JP6599265B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP6599265B2
JP6599265B2 JP2016038602A JP2016038602A JP6599265B2 JP 6599265 B2 JP6599265 B2 JP 6599265B2 JP 2016038602 A JP2016038602 A JP 2016038602A JP 2016038602 A JP2016038602 A JP 2016038602A JP 6599265 B2 JP6599265 B2 JP 6599265B2
Authority
JP
Japan
Prior art keywords
coil
power
power transmission
transmission coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016038602A
Other languages
Japanese (ja)
Other versions
JP2017158275A (en
Inventor
喜多男 山本
正志 望月
恭之 沖米田
敦 渡辺
祐輔 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aircraft Industry Co Ltd
Original Assignee
Showa Aircraft Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aircraft Industry Co Ltd filed Critical Showa Aircraft Industry Co Ltd
Priority to JP2016038602A priority Critical patent/JP6599265B2/en
Publication of JP2017158275A publication Critical patent/JP2017158275A/en
Application granted granted Critical
Publication of JP6599265B2 publication Critical patent/JP6599265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cookers (AREA)

Description

本発明は、非接触給電装置に関する。すなわち、電気式調理容器に非接触で電力を供給する、調理用の非接触給電装置に関する。   The present invention relates to a non-contact power feeding device. That is, it is related with the non-contact electric power feeder for cooking which supplies electric power to an electric cooking container non-contactingly.

《技術的背景》
キッチンや食卓では、各種の電気式調理容器が使用されている。例えば、ミキサー,湯わかしポット,電気保温ポット,コーヒーメーカ,電気保温鍋,その他etc.。
そして、これらの電気式調理容器は、通常、コードでプラグを介しコンセントに接続されて、給電されていた。しかし、このような配線接続方式については、キッチンや食卓の邪魔になり易く煩わしく、電気式調理容器自体の水洗い等にも支障が生じ易く危険でもある、等々の指摘もあった。
《Technical background》
Various electric cooking containers are used in kitchens and dining tables. For example, a mixer, a hot water pot, an electric heat pot, a coffee maker, an electric heat pot, etc. .
These electric cooking containers are usually connected to an outlet through a plug with a cord and are supplied with power. However, it has been pointed out that such a wiring connection method is troublesome because it easily disturbs a kitchen or a table, and it is easy to cause trouble in washing the electric cooking container itself.

《従来技術》
このような状況に鑑み、非接触給電装置(WPT)(Wireless Power Transfer)を利用した技術が、開発されていた。
例えば図6に示したように、キッチンや食卓のテーブルA側の給電台1に配された送電側回路の送電コイル2から、電気式調理容器3側に配された受電側回路の受電コイル4に、コードレスつまり電気的に非接触で電力を供給する技術が、開発,使用されていた。非接触給電装置5を利用した技術が、開発,使用されていた。
すなわち、送電側回路の送電コイル2が、交流電源からの励磁電流にて通電され、もって、上下で対向位置する受電コイル4との間で、磁束の磁路が形成されて電磁結合されることにより、受電側回路の負荷に電力が供給されていた。
調理用の非接触給電装置5では、このような電磁誘導の相互誘導作用により、コードレスで電気式調理容器3が給電されていた。そして、この非接触給電装置5では、通常の非接触給電装置と同様、送電コイル2と受電コイル4は、上下で対をなす同径の対称構造よりなっていた。
<Conventional technology>
In view of such a situation, a technique using a non-contact power feeding device (WPT) (Wireless Power Transfer) has been developed.
For example, as shown in FIG. 6, the power receiving coil 4 of the power receiving side circuit disposed on the electric cooking container 3 side from the power transmitting coil 2 of the power transmitting side circuit disposed on the power supply stand 1 on the table A side of the kitchen or dining table. In addition, cordless, that is, an electric contactless power supply technology has been developed and used. A technology using the non-contact power feeding device 5 has been developed and used.
That is, the power transmission coil 2 of the power transmission side circuit is energized with an exciting current from an AC power source, and thus a magnetic path of magnetic flux is formed and electromagnetically coupled with the power receiving coil 4 positioned vertically opposite to each other. Thus, electric power is supplied to the load of the power receiving side circuit.
In the non-contact power feeding device 5 for cooking, the electric cooking vessel 3 is fed with cordless power due to such mutual induction action of electromagnetic induction. And in this non-contact electric power feeder 5, like the normal non-contact electric power feeder, the power transmission coil 2 and the receiving coil 4 consisted of the symmetrical structure of the same diameter which makes a pair up and down.

このような非接触給電装置5としては、例えば、次の特許文献1,2中に示されたものが、挙げられる。
特開2015−231473号公報 特開2013−016497号公報
As such a non-contact electric power feeder 5, what was shown in the following patent documents 1 and 2 is mentioned, for example.
JP, 2015-231473, A JP 2013-016497 A

しかしながら、このような従来の非接触給電装置5については、次の問題が課題として指摘されていた。
従来の調理用の非接触給電装置5は、電気式調理容器3毎の個別方式よりなっていた。ミキサー,湯わかしポット,電気保温ポット,etc.等、各種の電気式調理容器3毎に、送電コイル2を備えた給電台1が用いられていた。
すなわち各電気式調理容器3では、それぞれの用途に応じた負荷が使用されており、それぞれの負荷に対応した受電コイル4が用いられている。もって、受電コイル4の大きさ,径,種類等も様々であり、受電コイル4と上下で対をなす対称構造の送電コイル2も、同様に様々となる。送電コイル2の給電台1も、様々となる。
従って、キッチンや食卓のテーブルA上にて、必要とされる電気式調理容器3そして受電コイル4の種類に応じ、それぞれに見合った送電コイル2を、個別専用的に使用することを要していた。そのような送電コイル2を備えた給電台1が、テーブルA上に置かれていた。
そこで、従来の調理用の非接触給電装置5については、送電コイル2や給電台1に関し、次の問題が指摘されていた。
・電気式調理容器3の種類,大きさに応じて使い分けられており、不便であり手間がかかり煩わしい。
・種類が多く、キッチンや食卓の邪魔になることもあり、この面からも不便である。
・電気式調理容器3の種類,大きさに応じ、個別専用的に使用されるので、その分、製作コストが嵩む。
However, the following problems have been pointed out as problems for the conventional non-contact power supply device 5.
The conventional non-contact power feeding device 5 for cooking is composed of an individual method for each electric cooking container 3. Mixer, hot water pot, electric heat-insulating pot, etc. Etc., the electric power feeder 1 provided with the power transmission coil 2 was used for every various electric cooking containers 3.
That is, in each electric cooking vessel 3, loads corresponding to the respective uses are used, and power receiving coils 4 corresponding to the respective loads are used. Accordingly, the size, diameter, type, and the like of the power receiving coil 4 are various, and the power transmitting coil 2 having a symmetrical structure that forms a pair with the power receiving coil 4 in the vertical direction is similarly varied. The power supply stand 1 of the power transmission coil 2 also varies.
Therefore, on the table A of the kitchen or the dining table, it is necessary to use the power transmission coil 2 corresponding to each of them depending on the type of the electric cooking container 3 and the power receiving coil 4 that are required. It was. The power supply stand 1 provided with such a power transmission coil 2 was placed on the table A.
Therefore, the following problems have been pointed out regarding the power transmission coil 2 and the power supply stand 1 for the conventional non-contact power supply device 5 for cooking.
-It is properly used according to the type and size of the electric cooking container 3, which is inconvenient and troublesome.
-There are many types, which may interfere with the kitchen and dining table, which is also inconvenient.
-Depending on the type and size of the electric cooking container 3, it is used for individual use, which increases the production cost.

《本発明について》
本発明の非接触給電装置は、このような実情に鑑み、上記従来技術の課題を解決すべくなされたものである。
そして本発明は、第1に、大小各種の電気式調理容器を、給電テーブルのどこに置いても給電可能であり、第2に、便利でありコスト面にも優れると共に、第3に、給電効率低下箇所の発生が抑制され、磁界の外部拡散も低減され、第4に、給電ヌルポイント等の発生が防止される、非接触給電装置を提案することを目的とする。
<< About the present invention >>
In view of such a situation, the non-contact power feeding device of the present invention has been made to solve the above-described problems of the prior art.
In the present invention, firstly, electric cooking containers of various sizes can be fed regardless of where they are placed on the feeding table, and secondly, they are convenient and excellent in cost, and thirdly, feeding efficiency. It is an object of the present invention to propose a non-contact power feeding device that suppresses the occurrence of a lowered portion, reduces the external diffusion of a magnetic field, and fourthly prevents the occurrence of a feeding null point or the like.

《各請求項について》
このような課題を解決する本発明の技術的手段は、特許請求の範囲の請求項1に記載したように、次のとおりである。
この非接触給電装置は、電磁誘導の相互誘導作用に基づき、キッチンや食卓の給電テーブル側に配された送電側回路の送電コイルから、電気式調理容器側に配された受電側回路の受電コイルに、非接触で電力を供給する調理用の非接触給電装置に関する。
そして該送電コイルは、径大なループ状に巻回されている。該受電コイルは、該送電コイルより径小なループ状に巻回されている。
該受電コイルは、給電に際し該送電コイルと上下の関係で対応位置し、該送電コイルの磁界位置内に置かれる。
該送電コイルは、偶数の複数の単位コイルの平面的集合体よりなり、多極構造をなしている。そして各該単位コイルは、直に並んで隣接配置された相互間で、電流の向きそして磁界の向きが逆となる設定よりなる。
<About each claim>
The technical means of the present invention for solving such a problem is as follows, as described in claim 1 of the claims.
This non-contact power feeding device is based on the mutual induction action of electromagnetic induction, and the power receiving coil of the power receiving side circuit disposed on the electric cooking container side from the power transmitting coil of the power transmitting side circuit disposed on the power feeding table side of the kitchen or table. The present invention also relates to a non-contact power feeding device for cooking that supplies power in a non-contact manner.
The power transmission coil is wound in a large loop shape. The power receiving coil is wound in a loop shape having a smaller diameter than the power transmitting coil.
The power receiving coil is positioned corresponding to the power transmission coil in a vertical relationship during power feeding, and is placed in the magnetic field position of the power transmission coil.
The power transmission coil is composed of a planar assembly of an even number of unit coils and has a multipolar structure. Each of the unit coils has a setting in which the direction of the current and the direction of the magnetic field are reversed between the adjacently arranged units.

もって該送電コイルは、各該単位コイル毎に磁界が広く形成され、該受電コイルが、各該単位コイルの磁力の強いコイル線近くに多く位置するようになり、まず、給電効率低下箇所の発生抑制機能を発揮する。
これと共に、該送電コイルは径大であり、径小の該受電コイルとの大きな寸法差により、多量の磁界が外部拡散し易いが、偶数の各該単位コイルについて、隣接相互間で磁界の向きが逆となる設定に基づき、隣接磁界間の重なり部分の打ち消し合いにより、磁界外部拡散の低減機能を発揮する。
Accordingly, the power transmission coil is formed with a wide magnetic field for each unit coil, and the power receiving coil is located near the coil wire having a strong magnetic force of each unit coil. Demonstrate the function.
At the same time, the power transmission coil has a large diameter, and due to a large dimensional difference from the small diameter power receiving coil, a large amount of magnetic field is likely to be externally diffused. Based on the setting in which is reversed, the function of reducing the external diffusion of the magnetic field is exhibited by canceling the overlapping portion between adjacent magnetic fields.

更に、該送電コイルの磁界の向きが逆で隣接配置された各該単位コイル間に、該受電コイルが跨って位置すると、電磁結合が困難化する虞が発生する場合がある。
これに対し該受電コイルは、Xコイル,Yコイル,Zコイルの3方向コイルの立体的集合体よりなる。該Xコイルは、該電気式調理容器の左右側面に配設され、該Yコイルは、該電気式調理容器の前後側面に配設され、Zコイルは、該電気式調理容器の底面に配設されている。
もって上記場合でも、Xコイル,Yコイル,Zコイルの内、少なくとも一つが該送電コイルの単位コイルとの電磁結合機能を発揮する。
Furthermore, if the power receiving coil is located across the unit coils that are adjacently disposed with the magnetic field direction of the power transmitting coil reversed, there is a possibility that electromagnetic coupling may become difficult.
On the other hand, the power receiving coil is composed of a three-dimensional assembly of three-way coils of an X coil, a Y coil, and a Z coil. The X coil is disposed on the left and right side surfaces of the electric cooking container, the Y coil is disposed on the front and rear side surfaces of the electric cooking container, and the Z coil is disposed on the bottom surface of the electric cooking container. Has been.
Accordingly, even in the above case, at least one of the X coil, the Y coil, and the Z coil exhibits an electromagnetic coupling function with the unit coil of the power transmission coil.

《作用等について》
本発明は、このような手段よりなるので、次のようになる。
(1)給電に際し、電気式調理容器が給電テーブル上に置かれる。
(2)もって、電気式調理容器側の径小な受電コイルが、給電テーブル側の径大な送電コイルに対し、上下の関係で対応位置して磁界位置内に置かれる。
(3)このようにして、送電コイルと受電コイルが電磁結合され、給電テーブル側から電気式調理容器側に、電磁誘導の相互誘導作用に基づき磁界共振結合方式にて、電力が供給される。
(4)そこで、この調理用の非接触給電装置によると、次の第1〜第4のようになる。
第1に、送電コイルと受電コイルに、異径コイルを採用してなるので、電気式調理容器そして受電コイルは、その種類,大きさにかかわらず、給電テーブルそして送電コイル上のどこに置いても、給電可能となる。
第2に、もって使用が容易であり、構成も簡単である。
第3に、更に送電コイルを偶数の多極構造とし、各単位コイルの隣接相互間で磁界の向きを逆としたので、次のようになる。
(イ)給電効率低下箇所の発生が抑制されて、全体的,平均的に高い結合係数が得られ、結合係数に差が生じる事態は解消される。
(ロ)近隣周辺へと外部放射された電磁界は、重なり合い打ち消し合って弱められ、電磁波の外部拡散が低減される。
第4に、送電コイルを、多極構造とすると共に、更に受電コイルを、X,Y,Zコイルの立体的3方向コイルとしたので、電気式調理容器そして受電コイルが送電コイルの各単位コイル間に跨って位置した場合でも、いずれかのコイルが、送電コイルの単位コイルと電磁結合するようになる。もって結合係数の低下、特に給電ヌルポイント発生が回避される。
(5)そこで、本発明は次の効果を発揮する。
<About the action>
Since the present invention comprises such means, the following is achieved.
(1) When feeding, an electric cooking container is placed on the feeding table.
(2) Therefore, the small receiving coil on the electric cooking container side is placed in the magnetic field position corresponding to the large transmitting coil on the feeding table side in a vertical relationship.
(3) In this way, the power transmission coil and the power reception coil are electromagnetically coupled, and electric power is supplied from the feeding table side to the electric cooking vessel side by the magnetic field resonance coupling method based on the mutual induction action of electromagnetic induction.
(4) Then, according to this non-contact electric power feeder for cooking, it becomes like the following 1st-4th.
First, because different diameter coils are used for the power transmission coil and the power reception coil, the electric cooking container and the power reception coil can be placed anywhere on the power supply table and the power transmission coil regardless of their types and sizes. The power can be supplied.
Second, it is easy to use and has a simple structure.
Thirdly, since the power transmission coil has an even multipolar structure and the direction of the magnetic field is reversed between adjacent unit coils, the following is obtained.
(A) The occurrence of a decrease in power supply efficiency is suppressed, a high coupling coefficient is obtained on the whole and on average, and a situation in which a difference occurs in the coupling coefficient is solved.
(B) Electromagnetic fields radiated to the vicinity are weakened by overlapping and canceling each other, and external diffusion of electromagnetic waves is reduced.
Fourth, since the power transmission coil has a multipolar structure and the power reception coil is a three-dimensional coil of X, Y, Z coils, the electric cooking container and the power reception coil are each unit coil of the power transmission coil. Even when it is located between them, one of the coils is electromagnetically coupled to the unit coil of the power transmission coil. Accordingly, a reduction in coupling coefficient, particularly generation of a feeding null point is avoided.
(5) Therefore, the present invention exhibits the following effects.

《第1の効果》
第1に、大小各種の電気式調理容器を、給電テーブルのどこに置いても、給電可能である。
本発明の調理用の非接触給電装置において、電気式調理容器は、その種類,大きさにかかわらず、給電テーブル上のどこに置いても給電可能となる。受電コイルは、その種類,大きさにかかわらず、送電コイル上のどこに置いても給電可能である。
前述した従来例の非接触給電装置のように、電気式調理容器の種類,大きさに応じ、個別専用的に送電コイルそして給電台を、各種使用することを要しない。一つの送電コイル,給電テーブルで、各種の受電コイル,各種の電気式調理容器に対応可能である。
<< First effect >>
First, it is possible to supply power regardless of where the large and small electric cooking containers are placed on the power supply table.
In the non-contact power feeding device for cooking according to the present invention, the electric cooking container can be powered regardless of its type and size, regardless of its type and size. Regardless of the type and size of the power receiving coil, the power receiving coil can be fed anywhere on the power transmitting coil.
Unlike the above-described conventional non-contact power feeding device, it is not necessary to use various types of power transmission coils and power feeding stands for individual use according to the type and size of the electric cooking container. One power transmission coil and power supply table can be used for various power receiving coils and various electric cooking containers.

《第2の効果》
第2に、便利であると共に、コスト面にも優れている。
本発明の調理用の非接触給電装置は、上述したように、一つの送電コイル,給電テーブルで、各種の受電コイル,各種の電気式調理容器に対応可能である。
前述した従来例のように、給電台そして送電コイルを、電気式調理容器そして受電コイルの種類,大きさに応じて、個別専用的に使用することを要しない。もって容易に使用でき、便利であり煩わしさが解消される。又、従来例のように、送電コイルや給電台の種類が多く、キッチンや食卓の邪魔になる事態も、解消される。
更に、電気式調理容器の種類,大きさに応じ、送電コイルや給電台を個別専用的に使用することを要しない。一つの送電コイルや給電テーブルを使用すれば良く、構成が簡単化され、その分、製作コストが軽減される。
<< Second effect >>
Secondly, it is convenient and excellent in cost.
As described above, the non-contact power feeding device for cooking according to the present invention is compatible with various power receiving coils and various electric cooking containers with a single power transmission coil and power feeding table.
Unlike the conventional example described above, it is not necessary to use the power supply stand and the power transmission coil individually and exclusively according to the types and sizes of the electric cooking container and the power reception coil. Therefore, it can be used easily, and it is convenient and troublesome. In addition, as in the conventional example, there are many types of power transmission coils and power supply stands, and the situation that obstructs the kitchen and the table is also eliminated.
Furthermore, it is not necessary to use a power transmission coil or a power supply stand individually dedicated to the type and size of the electric cooking vessel. A single power transmission coil or power supply table may be used, which simplifies the configuration and reduces the manufacturing cost accordingly.

《第3の効果》
第3に、給電効率低下箇所の発生が抑制され、磁界の外部拡散も低減される。
本発明の調理用の非接触給電装置において、送電コイルを多極構造とし、各単位コイルの隣接相互間で磁界の向きを逆としたので、次の(イ),(ロ)のようになる。
(イ)給電効率低下箇所の発生が抑制される。送電コイルが多極化されていない場合のように、受電コイルが送電コイルのコイル線近くに位置するか否かで、結合係数に差が生じる事態は解消される。全体的,平均的に高い結合係数が得られ、給電効率に優れるようになる。
(ロ)磁界の外部拡散が低減される。送電コイルの偶数の各単位コイルから向きが逆となって形成され、近隣周辺へと外部放射された電磁界は、重なり合い打ち消し合って弱められる。このような送電コイルによる磁場封じ込めにより、外部拡散される電磁波が大幅低減される。
送電コイルが多極化されていない場合のように、径小の受電コイルとの間の寸法差に基づき、多量の電磁波が外部拡散される事態は解消され、近隣周辺に電磁波障害を引き起こす危険は、防止される。
《Third effect》
Thirdly, the occurrence of a decrease in power supply efficiency is suppressed, and the external diffusion of the magnetic field is also reduced.
In the non-contact power feeding device for cooking according to the present invention, the power transmission coil has a multipolar structure, and the direction of the magnetic field is reversed between adjacent unit coils, so that the following (a) and (b) are obtained. .
(A) Occurrence of a portion where the power feeding efficiency is reduced is suppressed. As in the case where the power transmission coil is not multipolarized, the situation in which a difference occurs in the coupling coefficient depending on whether the power reception coil is located near the coil wire of the power transmission coil is eliminated. Overall, a high coupling coefficient is obtained on average, and the power supply efficiency is improved.
(B) External diffusion of the magnetic field is reduced. The electromagnetic fields that are formed in opposite directions from the even number of unit coils of the power transmission coil and are externally radiated to the vicinity are weakened by overlapping each other. Due to the magnetic field confinement by such a power transmission coil, electromagnetic waves that are diffused outside are greatly reduced.
As in the case where the power transmission coil is not multipolarized, the situation where a large amount of electromagnetic waves are externally diffused is eliminated based on the dimensional difference from the small diameter receiving coil, and the risk of causing electromagnetic interference around the neighborhood is prevented. Is done.

《第4の効果》
第4に、給電ヌルポイント等の発生が防止される。
すなわち、本発明の調理用の非接触給電装置において、送電コイルを多極構造とすると共に、受電コイルを、X,Y,Zの3方向コイルにて立体的に構成したので、次のようになる。
立体的でない平面的な受電コイルの場合は、多極構造の送電コイルの誘起磁界の向きが逆の隣接単位コイル間に跨って位置すると、結合係数が低下する。特に、結合係数がゼロとなり、給電不能となる給電ヌルポイント発生の虞がある。
これに対し、3方向コイルとしたので、電気式調理容器そして受電コイルの置かれる位置,方向にかかわらず、最低でも1つが送電コイルと電磁結合され、結合係数の低下は回避される。結合係数がゼロとなり、給電不能となる給電ヌルポイントの発生は、回避される。
このように、この種従来技術に存した課題がすべて解決される等、本発明の発揮する効果は、顕著にして大なるものがある。
<< 4th effect >>
Fourth, the occurrence of a power feeding null point or the like is prevented.
That is, in the non-contact power feeding apparatus for cooking according to the present invention, the power transmission coil has a multipolar structure, and the power reception coil is three-dimensionally configured with three-directional coils of X, Y, and Z. Become.
In the case of a planar power receiving coil that is not three-dimensional, the coupling coefficient decreases if the direction of the induced magnetic field of the power transmission coil having a multipolar structure is located across adjacent unit coils. In particular, there is a fear that a power supply null point may occur where the coupling coefficient becomes zero and power supply becomes impossible.
In contrast, since the three-way coil is used, at least one of the electric cooking container and the power receiving coil is electromagnetically coupled to the power transmitting coil regardless of the position and direction of the electric cooking container and the power receiving coil. Occurrence of a feeding null point at which the coupling coefficient becomes zero and power feeding becomes impossible is avoided.
As described above, the effects exerted by the present invention are remarkably large, such as all the problems existing in this type of prior art are solved.

本発明に係る非接触給電装置について、発明を実施するための形態の説明に供し、第1例(前提例)を示す。そして(1)図は、送電コイルと受電コイルの平面説明図であり、(2)図も、同平面説明図、(3)図は、同正面説明図、(4)図は、全体の正面説明図である。About the non-contact electric power feeder which concerns on this invention, it uses for description of the form for implementing invention, and shows a 1st example (premise example). And (1) figure is a plane explanatory view of a power transmission coil and a power receiving coil, (2) figure is also the same plane explanatory drawing, (3) figure is the front explanatory figure, and (4) figure is the front of the whole It is explanatory drawing. 同発明を実施するための形態の説明に供し、第1例(前提例)を示す。そして(1)図は、構成ブロック図、(2)図は、基本回路図である。A first example (premise example) will be shown for explanation of the mode for carrying out the invention. (1) is a block diagram of the configuration, and (2) is a basic circuit diagram. 同発明を実施するための形態の説明に供し、第2例(送電コイル)を示す。そして(1)図は、送電コイルの平面説明図、(2)図は、送電コイルと受電コイルの平面説明図、(3)図は、送電コイルの他の例の平面説明図である。It uses for description of the form for implementing this invention, and shows the 2nd example (power transmission coil). (1) is an explanatory plan view of the power transmission coil, (2) is an explanatory plan view of the power transmission coil and the receiving coil, and (3) is an explanatory plan view of another example of the transmission coil. 同発明を実施するための形態の説明に供し、第3例(受電コイル)を示す。そして(1)図は、受電コイルの平面説明図、(2)図は、同正面説明図、(3)図は、同底面説明図であり、(4)図は、全体の正面説明図、(5)図は、送電コイルと受電コイルの底面説明図である。A third example (a power receiving coil) is shown for explanation of the embodiment for carrying out the invention. (1) is an explanatory plan view of the power receiving coil, (2) is an explanatory front view, (3) is an explanatory bottom view, and (4) is an overall front explanatory view, (5) FIG. 5 is an explanatory bottom view of a power transmission coil and a power reception coil. 同発明を実施するための形態の説明に供し、第3例(受電コイル)を示す。そして(1)図、受電側回路の一例の回路図、(2)図は、受電側回路の他の例の回路図である。A third example (a power receiving coil) is shown for explanation of the embodiment for carrying out the invention. FIG. 1A is a circuit diagram of an example of a power receiving side circuit, and FIG. 2B is a circuit diagram of another example of the power receiving side circuit. 従来例の説明に供し、正面説明図である。It is a front explanatory drawing for description of a prior art example.

以下、本発明を実施するための形態について、詳細に説明する。
《非接触給電装置6について》
まず、本発明の前提となる非接触給電装置6について、図1の(3)図,(4)図,図2の(1)図,(2)図等を参照して、一般的に説明しておく。
この調理用の非接触給電装置6は、電磁誘導の相互誘導作用に基づき、キッチンや食卓のテーブルA側に配された送電側回路7の送電コイル8から、電気式調理容器9側に配された受電側回路10の受電コイル11に、電気的に非接触で電力を供給する。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
<< About the non-contact power feeding device 6 >>
First, a non-contact power feeding device 6 which is a premise of the present invention will be generally described with reference to FIG. 1 (3), FIG. (4), FIG. 2 (1), (2) and the like. Keep it.
The non-contact power feeding device 6 for cooking is arranged on the electric cooking container 9 side from the power transmission coil 8 of the power transmission side circuit 7 arranged on the table A side of the kitchen or the table based on the mutual induction action of electromagnetic induction. The power is supplied to the power receiving coil 11 of the power receiving side circuit 10 in an electrically non-contact manner.

これらについて、更に詳述する。まず、1次側の送電側回路7は、キッチンや食卓のテーブルA側の給電テーブル12に配設される。給電テーブル12は、テーブルAに一体的に組み込まれている場合もあるが、別体として置かれている場合もある。2次側の受電側回路10は、電気式調理容器9側に配設される。
電気式調理容器9としては、例えばミキサー,湯わかしポット,コーヒーメーカ,蒸し器,パン焼き器,電気保温ポット,電気保温カップ,電気保温鍋,電気保温皿,電気保温丼,etc.その他各種のものが可能である。飲食物を加熱,料理,調製,保温,保冷等する各種の調理器具が対象となる。
電気式調理容器9は、使用に際し、給電テーブル12上に置かれる。もって、電気式調理容器9側の受電側回路10の受電コイル11が、給電テーブル12側の送電側回路7の送電コイル8上に、対応位置せしめられる。
受電コイル11と送電コイル8とは、電気式調理容器9底部や給電テーブル12頂部を形成する樹脂材等を介し、ワイヤレスつまり電気的に非接触で、対応位置する。磁化されず磁界の影響を受けない非磁性,非導電性,高電気抵抗材である樹脂材等を介し、対応位置する。
These will be further described in detail. First, the primary power transmission side circuit 7 is disposed on the power supply table 12 on the table A side of the kitchen or the table. The power supply table 12 may be integrally incorporated in the table A, but may be placed as a separate body. The secondary power receiving circuit 10 is disposed on the electric cooking container 9 side.
Examples of the electric cooking container 9 include a mixer, a hot water pot, a coffee maker, a steamer, a bread maker, an electric heat pot, an electric heat cup, an electric heat pot, an electric heat dish, an electric heat pot, etc. Various other things are possible. Various cooking utensils that heat, cook, prepare, keep warm, and cool food and drink are targeted.
The electric cooking container 9 is placed on the power supply table 12 in use. Accordingly, the power receiving coil 11 of the power receiving side circuit 10 on the electric cooking container 9 side is placed in a corresponding position on the power transmitting coil 8 of the power transmitting side circuit 7 on the power feeding table 12 side.
The power receiving coil 11 and the power transmitting coil 8 are wirelessly, that is, electrically non-contact, and correspond to each other via a resin material that forms the bottom of the electric cooking container 9 and the top of the power feeding table 12. It is located through a non-magnetic, non-conductive, high electrical resistance material that is not magnetized and not affected by the magnetic field.

1次側の送電側回路7において、送電コイル8は高周波電源13に接続されている。高周波電源13は、高周波への周波数等変換用インバータ等よりなり、例えば数kHz〜数10kHz〜数100kHz程度の高周波交流を、送電コイル8に向けて通電する。
2次側の受電側回路10において、受電コイル11は、負荷14に接続されている。受電コイル11からの出力は、図示例では、コンバータ15にて交流が直流に変換された後、負荷14に供給される。勿論、負荷14が、図示例のようなモーター等の直流抵抗ではなく、例えばヒーター等の交流抵抗の場合は、そのまま供給される。
送電側回路7には、並列共振用の並列コンデンサ16が設けられ、受電側回路10にも、並列共振用の並列コンデンサ17が設けられている。送電コイル8と並列コンデンサ16、受電コイル11と並列コンデンサ17は、それぞれ共振回路を形成しており、共振により電力供給量の増大が図られている。
なお、更に直列共振用の直列コンデンサを用いることも考えられるが、共振回路としては、並列共振用の並列コンデンサ16,17のみの使用、又は、直列共振用の直列コンデンサのみの使用も可能である。
そして、両並列共振回路の共振周波数が等しく設定されると共に、送電側回路7の高周波電源13の電源周波数も、共振周波数と等しく揃えられている。
In the primary side power transmission side circuit 7, the power transmission coil 8 is connected to a high frequency power source 13. The high-frequency power source 13 includes an inverter for converting a frequency into a high frequency and the like, and energizes a high-frequency alternating current of, for example, about several kHz to several tens kHz to several hundred kHz toward the power transmission coil 8.
In the secondary power receiving circuit 10, the power receiving coil 11 is connected to a load 14. In the illustrated example, the output from the power receiving coil 11 is supplied to the load 14 after AC is converted into DC by the converter 15. Of course, when the load 14 is not a direct current resistance such as a motor as in the illustrated example but an alternating current resistance such as a heater, the load 14 is supplied as it is.
The power transmission side circuit 7 is provided with a parallel capacitor 16 for parallel resonance, and the power receiving side circuit 10 is also provided with a parallel capacitor 17 for parallel resonance. The power transmission coil 8 and the parallel capacitor 16, and the power reception coil 11 and the parallel capacitor 17 form a resonance circuit, respectively, and the amount of power supply is increased by resonance.
Although it is possible to use a series capacitor for series resonance, it is possible to use only parallel capacitors 16 and 17 for parallel resonance or use only a series capacitor for series resonance as a resonance circuit. .
The resonance frequencies of both parallel resonance circuits are set to be equal, and the power supply frequency of the high frequency power supply 13 of the power transmission side circuit 7 is also equal to the resonance frequency.

電磁誘導の相互誘導作用については、次のとおり。給電に際しては、送電コイル8と受電コイル11とが、非接触ギャップを存しつつ対応位置せしめられる。そして送電コイル8での磁束形成により、受電コイル11に誘導起電力を生成させ、もって送電コイル8から受電コイル11に電力を供給することは、公知公用である。
すなわち送電コイル8に、高周波電源13からの給電交流を、共振電流,励磁電流として印加,通電することにより、自己誘導起電力が発生して磁界が送電コイル8の周囲に生じ、磁束φがコイル面に対して直角方向に形成される。そして形成された磁束φが、受電コイル11を貫き鎖交することにより、誘導起電力が生成され磁界が誘起される。
このように誘起される磁界を利用して、数kW以上〜数10kW〜数100kW程度の電力供給が可能となっている。送電コイル8側の磁束φの磁気回路と、受電コイル11側の磁束φの磁気回路は、相互間にも磁束φの磁気回路つまり磁路φが形成されて、電磁結合される。
この非接触給電装置6では、このような電磁誘導の相互誘導作用に基づき、非接触給電が行われるが、磁界共振結合方式(磁界共鳴方式)が併用されている。すなわち、前述したように共振周波数,電源周波数を揃えることにより、送電コイル8と受電コイル11間について、磁界共振(磁界共鳴)現象が生じ、もって、更なる非接触ギャップ拡大が可能となっている。
非接触給電装置6について、一般的説明は以上のとおり。
The mutual induction effect of electromagnetic induction is as follows. During power feeding, the power transmission coil 8 and the power reception coil 11 are positioned correspondingly with a non-contact gap. And it is publicly known and publicly used to generate an induced electromotive force in the power receiving coil 11 by forming magnetic flux in the power transmitting coil 8 and to supply power from the power transmitting coil 8 to the power receiving coil 11.
That is, by applying and energizing a power feeding AC from the high frequency power source 13 to the power transmission coil 8 as a resonance current and an excitation current, a self-induced electromotive force is generated and a magnetic field is generated around the power transmission coil 8, and a magnetic flux φ is generated in the coil. It is formed in a direction perpendicular to the surface. Then, the formed magnetic flux φ penetrates through the power receiving coil 11 to generate an induced electromotive force and induce a magnetic field.
Using the magnetic field induced in this way, it is possible to supply power of several kW or more to several tens kW to several hundred kW. The magnetic circuit of magnetic flux φ on the power transmission coil 8 side and the magnetic circuit of magnetic flux φ on the power receiving coil 11 side are electromagnetically coupled with each other by forming a magnetic circuit of magnetic flux φ, that is, a magnetic path φ.
In the non-contact power feeding device 6, non-contact power feeding is performed based on such electromagnetic induction mutual induction action, but a magnetic resonance coupling method (magnetic resonance method) is also used. That is, as described above, by arranging the resonance frequency and the power supply frequency to be uniform, a magnetic field resonance (magnetic field resonance) phenomenon occurs between the power transmission coil 8 and the power reception coil 11, thereby further expanding the non-contact gap. .
About the non-contact electric power feeder 6, the general description is as above.

《第1例(前提例)について》
以下、本発明の調理用の非接触給電装置6について、説明する。まず、本発明について、図1,図2に示した第1例(前提例)を参照して説明する。
この非接触給電装置6では、異径コイルが採用されており、送電コイル8は、径大なループ状に巻回されており、受電コイル11は、送電コイル8より径小なループ状に巻回されている。
そして受電コイル11は、給電に際し、送電コイル8と上下の関係で対応位置し、送電コイル8の磁界位置内に置かれる。
<< About the first example (premise example) >>
Hereinafter, the non-contact electric power feeder 6 for cooking of this invention is demonstrated. First, the present invention will be described with reference to a first example (premise example) shown in FIGS.
In the non-contact power feeding device 6, different diameter coils are employed, the power transmission coil 8 is wound in a large loop shape, and the power receiving coil 11 is wound in a loop shape smaller in diameter than the power transmission coil 8. It has been turned.
The power receiving coil 11 is positioned corresponding to the power transmission coil 8 in an up-and-down relationship during power feeding, and is placed in the magnetic field position of the power transmission coil 8.

これらについて、更に詳述する。送電コイル8や受電コイル11は、スパイラル円環状,方形環状,その他の環状,ループ状をなして巻回されている。
そして送電コイル8は、受電コイル11より大きな設定よりなる。すなわち送電コイル8の巻径は、受電コイル11の巻径の数倍程度、例えば5〜6倍程度よりなるが、2倍〜20倍程度とすることも考えられる。
受電コイル11の巻径は、対象となる電気式調理容器9の種類,大きさにより、大小様々であるが(図1の(4)図を参照)、送電コイル8の巻径は、これらを余裕をもって複数載せることが可能なエリアをカバーしている。つまり送電コイル8の巻径は、受電コイル11の巻径より遥かに大きい設定よりなる。
なお、送電コイル8の巻回軸と受電コイル11の巻回軸とは、図示のように平行とするのが、給電上最も効率的である。
These will be further described in detail. The power transmission coil 8 and the power reception coil 11 are wound in a spiral annular shape, a rectangular annular shape, other annular shapes, and a loop shape.
The power transmission coil 8 is configured to be larger than the power reception coil 11. That is, the winding diameter of the power transmission coil 8 is about several times the winding diameter of the power receiving coil 11, for example, about 5 to 6 times, but may be about 2 to 20 times.
The winding diameter of the power receiving coil 11 varies depending on the type and size of the target electric cooking vessel 9 (see FIG. 1 (4)). It covers an area where multiple items can be placed with a margin. That is, the winding diameter of the power transmission coil 8 is set to be much larger than the winding diameter of the power reception coil 11.
It is most efficient in terms of power supply that the winding axis of the power transmission coil 8 and the winding axis of the power reception coil 11 are parallel as shown in the figure.

前述したように、送電コイル8は、給電テーブル12の下側に組み込まれ,配設される。受電コイル11は、電気式調理容器9の下側,底部側に組み込まれ,配設されている。もって、上述した送電コイル8と受電コイル11との径関係に準じ、給電テーブル12は、電気式調理容器9より遥かに大きい設定よりなる。
そして給電に際し、電気式調理容器9が給電テーブル12上に置かれることにより、電気式調理容器9側の径小な受電コイル11が、給電テーブル12側の径大な送電コイル8に対し、上下の関係で接近した非接触ギャップ距離のもとで対応位置する。電気式調理容器9は、必要に応じ適宜選択され、単数又は複数が給電テーブル12上に置かれる。
非接触給電装置6では、このようにして、径小な受電コイル11が、径大な送電コイル8上、つまり送電コイル8の巻回エリア内上、送電コイル8の磁界位置内に置かれ、もって、両者が電磁結合されて給電が行われる。
As described above, the power transmission coil 8 is incorporated and disposed below the power supply table 12. The power receiving coil 11 is incorporated and disposed on the lower side and the bottom side of the electric cooking vessel 9. Therefore, according to the diameter relationship between the power transmission coil 8 and the power reception coil 11 described above, the power supply table 12 is configured to be much larger than the electric cooking container 9.
When the electric cooking container 9 is placed on the power supply table 12 during power feeding, the small diameter receiving coil 11 on the electric cooking container 9 side moves up and down relative to the large power transmitting coil 8 on the power feeding table 12 side. Corresponding position under close contact non-contact gap distance. The electric cooking vessel 9 is appropriately selected as necessary, and one or a plurality of the electric cooking vessels 9 are placed on the power supply table 12.
In the non-contact power feeding device 6, the small diameter power receiving coil 11 is placed on the large diameter power transmitting coil 8, that is, in the winding area of the power transmitting coil 8 and in the magnetic field position of the power transmitting coil 8. Accordingly, both are electromagnetically coupled and power is supplied.

《第2例(送電コイル)について》
次に、図3に示した第2例(送電コイル)について、説明する。
この非接触給電装置6は、送電コイル8に特徴が存する。すなわち送電コイル8は、多極構造よりなり、複数の単位コイル18の平面的集合体よりなる。各単位コイル18は、直に並んで隣接配置された相互間で、電流の向きそして磁界の向きが逆となる設定よりなる。
もって送電コイル8は、各単位コイル18毎に形成される磁界により、給電効率低下箇所の発生抑制機能を発揮する。又、隣接磁界間の重なり部分の打ち消し合いにより、磁界外部拡散の低減機能を発揮する。
<< About the second example (power transmission coil) >>
Next, the second example (power transmission coil) shown in FIG. 3 will be described.
This non-contact power feeding device 6 is characterized by a power transmission coil 8. That is, the power transmission coil 8 has a multipolar structure and a planar assembly of a plurality of unit coils 18. Each unit coil 18 has a setting in which the direction of the current and the direction of the magnetic field are opposite to each other arranged adjacent to each other.
Therefore, the power transmission coil 8 exhibits a function of suppressing the occurrence of a decrease in power supply efficiency due to the magnetic field formed for each unit coil 18. Further, the function of reducing the external diffusion of the magnetic field is exhibited by canceling the overlapping portion between adjacent magnetic fields.

これらについて、更に詳述する。まず、前述した第1例(前提例)の非接触給電装置6については、次の(イ),(ロ)の点が指摘される(図1を参照)。
(イ)受電コイル11が送電コイル8の中央a付近に位置する場合と、周辺b付近に位置する場合とでは、両者の電磁結合の結合係数が、数倍以上の差で大きく異なるようになる、という指摘があった。
例えば、送電コイル8と受電コイル11の径が6:1の場合、結合係数に5倍程度の差が生じていた。受電コイル11が中央a付近に位置する場合、つまり送電コイル8のコイル線19から離れて位置する場合は、コイル線19からの磁力が弱く、給電効率が悪かった。これに対し、周辺b付近つまり送電コイル8のコイル線19近くに位置する場合は、コイル線19からの磁力が強く、給電効率が良かった。
このように図1の第1例(前提例)の非接触給電装置6にあっては、結合係数,給電効率が一様でなくムラが生じ易かった。
(ロ)第1例(前提例)の非接触給電装置6にあっては、多量の電磁波が外部拡散され易い、という指摘もあった。
すなわち、送電コイル8と受電コイル11に大きな径差,寸法差があるので、給電に際し、送電コイル8にて形成される電磁界により、電磁波が強い強度で外部拡散されてしまう虞があった。送電コイル8にて形成される電磁界について、受電コイル11と電磁結合されることなく、多量に外部放射されてしまう虞があった。
These will be further described in detail. First, the following points (a) and (b) are pointed out for the non-contact power feeding device 6 of the first example (premise example) described above (see FIG. 1).
(A) When the power receiving coil 11 is located near the center a of the power transmitting coil 8 and when it is located near the periphery b, the coupling coefficient of both electromagnetic couplings is greatly different by a difference of several times or more. There was an indication that.
For example, when the diameter of the power transmission coil 8 and the power reception coil 11 is 6: 1, a difference of about 5 times occurs in the coupling coefficient. When the power receiving coil 11 is located near the center a, that is, when the power receiving coil 11 is located away from the coil wire 19 of the power transmission coil 8, the magnetic force from the coil wire 19 is weak and the power feeding efficiency is poor. On the other hand, when it was located near the periphery b, that is, near the coil wire 19 of the power transmission coil 8, the magnetic force from the coil wire 19 was strong and the power supply efficiency was good.
As described above, in the non-contact power feeding device 6 of the first example (premise example) of FIG. 1, the coupling coefficient and the power feeding efficiency are not uniform and unevenness is likely to occur.
(B) In the non-contact power feeding device 6 of the first example (premise example), it was pointed out that a large amount of electromagnetic waves are easily diffused outside.
That is, since there is a large diameter difference and dimensional difference between the power transmission coil 8 and the power reception coil 11, there is a possibility that electromagnetic waves are externally diffused with high strength by the electromagnetic field formed by the power transmission coil 8 during power feeding. The electromagnetic field formed by the power transmission coil 8 may be radiated to the outside in a large amount without being electromagnetically coupled to the power reception coil 11.

これに対し、図3に示した第2例(送電コイル)の非接触給電装置6にあっては、まず送電コイル8を、磁極が偶数の多極構造とする。
すなわち送電コイル8を、ループ状に巻回された偶数の単位コイル18の集合体とする。図3の(1)図,(2)図の例は、円を放射状に均等区画した、8個の単位コイル18の集合体とする。図3の(3)図の例は、均等区画された8個の正方形の単位コイル18の集合体とする。
そして、このような各単位コイル18について、直に並んで隣接配置された相互間で、それぞれのコイル線19の電流の向きが、逆に設定されている。
On the other hand, in the non-contact power feeding device 6 of the second example (power transmission coil) shown in FIG. 3, first, the power transmission coil 8 has a multipolar structure with an even number of magnetic poles.
That is, the power transmission coil 8 is an aggregate of even-numbered unit coils 18 wound in a loop. The example shown in FIGS. 3A and 3B is an assembly of eight unit coils 18 in which a circle is equally divided radially. The example shown in FIG. 3C is an assembly of eight square unit coils 18 that are equally divided.
And about such each unit coil 18, the direction of the electric current of each coil wire 19 is set reversely between the mutually adjacently arranged.

《第2例(送電コイル)の送電コイル8の機能》
図3の第2例(送電コイル)の非接触給電装置6の送電コイル8は、各単位コイル18の多極構造を採用したことにより、次の(イ),(ロ)の機能を発揮する。
(イ)上述した多極構造により、給電効率低下箇所の発生抑制機能が発揮される。
前述した第1例(前提例)のように、送電コイル8が多極化されていないので、受電コイル11の位置により結合係数に差が生じる事態は、解消される。
送電コイル8が各単位コイル18に多極化されている分だけ、つまり発生磁力が各単位コイル18の分だけ、より広く設定される。もって、受電コイル11が、単位コイル18のコイル線19近くに、より多く位置するようになるので、全体的,平均的にムラなく一様に結合係数が高くなり、給電効率に優れるようになる。
<< Function of Power Transmission Coil 8 of Second Example (Power Transmission Coil) >>
The power transmission coil 8 of the non-contact power feeding device 6 of the second example (power transmission coil) of FIG. 3 exhibits the following functions (a) and (b) by adopting the multipolar structure of each unit coil 18. .
(A) The above-described multipolar structure exhibits the function of suppressing the occurrence of a decrease in power supply efficiency.
Since the power transmission coil 8 is not multipolarized as in the first example (premise example) described above, the situation in which the coupling coefficient varies depending on the position of the power reception coil 11 is eliminated.
As much as the power transmission coil 8 is multipolarized by each unit coil 18, that is, the generated magnetic force is set wider by the amount of each unit coil 18. As a result, the power receiving coil 11 is located more near the coil wire 19 of the unit coil 18, so that the coupling coefficient increases uniformly and uniformly on the whole and on average, and the power feeding efficiency is improved. .

(ロ)上述した多極構造により、磁界外部拡散の低減機能が発揮される。
前述した第1例(前提例)のように、給電に際し、送電コイル8にて形成される電磁界にて、電磁波が多量に強力に外部拡散される虞は低減される。
すなわち、送電コイル8の各単位コイル18は、直に並んで隣接配置された相互間で、電流の向きが逆となっている。
もって、隣り合って隣接配置された単位コイル18相互間で、磁極のN極とS極が逆となり、それぞれ形成される高周波電磁界(交流変動電磁界)の向きも逆となる。図3の(1)図の例では、破線表示が電流の流れ方向を示し、プラス方向の高周波電磁界が右回り、マイナス方向の高周波電磁界が左回りとなっている。
そこで、近接周辺へと外部放射された高周波電磁界は、近隣周辺においては、重なりあい打ち消し合って相殺され、密度が大幅低下し弱められる。もって、近隣周辺への拡散される電磁波強度が、大幅に低減されるようになる。
第2例(送電コイル)については、以上のとおり。
(B) The multipolar structure described above exhibits the function of reducing magnetic field external diffusion.
As in the first example (premise example) described above, the possibility that electromagnetic waves are strongly diffused externally in a large amount in the electromagnetic field formed by the power transmission coil 8 during power feeding is reduced.
That is, the direction of the current is reversed between the unit coils 18 of the power transmission coil 8 that are arranged adjacent to each other.
Accordingly, between the unit coils 18 arranged adjacent to each other, the N pole and the S pole of the magnetic poles are reversed, and the directions of the formed high-frequency electromagnetic fields (AC fluctuation electromagnetic fields) are also reversed. In the example of FIG. 3A, the broken line display indicates the direction of current flow, the high frequency electromagnetic field in the positive direction is clockwise, and the high frequency electromagnetic field in the negative direction is counterclockwise.
Therefore, the high-frequency electromagnetic field radiated to the vicinity is canceled by overlapping and canceling in the vicinity, and the density is greatly reduced and weakened. As a result, the intensity of the electromagnetic wave diffused to the vicinity is greatly reduced.
About the 2nd example (power transmission coil), it is as above.

《第3例(受電コイル)について》
次に、図4,図5に示した第3例(受電コイル)の非接触給電装置6について、説明する。
この非接触給電装置6は、受電コイル11に特徴が存する。まず前提として、送電コイル8は、前述した第2例(送電コイル)の多極構造のものが使用される。
これと共に受電コイル11が、Xコイル20,Yコイル21,Zコイル23の3方向コイルの立体的集合体よりなる。
そしてXコイル20は、電気式調理容器9の左右側面に配設される。Yコイル21は、電気式調理容器9の前後側面24に配設される。Zコイル22は、電気式調理容器9の底面25に配設される。
<< About the third example (receiving coil) >>
Next, the non-contact power feeding device 6 of the third example (power receiving coil) shown in FIGS. 4 and 5 will be described.
This non-contact power feeding device 6 has a feature in the power receiving coil 11. First, as a premise, the power transmission coil 8 has the multipolar structure of the second example (power transmission coil) described above.
At the same time, the power receiving coil 11 is constituted by a three-dimensional assembly of three-way coils of an X coil 20, a Y coil 21, and a Z coil 23.
The X coil 20 is disposed on the left and right side surfaces of the electric cooking vessel 9. The Y coil 21 is disposed on the front and rear side surfaces 24 of the electric cooking vessel 9. The Z coil 22 is disposed on the bottom surface 25 of the electric cooking vessel 9.

これらについて、更に詳述する。まず、前述した第2例(送電コイル)の非接触給電装置9については、次の点が指摘される。
電気式調理容器式9そして受電コイル11を置く位置によっては、給電ヌルポイント(null point)が、発生する虞がある(図3の(2)図を参照)。
すなわち給電に際し、受電コイル11が、送電コイル8の単位コイル18の内側cに位置すると、高い結合係数が得られる。これに対し受電コイル11が、境界dに位置すると結合係数が低下し、結合係数がゼロとなり給電不能となる、給電ヌルポイント発生の虞がある。
すなわち受電コイル11が、送電コイル8の隣接する単位コイル18間に跨って位置すると、隣接単位コイル18でそれぞれ誘起形成される磁界の向きが逆のため、両者の電磁結合に支障が生じるようになる。
特に図示したように、隣接する両単位コイル18の境界d上に、受電コイル11の中央が跨って位置すると、受電コイル11にとって磁界の向きが半々ずつ逆となり、磁界が打ち消し合ってゼロとなる。もって、送電コイル8つまり単位コイル18と、受電コイル11との間の電磁結合が不成立となり、結合係数がゼロとなってしまう。
These will be further described in detail. First, the following point is pointed out about the non-contact electric power feeder 9 of the 2nd example (power transmission coil) mentioned above.
Depending on the position where the electric cooking container type 9 and the power receiving coil 11 are placed, there is a possibility that a power supply null point may occur (see FIG. 3B).
That is, when the power receiving coil 11 is positioned inside the unit coil 18 of the power transmitting coil 8 during power feeding, a high coupling coefficient is obtained. On the other hand, when the power receiving coil 11 is located at the boundary d, the coupling coefficient is lowered, and the coupling coefficient becomes zero, which makes it impossible to feed power.
That is, when the power receiving coil 11 is positioned across the adjacent unit coils 18 of the power transmitting coil 8, the directions of the magnetic fields induced and formed by the adjacent unit coils 18 are opposite, so that the electromagnetic coupling between them is hindered Become.
In particular, as shown in the figure, when the center of the power receiving coil 11 is located on the boundary d between the adjacent unit coils 18, the direction of the magnetic field is reversed by half for the power receiving coil 11, and the magnetic fields cancel each other and become zero. . Therefore, the electromagnetic coupling between the power transmission coil 8, that is, the unit coil 18 and the power receiving coil 11 is not established, and the coupling coefficient becomes zero.

そこで、図4に示した第3例(受電コイル)の非接触給電装置6にあっては、受電コイル11として、三方向コイルを立体的に採用してなる。
これまでの受電コイル11は、平面的に巻回された単一コイルよりなっていたのに対し、この第3例(受電コイル)では、Xコイル20,Yコイル21,Zコイル22の三方向コイルを、立体的に組み合わせて採用してなる。
Therefore, in the non-contact power feeding device 6 of the third example (power receiving coil) shown in FIG. 4, a three-way coil is three-dimensionally adopted as the power receiving coil 11.
The power receiving coil 11 so far consists of a single coil wound in a plane, whereas in this third example (power receiving coil), the three directions of the X coil 20, the Y coil 21, and the Z coil 22 are used. Coils are used in combination in three dimensions.

すなわちXコイル20は、電気式調理容器9の左右側面23の片面(図示例)又は両面に、配設される。Yコイル21は、電気式調理容器9の前後側面24の片面(図示例)又は両面に、配設される。Zコイル22は、電気式調理容器9の底面25に、配設される。なお、X,Yコイル20,21を両面配設すると、給電効率が一段と向上する。図中26は頂面である。
代表例としては、3次元の直交座標系として、電気式調理容器9の縦面の前後側面24と、横面の左右側面23とが直交し、前後側面24および左右側面23と、奥行面の底面25とが直交する。Xコイル20がX軸コイルとなり、Yコイル21がY軸コイルとなり、Zコイル22がZ軸コイルとなる。
又、電気式調理容器9について上記各面が形成されている場合は、X,Y,Zコイル20,21,22は、形成されているそれぞれの面に配設される。これに対し、電気式調理容器9について上記各面のすべて又は一部が形成されていない場合は、電気式調理容器9に不足面が付設されると共に、付設された面に、X,Y,Zコイル20,21,22のすべて又は一部が配設される。
That is, the X coil 20 is disposed on one side (illustrated example) or both sides of the left and right side surfaces 23 of the electric cooking vessel 9. The Y coil 21 is disposed on one side (illustrated example) or both sides of the front and rear side surfaces 24 of the electric cooking vessel 9. The Z coil 22 is disposed on the bottom surface 25 of the electric cooking vessel 9. If the X and Y coils 20 and 21 are disposed on both sides, the power supply efficiency is further improved. In the figure, reference numeral 26 denotes a top surface.
As a representative example, as a three-dimensional orthogonal coordinate system, the front and rear side surfaces 24 of the electric cooking vessel 9 and the left and right side surfaces 23 of the horizontal surface are orthogonal to each other, and the front and rear side surfaces 24 and the left and right side surfaces 23 The bottom surface 25 is orthogonal. The X coil 20 becomes an X axis coil, the Y coil 21 becomes a Y axis coil, and the Z coil 22 becomes a Z axis coil.
Moreover, when each said surface is formed about the electric cooking vessel 9, the X, Y, Z coil 20, 21, 22 is arrange | positioned at each formed surface. On the other hand, when all or a part of each surface is not formed on the electric cooking container 9, a shortage surface is attached to the electric cooking container 9, and X, Y, All or part of the Z coils 20, 21, 22 are disposed.

《第3例(受電コイル)の受電コイル11の機能》
図4の第3例(受電コイル)の非接触給電装置6の受電コイル11は、このようなX,Y,Zコイル20,21,22を採用したことにより、次の機能を発揮する。
電気式調理容器9が、給電テーブル12上に置かれる位置,方向にかかわらず、つまり受電コイル11が、送電コイル8の単位コイル18上に置かれる位置,方向にかかわらず、給電に際し結合係数の低下は、回避される。電磁結合の困難化、そして結合係数がゼロとなる給電ヌルポイントの発生は、回避される。
すなわち、置かれ位置,方向にかかわらず、受電コイル11のX,Y,Zコイル20,21,22の内、少なくとも一つのコイルが、送電コイル8の単位コイル18と、電磁結合されるようになる。
特に、Zコイル22が、送電コイル8の隣接単位コイル18間の境界dに跨って位置し、Zコイル22について、電磁結合が困難化した場合でも(図3の(2)図を参照)、X,Yコイル20,21について電磁結合が成立可能となる。
<< Function of Power Receiving Coil 11 of Third Example (Power Receiving Coil) >>
The power receiving coil 11 of the non-contact power feeding device 6 of the third example (power receiving coil) of FIG. 4 exhibits the following functions by adopting such X, Y, Z coils 20, 21, and 22.
Regardless of the position and direction in which the electric cooking container 9 is placed on the power supply table 12, that is, regardless of the position and direction in which the power receiving coil 11 is placed on the unit coil 18 of the power transmission coil 8, the coupling coefficient is changed. A decline is avoided. The difficulty of electromagnetic coupling and the generation of a feeding null point at which the coupling coefficient becomes zero are avoided.
That is, at least one of the X, Y, and Z coils 20, 21, and 22 of the power receiving coil 11 is electromagnetically coupled to the unit coil 18 of the power transmitting coil 8 regardless of the position and direction. Become.
In particular, even when the Z coil 22 is located across the boundary d between the adjacent unit coils 18 of the power transmission coil 8 and electromagnetic coupling becomes difficult for the Z coil 22 (see FIG. 3 (2)), Electromagnetic coupling can be established for the X and Y coils 20 and 21.

例えば、図4の(5)図に示したように、送電コイル8の単位コイル18について、放射方向に向けられた各コイル線19,19,19については、次のとおり。
まず各コイル線19,19,19共に、Zコイル22の中央下を通過しているので、Zコイル22との電磁結合はない。
これに対し、受電コイル11のXコイル20,Yコイル21の一方又は両方については、電磁結合が発生する。すなわち、コイル線19については、Xコイル20のみが電磁結合し、コイル線19については、Yコイル21のみが電磁結合し、コイル線19については、Xコイル20およびYコイル21が電磁結合する。
なお図5は、図3例の受電側回路10の回路図である。図5の(1)図は、負荷14が交流抵抗の例であり、X,Y,Zコイル20,21,22から各負荷14に、給電が直接行われる。図5の(2)図は、負荷14が直流抵抗の例であり、X,Y,Zコイル20,21,22から、ダイオードの整流コンバータ15を介して、給電される。
第3例(受電コイル)については、以上のとおり。
For example, as shown in (5) Figure of Figure 4, the unit coil 18 of the power transmission coil 8, for each coil wire 19 1, 19 2, 19 3 which is directed in the radial direction, as follows.
First the coil wire 19 1, 19 2, 19 3 Since both passes through the center of a Z coil 22, no electromagnetic coupling between the Z coil 22.
On the other hand, electromagnetic coupling occurs in one or both of the X coil 20 and the Y coil 21 of the power receiving coil 11. That is, the coil wire 19 1, only the X coil 20 is electromagnetically coupled, for the coil wire 19 2, only the Y coil 21 is electromagnetically coupled, for coil wire 19 3, X coil 20 and the Y coil 21 electromagnetically Join.
FIG. 5 is a circuit diagram of the power receiving circuit 10 in the example of FIG. FIG. 5A shows an example in which the load 14 is an AC resistance, and power is directly supplied from the X, Y, Z coils 20, 21, and 22 to each load 14. FIG. 5B shows an example in which the load 14 is a direct current resistor, and power is supplied from the X, Y, Z coils 20, 21, and 22 via a diode rectifier converter 15.
The third example (power receiving coil) is as described above.

《作用等》
本発明の調理用の非接触給電装置6は、以上説明したように構成されている。そこで以下のようになる。
(1)給電に際しては、単数又は複数の電気式調理容器9が、給電テーブル12上に載せられる(図1の(4)図を参照)。
《Action etc.》
The non-contact power feeding device 6 for cooking according to the present invention is configured as described above. Then, it becomes as follows.
(1) During power feeding, one or a plurality of electric cooking containers 9 are placed on the power feeding table 12 (see FIG. 1 (4)).

(2)もって、電気式調理容器9側の受電側回路10の径小な受電コイル11が、給電テーブル12側の送電側回路7のより径大な送電コイル8に対し、上下の関係で対応位置し、送電コイル8の磁界位置内の内側に置かれる(図1の各図を参照)。   (2) Therefore, the small receiving coil 11 of the receiving circuit 10 on the electric cooking vessel 9 side corresponds to the larger transmitting coil 8 of the transmitting circuit 7 on the feeding table 12 in the vertical relationship. And is placed inside the magnetic field position of the power transmission coil 8 (see each figure in FIG. 1).

(3)この調理用の非接触給電装置6では、このようにして、送電コイル8と受電コイル11とが、電磁結合され、送電側回路7から受電側回路10に、高周波電力が供給される。
すなわち、給電テーブル12側から電気式調理容器9側に、電磁誘導の相互誘導作用に基づき磁界共振結合方式にて、電気的に非接触で非接触ギャップ距離を存しつつ、高周波電力が授受される(図1,図2の各図を参照)。
(3) In this non-contact power feeding device 6 for cooking, the power transmission coil 8 and the power reception coil 11 are electromagnetically coupled in this way, and high frequency power is supplied from the power transmission side circuit 7 to the power reception side circuit 10. .
That is, high-frequency power is transferred from the feeding table 12 side to the electric cooking vessel 9 side by a magnetic resonance coupling method based on the mutual induction action of electromagnetic induction while maintaining a non-contact gap distance electrically and non-contactingly. (Refer to FIGS. 1 and 2).

(4)さてそこで、この調理用の非接触給電装置6によると、次の第1,第2,第3,第4のようになる。
第1に、この非接触給電装置6では、送電コイル8と受電コイル11について、異径コイルを採用してなる。受電コイル11は、その種類,大きさにかかわらず、より径大な送電コイル8上のどこに置いても、給電可能である(図1を参照)。
つまり電気式調理容器9は、その種類,大きさにかかわらず、給電テーブル12上のどこに置いても、給電可能となる。
(4) Now, according to this non-contact electric power feeder 6 for cooking, it becomes like the following 1st, 2nd, 3rd, 4th.
First, the non-contact power feeding device 6 employs different diameter coils for the power transmission coil 8 and the power reception coil 11. Regardless of the type and size of the power receiving coil 11, power can be supplied anywhere on the power transmitting coil 8 having a larger diameter (see FIG. 1).
That is, the electric cooking container 9 can be powered regardless of its type and size, regardless of where it is placed on the feeding table 12.

第2に、この非接触給電装置6は、異径コイルを基本とした構成よりなり、一つの送電コイル8,給電テーブル12で、各種の受電コイル11,電気式調理容器9に、対応可能である。もって、使用が容易で便利であり、邪魔にもならず、構成も簡単化される。   Secondly, the non-contact power feeding device 6 has a configuration based on coils of different diameters, and can be used for various power receiving coils 11 and electric cooking containers 9 with a single power transmission coil 8 and power feeding table 12. is there. Thus, it is easy and convenient to use, does not get in the way, and the configuration is simplified.

第3に、この非接触給電装置6において、更に、前述した第2例(送電コイル)(図3を参照)のように、送電コイル8を、偶数の複数の単位コイル18よりなる多極構造とすると共に、各単位コイル18について、隣接相互間で電流,磁界の向きを逆としたので、次の(イ),(ロ)のようになる。
(イ)送電コイル8が、各単位コイル18に多極化されているので、その分だけ、発生磁力がより広いエリアでより広く設定され、受電コイル4が、コイル線19近くにより多く位置するようになる。もって、全体的,平均的に高い結合係数が得られ、給電効率に優れるようになる。このように、この送電コイル8は、給電効率低下箇所の発生抑制機能を発揮する。
(ロ)送電コイル8の各単位コイル18は、それぞれ形成される電磁界の向きが逆となっている。そこで、近隣周辺へと外部放射された電磁界は、重なり合い打ち消し合って弱められる。
もって外部拡散される電磁波が、大幅低減される。このようにこの送電コイル8は、磁界外部拡散の低減機能,磁場封じ込め機能を発揮する。
Thirdly, in the non-contact power feeding device 6, as in the above-described second example (power transmission coil) (see FIG. 3), the power transmission coil 8 is a multipolar structure composed of an even number of unit coils 18. In addition, since the directions of the current and the magnetic field between the adjacent unit coils 18 are opposite to each other, the following (A) and (B) are obtained.
(A) Since the power transmission coil 8 is multipolarized in each unit coil 18, the generated magnetic force is set wider in a wider area, and the power receiving coil 4 is positioned closer to the coil wire 19. Become. As a result, a high coupling coefficient can be obtained on the whole and on average, and the power supply efficiency becomes excellent. As described above, the power transmission coil 8 exhibits a function of suppressing occurrence of a decrease in power supply efficiency.
(B) Each unit coil 18 of the power transmission coil 8 has the opposite direction of the formed electromagnetic field. Thus, the electromagnetic field radiated to the vicinity is weakened by overlapping and canceling each other.
Thus, electromagnetic waves that are diffused outside are greatly reduced. In this way, the power transmission coil 8 exhibits a function of reducing the external diffusion of the magnetic field and a function of containing the magnetic field.

第4に、非接触給電装置6において、送電コイル8の上述した多極構造に加え、更に、前述した第3例(受電コイル)(図4を参照)のように、受電コイル11を、X,Y,Zコイル20,21,22の立体的3方向コイルの組み合わせとして構成したので、次のようになる。
電気式調理容器9そして受電コイル11の置かれる位置,方向にかかわらず、X,Y,Zコイル20,21,22の内、一つ以上が、送電コイル8の単位コイル18と電磁結合されるようになる。
多極構造の送電コイル8について、誘起磁界の向きが逆の隣接単位コイル18間に跨って位置した場合でも、受電コイル11のX,Y,Zコイル20,21,22の内、少なくとも一つが、送電コイル8の単位コイル18と電磁結合する。
もって給電に際し、送電コイル8と受電コイル11間の結合係数が低下する事態は、回避される。特に、結合係数がゼロとなり給電不能となる、給電ヌルポイントの発生は、回避される。
作用等については、以上のとおり。
Fourthly, in the non-contact power feeding device 6, in addition to the above-described multipolar structure of the power transmission coil 8, the power reception coil 11 is further changed to X as in the above-described third example (power reception coil) (see FIG. 4). , Y, Z coils 20, 21, 22 are configured as a combination of three-dimensional three-way coils.
Regardless of the position and direction in which the electric cooking vessel 9 and the power receiving coil 11 are placed, one or more of the X, Y, Z coils 20, 21, 22 are electromagnetically coupled to the unit coil 18 of the power transmitting coil 8. It becomes like this.
Regarding the power transmission coil 8 having a multipolar structure, at least one of the X, Y, Z coils 20, 21, and 22 of the power reception coil 11 is present even when the induced magnetic field is positioned between adjacent unit coils 18 having opposite directions. The unit coil 18 of the power transmission coil 8 is electromagnetically coupled.
Thus, a situation in which the coupling coefficient between the power transmission coil 8 and the power reception coil 11 is reduced during power feeding is avoided. In particular, the occurrence of a feeding null point, where the coupling coefficient becomes zero and feeding is impossible, is avoided.
As for the action, it is as above.

A テーブル
a 中央
b 周辺
c 内側
d 境界
φ 磁束
1 給電台(従来例)
2 送電コイル(従来例)
3 電気式調理容器(従来例)
4 受電コイル(従来例)
5 非接触給電装置(従来例)
6 非接触給電装置(本発明)
7 送電側回路
8 送電コイル(本発明)
9 電気式調理容器(本発明)
10 受電側回路
11 受電コイル(本発明)
12 給電テーブル(本発明)
13 高周波電源
14 負荷
15 コンバータ
16 並列コンデンサ
17 並列コンデンサ
18 単位コイル
19 コイル線
19 コイル線
19 コイル線
19 コイル線
20 Xコイル
21 Yコイル
22 Zコイル
23 左右側面
24 前後側面
25 底面
26 頂面
A Table a Center b Peripheral c Inner d Boundary φ Magnetic flux 1 Feeding stand (conventional example)
2 Power transmission coil (conventional example)
3 Electric cooking container (conventional example)
4 Power receiving coil (conventional example)
5 Non-contact power feeding device (conventional example)
6 Non-contact power feeding device (present invention)
7 power transmission side circuit 8 power transmission coil (present invention)
9 Electric cooking container (present invention)
10 power receiving side circuit 11 power receiving coil (present invention)
12 Power supply table (present invention)
13 High Frequency Power Supply 14 Load 15 Converter 16 Parallel Capacitor 17 Parallel Capacitor 18 Unit Coil 19 Coil Wire 19 1 Coil Wire 19 2 Coil Wire 19 3 Coil Wire 20 X Coil 21 Y Coil 22 Z Coil 23 Left and Right Sides 24 Front and Back Sides 25 Bottom 26 surface

Claims (1)

電磁誘導の相互誘導作用に基づき、キッチンや食卓の給電テーブル側に配された送電側回路の送電コイルから、電気式調理容器側に配された受電側回路の受電コイルに、非接触で電力を供給する調理用の非接触給電装置であって、
該送電コイルは、径大なループ状に巻回されており、該受電コイルは、該送電コイルより径小なループ状に巻回されており、
該受電コイルは、給電に際し該送電コイルと上下の関係で対応位置し、該送電コイルの磁界位置内に置かれ、
該送電コイルは、偶数の複数の単位コイルの平面的集合体よりなり、多極構造をなしており、各該単位コイルは、直に並んで隣接配置された相互間で、電流の向きそして磁界の向きが逆となる設定よりなり、
もって該送電コイルは、各該単位コイル毎に磁界が広く形成され、該受電コイルが、各該単位コイルの磁力の強いコイル線近くに多く位置するようになり、まず、給電効率低下箇所の発生抑制機能を発揮すると共に、
該送電コイルは径大であり、径小の該受電コイルとの大きな寸法差により、多量の磁界が外部拡散し易いが、偶数の各該単位コイルについて、隣接相互間で磁界の向きが逆となる設定に基づき、隣接磁界間の重なり部分の打ち消し合いにより、磁界外部拡散の低減機能を発揮し、
更に、該送電コイルの磁界の向きが逆で隣接配置された各該単位コイル間に、該受電コイルが跨って位置すると、電磁結合が困難化する虞が発生する場合があるが、
該受電コイルは、Xコイル,Yコイル,Zコイルの3方向コイルの立体的集合体よりなり、該Xコイルは、該電気式調理容器の左右側面に配設され、該Yコイルは、該電気式調理容器の前後側面に配設され、Zコイルは、該電気式調理容器の底面に配設されており、
もって上記場合でも、Xコイル,Yコイル,Zコイルの内、少なくとも一つが該送電コイルの単位コイルとの電磁結合機能を発揮すること、を特徴とする非接触給電装置。
Based on the mutual induction effect of electromagnetic induction, power is transmitted in a non-contact manner from the power transmission coil of the power transmission circuit arranged on the power supply table side of the kitchen or table to the power reception coil of the power reception circuit arranged on the electric cooking container side. A non-contact power feeding device for cooking,
The power transmission coil is wound in a large loop shape, and the power receiving coil is wound in a loop shape smaller in diameter than the power transmission coil,
The power receiving coil is positioned in a vertical relationship with the power transmission coil during power feeding, and is placed within the magnetic field position of the power transmission coil.
The power transmission coil is composed of a planar assembly of an even number of unit coils, and has a multipolar structure, and each unit coil is arranged in a line and adjacently arranged between a current direction and a magnetic field. It has a setting in which the direction of
Accordingly, the power transmission coil is formed with a wide magnetic field for each unit coil, and the power receiving coil is located near the coil wire having a strong magnetic force of each unit coil. While exhibiting the suppression function,
The power transmission coil has a large diameter, and due to a large dimensional difference from the small diameter power receiving coil, a large amount of magnetic field is likely to be externally diffused. Based on the setting, the function of reducing the external diffusion of the magnetic field is demonstrated by canceling the overlapping part between adjacent magnetic fields,
Furthermore, when the power receiving coil is positioned across the unit coils arranged adjacent to each other with the direction of the magnetic field of the power transmitting coil reversed, there is a possibility that electromagnetic coupling may become difficult,
The power receiving coil is composed of a three-dimensional assembly of three-way coils of an X coil, a Y coil, and a Z coil. The X coil is disposed on the left and right side surfaces of the electric cooking vessel, and the Y coil is the electric coil. Disposed on the front and rear sides of the cooking container, and the Z coil is disposed on the bottom of the electric cooking container,
Therefore, even in the above-described case, at least one of the X coil, the Y coil, and the Z coil exhibits an electromagnetic coupling function with the unit coil of the power transmission coil.
JP2016038602A 2016-03-01 2016-03-01 Non-contact power feeding device Active JP6599265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038602A JP6599265B2 (en) 2016-03-01 2016-03-01 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038602A JP6599265B2 (en) 2016-03-01 2016-03-01 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2017158275A JP2017158275A (en) 2017-09-07
JP6599265B2 true JP6599265B2 (en) 2019-10-30

Family

ID=59810748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038602A Active JP6599265B2 (en) 2016-03-01 2016-03-01 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP6599265B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218109B2 (en) * 2018-06-28 2023-02-06 日置電機株式会社 measuring device
CN108720494B (en) * 2018-07-02 2023-12-15 浙江嘉益保温科技股份有限公司 Water outlet and temperature display linkage control structure of water container
CN110112833A (en) * 2019-04-11 2019-08-09 未竟科技(北京)有限公司 A kind of wireless energy transfer system
JP2023125921A (en) 2022-02-28 2023-09-07 オムロン株式会社 Wireless power supply system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247186B2 (en) * 1993-03-29 2002-01-15 江藤電気株式会社 Power supply device to movable body side electric drive means
US20110056215A1 (en) * 2009-09-10 2011-03-10 Qualcomm Incorporated Wireless power for heating or cooling
JP5075973B2 (en) * 2010-12-20 2012-11-21 昭和飛行機工業株式会社 Non-contact power feeder with multi-pole coil structure
JP5730587B2 (en) * 2011-01-05 2015-06-10 昭和飛行機工業株式会社 Magnetic resonance type non-contact power feeding device
JP2013223283A (en) * 2012-04-13 2013-10-28 Sumida Corporation Non-contact power supply system
JP5972497B2 (en) * 2013-07-17 2016-08-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Wireless inductive power transfer with temperature control of the receiver
JP6162609B2 (en) * 2014-01-07 2017-07-12 昭和飛行機工業株式会社 Non-contact power feeding device
WO2016007594A1 (en) * 2014-07-08 2016-01-14 Witricity Corporation Resonators for wireless power transfer systems

Also Published As

Publication number Publication date
JP2017158275A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6599265B2 (en) Non-contact power feeding device
EP3093957B1 (en) Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system
KR102579343B1 (en) Wireless power transfer system configuration
JP6162719B2 (en) Electromagnetic induction cooking system
US10856368B2 (en) Heating cooker system, inductive heating cooker, and electric apparatus
CN104622256A (en) Food cooking utensil
EP2048914B1 (en) A cooking device having an induction heating element
CN103069921A (en) Induction heating apparatus and induction heating method
JP6559348B2 (en) Non-contact power transmission system and induction heating cooker
JP2016086530A (en) Wireless power supply device and wireless power supply system
CN109945247B (en) Electromagnetic cooking appliance and power control method thereof
JP7138705B2 (en) table cooker
JPWO2017175321A1 (en) Cooking system and cooking device
CN204410586U (en) Electromagnetic coil disk and there is the electric cooking appliance of this electromagnetic coil disk
WO2018070003A1 (en) Non-contact power transmission device and non-contact power transmission system
US11166347B2 (en) Induction heating device
Kilic et al. Strongly coupled outer squircle–inner circular coil architecture for enhanced induction over large areas
JP6162609B2 (en) Non-contact power feeding device
CN204218638U (en) A kind of food cooking utensil
US20170194808A1 (en) Ultra-slim inductive charging
JP6960568B2 (en) Induction heating cooker
JP6899696B2 (en) Induction heating cooker
JP2016059128A (en) Coil unit
CN211240153U (en) Electromagnetic heating&#39;s coil pack, electromagnetic heating device and electromagnetic heating equipment
CN210202121U (en) Coupling heating device and heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191002

R150 Certificate of patent or registration of utility model

Ref document number: 6599265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250