JP6602456B2 - 磁気計測装置 - Google Patents

磁気計測装置 Download PDF

Info

Publication number
JP6602456B2
JP6602456B2 JP2018503025A JP2018503025A JP6602456B2 JP 6602456 B2 JP6602456 B2 JP 6602456B2 JP 2018503025 A JP2018503025 A JP 2018503025A JP 2018503025 A JP2018503025 A JP 2018503025A JP 6602456 B2 JP6602456 B2 JP 6602456B2
Authority
JP
Japan
Prior art keywords
sensor
magnetic
inclination angle
respect
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503025A
Other languages
English (en)
Other versions
JPWO2017150207A1 (ja
Inventor
匠 山賀
浩司 出口
浩司 山口
貴史 石部
俊一 松本
茂徳 川端
修太 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JPWO2017150207A1 publication Critical patent/JPWO2017150207A1/ja
Application granted granted Critical
Publication of JP6602456B2 publication Critical patent/JP6602456B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4041Evaluating nerves condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/704Tables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/045Supports, e.g. tables or beds, for the body or parts of the body with heating or cooling means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0082Compensation, e.g. compensating for temperature changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Toxicology (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、磁気計測装置に関する。
従来、複数の超伝導磁気センサを縦横に並べたセンサアレイを、センサ筒の先端部の内面に設置してなる磁気計測装置が知られている(例えば、特許文献1参照)。
この磁気計測装置では、センサ筒の先端面を生体に当て、センサ筒の内部に収容した磁気センサで生体磁気を測定する。このとき、センサ筒に対して被験者を移動させながら測定を繰り返す。しかし、高齢者は加齢により脊椎の可動性が減少し、頚部や腰部を前に自由に曲げることができない。被検体の頚部や腰部が自然な状態のままであると、センサ筒の先端部の中央が被検体の頚部や腰部から離れることになり、うまく測定できなくなる問題点があった。又、頚部や腰部を無理に曲げると、筋肉の活動による磁場がノイズ源になり、測定が阻害される問題点があった。
これらに対し、先端部が、所定方向において中央が上下の端より飛び出すように滑らかに湾曲しており、被検体の首や腰を前に曲げなくても、センサ筒の先端面を被検体の頚部や腰部に容易に接触させることができ、脊髄及び脊髄神経で発生する微弱な磁気を測定できる技術が開示されている(例えば、特許文献2参照)。
しかしながら、頚部や腰部の形状は性別、年齢、体格によって大きく異なることが現状で、頚部や腰部にセンサ筒の湾曲形状がうまくフィッティングしない状況が頻繁に発生した。これにより少なからず被検体と湾曲した先端部に隙間ができ、磁気センサと脊髄との距離が大きくなり、信号検出が困難となる場合が多発した。そこで、湾曲形状を有したセンサ筒でより多くの被検体に対応するためには更なる改善が必要である。
最適なフィッティングに向け、センサ筒傾斜を調整可能とするスイング機構を装置へ導入する方法も考えられるが、装置コストが大幅に上昇するだけでなく、安定性も懸念され、生体磁気計測中に振動ノイズが発生しやすくなってしまう。更には、スイング機構を装置へ用いることは、気化したヘリウムを液体へ再凝縮させる機能を有する冷却機構との接続を不可能にしてしまうものである。
このように、信号検出率を向上させると共に、冷却機構との接続を可能にすることは極めて困難である。なお、ベッドの傾斜調整機構を利用した傾斜調整を導入する方法も考えられるが、フィッティングが良好となる方向は頭が下がる方向となるため、被検体に危険が及ぶおそれがあり、現実的ではない。
本発明は、上記の点に鑑みてなされたものであり、信号検出率を向上させると共に、冷却機構との接続を可能にする磁気計測装置を提供することを目的とする。
本磁気計測装置は、設置面、及び前記設置面に対して傾斜する傾斜面を備えた傾斜架台と、前記傾斜面に設置された低温容器と、前記低温容器に接続された冷却機構と、前記低温容器に接続され、所定方向には湾曲せず前記所定方向に直交する方向には両端より中央が飛び出すように湾曲する湾曲面を備えたセンサ筒と、前記センサ筒内に、センサ面を前記湾曲面の側に向けて収容された、生体磁気を計測する磁気センサと、を有し、前記センサ面が、前記設置面に対して、前記傾斜面と同一方向に傾斜していることを要件とする。
開示の技術によれば、信号検出率を向上させると共に、冷却機構との接続を可能にする磁気計測装置を提供できる。
本実施の形態に係る磁気計測装置を例示する斜視図である。 本実施の形態に係る磁気計測装置を例示する側面図である。 本実施の形態に係る磁気計測装置のセンサ筒内部を例示する断面図である。 本実施の形態に係る磁気計測装置に用いる磁気センサを例示する斜視図である。 本実施の形態に係る磁気計測装置を用いた生体磁気計測の説明図である。 比較例に係る生体磁気計測における頚部とセンサ筒の相関関係を例示する断面図である。 本実施の形態に係る生体磁気計測における頚部とセンサ筒の相関関係を例示する断面図である。
以下、図面を参照して、実施の形態の説明を行う。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
図1Aは、本実施の形態に係る磁気計測装置を例示する斜視図である。図1Bは、本実施の形態に係る磁気計測装置を例示する側面図である。図2は、本実施の形態に係る磁気計測装置のセンサ筒内部を例示する断面図である。
図1A、図1B、及び図2を参照するに、磁気計測装置10は、生体で発生する微弱な磁気を好適に計測できる装置であり、主要な構成要素として、傾斜架台11と、低温容器12と、冷却機構13と、センサ筒14とを有している。センサ筒14内部には、複数の磁気センサ15を並べた磁気センサアレイ16が収容されている。以下、磁気計測装置10について、詳しく説明する。
傾斜架台11は、設置面11a、及び設置面11aに対して傾斜する傾斜面11bを備えている。設置面11aは、磁気計測装置10が使用される場所の床面等に接する平面である。傾斜面11bは、低温容器12が設置される平面である。設置面11aに対する傾斜面11bの傾斜角度θ(以降、単に傾斜角度θとする)は、調整機構を持たない固定値であり、適宜な値に設計することができる。傾斜角度θは、例えば、10度以上20度以下程度とすることができる。
低温容器12は、傾斜架台11の傾斜面11bに設置されている。低温容器12はデュワとも称され、生体から発生する磁界を検出する磁気センサアレイ16の極低温動作に必要な液体ヘリウムを保持する容器である。
冷却機構13は、気化したヘリウムを液体へ再凝縮させる装置であり、流路17を介して低温容器12に接続されている。
センサ筒14は、被検体と接する部分であり、低温容器12に接続されている。センサ筒14は、例えば、低温容器12の側面から水平方向に突出しているが、この形態には限定されない。
センサ筒14は、所定方向(以降、x方向とする)には湾曲せず、所定方向に直交する方向(以降、y方向とする)には両端より中央が飛び出すように湾曲する湾曲面14aを備えている。センサ筒14のy方向の幅は、例えば、5cm以上20cm以下程度とすることができる。湾曲面14aは、例えば、y方向において、両端より中央が0.5cm以上4cm以下飛び出すように滑らかに湾曲している。
センサ筒14は、内槽141及び外槽142を備えており、内槽141内には、磁気センサアレイ16が収容されている。磁気センサアレイ16は、センサ面15aを湾曲面14aの側に向けた複数の磁気センサ15を並べたものであり、例えば、複数の磁気センサ15をy方向に1列に並べたセンサ列を、x方向に複数列並べた構造とすることができる。
この際、x方向に隣接するセンサ列の磁気センサ15については、y方向の位置をずらせて配置してもよい。例えば、5個の磁気センサ15をピッチp(例えば20mm)でy方向に1列に並べて1つのセンサ列とし、このセンサ列をx方向にピッチw(例えば20mm)ずつ離れて複数個配置する。この際、x方向に隣接するセンサ列の磁気センサ15については、y方向の位置をp/2だけずらせて配置することができる。
又、センサ筒14内のy方向における収容位置が、湾曲面14aの両端側よりも湾曲面14aの中央側に近い磁気センサ15のセンサ面15aほど、湾曲面14aの側に飛び出しているように配置することができる。このような配置により、磁気センサ15のセンサ面15aと被検査部位との距離を短縮できる。
磁気計測装置10では、低温容器12とセンサ筒14とが接続(固定)されている。そのため、低温容器12を傾斜架台11の傾斜面11bに設置すると、センサ筒14に収容された夫々の磁気センサ15のセンサ面15aが、センサ筒14と共に傾斜架台11の設置面11aに対して傾斜面11bと同一方向に傾斜する。
傾斜架台11の設置面11aに対する夫々の磁気センサ15のセンサ面15aの傾斜角度θ(以降、単に傾斜角度θとする)は、例えば、傾斜角度θに等しくすることができる。傾斜角度θは、調整機構を持たない固定値であり、適宜な値に設計することができるが、好適な値は10度以上20度以下である。なお、図2においてHは、設置面11aと平行な面を示している。
図3は、本実施の形態に係る磁気計測装置に用いる磁気センサを例示する斜視図である。磁気センサ15は、生体磁気を計測する超伝導磁気センサであり、例えば、SQUIDセンサである。なお、SQUIDとは、超伝導量子干渉素子(Superconducting Quantum Interference Device)である。
磁気センサ15は、例えば、ガラスエポキシ製の円柱状ブロック151にSQUID152a、SQUID152b、及びSQUID152cを配置し、円柱状ブロック151に連なる円柱状ブロック153に夫々のピックアップコイル部を形成した、円柱状センサである。円柱状ブロック153の上面がセンサ面15aである。センサ面15aの直径は、例えば、20mm程度とすることができる。
図4は、本実施の形態に係る磁気計測装置を用いた生体磁気計測の説明図である。図4を参照するに、磁気計測装置10は、ベッド21と、X線源22及びX線撮影用フィルム23と、電気刺激装置24とを有している。
ベッド21は、被検体500の被検査部位がセンサ筒14の湾曲面14aに接するように、被検体500を寝かせる非磁性のベッドである。X線源22及びX線撮影用フィルム23は、センサ筒14の湾曲面14aの上側を含む空間をx方向にX線撮影するためのX線撮影手段である。電気刺激装置24は、被検体500に対して、目的とする神経を、経皮的に電気刺激する装置である。
生体磁気計測の際には、電気刺激装置24を用いて被検体500に電気刺激を印加し、電気刺激に同期した神経活動の伝搬を磁気センサアレイ16で計測する。生体磁気計測は、磁気シールドルーム内で行い、計測時は磁気ノイズとなるX線源22及びX線撮影用フィルム23は磁気シールドルーム外へ移されることが望ましいが、磁気ノイズとならないのであれば、その限りではない。冷却機構13及び電気刺激装置24は、常に磁気シールドルーム外に設置されている。
ベッド21は、磁気センサ15のセンサ面15aに対する被検体500の被検査部位の角度を緩める方向にのみ調整可能な傾斜調整機構を備えていると好適である。ベッド21に上記のような傾斜調整機構を導入しても、被検体500の頭が下がる方向に調整されることがないため、被検体500に危険が及ぶおそれはない。
前述のように、傾斜角度θの好適な値は10度以上20度以下であり、ベッド21の上面が水平(設置面11aに平行)であれば、傾斜角度θは、被検体500の頭足方向において、被検体500の被検査部位と磁気センサ15のセンサ面15aとのなす角度と等しくなる。
しかしながら、磁気計測装置10を心磁計として用いる場合には、被検体500の被検査部位と磁気センサ15のセンサ面15aとのなす角度はおおよそ0度が好適である。そのため、傾斜角度θが例えば15度である場合には、ベッド21の傾斜調整機構により−15度に調整して頭側を持ち上げることで、被検体500の被検査部位と磁気センサ15のセンサ面15aとのなす角度をおおよそ0度とすることができる。なお、必ずしもベッド21全体を傾斜させる必要はなく、例えば、上半身のみを持ち上げ可能な傾斜調整機構としてもよい。
図5は、比較例に係る生体磁気計測における頚部とセンサ筒の相関関係を例示する断面図である。図6は、本実施の形態に係る生体磁気計測における頚部とセンサ筒の相関関係を例示する断面図である。なお、頚部は、被検体500の被検査部位の一例である。
図5及び図6の510は頚部を示しており、頚部510において、511は脊髄、C1〜C7は第1頚椎〜第7頚椎、T1及びT2は第1胸椎及び第2胸椎である。又、第1頚椎C1〜第7頚椎C7、第1胸椎T1及び第2胸椎T2のセンサ筒14側が夫々の棘突起512である。又、520は、後頭***を示している。又、Hは、設置面11aと平行な面を示している。
図5では、傾斜架台11の設置面11aに対する夫々の磁気センサ15のセンサ面15aの傾斜角度はおおよそ0度であり、センサ筒14は面Hに対して傾斜していない。この場合、頚部510が硬く、可動が少ない人に対しては、センサ筒14と頚部510との間に隙間Gが発生するため、脊髄511と各磁気センサ15のセンサ面15aとの距離が大きくなる。
仮に磁気センサアレイ16の中心を第5頚椎C5に合わせるとすると、センサ筒14の湾曲面14aの一部が第7頚椎C7や第1胸椎T1の棘突起512及び後頭***520と当たり、頚椎全体(第1頚椎C1〜第7頚椎C7)に対して十分にフィッティングしない場合が多い。
その結果、脊髄511と、各頚椎に対向する磁気センサ15のセンサ面15aとの距離が大きくなる。このように脊髄511と各磁気センサ15のセンサ面15aとの距離が離れる状況では、脊髄511を伝搬する微弱な信号の検出率が大きく低下してしまう。
なお、磁気センサアレイ16の中心を第5頚椎C5に合わせる理由は、一般に第3頚椎C3〜第7頚椎C7あたりに病変が見つかることが多いため、第3頚椎C3〜第7頚椎C7の中央に当たる第5頚椎C5を中心とした生体磁気計測データを得たいためである。
一方、図6では、第7頚椎C7の棘突起512を基点としてセンサ筒14を被検体側の方へ傾斜させている。言い換えれば、各磁気センサ15のセンサ面15aが、傾斜架台11の設置面11aに対して、傾斜架台11の傾斜面11bと同一方向に傾斜している(傾斜角度θ)。センサ筒14を(すなわち、各磁気センサ15のセンサ面15aを)適切に傾斜させることにより、第7頚椎C7や第1胸椎T1の棘突起512と後頭***520の影響を最小限に抑えることができ、かつ各磁気センサ15のセンサ面15aを脊髄511の走行に沿った位置とすることができる。
そのため、図6では、磁気センサアレイ16の中心を第5頚椎C5に合わせたセンサ筒14と頚部510の湾曲が全体的に一致し、図5と比べてフィッティングは格段に良くなる。そのため、脊髄511と、各頚椎に対向する磁気センサ15のセンサ面15aとの距離も全体的に短縮される。脊髄511を伝搬する信号は微弱であるため、脊髄511と各磁気センサ15のセンサ面15aとの距離を短縮する効果は大きく、図5と比べて脊髄511を伝搬する微弱な信号の検出率を大幅に向上することができる。
〈比較例及び実施例〉
(比較例1)
比較例1では、ベッド21、X線源22及びX線撮影用フィルム23、電気刺激装置24を備えた磁気計測装置10xを用いて計測を行った。但し、冷却機構13及び電気刺激装置24は磁気シールドルーム外に設置し、その他は磁気シールドルーム内に設置した。磁気計測装置10xは、傾斜架台11を備えていない点以外は、磁気計測装置10と同一である。つまり、磁気計測装置10xでは、低温容器12の底面が水平面に直接設置されており、水平面に対する各磁気センサ15のセンサ面15aの傾斜角度は0度である。
図4に示すように、水平なベッド21上で被検体500に仰臥位となってもらい、センサ筒14の湾曲面14aに頚部を当てるようにし、第5頚椎C5が磁気センサアレイ16の中心と略一致するように調整した。
この状態でX線撮影を行い、撮影画像に基づいて第5頚椎C5の椎体後壁とセンサ先端部との距離(以降、距離Lとする)を計27人測長した(年齢は27歳から81歳)。距離Lの平均値は114.4mmであり、最大値は146mm、最小値は91mmであった。
又、頚部の生体磁気計測を実施した。具体的には、X線源22及びX線撮影用フィルム23を磁気シールドルーム外へ出した後、電気刺激装置24として日本光電製/筋電図・誘発電位検査装置MEB-2306を使用して肘部の正中神経を電気刺激し(電流3mAから15mA)、磁気センサアレイ16の出力信号に基づいて、刺激と同期した神経活動が神経を伝搬していく様子を頚部で計測した。計2000回の加算平均データを取得した。微弱な伝搬信号を検出できたのは27人中17人であり、信号検出率は63.0%であった。
(実施例1)
傾斜架台11を備えていない磁気計測装置10xに代えて、傾斜架台11を備えている磁気計測装置10を用いた以外は、比較例1と同様の方法で、X線撮影及び頚部の生体磁気計測を実施した。
実施例1では、傾斜角度θ=5度の傾斜架台11を使用し、傾斜角度θ=5度とした。ベッド21の上面が水平(設置面11aに平行)であるため、傾斜角度θは、被検体500の被検査部位と磁気センサ15のセンサ面15aとのなす角度(以降、角度θとする)と等しくなる。
距離Lの平均値は107.1mm、最大値は151mm、最小値は93mmであり、比較例1と比べて距離Lの大幅な短距離化となった。なお、距離Lの大幅な短距離化は、脊髄511と、各頚椎に対向する磁気センサ15のセンサ面15aとの距離の大幅な短縮化を意味する。
磁気計測装置10を使用しての頚部の測定では、微弱な伝搬信号を検出できたのは27人中22人、信号検出率は81.5%であり、比較例1と比べて大幅な検出率向上となった。
(実施例2)
傾斜角度θ=10度、傾斜角度θ=10度とした以外は、実施例1と同様の方法で、X線撮影及び頚部の生体磁気計測を実施した。
距離Lの平均値は103.1mm、最大値は121mm、最小値は87mmであり、実施例1よりも距離Lの更なる短距離化となった。
磁気計測装置10を使用しての頚部の測定では、微弱な伝搬信号を検出できたのは27人中25人、信号検出率は92.6%であり、比較例1と比べて大幅な検出率向上となり、信号検出率は9割を超える結果となった。
(実施例3)
傾斜角度θ=15度、傾斜角度θ=15度とした以外は、実施例1と同様の方法で、X線撮影及び頚部の生体磁気計測を実施した。
距離Lの平均値は101.1mm、最大値は120mm、最小値は87mmであり、距離Lは実施例2と大きな差はなかった。
磁気計測装置10を使用しての頚部の測定では、微弱な伝搬信号を検出できたのは27人中25人、信号検出率は92.6%であり、比較例1と比べて大幅な検出率向上となり、信号検出率は9割を超える結果となった。
(実施例4)
傾斜角度θ=20度、傾斜角度θ=20度とした以外は、実施例1と同様の方法で、X線撮影及び頚部の生体磁気計測を実施した。
距離Lの平均値は100.1mm、最大値は121mm、最小値は85mmであり、距離Lは実施例2及び実施例3と大きな差はなかった。
磁気計測装置10を使用しての頚部の測定では、微弱な伝搬信号を検出できたのは27人中25人、信号検出率は92.6%であり、比較例1と比べて大幅な検出率向上となり、信号検出率は9割を超える結果となった。
(実施例5)
傾斜角度θ=25度、傾斜角度θ=25度とした以外は、実施例1と同様の方法で、X線撮影及び頚部の生体磁気計測を実施した。
距離Lの平均値は100.7mm、最大値は121mm、最小値は84mmであり、距離Lは実施例2、実施例3及び実施例4と大きな差はなかった。
磁気計測装置10を使用しての頚部の測定では、微弱な伝搬信号を検出できたのは27人中19人であり、信号検出率は70.4%であった。これは大きな傾斜によって不自然な姿勢となり、計測中にその姿勢を維持することができず、被検体500と磁気センサ15のセンサ面15aとの距離が離れてしまい、計測不可が発生したことによるものである。
(実施例6)
傾斜角度θ=25度、傾斜角度θ=25度とした。そして、ベッド21の傾斜調整機構を利用して、傾斜が5度緩やかになる方向(被検体500の頭側を持ち上げる方向)にベッド21の傾斜角度を設定し、角度θを20度とした以外は、実施例1と同様の方法で、X線撮影及び頚部の生体磁気計測を実施した。
距離Lの平均値は100.7mm、最大値は124mm、最小値は86mmあり、距離Lは実施例2、実施例3及び実施例4と大きな差はなかった。
磁気計測装置10を使用しての頚部の測定では、微弱な伝搬信号を検出できたのは27人中25人、信号検出率は92.6%であり、実施例4と同様の検出率となった。
(比較例2)
水平なベッド21上で被検体500に仰臥位となってもらい、センサ筒14の湾曲面14aに腰部を当てるようにし、第5腰椎が磁気センサアレイ16の中心と略一致するように調整した以外は、比較例1と同様の方法で、生体磁気計測を実施した。
生体磁気計測は、磁気計測装置10xを使用して、電気刺激と同期した神経活動が神経を伝搬していく様子を腰部で計測した。計2000回の加算平均データを取得した。微弱な伝搬信号を検出できたのは26人中12人であり、信号検出率は46.2%であった。
(実施例7)
傾斜角度θ=5度、傾斜角度θ=5度とした以外は、比較例2と同様の方法で、X線撮影及び腰部の生体磁気計測を実施した。
磁気計測装置10を使用しての腰部の測定では、微弱な伝搬信号を検出できたのは26人中18人、信号検出率は69.2%であり、比較例2と比べて大幅な検出率向上となった。
(実施例8)
傾斜角度θ=10度、傾斜角度θ=10度とした以外は、実施例7と同様の方法で、X線撮影及び腰部の生体磁気計測を実施した。
磁気計測装置10を使用しての腰部の測定では、微弱な伝搬信号を検出できたのは26人中22人、信号検出率は84.6%であり、比較例2と比べて大幅な検出率向上となり、信号検出率は8割を超える結果となった。
(実施例9)
傾斜角度θ=15度、傾斜角度θ=15度とした以外は、実施例7と同様の方法で、X線撮影及び腰部の生体磁気計測を実施した。
磁気計測装置10を使用しての腰部の測定では、微弱な伝搬信号を検出できたのは26人中23人、信号検出率は88.5%であり、比較例2と比べて大幅な検出率向上となり、信号検出率は8割を超える結果となった。
(実施例10)
傾斜角度θ=20度、傾斜角度θ=20度とした以外は、実施例7と同様の方法で、X線撮影及び腰部の生体磁気計測を実施した。
磁気計測装置10を使用しての頚部の測定では、微弱な伝搬信号を検出できたのは26人中22人、信号検出率は84.6%であり、比較例2と比べて大幅な検出率向上となり、信号検出率は8割を超える結果となった。
(実施例11)
傾斜角度θ=25度、傾斜角度θ=25度とした以外は、実施例7と同様の方法で、X線撮影及び腰部の生体磁気計測を実施した。
磁気計測装置10を使用しての腰部の測定では、微弱な伝搬信号を検出できたのは26人中18人であり、信号検出率は69.2%であった。これは大きな傾斜によって不自然な姿勢となり、計測中にその姿勢を維持することができず、被検体500と磁気センサ15のセンサ面15aとの距離が離れてしまい、計測不可が発生したことによるものである。
(まとめ)
各比較例及び各実施例の結果を表1にまとめた。
Figure 0006602456
表1に示すように、被検査部位が頚部の場合も腰部の場合も、角度θが10度以上20度以下の場合に信号検出率を向上できることがわかった。
なお、角度θが10度以上20度以下の場合とは、例えば、傾斜角度θが10度以上20度以下であり、かつ、ベッド21が水平の場合である。或いは、傾斜角度θは20度よりも大きいが、ベッド21の傾斜調整機構により角度θが10度以上20度以下となるように調整した場合である。
以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。
例えば、本発明に係る磁気計測装置は、脊髄を走行する電流を磁界として検出する脊髄計には限定されない。例えば、本発明に係る磁気計測装置を脳磁計や心磁計等に用いることも可能である。
又、センサ面に垂直な方向の長さが短い平面型の磁気センサを用いる場合には、必ずしも全ての磁気センサのセンサ面を同一方向に傾斜させる必要はない。例えば、夫々の磁気センサを湾曲面の内面に沿って配置してもよい。この場合には、例えば、y方向の中央に配置された磁気センサのセンサ面の、傾斜架台の設置面に対する傾斜角度が、傾斜架台の設置面に対する傾斜面の傾斜角度と等しくなるように設計すればよい。
本国際出願は2016年3月3日に出願した日本国特許出願2016−041406号に基づく優先権を主張するものであり、日本国特許出願2016−041406号の全内容を本国際出願に援用する。
10 磁気計測装置
11 傾斜架台
11a 設置面
11b 傾斜面
12 低温容器
13 冷却機構
14 センサ筒
14a 湾曲面
15 磁気センサ
15a センサ面
16 磁気センサアレイ
17 流路
21 ベッド
22 X線源
23 X線撮影用フィルム
24 電気刺激装置
141 内槽
142 外槽
151、153 円柱状ブロック
152a、152b、152c SQUID
特許第4397276号 特許第4834076号

Claims (10)

  1. 設置面、及び前記設置面に対して傾斜する傾斜面を備えた傾斜架台と、
    前記傾斜面に設置された低温容器と、
    前記低温容器に接続された冷却機構と、
    前記低温容器に接続され、所定方向には湾曲せず前記所定方向に直交する方向には両端より中央が飛び出すように湾曲する湾曲面を備えたセンサ筒と、
    前記センサ筒内に、センサ面を前記湾曲面の側に向けて収容された、生体磁気を計測する磁気センサと、を有し、
    前記センサ面が、前記設置面に対して、前記傾斜面と同一方向に傾斜している磁気計測装置。
  2. 前記設置面に対する前記センサ面の傾斜角度は、前記設置面に対する前記傾斜面の傾斜角度に等しい請求項1に記載の磁気計測装置。
  3. 前記センサ筒内に、センサ面を前記湾曲面の側に向けて収容された、生体磁気を計測する複数の磁気センサを備え、
    夫々の前記磁気センサのセンサ面が、前記設置面に対して、前記傾斜面と同一方向に傾斜している請求項1に記載の磁気計測装置。
  4. 前記設置面に対する夫々の前記磁気センサのセンサ面の傾斜角度は、前記設置面に対する前記傾斜面の傾斜角度に等しい請求項3に記載の磁気計測装置。
  5. 前記センサ筒内の前記所定方向に直交する方向における収容位置が、前記湾曲面の両端側よりも前記湾曲面の中央側に近い前記磁気センサのセンサ面ほど、前記湾曲面の側に飛び出している請求項3に記載の磁気計測装置。
  6. 前記傾斜角度が10度以上20度以下である請求項2に記載の磁気計測装置。
  7. 前記設置面に対する前記センサ面の傾斜角度は固定値である請求項1に記載の磁気計測装置。
  8. 前記湾曲面の上側を含む空間をX線撮影するX線撮影手段と、
    被検体に対して経皮的に電流を送電し、目的とする神経を刺激する電気刺激装置と、を有する請求項1に記載の磁気計測装置。
  9. 前記刺激に同期した神経活動の伝搬を前記磁気センサで計測する請求項8に記載の磁気計測装置。
  10. 被検体の被検査部位が前記湾曲面に接するように、前記被検体を寝かせるベッドを有し、
    前記ベッドは、前記センサ面に対する前記被検査部位の角度を緩める方向に調整可能な傾斜調整機構を備えている請求項1に記載の磁気計測装置。
JP2018503025A 2016-03-03 2017-02-17 磁気計測装置 Active JP6602456B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016041406 2016-03-03
JP2016041406 2016-03-03
PCT/JP2017/005824 WO2017150207A1 (ja) 2016-03-03 2017-02-17 磁気計測装置

Publications (2)

Publication Number Publication Date
JPWO2017150207A1 JPWO2017150207A1 (ja) 2019-01-24
JP6602456B2 true JP6602456B2 (ja) 2019-11-06

Family

ID=59744110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503025A Active JP6602456B2 (ja) 2016-03-03 2017-02-17 磁気計測装置

Country Status (6)

Country Link
US (1) US10918293B2 (ja)
EP (1) EP3424419B1 (ja)
JP (1) JP6602456B2 (ja)
CN (1) CN108778114B (ja)
ES (1) ES2809741T3 (ja)
WO (1) WO2017150207A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366817B2 (ja) 2020-03-23 2023-10-23 株式会社リコー ヘリウム循環システム、極低温冷凍方法、および生体磁気計測装置
US11828522B2 (en) 2020-03-23 2023-11-28 Ricoh Company, Ltd. Cryogenic refrigerator and biomagnetic measurement apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6857345B2 (ja) * 2016-09-30 2021-04-14 国立大学法人 東京医科歯科大学 生体情報計測装置
US11375934B2 (en) 2017-12-01 2022-07-05 Ricoh Company, Ltd. Biomagnetic measurement apparatus, biological information measurement apparatus, and biomagnetic measurement method
JP7176689B2 (ja) * 2017-12-01 2022-11-22 株式会社リコー 生体磁気計測装置及び生体磁気計測方法
JP7091747B2 (ja) 2018-03-19 2022-06-28 株式会社リコー 生体情報処理装置及び生体情報処理システム
JP7116418B2 (ja) * 2018-05-30 2022-08-10 独立行政法人石油天然ガス・金属鉱物資源機構 磁気測定装置及び磁気探査システム
JP7385217B2 (ja) * 2020-03-23 2023-11-22 株式会社リコー 生体電流推定方法、生体電流推定装置および生体磁気計測システム
US20240036131A1 (en) * 2020-12-23 2024-02-01 Arisawa Mfg. Co., Ltd. Insulated container, and magnetoencephalograph and magnetospinograph including same
CN117378298A (zh) * 2021-05-28 2024-01-09 株式会社有泽制作所 隔热容器及使用其的脊磁计
CN113945608A (zh) * 2021-09-30 2022-01-18 中国计量大学 一种基于磁电传感器的磁感应相移测量***
USD988545S1 (en) 2023-03-17 2023-06-06 Ruihe Ying Slab comprising particulate mineral mixture

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834076B1 (ja) 1969-05-23 1973-10-18
JPS5137149B2 (ja) 1971-10-04 1976-10-14
DE8202647U1 (de) * 1982-02-03 1982-08-19 R. Jung GmbH, 6907 Nußloch Kryostatmikrotom
JP2590182B2 (ja) 1987-03-07 1997-03-12 株式会社東芝 黒化炉およびこの黒化炉を使用したシャドウマスクの製造方法
EP0361137A1 (de) * 1988-09-16 1990-04-04 Siemens Aktiengesellschaft Magnetometer-Einrichtung mit einem Dewar-Gefäss zur Messung schwacher Magnetfelder
US5302831A (en) * 1992-04-30 1994-04-12 North American Philips Corporation Dewar construction for cooling radiation detector cold finger
JP3106701B2 (ja) 1992-06-29 2000-11-06 ダイキン工業株式会社 生体磁場計測装置
JP3541079B2 (ja) * 1995-03-24 2004-07-07 株式会社ミツバ 傾斜センサ
US6842637B2 (en) * 1997-10-24 2005-01-11 Hitachi, Ltd. Magnetic field measurement apparatus
JP4034429B2 (ja) 1998-07-31 2008-01-16 株式会社東芝 生体磁気計測装置
US6275719B1 (en) * 1998-09-09 2001-08-14 Hitachi, Ltd. Biomagnetic field measurement apparatus
JP3454246B2 (ja) * 2000-10-30 2003-10-06 株式会社日立製作所 磁場計測装置
JP4013492B2 (ja) 2001-03-26 2007-11-28 株式会社日立製作所 磁場遮蔽装置及びこれを用いる生体磁場計測装置
JP3454254B2 (ja) * 2001-03-26 2003-10-06 株式会社日立製作所 磁場計測装置
JP2003304851A (ja) 2002-04-12 2003-10-28 Ishii Ind Co Ltd 農作物切揃え装置
JP4397276B2 (ja) 2004-05-26 2010-01-13 学校法人金沢工業大学 超伝導磁気測定装置および超伝導磁気測定システム
JP4521239B2 (ja) * 2004-09-10 2010-08-11 株式会社日立ハイテクノロジーズ 磁場遮蔽装置及び生体磁場計測装置
JP4397315B2 (ja) * 2004-09-28 2010-01-13 学校法人金沢工業大学 超伝導磁気測定装置
JP2006228935A (ja) 2005-02-17 2006-08-31 Ricoh Co Ltd 有機薄膜トランジスタ
JP2006304851A (ja) * 2005-04-26 2006-11-09 Tokyo Medical & Dental Univ 脊髄誘発磁界のデータ採取方法、脊髄誘発磁界の測定方法
EP1987769B1 (en) * 2006-02-23 2019-04-10 University Corporation, Kanazawa Institute of Technology Superconducting magnetism measuring device
JP5167707B2 (ja) 2006-08-04 2013-03-21 株式会社リコー 積層構造体、多層配線基板、アクティブマトリックス基板、並びに電子表示装置
JP4952914B2 (ja) * 2007-02-27 2012-06-13 学校法人金沢工業大学 生体磁気測定装置
US20110251468A1 (en) * 2010-04-07 2011-10-13 Ivan Osorio Responsiveness testing of a patient having brain state changes
JP4748231B2 (ja) * 2009-02-24 2011-08-17 トヨタ自動車株式会社 渦流計測用センサおよびそれによる検査方法
JP5293267B2 (ja) 2009-02-26 2013-09-18 株式会社リコー 表示装置
CN201452400U (zh) * 2009-04-30 2010-05-12 余明月 多功能腰椎和颈椎保健靠背
JP5446982B2 (ja) 2009-05-01 2014-03-19 株式会社リコー 画像表示パネル及び画像表示装置
JP6008965B2 (ja) * 2011-08-05 2016-10-19 イー エイ フィシオネ インストルメンツ インコーポレーテッドE.A.Fischione Instruments, Inc. 改良型低温試料ホルダ
CN203041467U (zh) * 2013-01-06 2013-07-10 杜传奎 一种单立柱多功能电动床
JP2014143333A (ja) 2013-01-25 2014-08-07 Ricoh Co Ltd 固体色素増感型太陽電池、固体色素増感型太陽電池モジュール
US10222444B2 (en) * 2014-05-09 2019-03-05 The General Hospital Corporation Systems and methods for moving magnetic resonance imaging
CN104068852A (zh) * 2014-06-28 2014-10-01 苏州格林泰克科技有限公司 一种生物电信号传感器
KR101632280B1 (ko) * 2014-09-05 2016-07-01 한국표준과학연구원 냉각기 냉각형 스퀴드 측정 장치
JP2017015620A (ja) 2015-07-03 2017-01-19 株式会社リコー 磁気遮蔽装置、磁場ノイズ低減方法、脊髄誘発磁界測定システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366817B2 (ja) 2020-03-23 2023-10-23 株式会社リコー ヘリウム循環システム、極低温冷凍方法、および生体磁気計測装置
US11828522B2 (en) 2020-03-23 2023-11-28 Ricoh Company, Ltd. Cryogenic refrigerator and biomagnetic measurement apparatus

Also Published As

Publication number Publication date
WO2017150207A1 (ja) 2017-09-08
EP3424419A1 (en) 2019-01-09
CN108778114A (zh) 2018-11-09
US20190059758A1 (en) 2019-02-28
EP3424419A4 (en) 2019-03-20
US10918293B2 (en) 2021-02-16
EP3424419B1 (en) 2020-07-01
JPWO2017150207A1 (ja) 2019-01-24
CN108778114B (zh) 2022-03-01
ES2809741T3 (es) 2021-03-05

Similar Documents

Publication Publication Date Title
JP6602456B2 (ja) 磁気計測装置
JP4834076B2 (ja) 超伝導磁気測定装置
JP6093421B2 (ja) 電気インピーダンストモグラフィーイメージング計器及び電気インピーダンストモグラフィーイメージング方法
KOLÁŘ et al. Analysis of diaphragm movement during tidal breathing and during its activation while breath holding using MRI synchronized with spirometry.
JP5667173B2 (ja) 磁性粒子に影響を及ぼし且つ磁性粒子を検出する装置及びその作動方法
EP1274347B1 (en) Breathing movement measurements and apparatus
US20080194982A1 (en) Method and Apparatus for Inductively Measuring the Bio-Impedance of a Users Body
JP2004000636A (ja) 脳の磁気刺激のターゲティング方法及び装置
EP3015065B1 (en) Feet positioning system for magnetic resonance imaging studies
CN101980658A (zh) 用于测量感兴趣对象的方法和***
KR20150123186A (ko) 도전율 단층 영상법을 이용한 상기도 폐쇄 양상의 영상화 및 진단장치
RU2550660C2 (ru) Устройство и способ неинвазивной интракардиальной электрокардиографии с формированием изображения с использованием магнитных частиц
Richer et al. Eddy current based flexible sensor for contactless measurement of breathing
CN208384093U (zh) 磁共振线圈组件及磁共振扫描***
US9730610B1 (en) Magnetic resonance imaging of the spine to detect scoliosis
Adachi et al. A SQUID system for measurement of spinal cord evoked field of supine subjects
Zhang et al. Human CT measurements of structure/electrode position changes during respiration with electrical impedance tomography
Frerichs et al. Electrical impedance tomography in acute respiratory distress syndrome
US20220378314A1 (en) Devices, systems, and methods for assessing lung characteristics via regional impedance and patient positioning
Zhao et al. EIT image reconstruction with individual thorax geometry
JP2022146860A (ja) 生体磁気計測装置、生体磁気計測システム、生体磁気計測方法および生体磁気計測プログラム
Melbourne et al. Using registration to quantify the consistency of whole liver position during patient breath-hold in dynamic contrast-enhanced MRI
Conway Dept. Medical Physics & Clinical Engineering, Weston Park Hospital, Sheffield, S102SJ.
Watson et al. IMAGING ELECTRICAL RESISTIVITY IN A SIMULATED LIMB BY MAGNETIC INDUCTION TOMOGRAPHY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6602456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150