continuous casting machine to the mold. It does not adhere and does not deposit. Therefore, no surface defects are caused.
The CaO—SiO 2 —MgO—Al 2 O 3 oxide does not sinter because its melting point is as low as about 1300 ° C. Therefore, no surface defects are caused.
Although (Mg, Mn) O.Al 2 O 3 is less likely to agglomerate in the nozzle than MgO.Al 2 O 3, it is an inclusion that causes surface defects. However, if the content is 50% or less in number ratio, (Mg, Mn) O.Al 2 O 3 does not adhere in the nozzle, so the number ratio was determined to be 50% or less.
In the present invention, since the MnO—SiO 2 —Cr 2 O 3 —Al 2 O 3 inclusions tend to form large inclusions and cause surface defects, the generation is suppressed by the present invention. Similarly, Al 2 O 3 inclusions and CaO inclusions tend to agglomerate and cause surface defects, so that the production was suppressed by the present invention.

(Mg,Mn)O の構成成分を規定した理由を説明する。
MgO:95%以上、MnO:5%以下
MgOは融点が2800℃と高いために、浸漬ノズル内で凝集堆積しない。MnOを5%以下で含有しても融点は2750℃と高融点を維持し性質も変化しない。そのため、MgO:95%以上、MnO:5%以下と規定した。
The reason why the constituent components of (Mg, Mn) O 2 are specified will be explained.
MgO: 95% or more, MnO: 5% or less
Since MgO has a high melting point of 2800 ° C, it does not agglomerate in the immersion nozzle. Even if MnO is contained at 5% or less, the melting point is as high as 2750 ° C. and the properties are not changed. Therefore, it was specified that MgO: 95% or more and MnO: 5% or less.

(Mg,Mn)O・Al2O3の構成成分を規定した理由を説明する。
MgO:10〜40%、MnO:0.1〜3%、Al 2 O 3 :60〜90%
(Mg,Mn)O・Al2O3は比較的広い固溶体を持つ化合物である。上記の範囲で固溶体となるので、このように定めた。なお、ここでMnOは凝集する性質を軽減できるために、MgO:10〜40%、MnO:0.1〜3%、Al2O3:60〜90%と定めた。
The reason why the constituent components of (Mg, Mn) O.Al 2 O 3 are specified will be described.
MgO: 10~40%, MnO: 0.1~3 %, Al 2 O 3: 60~90%
(Mg, Mn) O.Al 2 O 3 is a compound having a relatively wide solid solution. Since it became a solid solution in the above range, it was determined in this way. Here, since MnO is to be reduced the property of flocculation, MgO: 10~40%, MnO: 0.1~3%, Al 2 O 3: defined as 60% to 90%.

CaO-SiO2-Al2O3-MgO系介在物の各成分を規定した理由を説明する。
CaO:20〜60%、SiO 2 :10〜40%、Al 2 O 3 :40%以下、MgO:40%以下
基本的には、CaO-SiO2-Al2O3-MgO系酸化物の融点を1300℃程度以下に保つために、上記範囲に設定した。なお、CaOが20%未満では融点が高くなり、CaOが60%を超えるとCaO介在物が共存する。SiO2が10%未満ならびに40%超では、融点が高くなってしまう。Al2O3が40%超では純粋なAl2O3介在物が共存する。MgOが40%超では、融点が高くなってしまう。
以上から、CaO:20〜60%、SiO2:10〜40%、Al2O3:40%以下、MgO:40%以下とした。
The reason why each component of the CaO—SiO 2 —Al 2 O 3 —MgO inclusion is specified will be described.
CaO: 20~60%, SiO 2: 10~40%, Al 2 O 3: 40% or less, MgO: from 40% or less basic, the melting point of CaO-SiO 2 -Al 2 O 3 -MgO based oxide Was kept in the above range in order to keep the temperature below about 1300 ° C. When CaO is less than 20%, the melting point is high, and when CaO exceeds 60%, CaO inclusions coexist. If SiO 2 is less than 10% or more than 40%, the melting point becomes high. If Al 2 O 3 exceeds 40%, pure Al 2 O 3 inclusions coexist. If MgO exceeds 40%, the melting point becomes high.
From the above, CaO: 20 to 60%, SiO 2 : 10 to 40%, Al 2 O 3 : 40% or less, and MgO: 40% or less.

製造方法
本願発明では、高Mn含有Fe-Cr-Ni合金の製造方法も提案する。
まず、電気炉にて、原料を溶解し、次いで、AODおよび/またはVODにおいて脱炭した後に、石灰、蛍石、フェロシリコン合金または、フェロシリコン合金および/またはAlを投入し、CaO/SiO2比:1.5〜10、MgO:3〜15%、Al2O3:15%未満からなるCaO-SiO2-MgO-Al2O3-F系スラグを用いて溶鋼を精錬する方法である。このようにして、溶融合金組成を、C:0.2%以下、Si:0.1〜1%、Mn:4〜20%、S:0.01%以下、Ni:25%以下、Cr:25%以下、Al:0.001〜0.1%以下、Mg:0.0001〜0.01%、Ca:0.0001〜0.01%、O:0.0005〜0.01%、残部がFeおよび不可避的不純物からなる合金に調整する。このように操作をすることで、(Mg,Mn)O、(Mg,Mn)O・Al2O3、CaO-SiO2-MgO-Al2O3系酸化物の1種または2種以上を含み、(Mg,Mn)O・Al2O3を個数比率で50%以下である介在物形態に制御できる。
Manufacturing Method The present invention also proposes a method for manufacturing a high Mn content Fe—Cr—Ni alloy.
First, in an electric furnace, the raw materials are melted, and then decarburized in AOD and / or VOD, and then lime, fluorite, ferrosilicon alloy or ferrosilicon alloy and / or Al are added, and CaO / SiO 2 This is a method of refining molten steel using CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag comprising ratios: 1.5 to 10, MgO: 3 to 15%, and Al 2 O 3 : less than 15%. Thus, the composition of the molten alloy is C: 0.2% or less, Si: 0.1-1%, Mn: 4-20%, S: 0.01% or less, Ni: 25% or less, Cr: 25% or less, Al: 0.001 to 0.1% or less, Mg: 0.0001 to 0.01%, Ca: 0.0001 to 0.01%, O: 0.0005 to 0.01%, and the balance is adjusted to Fe and inevitable impurities. By operating in this way, one or more of (Mg, Mn) O, (Mg, Mn) O.Al 2 O 3 , CaO-SiO 2 -MgO-Al 2 O 3 oxides are added. And (Mg, Mn) O.Al 2 O 3 can be controlled to an inclusion form in which the number ratio is 50% or less.

さらに、(Mg,Mn)O は、MgO:95%以上、MnO:5%以下、(Mg,Mn)O・Al2O3はMgO:10〜40%、MnO:0.1〜3%、Al2O3:60〜90%であり、CaO-SiO2-Al2O3-MgO系酸化物は、CaO:20〜60%、SiO2:10〜40%、Al2O3:40%以下、MgO:40%以下の組成範囲に制御が可能となる。そのため、最終製品での表面欠陥を防止して良好な表面性状を確保することが可能となる。 Further, (Mg, Mn) O is MgO: 95% or more, MnO: 5% or less, (Mg, Mn) O.Al 2 O 3 is MgO: 10-40%, MnO: 0.1-3%, Al 2 O 3 : 60 to 90%, CaO—SiO 2 —Al 2 O 3 —MgO oxide is CaO: 20 to 60%, SiO 2 : 10 to 40%, Al 2 O 3 : 40% or less, MgO: Control is possible within a composition range of 40% or less. Therefore, it is possible to prevent surface defects in the final product and ensure good surface properties.

本発明に係るステンレス合金の製造方法では、上述のようにスラグの組成に特徴を有している。以下、本発明で規定するスラグ組成の根拠を説明する。   The method for producing a stainless alloy according to the present invention is characterized by the composition of the slag as described above. Hereinafter, the basis of the slag composition defined in the present invention will be described.

CaO/SiO 2 比:1.5〜10
合金溶湯を効率よく脱酸、脱硫し、かつ非金属介在物組成を本願発明の範囲に制御するためには、スラグのCaO/SiO2比を制御する必要がある。この比の値が10を超えると、スラグ中CaOの活量が高くなり、(2)式の反応が進行しすぎる。そのため、溶鋼中に還元されるCa濃度が0.01%を超えて高くなり、CaO単体の非金属介在物が生成し、ノズル内に付着して、最終製品に表面欠陥をもたらす。そのため、上限を10とした。一方、CaO/SiO2比が1.5未満になると、脱酸、脱硫が進まずに、本発明におけるS濃度、O濃度の範囲に制御することができなくなる。そのため、下限を1.5 とした。このようなCaO/SiO2比に制御するため、CaO成分として、石灰または蛍石を添加することで調整可能である。一方、SiO2成分は脱酸剤であるSiの酸化により得ることが出来る。すなわち、Cr還元期にFeSi合金を投入して、Cr酸化物を還元すると、スラグ中にはSiO2シリカが形成される。限定はしないが、不足があれば、SiO2成分として珪砂を適宜添加しても構わない。したがって、塩基度は1.5〜10と定めた。好ましくは、2〜5である。
CaO / SiO 2 ratio: 1.5 to 10
In order to efficiently deoxidize and desulfurize the molten alloy and to control the composition of the nonmetallic inclusions within the range of the present invention, it is necessary to control the CaO / SiO 2 ratio of the slag. When the value of this ratio exceeds 10, the activity of CaO in the slag becomes high, and the reaction of the formula (2) proceeds too much. Therefore, the Ca concentration reduced in molten steel exceeds 0.01%, and non-metallic inclusions of CaO alone are generated and adhere to the nozzle, resulting in surface defects in the final product. Therefore, the upper limit was set to 10. On the other hand, when the CaO / SiO 2 ratio is less than 1.5, deoxidation and desulfurization do not proceed, and the S concentration and O concentration ranges in the present invention cannot be controlled. Therefore, the lower limit was set to 1.5. In order to control to such a CaO / SiO 2 ratio, it can be adjusted by adding lime or fluorite as a CaO component. On the other hand, the SiO 2 component can be obtained by oxidation of Si which is a deoxidizer. That is, when a FeSi alloy is introduced during the Cr reduction period and the Cr oxide is reduced, SiO 2 silica is formed in the slag. Although there is no limitation, if there is a shortage, silica sand may be appropriately added as the SiO 2 component. Therefore, the basicity was determined as 1.5-10. Preferably, it is 2-5.

MgO:3〜15%
スラグ中のMgOは、溶鋼中に含まれるMg濃度を請求項に記載される濃度範囲に制御するために、重要な元素であるとともに、非金属介在物を本発明に好ましい組成に制御するためにも重要な元素である。そこで、下限を3%とした。一方、MgO濃度が15%を超えると、(2)式の反応が進行しすぎてしまい、溶鋼中のMg濃度が高くなり、スラブ中にMg気泡を形成するため、最終製品に表面欠陥をもたらす。そこで、MgO濃度の上限を15%とした。スラグ中のMgOは、AOD精錬、あるいはVOD精錬する際に使用されるドロマイトレンガ、またはマグクロレンガがスラグ中に溶け出すことで、所定の範囲となる。あるいは、所定の範囲に制御するため、ドロマイトレンガ、またはマグクロレンガの廃レンガを添加してもよい。
MgO: 3-15%
MgO in the slag is an important element in order to control the Mg concentration contained in the molten steel in the concentration range described in the claims, and in order to control the nonmetallic inclusions to a composition preferable for the present invention. Is also an important element. Therefore, the lower limit was made 3%. On the other hand, if the MgO concentration exceeds 15%, the reaction of formula (2) proceeds too much, the Mg concentration in the molten steel becomes high, and Mg bubbles are formed in the slab, resulting in surface defects in the final product. . Therefore, the upper limit of the MgO concentration was set to 15%. MgO in the slag falls within a predetermined range when dolomite bricks or magcro bricks used for AOD refining or VOD refining melt into the slag. Or in order to control to a predetermined range, you may add the waste brick of a dolomite brick or a magchrom brick.

Al 2 O 3 :15%未満
スラグ中のAl2O3は、高いと溶鋼中のAl濃度も高くなり、(Mg,Mn)O・Al2O3あるいはMgO・Al2O3が50個数%を超えて生成させる。また、Al2O3アルミナ介在物も形成してしまうため、スラグ中のAl2O3濃度は極力下げる必要がある。そのため、上限を15%(未満)とした。
Al 2 O 3: 15% less than Al 2 O 3 in the slag is high and the Al concentration in the molten steel is also increased, (Mg, Mn) O · Al 2 O 3 or MgO · Al 2 O 3 is 50% by number Generate beyond. Moreover, since Al 2 O 3 alumina inclusions are also formed, it is necessary to reduce the Al 2 O 3 concentration in the slag as much as possible. Therefore, the upper limit was made 15% (less than).

実施例
次に実施例を提示して、本発明の構成および作用効果をより、明らかにするが、本発明は以下の実施例にのみ限定されるものではない。容量60トンの電気炉により、フェロニッケル、純ニッケル、フェロクロム、鉄屑、ステンレス屑、Fe-Ni、Fe-Mn合金屑などを原料として、溶解した。一部の鋼種ではFeMo、あるいはCuも原料として添加した。その後、AODおよび/またはVODにおいてCを除去するための酸素吹精(酸化精錬)を行い、石灰石および蛍石を投入し、CaO-SiO2-Al2O3-MgO-F系スラグを生成させ、さらに、FeSi合金または、FeSi合金および/またはAlを投入し、Cr還元を行い、次いで脱酸した。その後、さらにAr撹拌して脱硫を進めた。その後、取鍋に出鋼して、温度調整ならびに成分調整を行い、連続鋳造機によりスラブを製造した。
EXAMPLES Next, examples will be presented to clarify the configuration and operational effects of the present invention. However, the present invention is not limited to the following examples. Using an electric furnace with a capacity of 60 tons, ferronickel, pure nickel, ferrochrome, iron scrap, stainless scrap, Fe-Ni, Fe-Mn alloy scrap, etc. were melted as raw materials. In some steel types, FeMo or Cu was also added as a raw material. After that, oxygen blowing (oxidative refining) is performed to remove C in AOD and / or VOD, and limestone and fluorite are added to generate CaO-SiO 2 -Al 2 O 3 -MgO-F slag. Further, FeSi alloy or FeSi alloy and / or Al was added, Cr was reduced, and then deoxidized. Thereafter, desulfurization was further carried out by stirring with Ar. Thereafter, the steel was taken out in a ladle, temperature adjustment and component adjustment were performed, and a slab was produced by a continuous casting machine.

製造したスラブは、表面を研削し、1200℃で加熱して熱間圧延を実施し、厚み6mmの熱帯を製造した。その後、焼鈍、酸洗を行い、表面のスケールを除去した。最終的に冷間圧延を施し、板厚1mmの薄板を製造した。   The manufactured slab was ground and heated at 1200 ° C to perform hot rolling to produce a tropical 6mm thick. Thereafter, annealing and pickling were performed to remove the scale on the surface. Finally, cold rolling was performed to manufacture a thin plate having a thickness of 1 mm.

表1に得られたFe-Cr-Ni合金の化学成分、AODもしくはVOD精錬終了時のスラグ組成、非金属介在物組成および介在物の形態および製造性評価および表面品質評価を示す。なお、表1中の―は、無添加のため、分析限界以下であったことを示す。   Table 1 shows the chemical composition of the obtained Fe-Cr-Ni alloy, the slag composition at the end of AOD or VOD refining, the composition of non-metallic inclusions, the form of inclusions, the evaluation of manufacturability, and the surface quality evaluation. In Table 1, “-” indicates that it was below the analysis limit because it was not added.

(1)合金の化学成分およびスラグ組成:蛍光X線分析装置を用いて定量分析を行い、合金の酸素濃度は不活性ガスインパルス融解赤外線吸収法で定量分析を行った。
(2)非金属介在物組成:鋳込み開始直後、タンディッシュにて採取したサンプルを鏡面研磨し、SEM-EDSを用いて、サイズ5μm以上の介在物を20点ランダムに測定した。
(3)スピネル介在物の個数比率:上記(2)の測定の結果から個数比率を評価した。
(4)製造性評価:連続鋳造機にてスラブを製造する際に、タンディッシュからモールドへ溶鋼を供給する浸漬ノズルにおける閉塞の発生有無および熱間圧延時の割れの発生有無を判定した。浸漬ノズル閉塞および熱間圧延時の割れが無かった場合○とした。一方、浸漬ノズル閉塞あるいは熱間圧延時の割れが発生した場合×とした。
(5)品質評価:板厚1mmの薄板表面を目視で観察し、表面欠陥発生有無を判定した。コイル全長を観察して欠陥が無かった場合◎とし、1個/m2以下で○、1個/m2よりも多く発生した場合×と判定した。
(1) Chemical composition and slag composition of alloy: Quantitative analysis was performed using a fluorescent X-ray analyzer, and oxygen concentration of the alloy was quantitatively analyzed by an inert gas impulse melting infrared absorption method.
(2) Nonmetallic inclusion composition: Immediately after the start of casting, a sample collected with a tundish was mirror-polished, and inclusions having a size of 5 μm or more were randomly measured using SEM-EDS at 20 points.
(3) Number ratio of spinel inclusions: The number ratio was evaluated from the measurement results of (2) above.
(4) Manufacturability evaluation: When manufacturing a slab with a continuous casting machine, whether or not clogging occurred in an immersion nozzle that supplies molten steel from a tundish to a mold and whether or not cracking occurred during hot rolling were determined. The case where there was no cracking during the immersion nozzle clogging and hot rolling was evaluated as ○. On the other hand, it was set as x when the immersion nozzle was blocked or cracked during hot rolling.
(5) Quality evaluation: The surface of a thin plate having a thickness of 1 mm was visually observed to determine the presence or absence of surface defects. The case where there was no defect by observing the entire length of the coil was marked as ◎, and when it was 1 piece / m 2 or less, it was judged as ◯, and when it occurred more than 1 piece / m 2, it was judged as x.

表1および2に発明例および参考例を示す。発明例は、本発明の範囲を満足していたために、製造性も問題は見られず、また最終製品での表面欠陥は無く、良好な品質を得ることが出来た。一方、比較例は本願発明の範囲を逸脱したため、製造性の問題および表面欠陥が発生した。以下に、各例について説明する。 Tables 1 and 2 show invention examples and reference examples . Since the inventive examples satisfied the scope of the present invention, no problem was found in manufacturability, and there were no surface defects in the final product, and good quality could be obtained. On the other hand, since the comparative example deviated from the scope of the present invention, manufacturability problems and surface defects occurred. Each example will be described below.

比較例8は塩基度が1.5未満であったため、脱酸および脱硫が進まず、S濃度が0.0112%と高くなってしまった。その結果、熱間加工性が低下し、熱間加工時に割れが多発した。さらに、CaおよびAlが分析限界以下と低く、介在物組成がMnO-SiO2-Cr2O3-Al2O3系主体となったため、大型介在物が多数形成して、最終製品にて介在物起因の表面欠陥が発生した。 In Comparative Example 8, since the basicity was less than 1.5, deoxidation and desulfurization did not proceed, and the S concentration increased to 0.0112%. As a result, hot workability deteriorated and many cracks occurred during hot working. In addition, Ca and Al are low below the analytical limit and the inclusion composition is mainly MnO-SiO 2 -Cr 2 O 3 -Al 2 O 3 , so many large inclusions are formed and intervened in the final product. Surface defects caused by objects occurred.

比較例9は塩基度が10よりも高かったため、酸素濃度も低くなりすぎ、Ca濃度が0.0112%と高くなってしまった。また、スラグ中MgO濃度も2.1%と低く、Mg濃度が分析限界以下となってしまった。その結果、CaO単体の非金属介在物を生成し、鋳造中に浸漬ノズル内壁部へと付着し、ノズル閉塞を引き起こし、さらに最終製品にて介在物起因の表面欠陥が発生した。   In Comparative Example 9, since the basicity was higher than 10, the oxygen concentration was too low, and the Ca concentration was as high as 0.0112%. In addition, the MgO concentration in the slag was as low as 2.1%, and the Mg concentration was below the analytical limit. As a result, non-metallic inclusions of simple CaO were generated and adhered to the inner wall of the immersion nozzle during casting, causing nozzle clogging, and surface defects due to inclusions occurred in the final product.

比較例10はスラグ中アルミナ濃度が18.5%と高かったため、MgO・Al2O3系主体の非金属介在物が生成し、鋳造中に浸漬ノズル内壁部へと付着し、ノズル閉塞を引き起こした。さらにこの付着物が脱落し、凝固シェルにトラップされ、表面欠陥が生じた。 In Comparative Example 10, since the alumina concentration in the slag was as high as 18.5%, non-metallic inclusions mainly composed of MgO · Al 2 O 3 were generated and adhered to the inner wall of the immersion nozzle during casting, causing nozzle clogging. Furthermore, this deposit fell off and was trapped in the solidified shell, resulting in surface defects.

比較例11は、Siが0.1%未満であったため、MgとCa濃度が分析限界以下となってしまい、介在物組成がMnO-SiO2-Al2O3-Cr2O3系主体となり、最終製品にて、介在物起因の表面欠陥が発生した。さらに、脱酸や脱硫が進まず、S濃度が0.0131%と高くなってしまった。その結果、熱間加工性が低下し、熱間加工時に割れが発生した。 In Comparative Example 11, since Si was less than 0.1%, the Mg and Ca concentrations were below the analysis limit, and the inclusion composition was mainly MnO-SiO 2 -Al 2 O 3 -Cr 2 O 3 system. In the product, surface defects caused by inclusions occurred. Furthermore, deoxidation and desulfurization did not progress, and the S concentration became as high as 0.0131%. As a result, hot workability deteriorated and cracking occurred during hot working.

比較例12は、Siが1.21%と高かったため、スラグ中のCaOやMgOを過剰に還元させ、Ca濃度が0.0108%、Mg濃度が0.0121%と超供給された。その結果、介在物組成は、CaO単体およびMgO・Al2O3系主体となり、ノズル閉塞を引き起こし、さらにスラブ中に、Mg気泡を形成し、最終製品に表面欠陥をもたらした。 In Comparative Example 12, since Si was as high as 1.21%, CaO and MgO in the slag were excessively reduced, and a Ca concentration of 0.0108% and an Mg concentration of over 0.0121% were supplied. As a result, the inclusion composition was composed mainly of CaO alone and MgO · Al 2 O 3 system, which caused nozzle clogging and formed Mg bubbles in the slab, resulting in surface defects in the final product.

比較例13は溶鋼中のAl濃度が0.123%と高かったために、アルミナ介在物が形成しノズル閉塞を引き起こした。なおかつ、スラグ中MgO濃度が15%を超えて高かったため、溶鋼中のMg濃度が0.0121%と高くなり、スラブ中にMg気泡を形成し、最終製品に表面欠陥をもたらした。   In Comparative Example 13, since the Al concentration in the molten steel was as high as 0.123%, alumina inclusions were formed, causing nozzle clogging. Moreover, since the MgO concentration in the slag was higher than 15%, the Mg concentration in the molten steel was as high as 0.0121%, and Mg bubbles were formed in the slab, resulting in surface defects in the final product.

Figure 0006603033
Figure 0006603033

Figure 0006603033
Figure 0006603033

汎用の設備を用いて、表面性状に優れた高Mn含有Fe-Ni-Cr合金を安価に製造することができる。
Using general-purpose equipment, a high-Mn-containing Fe—Ni—Cr alloy having excellent surface properties can be produced at low cost.

Claims (4)

C:0.2%以下、Si:0.1〜1%、Mn:4〜20%、S:0.01%以下、Ni:4.37〜25%、Cr:16.22〜25%、Al:0.001〜0.1%以下、Mg:0.0001〜0.01%、Ca:0.0001〜0.01%、O:0.0005〜0.01%、残部がFeおよび不可避的不純物からなる高Mn含有Fe-Cr-Ni合金において、該合金中に含まれる非金属介在物が、(Mg,Mn)O (主成分MgO中にMnOが固溶してなる)(Mg,Mn)O・Al 2 O 3 (主成分MgO・Al 2 O 3 中にMnO・Al 2 O 3 が固溶してなる)、CaO-SiO2-MgO-Al2O3系酸化物のうち1種または2種であり、前記(Mg,Mn)O・Al 2 O 3 が個数比率で50%以下であることを特徴とする高Mn含有Fe-Cr-Ni合金。 C: 0.2% or less, Si: 0.1-1%, Mn: 4-20%, S: 0.01% or less, Ni: 4.37-25% , Cr: 16.22-25% , Al: 0.001-0.1% or less, Mg: 0.0001 to 0.01%, Ca: 0.0001 to 0.01%, O: 0.0005 to 0.01%, and a high Mn content Fe-Cr-Ni alloy consisting of Fe and inevitable impurities in the balance, the nonmetallic inclusions contained in the alloy are , (Mg, Mn) (formed by MnO solid solution in the main component MgO) O, (Mg, Mn ) O · Al 2 O 3 (MnO · Al 2 O 3 in the main component MgO · Al 2 O 3 There formed by solid solution), is one or two of CaO-SiO 2 -MgO-Al 2 O 3 based oxide, wherein (Mg, Mn) O · Al 2 O 3 50% on a particle number ratio A high Mn content Fe—Cr—Ni alloy characterized by: さらに、Mo:3%以下、Cu:3%以下、N:0.4%以下の1種または2種以上を含むことを特徴とする請求項1に記載の高Mn含有Fe-Cr-Ni合金。   The high-Mn-containing Fe-Cr-Ni alloy according to claim 1, further comprising one or more of Mo: 3% or less, Cu: 3% or less, and N: 0.4% or less. 前記(Mg,Mn)O は、MgO:95%以上、MnO:5%以下であり、前記(Mg,Mn)O・Al2O3はMgO:10〜40%、MnO:0.1〜3%、Al2O3:60〜90%であり、前記CaO-SiO2-Al2O3-MgO系酸化物は、CaO:20〜60%、SiO2:10〜40%、Al2O3:40%以下、MgO:40%以下であることを特徴とする請求項に記載の高Mn含有Fe-Cr-Ni合金。 The (Mg, Mn) O is MgO: 95% or more and MnO: 5% or less, and the (Mg, Mn) O · Al 2 O 3 is MgO: 10 to 40%, MnO: 0.1 to 3%, Al 2 O 3 : 60 to 90%, and the CaO—SiO 2 —Al 2 O 3 —MgO oxide is CaO: 20 to 60%, SiO 2 : 10 to 40%, Al 2 O 3 : 40 The high-Mn-containing Fe—Cr—Ni alloy according to claim 2 , characterized in that the MgO content is 40% or less. 請求項1〜のいずれかに記載の合金の製造方法であって、電気炉にて、原料を溶解し、次いで、AODおよび/またはVODにおいて脱炭した後に、石灰、蛍石、フェロシリコン合金または、フェロシリコン合金および/またはAlを投入し、CaO/SiO2比:1.5〜10、MgO:3〜15%、Al2O3:15%未満からなるCaO-SiO2-MgO-Al2O3-F系スラグを用い、C:0.2%以下、Si:0.1〜1%、Mn:4〜20%、S:0.01%以下、Ni:4.37〜25%、Cr:16.22〜25%、Al:0.001〜0.1%以下、Mg:0.0001〜0.01%、Ca:0.0001〜0.01%、O:0.0005〜0.01%、残部がFeおよび不可避的不純物からなる合金に調整することを特徴し、連続鋳造機にて鋳造してスラブを製造することを特徴とする高Mn含有Fe-Cr-Ni合金の製造方法。 A method for producing an alloy according to any one of claims 1 to 3 , wherein the raw material is melted in an electric furnace and then decarburized in AOD and / or VOD, and then lime, fluorite, ferrosilicon alloy Alternatively, a ferrosilicon alloy and / or Al is added, and CaO / SiO 2 ratio: 1.5 to 10, MgO: 3 to 15%, Al 2 O 3 : less than 15% CaO—SiO 2 —MgO—Al 2 O Using 3- F slag, C: 0.2% or less, Si: 0.1-1%, Mn: 4-20%, S: 0.01% or less, Ni: 4.37-25% , Cr: 16.22-25% , Al: 0.001 to 0.1% or less, Mg: 0.0001 to 0.01%, Ca: 0.0001 to 0.01%, O: 0.0005 to 0.01%, the balance being adjusted to an alloy consisting of Fe and inevitable impurities. A method for producing a high Mn-containing Fe-Cr-Ni alloy, characterized by producing a slab by casting.
JP2015072236A 2015-03-31 2015-03-31 High Mn content Fe-Cr-Ni alloy and method for producing the same Active JP6603033B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015072236A JP6603033B2 (en) 2015-03-31 2015-03-31 High Mn content Fe-Cr-Ni alloy and method for producing the same
CN201610174969.XA CN106011688B (en) 2015-03-31 2016-03-25 High Mn content Fe-Cr-Ni alloy and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072236A JP6603033B2 (en) 2015-03-31 2015-03-31 High Mn content Fe-Cr-Ni alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016191124A JP2016191124A (en) 2016-11-10
JP6603033B2 true JP6603033B2 (en) 2019-11-06

Family

ID=57080953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072236A Active JP6603033B2 (en) 2015-03-31 2015-03-31 High Mn content Fe-Cr-Ni alloy and method for producing the same

Country Status (2)

Country Link
JP (1) JP6603033B2 (en)
CN (1) CN106011688B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737304B2 (en) * 2017-06-12 2020-08-05 Jfeスチール株式会社 Steel melting method and continuous casting method
JP7042057B2 (en) * 2017-10-25 2022-03-25 日鉄ステンレス株式会社 Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods
JP7012557B2 (en) * 2018-02-23 2022-01-28 日鉄ステンレス株式会社 High Mn austenitic stainless steel and its manufacturing method
JP7029544B2 (en) * 2018-05-23 2022-03-03 ファ,マンチャオ NPR non-magnetic rock bolt steel material and its production method
JP6762414B1 (en) * 2019-12-27 2020-09-30 日本冶金工業株式会社 Stainless steel with excellent surface properties and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2978038B2 (en) * 1993-08-16 1999-11-15 新日本製鐵株式会社 Oxide inclusion ultrafine dispersion steel
JP2002146429A (en) * 2000-11-08 2002-05-22 Hitachi Metals Ltd METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
JP4025170B2 (en) * 2002-10-29 2007-12-19 日本冶金工業株式会社 Stainless steel excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP4025171B2 (en) * 2002-10-29 2007-12-19 日本冶金工業株式会社 Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
US7608130B2 (en) * 2004-01-22 2009-10-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing high cleanliness steel excellent in fatigue strength or cold workability
JP4285302B2 (en) * 2004-03-31 2009-06-24 住友金属工業株式会社 Stainless steel containing fine inclusions and method for producing the same
JP5693030B2 (en) * 2010-03-26 2015-04-01 日新製鋼株式会社 Austenitic stainless steel sheet with excellent detergency and method for producing the same
JP5950306B2 (en) * 2012-11-26 2016-07-13 日本冶金工業株式会社 Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
JP6146908B2 (en) * 2013-10-09 2017-06-14 日本冶金工業株式会社 Stainless steel with excellent surface properties and its manufacturing method

Also Published As

Publication number Publication date
CN106011688B (en) 2019-04-30
JP2016191124A (en) 2016-11-10
CN106011688A (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6146908B2 (en) Stainless steel with excellent surface properties and its manufacturing method
JP5072285B2 (en) Duplex stainless steel
JP4824640B2 (en) Duplex stainless steel and manufacturing method thereof
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
TWI705144B (en) High strength stainless steel plate with excellent fatigue property and method for producing the same
JP6603033B2 (en) High Mn content Fe-Cr-Ni alloy and method for producing the same
JP5950306B2 (en) Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
JP6869142B2 (en) Stainless steel sheet and its manufacturing method
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
JP4025171B2 (en) Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
JP2019178363A (en) AUSTENITIC STAINLESS STEEL WITH HIGH CONTENT OF Si, HAVING EXCELLENT MANUFACTURABILITY
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP2014162948A (en) Ferritic stainless steel less in rust formation
TW202138587A (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
JP2015155116A (en) Thickness increasing method for weld stainless steel
JP7187213B2 (en) Stainless steel plate with excellent surface properties and its manufacturing method
JP2007327122A (en) TREATMENT METHOD FOR MOLTEN IRON BY Nd AND Ca ADDITION
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP6191783B2 (en) Stainless steel
JP3626445B2 (en) Fe-Ni alloy for low thermal expansion and high rigidity shadow mask excellent in surface property and etching processability and method for producing the same
KR20220126754A (en) Stainless steel with excellent mirror polishing properties and manufacturing method therefor
TW202132588A (en) Ferritic stainless steel
JP5815291B2 (en) Stainless steel for welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191010

R150 Certificate of patent or registration of utility model

Ref document number: 6603033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250