JP6599258B2 - Shaking type open magnetic shield structure - Google Patents

Shaking type open magnetic shield structure Download PDF

Info

Publication number
JP6599258B2
JP6599258B2 JP2016016784A JP2016016784A JP6599258B2 JP 6599258 B2 JP6599258 B2 JP 6599258B2 JP 2016016784 A JP2016016784 A JP 2016016784A JP 2016016784 A JP2016016784 A JP 2016016784A JP 6599258 B2 JP6599258 B2 JP 6599258B2
Authority
JP
Japan
Prior art keywords
magnetic
coil
conductor
shaking
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016016784A
Other languages
Japanese (ja)
Other versions
JP2017135354A (en
Inventor
敏文 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2016016784A priority Critical patent/JP6599258B2/en
Publication of JP2017135354A publication Critical patent/JP2017135354A/en
Application granted granted Critical
Publication of JP6599258B2 publication Critical patent/JP6599258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明はシェイキング式の開放型磁気シールド構造に関し,とくに磁気シェイキングを利用して遮蔽性能を向上させた開放型磁気シールド構造に関する。   The present invention relates to an open type magnetic shield structure of a shaking type, and more particularly to an open type magnetic shield structure having improved shielding performance using magnetic shaking.

半導体製造施設等で用いる電子顕微鏡,EB露光装置,EBステッパー等の電子ビーム応用装置は,微弱な磁気変動でも電子ビームの軌道が変化して製品の品質が劣化するため,外乱磁場変動を100nT(1mG)以下に制御された磁気シールドルーム(磁気シールド空間)に設置することが求められる。従来の一般的な磁気シールド空間はPCパーマロイ等の透磁率の高い磁性体で床,壁,天井の全体を隙間なく覆う構造(密閉型磁気シールド構造)であるが,材料サイズの制約等から接合部が多くなり,接合部からの外乱磁場の浸入に伴う性能劣化が問題となっていた。これに対し,図14に示すように,簾状又はルーバー状に並べた帯状磁性板(短冊形磁性板)を用いた磁気シールド構造(開放型磁気シールド構造)5が開発されている(特許文献1参照)。   Electron beam application devices such as electron microscopes, EB exposure devices, and EB steppers used in semiconductor manufacturing facilities, etc., even with weak magnetic fluctuations, change the trajectory of the electron beam and degrade the product quality. It is required to be installed in a magnetic shield room (magnetic shield space) controlled to 1 mG or less. The conventional general magnetic shield space is a structure (sealed magnetic shield structure) that covers the entire floor, wall, and ceiling with a magnetic material with high permeability such as PC permalloy (sealed magnetic shield structure). The number of parts increased, and the performance degradation due to the penetration of the disturbance magnetic field from the joints was a problem. On the other hand, as shown in FIG. 14, a magnetic shield structure (open magnetic shield structure) 5 using strip-shaped magnetic plates (strip-shaped magnetic plates) arranged in a bowl shape or a louver shape has been developed (Patent Literature). 1).

開放型磁気シールド構造5は,例えば幅50mm程度の複数の帯状磁性板2を長さ方向中心軸Cが同一面F上に平行に並ぶように所要の板厚方向間隔dで積み重ねてシールド簾体3とし(図14(A)参照),複数のシールド簾体3a,3b,3c,3dを対応する端縁の接合部9の重ね合わせにより磁気的に接合して環状に閉じた帯状磁性板(以下,環帯状磁性板という)10を形成し,複数の環帯状磁性板10によって磁気シールド対象空間を囲んだものである(図14(B)参照)。環帯状磁性板10の適切な間隔dを設計することにより,磁気シールド対象空間に開放性(透視性,透光性,放熱性)を与えつつ,環帯状磁性板10(磁性体回路)に磁束を集中させて間隔dからの磁束の侵入及び漏洩(性能劣化)を小さく抑えることができる。また,接合部9で磁気的連続性が確保しやすいことから,性能劣化が少なく,所期性能を発揮することが容易な構造となっている。更に,安全率を小さく抑え,従来の密閉型磁気シールド構造に比して使用する材料を減らすことができるため,コストダウンにも繋がる利点を有している。   The open type magnetic shield structure 5 includes a plurality of strip-like magnetic plates 2 having a width of about 50 mm, for example, which are stacked at a required thickness direction interval d so that the longitudinal central axes C are arranged in parallel on the same plane F. 3 (see FIG. 14 (A)), a plurality of shield housings 3a, 3b, 3c, 3d are magnetically joined by overlapping the corresponding joints 9 at the end edges, and a belt-like magnetic plate (annularly closed) (Hereinafter, referred to as an annular belt-shaped magnetic plate) 10 is formed, and a magnetic shield target space is surrounded by a plurality of annular belt-shaped magnetic plates 10 (see FIG. 14B). By designing an appropriate distance d of the ring-shaped magnetic plate 10, magnetic flux is applied to the ring-shaped magnetic plate 10 (magnetic circuit) while providing openness (permeability, translucency, heat dissipation) to the magnetic shield target space. , And the magnetic flux intrusion and leakage (performance degradation) from the interval d can be kept small. In addition, since the magnetic continuity can be easily secured at the joint 9, the performance is less deteriorated and the desired performance can be easily achieved. Furthermore, since the safety factor can be reduced and the amount of material used can be reduced compared to the conventional sealed magnetic shield structure, there is an advantage that leads to cost reduction.

また開放型磁気シールド構造5は,外乱磁場の周波数が高くなると環帯状磁性板10の断面に流れる渦電流によって磁気シールド性能が劣化しうるが,環帯状磁性板10(磁性体回路)に銅板やアルミニウム板等の環帯状導体(導体回路)を付加して導体シールド効果を重畳することにより,200Hz程度までの外乱磁場(交流磁場)においても直流磁場と同等以上の遮蔽性能を発揮することができる(特許文献2参照)。すなわち,環帯状磁性板で構成された開放型磁気シールド構造5,或いは必要に応じて導体回路を付加した開放型磁気シールド構造5により磁気シールド空間を構築すれば,環境磁気ノイズ(外乱磁場変動)を効率的に100nT以下にまで遮断し,電子ビーム応用装置等を設置するに相応しい磁気環境(磁気シールド空間)を提供することができる。   In the open type magnetic shield structure 5, the magnetic shield performance can be deteriorated by the eddy current flowing in the cross section of the ring-shaped magnetic plate 10 when the frequency of the disturbance magnetic field is increased. By adding a ring-shaped conductor (conductor circuit) such as an aluminum plate and superimposing the conductor shielding effect, even a disturbance magnetic field (AC magnetic field) up to about 200 Hz can exhibit shielding performance equivalent to or better than a DC magnetic field. (See Patent Document 2). That is, if the magnetic shield space is constructed by the open type magnetic shield structure 5 constituted by an annular magnetic plate 5 or the open type magnetic shield structure 5 to which a conductor circuit is added if necessary, environmental magnetic noise (disturbance magnetic field fluctuation) Can be effectively cut down to 100 nT or less, and a magnetic environment (magnetic shield space) suitable for installing an electron beam application apparatus or the like can be provided.

他方,医療施設や研究施設で用いるSQUID(超電導量子干渉素子)応用装置は,脳や心臓の活動に伴い発生する超微弱な脳磁波,心磁波等の磁場を測定するため,設置空間を1nT以下の磁気環境に制御することが求められる。このような超高度な磁気環境を得る手段として磁気シェイキングが提案されている(特許文献3,4,非特許文献1参照)。磁気シェイキングとは,周期的に変動する磁場(シェイキング磁場)を磁性体に印加して磁性体内部で磁束を揺らすことにより磁性体の磁気特性(実効的な透磁率)を向上させる手法である。例えば特許文献3は,比較的低コストで製造できる厚さ20μm以上500μm以下のフィルム(又はリボン)状のアモルファス磁性薄帯材で密閉型磁気シールド構造を構成し,磁気シェイキングによってパーマロイ並みの性能を得たことを報告している。   On the other hand, SQUID (Superconducting Quantum Interference Device) application devices used in medical facilities and research facilities measure the magnetic field such as ultra-weak brain magnetic waves and magneto-magnetic waves generated by the activity of the brain and heart. It is required to control the magnetic environment. Magnetic shaking has been proposed as means for obtaining such an ultra-high magnetic environment (see Patent Documents 3 and 4, Non-Patent Document 1). Magnetic shaking is a technique for improving the magnetic properties (effective permeability) of a magnetic material by applying a periodically varying magnetic field (shaking magnetic field) to the magnetic material to sway the magnetic flux inside the magnetic material. For example, in Patent Document 3, a sealed magnetic shield structure is constituted by an amorphous magnetic ribbon material in the form of a film (or ribbon) having a thickness of 20 μm or more and 500 μm or less which can be manufactured at a relatively low cost. It is reported that I got it.

磁気シェイキングでは,磁性体内部で磁束を揺らす(シェイキングする)ため,磁性体の磁化容易方向の軸の周りにほぼ垂直にシェイキングコイルを巻き,遮蔽したい環境磁気ノイズの周波数成分fnよりも高い周波数fの電流(シェイキング電流)を印加してシェイキング磁場を発生させる。例えば特許文献4の開示する密閉型磁気シールド用の磁気シールド部材40は,図15に示すように,基材41の表面上にリボン状の8本のアモルファス磁性薄帯42aを長手方向が縦方向で平行となるように所定間隙で配列し,その表面上にリボン状の8本のアモルファス磁性薄帯42bを長手方向が横方向で平行となるように所定間隙で配列し,井桁配置の磁性薄帯42a,42bの所定間隙に表裏を縫うようにシェイキングコイル43を巻き付ける。図示例のコイル43は,入力端子44と出力端子45との間を16の部分に分け,図15(B)に示すように奇数の部分で表面を通過させると共に偶数の部分で裏面を通過させることにより,磁性薄帯42a,42bの何れの長手方向に対してもほぼ垂直方向に巻き付けられている。   In magnetic shaking, since the magnetic flux is swayed (shaked) inside the magnetic body, a shaking coil is wound almost perpendicularly around the axis of the magnetization direction of the magnetic body, and the frequency f higher than the frequency component fn of the environmental magnetic noise to be shielded. Is applied (shaking current) to generate a shaking magnetic field. For example, as shown in FIG. 15, a magnetic shield member 40 for a sealed magnetic shield disclosed in Patent Document 4 has eight ribbon-like amorphous magnetic ribbons 42a on the surface of a base material 41 in the longitudinal direction. Are arranged with a predetermined gap so as to be parallel with each other, and eight ribbon-like amorphous magnetic ribbons 42b are arranged with a predetermined gap so that the longitudinal direction thereof is parallel with the lateral direction on the surface thereof. The shaking coil 43 is wound so as to sew the front and back in a predetermined gap between the bands 42a and 42b. In the illustrated example, the coil 43 is divided into 16 portions between the input terminal 44 and the output terminal 45, and as shown in FIG. 15 (B), the odd-numbered portion passes the surface and the even-numbered portion passes the back surface. Thus, the magnetic ribbons 42a and 42b are wound in a substantially vertical direction with respect to any longitudinal direction.

国際公開2004/084603号パンフレットInternational Publication No. 2004/084603 Pamphlet 特開2014−086647号公報JP 2014-0866647 A 特開平3−066839号公報Japanese Patent Laid-Open No. 3-066839 特開2013−197290号公報JP 2013-197290 A 特開2006−135116号公報JP 2006-135116 A

中小企業庁「平成24年度戦略的基盤技術高度化支援事業『高性能磁気シールド装置用磁性材料の熱処理技術開発』研究開発成果等報告書」平成25年3月,インターネット<http://www.chusho.meti.go.jp/keiei/sapoin/portal/seika/2010/22131316088.pdf>SME Agency “2012 Strategic Fundamental Technology Advancement Support Project“ Development of Heat Treatment Technology for Magnetic Materials for High-Performance Magnetic Shielding Devices ”Research and Development Report” March 2013, Internet <http: // www. chusho. meti. go. jp / keiei / sapon / portal / seika / 2010/22113116088. pdf>

しかし,従来の磁気シェイキングには,磁性体内部をシェイキングするための印加磁場(シェイキング磁場)が磁気シールド空間へ漏洩してしまう問題点がある。例えば図15の磁気シールド部材40において,シェイキングコイル43が表面及び裏面の両側に隣接平行している部分ではコイル外側の磁場が打ち消されるので磁気シールド空間への漏洩をある程度抑制できるが,シェイキングコイル43が表面又は裏面の方側のみに配置される周縁部分ではコイル外側の磁場(シェイキングノイズ)が磁気シールド空間に漏洩する。また,シェイキング効果を高めるためには磁性体の内部を均等にシェイキングすることが望ましいにも拘わらず,図15の磁気シールド部材40では,磁性薄帯42a,42bにそれぞれ長手方向のシェイキング磁場と他方の長手方向と交差する向きのシェイキング磁場とが同時に印加されるので,各磁性薄帯42a,42bの内部が均等にシェイキングされない問題点もある。   However, the conventional magnetic shaking has a problem that an applied magnetic field (shaking magnetic field) for shaking the inside of the magnetic material leaks to the magnetic shield space. For example, in the magnetic shield member 40 of FIG. 15, the magnetic field outside the coil is canceled at the portion where the shaking coil 43 is adjacent and parallel on both sides of the front and back surfaces, so that leakage to the magnetic shield space can be suppressed to some extent. In the peripheral portion where only the front side or the back side is arranged, the magnetic field outside the coil (shaking noise) leaks into the magnetic shield space. Further, in order to enhance the shaking effect, it is desirable to shake the inside of the magnetic material evenly. However, in the magnetic shield member 40 shown in FIG. Since the shaking magnetic field in the direction intersecting with the longitudinal direction of the magnetic ribbons is simultaneously applied, there is a problem that the insides of the magnetic ribbons 42a and 42b are not shaken evenly.

シェイキングノイズの漏洩を防止するため,例えば非特許文献1は,シェイキングコイルを巻き付けたアモルファス層の内側をアルミニウム層で被覆し,更にアルミニウム層の内側を磁気シェイキングのないアモルファス層で被覆する3層構造を提案している。ただし,このような3層構造の対策によっても磁気シールド空間の内壁付近において10nTを超えるシェイキングノイズが計測されている。また,3層構造のようなノイズ対策は,磁気シールドの施工コストの高騰に繋がる問題点もある。1nT以下の磁気シールド空間を磁気シェイキングによって実現するためには,磁性体内部を均等にシェイキングすると共に,シェイキングノイズを低減することが必要である。   In order to prevent leakage of shaking noise, for example, Non-Patent Document 1 discloses a three-layer structure in which an amorphous layer around which a shaking coil is wound is covered with an aluminum layer, and further, the inner side of the aluminum layer is covered with an amorphous layer without magnetic shaking. Has proposed. However, even with such a three-layer structure measure, shaking noise exceeding 10 nT is measured near the inner wall of the magnetic shield space. In addition, noise countermeasures such as a three-layer structure have a problem that leads to an increase in the construction cost of the magnetic shield. In order to realize a magnetic shield space of 1 nT or less by magnetic shaking, it is necessary to shake the inside of the magnetic material evenly and reduce shaking noise.

そこで本発明の目的は,シェイキングノイズの漏洩を小さく抑えることができるシェイキング式の開放型磁気シールド構造を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a shaking type open type magnetic shield structure capable of suppressing leakage of shaking noise to a small level.

図1の実施例を参照するに,本発明によるシェイキング式の開放型磁気シールド構造は,磁気シールド対象空間1を貫く第1方向軸Azと所定間隔dzで交差する複数段の平行な平面Pz1,Pz2,……上にそれぞれ対象空間1を所定帯幅Wで囲むように設けた環帯状磁性板10,環帯状磁性板10の各段にそれぞれ環状軸に沿って所定ピッチTで巻き付けた導線コイル20,環帯状磁性板10の各段の間隔dzにそれぞれ環帯状磁性板10と実質上同径で平行に設けた環状導体50,導線コイル20に所定周波数のシェイキング電流I1を印加するコイル駆動装置30,及び環状導体50にキャンセル電流I2を印加する導体駆動装置60を備え,導線コイル20内側の発生磁場により環帯状磁性板10を磁気シェイキングすると共に導線コイル20外側の漏洩磁場を環状導体50の発生する磁場により打ち消してなるものである。   Referring to the embodiment of FIG. 1, a shaking type open magnetic shield structure according to the present invention includes a plurality of parallel planes Pz1, intersecting a first direction axis Az penetrating the magnetic shield target space 1 at a predetermined interval dz. Pz2,..., A conductive coil wound around the annular axis at a predetermined pitch T around each stage of the annular belt-like magnetic plate 10 and the annular belt-like magnetic plate 10 provided so as to surround the target space 1 with a prescribed belt width W, respectively. 20, a coil driving device for applying a shaking current I1 having a predetermined frequency to the annular conductor 50 and the conductive wire coil 20 provided in parallel with the annular belt-like magnetic plate 10 at intervals dz of the respective steps of the annular belt-like magnetic plate 10 30 and a conductor driving device 60 that applies a canceling current I2 to the annular conductor 50, and magnetically shakes and guides the ring-shaped magnetic plate 10 by a magnetic field generated inside the conductor coil 20. The coil 20 outside the leakage magnetic field is made to cancel the magnetic field generated in the annular conductor 50.

好ましい実施例では,図1(B)及び(C)に示すように,導体駆動装置60が環状導体50に印加するキャンセル電流の電流値を,導線コイル20外側の漏洩磁場が最小となるように段毎に独立に設定する。望ましくは,環帯状磁性板10の各段の導線コイル20の所定ピッチTを導線コイル20外側の漏洩磁場が最小となるように設定する。   In the preferred embodiment, as shown in FIGS. 1B and 1C, the current value of the cancel current applied by the conductor driving device 60 to the annular conductor 50 is set so that the leakage magnetic field outside the conductor coil 20 is minimized. Set independently for each stage. Desirably, the predetermined pitch T of the conductive coil 20 at each stage of the ring-shaped magnetic plate 10 is set so that the leakage magnetic field outside the conductive coil 20 is minimized.

更に好ましい実施例では,図1に示すように,導線コイル20及び環状導体50の各段に平行配置の入出力ライン20a,20b及び50a,50bを含め,入出力ライン20a,20b及び50a,50bの漏洩磁場を逆向きの入出力電流により打ち消す。必要に応じて,図13(G)及び(H)に示すように,導線コイル20及び環状導体50の各段の入出力ライン20a,20b及び50a,50bを収容するスリット23付き磁気シールド筒体22を設けることができる。   In a more preferred embodiment, as shown in FIG. 1, input / output lines 20a, 20b and 50a, 50b including input / output lines 20a, 20b and 50a, 50b arranged in parallel at each stage of the conductor coil 20 and the annular conductor 50 are provided. The leakage magnetic field is canceled by the reverse input / output current. If necessary, as shown in FIGS. 13G and 13H, a magnetic shield cylinder with a slit 23 for accommodating the input / output lines 20a, 20b and 50a, 50b of each stage of the conductor coil 20 and the annular conductor 50 is provided. 22 can be provided.

本発明によるシェイキング式の開放型磁気シールド構造は,磁気シールド対象空間1を貫く第1方向軸Azと所定間隔dzで交差する複数段の平行な平面Pz1,Pz2,……上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設け,環帯状磁性板10の各段にそれぞれ環状軸に沿って導線コイル20を所定ピッチTで巻き付け,環帯状磁性板10の各段の間隔dzにそれぞれ環帯状磁性板10と実質上同径で平行に環状導体50を設け,コイル駆動装置30によって導線コイル20に所定周波数のシェイキング電流I1を印加して発生させた導線コイル20内側の磁場により環帯状磁性板10を磁気シェイキングすると共に,導体駆動装置60によって環状導体50にキャンセル電流I2を印加して発生させたキャンセル磁場により導線コイル20外側の漏洩磁場を打ち消すので,次の有利な効果を奏する。   The shaking type open type magnetic shield structure according to the present invention includes a target space 1 on a plurality of parallel planes Pz1, Pz2,... Intersecting a first direction axis Az penetrating the magnetic shield target space 1 at a predetermined interval dz. Are provided with a predetermined band width W, and a coil 20 is wound around each stage of the ring-shaped magnetic plate 10 along the annular axis at a predetermined pitch T. The inside of the conductor coil 20 generated by applying the shaking current I1 having a predetermined frequency to the conductor coil 20 by the coil driving device 30 provided with the annular conductor 50 substantially parallel to the annular belt-like magnetic plate 10 at the interval dz. The cancel is generated by applying the cancel current I2 to the annular conductor 50 by the conductor driving device 60 while magnetically shaking the ring-shaped magnetic plate 10 by the magnetic field of Since cancel the leakage magnetic field of the conductor coil 20 outside the magnetic field, it exhibits the following advantageous effects.

(イ)環帯状磁性板10(磁性体回路)の各段に軸方向に沿って導線コイル20を巻き付け,環帯状磁性板10の軸方向の周りに同じ大きさでほぼ逆向きのシェイキング電流を点対称で流すことにより,環帯状磁性板10の内側に軸方向に沿った均等なシェイキング磁場を発生させ,磁性体内部の磁束を均等に揺らして磁気特性を効率的に向上させることができる。
(ロ)平面Pz上の環帯状磁性板10に巻き付けた導線コイル20の外側には平面Pzと垂直な成分が支配的な漏洩磁場(シェイキングノイズ)を生じるが,環帯状磁性板10の間隔dzに設けた実質上同径で平行な環状導体50にキャンセル電流を流すことにより,漏洩磁場と逆向きで平面Pzと垂直なキャンセル磁場が発生するので,そのキャンセル磁場によりシェイキングノイズを効率的に打ち消すことができる。
(ハ)また,環帯状磁性板10と実質上同径で平行な環状導体50の発生するキャンセル磁場は,環帯状磁性板10の軸方向の成分を含まないので,導線コイル20の発生する軸方向のシェイキング磁場に対する影響を避けながら,導線コイル20の漏洩磁場を低減することができる。
(A) A conducting coil 20 is wound around each stage of the ring-shaped magnetic plate 10 (magnetic circuit) along the axial direction, and a shaking current having the same size and a substantially opposite direction is applied around the axial direction of the ring-shaped magnetic plate 10. By flowing point-symmetrically, a uniform shaking magnetic field along the axial direction can be generated inside the ring-shaped magnetic plate 10, and the magnetic flux inside the magnetic body can be evenly shaken to improve the magnetic characteristics efficiently.
(B) A leakage magnetic field (shaking noise) in which a component perpendicular to the plane Pz is dominant is generated outside the conducting coil 20 wound around the ring-shaped magnetic plate 10 on the plane Pz. Since a canceling magnetic field is generated in a direction opposite to the leakage magnetic field and perpendicular to the plane Pz by flowing a canceling current through the annular conductor 50 having substantially the same diameter and parallel provided in FIG. 1, the shaking magnetic field effectively cancels the shaking noise. be able to.
(C) Since the canceling magnetic field generated by the annular conductor 50 having substantially the same diameter and parallel to the ring-shaped magnetic plate 10 does not include the axial component of the ring-shaped magnetic plate 10, the axis generated by the conducting coil 20 The leakage magnetic field of the conducting wire coil 20 can be reduced while avoiding the influence of the direction on the shaking magnetic field.

(ニ)複数段の環状導体50に印加するキャンセル電流は同じ電流値とする必要はなく,導線コイル20外側の漏洩磁場(シェイキングノイズ)を最も効率的に打ち消すことができるように各環状導体50のキャンセル電流の電流値を段毎に独立に設定することにより,所要のシェイキング磁場を発生させつつシェイキングノイズの漏洩を最小化することができる。
(ホ)導線コイル20の巻き付けピッチTを短くすることでシェイキング磁場を小さな電流量で発生させることが可能となり,所要のシェイキング磁場を発生させる最小の電流量を設定することで,導線コイル20の外側の漏洩磁場(シェイキングノイズ)を更に低減することができる。
(ヘ)環帯状磁性板10の内部の磁束を均等に揺らして磁気特性を効率的に向上させると共に,磁気シールド空間へ漏洩する磁場(シェイキングノイズ)を小さく抑えることにより,開放型磁気シールド構造の遮蔽性能を確実且つ大幅に向上させることができる。
(D) The cancel currents applied to the plurality of stages of the annular conductors 50 do not have to have the same current value, and each annular conductor 50 can be canceled most efficiently so as to cancel the leakage magnetic field (shaking noise) outside the conductor coil 20. By setting the current value of the cancellation current independently for each stage, leakage of shaking noise can be minimized while generating a required shaking magnetic field.
(E) It is possible to generate a shaking magnetic field with a small amount of current by shortening the winding pitch T of the conductive coil 20, and by setting a minimum amount of current that generates a required shaking magnetic field, The outside leakage magnetic field (shaking noise) can be further reduced.
(F) The magnetic properties inside the ring-shaped magnetic plate 10 are evenly swayed to improve the magnetic characteristics efficiently, and the magnetic field leaking to the magnetic shield space (shaking noise) is suppressed to a small size. The shielding performance can be improved reliably and significantly.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
環帯状磁性板10の各段にそれぞれ導線コイル20を巻き付けると共に,環帯状磁性板10の各段の間隙に実質上同径で平行な環状導体50を設けた本発明によるシェイキング式開放型磁気シールド構造の実施例の説明図である。 環帯状磁性板10の各段にそれぞれ導線コイル20を所定ピッチT間隔で相互に独立させて取り付けたシェイキング式開放型磁気シールド構造の説明図である。 環帯状磁性板10の各段にそれぞれ導線コイル20を所定ピッチTで連続的に巻き付けたシェイキング式開放型磁気シールド構造の実施例の説明図である。 図2の磁気シールド構造のシェイキング電流による評価対象域Rの漏洩磁場分布を示す実験結果である。 図3の磁気シールド構造のシェイキング電流による評価対象域Rの漏洩磁場分布を示す実験結果である。 環帯状磁性板10の複数段に跨って導線コイル20を所定ピッチT間隔で相互に独立させて取り付けたシェイキング式開放型磁気シールド構造の説明図である。 図6の磁気シールド構造のシェイキング電流による評価対象域Rの漏洩磁場分布を示す実験結果である。 環帯状磁性板10の複数段に跨って導線コイル20を所定ピッチTで連続的に巻き付けたシェイキング式開放型磁気シールド構造の説明図である。 図8の磁気シールド構造のシェイキング電流による評価対象域Rの漏洩磁場分布を示す実験結果である。 導線コイル20の所定ピッチTの違い,環状導体50の有無の違い,及び環状導体50に印加するキャンセル電流の電流値の違いに応じた本発明の磁気シールド構造の漏洩磁場の変化を示す実験結果である。 入れ子状に配置する3層のシェイキング式開放型磁気シールド構造5x,5y,5zの説明図である。 図11のシェイキング式開放型磁気シールド構造5yに対するシェイキング電流及びキャンセル電流の印加方法の説明図である。 図11のシェイキング式開放型磁気シールド構造5zに対するシェイキング電流及びキャンセル電流の印加方法の他の一例の説明図である。 従来の開放型磁気シールド構造の説明図である。 従来のシェイキングを利用した磁気シールド部材の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
A shaking type open magnetic shield according to the present invention in which a conductor coil 20 is wound around each step of the ring-shaped magnetic plate 10 and an annular conductor 50 having substantially the same diameter and parallel is provided in the gap of each step of the ring-shaped magnetic plate 10. It is explanatory drawing of the Example of a structure. FIG. 3 is an explanatory view of a shaking type open magnetic shield structure in which conductive coils 20 are attached to each stage of the ring-shaped magnetic plate 10 independently at a predetermined pitch T interval. FIG. 3 is an explanatory view of an embodiment of a shaking type open magnetic shield structure in which a conducting coil 20 is continuously wound around each stage of the ring-shaped magnetic plate 10 at a predetermined pitch T. It is an experimental result which shows the leakage magnetic field distribution of the evaluation object area | region R by the shaking current of the magnetic shield structure of FIG. It is an experimental result which shows the leakage magnetic field distribution of the evaluation object area | region R by the shaking current of the magnetic shield structure of FIG. FIG. 3 is an explanatory view of a shaking type open magnetic shield structure in which conductor coils 20 are attached independently at a predetermined pitch T interval across a plurality of stages of the ring-shaped magnetic plate 10. It is an experimental result which shows the leakage magnetic field distribution of the evaluation object area | region R by the shaking current of the magnetic shield structure of FIG. FIG. 3 is an explanatory view of a shaking type open magnetic shield structure in which a conductive coil 20 is continuously wound at a predetermined pitch T across a plurality of stages of an annular belt-shaped magnetic plate 10. It is an experimental result which shows the leakage magnetic field distribution of the evaluation object area | region R by the shaking current of the magnetic shield structure of FIG. Experimental results showing the change in the leakage magnetic field of the magnetic shield structure of the present invention according to the difference in the predetermined pitch T of the conductive coil 20, the presence or absence of the annular conductor 50, and the difference in the current value of the cancel current applied to the annular conductor 50 It is. It is explanatory drawing of the three-layer shaking type | mold open-type magnetic shield structure 5x, 5y, 5z arrange | positioned in a nested form. It is explanatory drawing of the application method of the shaking current and cancellation current with respect to the shaking type | mold open-type magnetic shield structure 5y of FIG. It is explanatory drawing of another example of the application method of the shaking current and the cancellation current with respect to the shaking type | mold open-type magnetic shield structure 5z of FIG. It is explanatory drawing of the conventional open type | mold magnetic shield structure. It is explanatory drawing of the magnetic shielding member using the conventional shaking.

図1は,磁気シールド対象空間1(例えば磁気シールドルーム)の周囲に配置する本発明のシェイキング式の開放型磁気シールド構造の実施例を示す。図1(A)の開放型磁気シールド構造5zは,対象空間1の中心点Oを貫く第1方向軸Azと所定間隔dzで交差する複数の平行な平面Pz1,Pz2,……上にそれぞれ所定帯幅Wで空間を囲む環帯状磁性板10を配置し,図14(B)と同様に複数の環帯状磁性板10によって磁気シールド対象空間1を囲んだものである。図示例は,各環帯状磁性板10の中心軸である第1方向軸Azを鉛直方向軸(Z軸)としているが,方向軸Azは外来磁場の到来方向に応じて適宜選択可能であり,図11(B)及び(C)に示すように,対象空間1を貫く水平なX軸又はY軸とすることができる。また,図示例では環帯状磁性板10を設ける各平面Pzを第1方向軸Azと直交させているが,交差角度を直交以外とすることも可能である。   FIG. 1 shows an embodiment of a shaking type open magnetic shield structure of the present invention disposed around a magnetic shield target space 1 (for example, a magnetic shield room). The open type magnetic shield structure 5z shown in FIG. 1A is predetermined on a plurality of parallel planes Pz1, Pz2,... Intersecting the first direction axis Az penetrating the center point O of the target space 1 at a predetermined interval dz. An annular belt-like magnetic plate 10 surrounding the space with a belt width W is disposed, and the magnetic shield target space 1 is enclosed by a plurality of annular belt-like magnetic plates 10 as in FIG. 14B. In the illustrated example, the first direction axis Az that is the central axis of each ring-shaped magnetic plate 10 is the vertical direction axis (Z axis), but the direction axis Az can be appropriately selected according to the arrival direction of the external magnetic field, As shown in FIGS. 11B and 11C, the horizontal X axis or Y axis that penetrates the target space 1 can be used. In the illustrated example, each plane Pz on which the ring-shaped magnetic plate 10 is provided is orthogonal to the first direction axis Az, but the crossing angle may be other than orthogonal.

環帯状磁性板10は,例えば図14(A)に示すように,第1方向軸Azと交差する平面Pzと対象空間の内面との交差線に沿って,帯幅Wで適当な長さの複数の帯状導体板2を端縁の重ね合わせによって平らな多角形状(例えば井桁状)に接合することにより作成する。環帯状磁性板10は,磁気シェイキングにより磁気特性の向上が期待できる磁性体を用いて作成することができ,例えばコバルト系及び鉄系アモルファス,パーマロイ,電磁鋼板等とするが,とくに微弱磁場領域での透磁率が他と比べて格段に高いコバルト系アモルファスとすることが望ましい。一般にコバルト系アモルファスは,最大50mm程度の幅の薄帯状磁性板として提供され,それ以上の広幅材料は提供されていないので,密閉型磁気シールド構造では図15のように複数のアモルファス薄帯を平行に配列して磁気シールド面を形成する手間がかかるが,開放型磁気シールド構造では薄帯状磁性板をそのまま用いて環帯状磁性板10を形成できるので,開放型磁気シールド構造に適した磁性体ということができる。   For example, as shown in FIG. 14A, the ring-shaped magnetic plate 10 has a band width W and an appropriate length along the intersection line between the plane Pz intersecting the first direction axis Az and the inner surface of the target space. The plurality of strip-shaped conductor plates 2 are formed by joining the edges in a flat polygonal shape (for example, a cross-girder shape). The ring-shaped magnetic plate 10 can be made using a magnetic material that can be expected to improve magnetic properties by magnetic shaking, for example, cobalt-based and iron-based amorphous, permalloy, electromagnetic steel plate, etc., especially in the weak magnetic field region. It is desirable to use a cobalt-based amorphous material whose magnetic permeability is much higher than others. Generally, cobalt-based amorphous is provided as a ribbon-like magnetic plate with a maximum width of about 50 mm, and no wider material is provided. Therefore, in a sealed magnetic shield structure, a plurality of amorphous ribbons are paralleled as shown in FIG. However, in the open type magnetic shield structure, the annular belt-like magnetic plate 10 can be formed using the thin belt-like magnetic plate as it is, so that the magnetic material suitable for the open type magnetic shield structure is used. be able to.

図示例の磁気シールド構造は,開放型磁気シールド構造5zの各段の環帯状磁性板10にそれぞれ環状軸に沿って巻き付けた導線コイル20(図3(B)に示す環帯状磁性板10の平面図を参照)と,その導線コイル20に所定周波数のシェイキング電流を印加するコイル駆動装置30とを有する。各段の環帯状磁性板10(磁性体回路)に巻き付けた導線コイル20は,環帯状磁性板10の環状軸と交差する断面(磁性体回路の断面)重心に対して点対称の位置にシェイキング電流を流すので,導線コイル20の内側に環帯状磁性板10の軸方向に沿った均等なシェイキング磁場を発生させ,環帯状磁性板10の内部の磁束を均等に揺らして磁気シェイキング効果を効率的に発揮させることができる。このように磁性体内部の磁束を均等に揺らすことが比較的容易であることから,開放型磁気シールド構造は密閉型磁気シールド構造に比して磁気シェイキングによる遮蔽性能の大幅な向上が期待できる。   The magnetic shield structure in the illustrated example has a conductor coil 20 wound around each ring-shaped magnetic plate 10 of each stage of the open-type magnetic shield structure 5z along the annular axis (a plane of the ring-shaped magnetic plate 10 shown in FIG. 3B). And a coil driving device 30 for applying a shaking current having a predetermined frequency to the conducting wire coil 20. The conducting coil 20 wound around the ring-shaped magnetic plate 10 (magnetic circuit) of each stage is shaken at a point-symmetrical position with respect to the center of gravity of the cross-section (cross-section of the magnetic circuit) intersecting the annular axis of the ring-shaped magnetic plate 10. Since an electric current flows, a uniform shaking magnetic field along the axial direction of the ring-shaped magnetic plate 10 is generated inside the conductor coil 20, and the magnetic flux inside the ring-shaped magnetic plate 10 is evenly shaken to efficiently produce the magnetic shaking effect. Can be demonstrated. As described above, since the magnetic flux inside the magnetic body can be relatively easily shaken, the open type magnetic shield structure can be expected to greatly improve the shielding performance by magnetic shaking as compared with the closed type magnetic shield structure.

また,図示例の磁気シールド構造は,各段の開放型磁気シールド構造5zの間隔dzにそれぞれ環帯状磁性板10と実質上同径で平行に設けた環状導体50と,その環状導体50にキャンセル電流を印加する導体駆動装置60とを有する。後述するように(実験例2参照),環帯状磁性板10に巻き付けた導線コイル20は,その環帯状磁性板10の平面Pzと垂直な方向が支配的な漏洩磁場(シェイキングノイズ)を生じるが,環帯状磁性板10と実質上同径で平行な環状導体50にキャンセル電流を流すことにより,漏洩磁場と逆向きで平面Pzと垂直なキャンセル磁場が発生するので,そのキャンセル磁場によりシェイキングノイズを効率的に打ち消すことができる。また,環帯状磁性板10と実質上同径で平行な環状導体50の発生するキャンセル磁場は,環帯状磁性板10の軸方向の成分を含まないので,導線コイル20の発生する軸方向のシェイキング磁場に対する影響を避けながらシェイキングノイズを低減することができる。   Further, the magnetic shield structure of the illustrated example has an annular conductor 50 provided substantially in parallel with the ring-shaped magnetic plate 10 at the interval dz between the open magnetic shield structures 5z of each stage, and the annular conductor 50 cancels the annular conductor 50. And a conductor driving device 60 for applying a current. As will be described later (see Experimental Example 2), the conductor coil 20 wound around the ring-shaped magnetic plate 10 generates a leakage magnetic field (shaking noise) whose direction perpendicular to the plane Pz of the ring-shaped magnetic plate 10 is dominant. Since a canceling magnetic field is generated in a direction opposite to the leakage magnetic field and perpendicular to the plane Pz by flowing a canceling current through the annular conductor 50 having substantially the same diameter and parallel to the ring-shaped magnetic plate 10, a shaking magnetic field is generated by the canceling magnetic field. It can be canceled out efficiently. Further, since the canceling magnetic field generated by the annular conductor 50 having substantially the same diameter and parallel to the ring-shaped magnetic plate 10 does not include the axial component of the ring-shaped magnetic plate 10, the axial shaking generated by the conducting coil 20 is performed. Shaking noise can be reduced while avoiding the influence on the magnetic field.

[実験例1]
先ず,開放型磁気シールド構造5zの各段の環帯状磁性板10にそれぞれ導線コイル20を巻き付けた場合の漏洩磁場(シェイキングノイズ)を確認するため,図2に示すようなモデル実験を行った。本実験では,図2(A)に示すように幅50mm,長さ1000mm,厚さ5mmの帯状磁性板4枚を井桁状に接合して外形950mmの環帯状磁性板10(磁性体回路)を構成し,その環帯状磁性板10を所定間隔dz=200mmで5段配置して開放型磁気シールド構造5zを形成し,各段の環帯状磁性板10にそれぞれ環状軸と直角方向に導線コイル20を所定ピッチTで巻き付けてシェイキング電流(周波数200Hz)を印加した。環帯状磁性板10の外形の大きさは,環状の磁性体回路の中心軸の長さを表している。図2(B)はこの開放型磁気シールド構造5zのXY平面と平行な平面図を示し,図2(C)はこの開放型磁気シールド構造5zのYZ平面と平行な断面図を示し,図2(D)は図2(B)の楕円D部分を拡大したコイル電流の模式的平面図を示し,図2(E)は環帯状磁性板10の環状軸方向から見たコイル電流の模式的側面図を示す。この場合の導線コイル20は,図2(B)及び(D)に示すように相互に連続しておらず,所定ピッチT間隔の巻き付け位置毎に相互に独立した閉回路を想定した。図2(C)及び(E)に示す各コイル(以下,1段コイルということがある)20は,発生する磁場の相殺効果を考慮して,磁性体回路の断面の重心に対して点対称の位置に配置されており,断面の大きさは50mm×5mmである。
[Experimental Example 1]
First, in order to confirm the leakage magnetic field (shaking noise) when the conducting coil 20 is wound around the ring-shaped magnetic plate 10 of each stage of the open type magnetic shield structure 5z, a model experiment as shown in FIG. 2 was performed. In this experiment, as shown in FIG. 2 (A), four belt-like magnetic plates having a width of 50 mm, a length of 1000 mm, and a thickness of 5 mm were joined in a cross-beam shape to form an annular belt-like magnetic plate 10 (magnetic circuit) having an outer shape of 950 mm. The ring-shaped magnetic plate 10 is arranged in five stages at a predetermined interval dz = 200 mm to form an open-type magnetic shield structure 5z, and each of the ring-shaped magnetic plates 10 at each stage has a conductor coil 20 perpendicular to the annular axis. Was wound at a predetermined pitch T, and a shaking current (frequency: 200 Hz) was applied. The size of the outer shape of the ring-shaped magnetic plate 10 represents the length of the central axis of the annular magnetic circuit. 2B shows a plan view parallel to the XY plane of the open type magnetic shield structure 5z, and FIG. 2C shows a cross-sectional view parallel to the YZ plane of the open type magnetic shield structure 5z. 2D is a schematic plan view of the coil current obtained by enlarging the ellipse D portion of FIG. 2B, and FIG. 2E is a schematic side view of the coil current viewed from the annular axis direction of the ring-shaped magnetic plate 10. The figure is shown. As shown in FIGS. 2B and 2D, the conducting coil 20 in this case is not continuous with each other, and a closed circuit independent of each other at each winding position with a predetermined pitch T interval is assumed. Each coil 20 (hereinafter also referred to as a single-stage coil) 20 shown in FIGS. 2C and 2E is point-symmetric with respect to the center of gravity of the cross section of the magnetic circuit circuit in consideration of the canceling effect of the generated magnetic field. The cross-sectional size is 50 mm × 5 mm.

また,比較のため,図6に示すように開放型磁気シールド構造5zの5段の環帯状磁性板10(磁性体回路)にまとめて導線コイル20を所定ピッチTで巻き付けてシェイキング電流(周波数200Hz)を印加する実験を行った。図6に示す各コイル(以下,5段コイルということがある)20も相互に連続しておらず,所定ピッチT間隔の巻き付け位置毎に相互に独立した閉回路を想定し,断面の大きさは50mm×805mmである。図2の1段コイルと図6の5段コイルとにそれぞれシェイキング電流を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーション(三次元非線形磁場解析)により求めた。   For comparison, as shown in FIG. 6, a conducting coil 20 is wound around a five-step annular magnetic plate 10 (magnetic circuit) of an open magnetic shield structure 5z and wound at a predetermined pitch T to obtain a shaking current (frequency 200 Hz). ) Was applied. Each coil (hereinafter also referred to as a five-stage coil) 20 shown in FIG. 6 is not continuous with each other, and assumes a closed circuit independent at each winding position with a predetermined pitch T interval. Is 50 mm × 805 mm. Shaking currents were applied to the 1-stage coil of FIG. 2 and the 5-stage coil of FIG. 6, respectively, and the generated magnetic field inside the coil and the leakage magnetic field outside the coil were obtained by numerical simulation (three-dimensional nonlinear magnetic field analysis).

なお本実験では,図2の1段コイルと図6の5段コイルとで磁性体回路のシェイキング強度を揃えるため,環帯状磁性板10の内部に誘起される磁束密度が一致するように1段コイル及び5段コイルのシェイキング電流を設定した。すなわち,図2の1段コイルに1Aのシェイキング電流を印加したときの各段の磁性体回路の辺中央の磁束密度は19.6mTであるのに対し,図6の5段コイルに1Aのシェイキング電流を印加したときの各段の磁性体回路の辺中央の磁束密度は,1段目及び5段目では38.7mT,2段目〜4段目では57.8mTとなり,何れも1段コイルより大きくなった。これは5段コイルが各段の磁性体回路の間に跨っており,電流路が長いことに起因する。そのため,2段目〜4段目の磁束密度が1段コイルの19.6mTと一致するように,5段コイルに印加するシェイキング電流の電流値を0.339Aと設定した。   In this experiment, in order to make the shaking strength of the magnetic circuit uniform between the one-stage coil shown in FIG. 2 and the five-stage coil shown in FIG. 6, the one-stage coil so that the magnetic flux densities induced inside the annular magnetic plate 10 match. The shaking current of the coil and the 5-stage coil was set. That is, when a 1 A shaking current is applied to the 1-stage coil of FIG. 2, the magnetic flux density at the center of each side of the magnetic circuit of each stage is 19.6 mT, whereas the 1-A shaking is applied to the 5-stage coil of FIG. The magnetic flux density at the center of each stage of the magnetic circuit at each stage when current is applied is 38.7 mT in the first and fifth stages, and 57.8 mT in the second to fourth stages. It became bigger. This is due to the fact that the 5-stage coil straddles between the magnetic circuit of each stage and the current path is long. For this reason, the current value of the shaking current applied to the 5-stage coil was set to 0.339 A so that the magnetic flux density of the second to fourth stages coincided with 19.6 mT of the first-stage coil.

図4(A)及び(B)は,図2の1段コイル外側の漏洩磁場を,図2(B)及び(C)に示す開放型磁気シールド構造内側の評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。また図7(A)及び(B)は,図6の5段コイル外側の漏洩磁場を評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。なお,図4及び図7はそれぞれ磁性体回路が存在しないコイルのみを配置した場合の漏洩磁場を示しており,磁性体回路が存在する場合は,シェイキング電流により磁化された磁性体から発生する磁場が重畳されるため評価対象域Rの磁場分布は大きくなる。ただし,磁性体の種類,厚さ(積層枚数),大きさなどにより重畳される値は様々に変わるため,シェイキングコイルから発生する磁場のみを評価するためには,磁性体回路のないコイルのみの漏洩磁場を考慮することが有効である。   4 (A) and 4 (B) show the magnetic field distribution of the magnetic field distribution in the evaluation target region R inside the open type magnetic shield structure shown in FIGS. 2 (B) and 2 (C). It is represented as a figure / vector diagram. FIGS. 7A and 7B show the leakage magnetic field outside the five-stage coil in FIG. 6 as a contour diagram / vector diagram of the magnetic field distribution in the evaluation target region R. FIG. 4 and 7 each show a leakage magnetic field when only a coil having no magnetic circuit is arranged. When a magnetic circuit is present, the magnetic field generated from the magnetic material magnetized by the shaking current is shown. Is superimposed, the magnetic field distribution in the evaluation target region R becomes large. However, the superimposed value varies depending on the type, thickness (number of stacked layers), size, etc. of the magnetic material. Therefore, in order to evaluate only the magnetic field generated from the shaking coil, It is effective to consider the leakage magnetic field.

1段コイルの作る図4の磁場分布と,5段コイルの作る図7の磁場分布とを比較すると,1段コイルのほうが1/13程度小さくなっていることが分かる。また,いずれの場合も,漏洩磁場は水平成分のみであり,垂直方向の磁場は殆ど漏洩していないことが分かる。この理由は,図2(D)及び(E)に示すコイル電流の模式図から分かるように,コイルに流れる電流Ia,Ib,Ic,Idは磁性体回路の断面の重心に対して点対称の位置(環状軸方向から見て点対称の位置)にあり,同じ大きさで方向が異なるため,電流Ia及びIcから発生する磁場(垂直成分)は打ち消し合ってゼロとなり,電流Ib及びIdから発生する磁場(水平成分)のみが評価対象域Rに漏洩するからである。5段コイルは,電流値は小さいにも拘わらず,磁場の水平成分を誘起する垂直電流路が長いため,漏洩磁場が大きくなっている。もっとも垂直方向の漏洩磁場についても,コイル近傍(評価対象域Rの周縁)では比較的大きいが,コイルから離れるに従って打ち消し合う効果が高まり,評価対象域Rの中心部(磁気シールド対象空間の中心部)では一気に小さくなっている。   Comparing the magnetic field distribution of FIG. 4 produced by the single-stage coil with the magnetic field distribution of FIG. 7 produced by the five-stage coil, it can be seen that the single-stage coil is about 1/13 smaller. In either case, the leakage magnetic field is only the horizontal component, and it can be seen that the magnetic field in the vertical direction hardly leaks. The reason for this is that the currents Ia, Ib, Ic, Id flowing through the coil are point-symmetric with respect to the center of gravity of the cross section of the magnetic circuit, as can be seen from the schematic diagrams of the coil currents shown in FIGS. Because it is in a position (a point-symmetrical position when viewed from the annular axis direction), the direction is the same and the directions are different. This is because only the magnetic field (horizontal component) to be leaked to the evaluation target region R. Although the 5-stage coil has a small current value, the leakage magnetic field is large because the vertical current path for inducing the horizontal component of the magnetic field is long. Of course, the leakage magnetic field in the vertical direction is relatively large in the vicinity of the coil (periphery of the evaluation target area R), but the effect of canceling out increases as the distance from the coil increases. ) Is getting smaller at once.

図4及び図7の磁場分布の比較から,図2のように開放型磁気シールド構造5zの各段の環帯状磁性板10にそれぞれ環状軸に沿って導線コイル20を巻き付けてシェイキング電流を印加することにより,導線コイル20の外側に漏洩する磁場(シェイキングノイズ)を十分に低減できることが分かる。密閉型磁気シールド構造をシェイキングする場合は図6と同様の5段コイルが必要であることから,開放型磁気シールド構造は密閉型磁気シールド構造に比して磁気シェイキングの漏洩磁場を小さくできる利点があるといえる。また,図2(E)に示すように,磁性体回路の軸方向から見て点対称の位置に巻き付けた1段コイルは,磁性体回路の内部に軸方向に沿ったシェイキング磁場のみを発生させるので,環帯状磁性板内部の磁束を均等に揺らせることが分かる。   From comparison of the magnetic field distributions in FIGS. 4 and 7, as shown in FIG. 2, a conducting coil 20 is wound around each ring-shaped magnetic plate 10 of each stage of the open magnetic shield structure 5 z along the annular axis to apply a shaking current. This shows that the magnetic field (shaking noise) leaking to the outside of the conducting wire coil 20 can be sufficiently reduced. When a sealed magnetic shield structure is shaken, the same five-stage coil as in FIG. 6 is required. Therefore, the open type magnetic shield structure has the advantage that the magnetic field of the magnetic shaking can be reduced compared to the sealed magnetic shield structure. It can be said that there is. In addition, as shown in FIG. 2E, a single-stage coil wound around a point-symmetrical position when viewed from the axial direction of the magnetic circuit generates only a shaking magnetic field along the axial direction inside the magnetic circuit. Therefore, it can be seen that the magnetic flux inside the ring-shaped magnetic plate is evenly swayed.

[実験例2]
図2のモデル実験では,環帯状磁性板10の所定ピッチTの巻き付け位置毎に独立した閉回路コイルを巻き付けているが,実際の開放型磁気シールド構造5zの環帯状磁性板10をシェイキングする場合は閉回路コイルとすることは難しい。そこで次に,図3のように各段の環帯状磁性板10の環状軸に沿って所定ピッチTで連続的に導線コイル20に巻き付けた場合の漏洩磁場(シェイキングノイズ)を確認するため,上述した実験例1と同様に外形(環状の磁性体回路の中心軸の長さ)950mmの環帯状磁性板10(磁性体回路)を所定間隔dz=200mmで5段配置して開放型磁気シールド構造5zを形成し,図3(B)及び(C)に示すように5段の環帯状磁性板10の環状軸方向にそれぞれ所定ピッチT(100mm幅で1ターン,環帯状磁性板の各辺(900mm)で9ターン)で連続的に導線コイル20を巻き付けてシェイキング電流(周波数200Hz)を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーションにより求める実験を行った。図3(B)はこの開放型磁気シールド構造5zのXY平面と平行な平面図を示し,図3(C)はこの開放型磁気シールド構造5zのYZ平面と平行な断面図を示し,図3(D)は図3(B)の楕円D部分を拡大したコイル電流の模式的平面図を示し,図3(E)は環帯状磁性板10の環状軸方向から見たコイル電流の模式的側面図を示す。
[Experiment 2]
In the model experiment of FIG. 2, an independent closed circuit coil is wound at each winding position of the ring-shaped magnetic plate 10 at a predetermined pitch T. When the ring-shaped magnetic plate 10 of the actual open-type magnetic shield structure 5z is shaken. Is difficult to make a closed circuit coil. Therefore, in order to confirm the leakage magnetic field (shaking noise) when continuously wound around the conducting coil 20 at a predetermined pitch T along the annular axis of the annular magnetic plate 10 at each stage as shown in FIG. In the same manner as in Experimental Example 1, an annular magnetic plate 10 (magnetic circuit) having an outer shape (the length of the central axis of the annular magnetic circuit) of 950 mm is arranged in five stages at a predetermined interval dz = 200 mm, and an open type magnetic shield structure 5z, and as shown in FIGS. 3B and 3C, each turn (100 mm width for one turn, each side of the ring-shaped magnetic plate (100 mm width) in the direction of the annular axis of the five-step ring-shaped magnetic plate 10 900 mm) and 9 turns), the coil 20 is continuously wound and a shaking current (frequency 200 Hz) is applied, and the generated magnetic field inside the coil and the leakage magnetic field outside the coil are obtained by numerical simulation. Experiments were carried out. 3B shows a plan view parallel to the XY plane of this open type magnetic shield structure 5z, and FIG. 3C shows a cross-sectional view parallel to the YZ plane of this open type magnetic shield structure 5z. 3D is a schematic plan view of the coil current obtained by enlarging the ellipse D portion of FIG. 3B, and FIG. 3E is a schematic side view of the coil current viewed from the annular axis direction of the ring-shaped magnetic plate 10. The figure is shown.

また,比較のため,図8に示すように開放型磁気シールド構造5zの5段の環帯状磁性板10(磁性体回路)にまとめて導線コイル20を所定ピッチT(100mm幅で1ターン,環帯状磁性板の各辺(900mm)で9ターン)で連続的に巻き付けてシェイキング電流を印加し,コイル内側の発生磁場とコイル外側の漏洩磁場とをそれぞれ数値シミュレーションにより求める実験を行った。環帯状磁性板10の内部に誘起される磁束密度を実験例1(図2の1段コイルの場合)と揃えるため,図3の1段コイルに印加するシェイキング電流の電流値を1.414Aと設定し,図8の5段コイルに印加するシェイキング電流の電流値は0.339Aと設定した。   For comparison, as shown in FIG. 8, the conductor coil 20 is put together on a five-stage annular belt-like magnetic plate 10 (magnetic circuit) of the open type magnetic shield structure 5z so that the conductor coil 20 is turned at a predetermined pitch T (100 mm width, one turn). An experiment was performed in which a magnetic field generated inside the coil and a leakage magnetic field outside the coil were respectively obtained by numerical simulation by applying a shaking current by continuously winding the belt-shaped magnetic plate on each side (900 mm, 9 turns). In order to align the magnetic flux density induced inside the ring-shaped magnetic plate 10 with that of Experimental Example 1 (in the case of the single-stage coil in FIG. 2), the current value of the shaking current applied to the single-stage coil in FIG. The current value of the shaking current applied to the 5-stage coil of FIG. 8 was set to 0.339A.

図5(A)及び(B)は,図3の1段コイル外側の漏洩磁場を,開放型磁気シールド構造内側の評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。また図9(A)及び(B)は,図8の5段コイル外側の漏洩磁場を評価対象域Rの磁場分布のコンター図・ベクトル図として表したものである。図5及び図9も,実験例1の図4及び図7の場合と同様に,磁性体から発生する磁場の重畳を避けるため,磁性体回路が存在しないコイルのみを配置した場合の漏洩磁場を示している。   5A and 5B show the leakage magnetic field outside the first stage coil of FIG. 3 as a contour diagram / vector diagram of the magnetic field distribution in the evaluation target region R inside the open type magnetic shield structure. FIGS. 9A and 9B show the leakage magnetic field outside the five-stage coil of FIG. 8 as a contour diagram and vector diagram of the magnetic field distribution in the evaluation target region R. FIG. 5 and 9 also show the leakage magnetic field when only the coil having no magnetic material circuit is arranged in order to avoid the superposition of the magnetic field generated from the magnetic material, as in the case of FIGS. Show.

1段コイルの作る図5の磁場分布と,5段コイルの作る図9の磁場分布とを比較すると,何れも漏洩磁場は垂直成分が支配的であり,1段コイルのほうが30倍程度大きくなっていることが分かる。この理由は,図3(D)及び(E)に示すコイル電流の模式図から分かるように,コイルに流れる電流Ia,Icは同じ大きさであるがXY平面上で方向が異なっているため,発生する磁場の垂直成分を打ち消し合う効果が不十分となるからである。図9の5段コイルでは,電流Ia,Icが離れているのである程度の打ち消し効果が見られるが,図5の1段コイルでは漏洩磁場の垂直成分が大きくなっている。なお,コイルに流れる電流Ib,IdもY軸方向で位置がずれているが,漏洩磁場(水平成分)への影響は比較的小さい。   Comparing the magnetic field distribution of FIG. 5 made by the single-stage coil with the magnetic field distribution of FIG. 9 made by the five-stage coil, the leakage magnetic field has a dominant vertical component, and the single-stage coil is about 30 times larger. I understand that The reason for this is that, as can be seen from the schematic diagrams of the coil currents shown in FIGS. 3D and 3E, the currents Ia and Ic flowing through the coils have the same magnitude but different directions on the XY plane. This is because the effect of canceling out the vertical component of the generated magnetic field is insufficient. In the five-stage coil of FIG. 9, the currents Ia and Ic are separated, so that a certain amount of cancellation effect is seen. However, in the single-stage coil of FIG. 5, the vertical component of the leakage magnetic field is large. The positions of the currents Ib and Id flowing through the coils are also shifted in the Y-axis direction, but the influence on the leakage magnetic field (horizontal component) is relatively small.

図5及び図9の磁場分布の比較から,開放型磁気シールド構造の磁性体回路に所定ピッチT(100mm幅で1ターン)で連続的に導線コイル20を巻き付けてシェイキング電流を印加した場合は,図8の5段コイルの漏洩磁場よりも図3の1段コイルの漏洩磁場が大きいことが分かる。すなわち,図3のように環帯状磁性板10の環状軸方向から見て点対称の位置にシェイキング電流を流す1段コイルは,環帯状磁性板10の内部の磁束を均等に揺らして磁気シェイキング効果を効率的に発揮させるために有効であるが,シェイキング電流に伴う漏洩磁場(シェイキングノイズ)によって磁気環境が劣化することが懸念される。   From the comparison of the magnetic field distributions in FIGS. 5 and 9, it is found that when the conducting coil 20 is continuously wound around the magnetic circuit of the open magnetic shield structure at a predetermined pitch T (one turn with a width of 100 mm) and a shaking current is applied, It can be seen that the leakage magnetic field of the first stage coil of FIG. 3 is larger than the leakage magnetic field of the five stage coil of FIG. That is, as shown in FIG. 3, the one-stage coil for passing a shaking current at a point-symmetrical position when viewed from the annular axis direction of the ring-shaped magnetic plate 10 uniformly shakes the magnetic flux inside the ring-shaped magnetic plate 10 to achieve the magnetic shaking effect. However, there is a concern that the magnetic environment may deteriorate due to the leakage magnetic field (shaking noise) accompanying the shaking current.

なお,図3の開放型磁気シールド構造5zでは,5段配置の環帯状磁性板10にそれぞれ導線コイル20を連続的に巻き付け,そのコイル20の一端及び他端を入出力ライン20a,20bに接続し,交流電源であるコイル駆動装置30から入出力ライン20a,20bにシェイキング電流を印加している。この場合に,各段の磁性体回路に巻き付けたコイル20と共に入出力ライン20a,20bからの磁場の漏洩も問題となりうるが,図示例のように入出力ライン20a,20bを隣接させて平行に配置することにより,入出力ライン20a,20bの発生磁場を逆向きの入出力電流によって打ち消して漏洩磁場を小さく抑えることができる。必要に応じて出力ライン20a,20bを撚ることにより打ち消し効果を高めることも有効である。ただし,導線コイル20は,図示例のように複数段の環帯状磁性板10に連続的に巻き付ける必要はなく,少なくとも1つの段において連続していれば足りる。その場合は,段毎にコイル駆動装置30を設けて段毎の導線コイル20にシェイキング電流を個別に印加する。   In the open type magnetic shield structure 5z shown in FIG. 3, the conductive coil 20 is continuously wound around the annular belt-like magnetic plate 10 arranged in five stages, and one end and the other end of the coil 20 are connected to the input / output lines 20a and 20b. In addition, a shaking current is applied to the input / output lines 20a and 20b from the coil driving device 30 which is an AC power supply. In this case, leakage of the magnetic field from the input / output lines 20a and 20b together with the coil 20 wound around the magnetic circuit at each stage may be a problem, but the input / output lines 20a and 20b are adjacent to each other in parallel as in the illustrated example. By disposing, the magnetic field generated in the input / output lines 20a and 20b can be canceled by the input / output current in the reverse direction, and the leakage magnetic field can be kept small. It is also effective to enhance the cancellation effect by twisting the output lines 20a and 20b as necessary. However, the conductor coil 20 does not need to be continuously wound around a plurality of stages of the annular belt-like magnetic plate 10 as in the illustrated example, and it is sufficient if it is continuous in at least one stage. In that case, a coil driving device 30 is provided for each stage, and a shaking current is individually applied to the conductive wire coil 20 for each stage.

[実験例3]
図3のように各段の環帯状磁性板10の各辺に所定ピッチTで連続的に導線コイル20に巻き付けた開放型磁気シールド構造5zにおいて,図3(D)及び(E)に示す所定ピッチTの導線コイル20のコイル電流Ia,Icを,図2(D)及び(E)に示す導線コイル20のコイル電流Ia,IcのようにXY平面上で近付ければ,図3の1段コイル20の作る図5の磁場分布を,図2の1段コイル20の作る図4の磁場分布に近付けて漏洩磁場を低減することが期待できる。そこで,図3の環帯状磁性板10の各辺(900mm)に連続的に巻き付ける導線コイル20の所定ピッチTを,(a)100mm(900mm幅で9ターン),(b)50mm(900mm幅では18ターン),(c)20mm(900mm幅では45ターン),(d)10mm(900mm幅では90ターン)と変えながら,評価対象域Rの漏洩磁場を数値シミュレーションにより順次求める実験を繰り返した。
[Experiment 3]
As shown in FIG. 3, in the open type magnetic shield structure 5z continuously wound around the conductor coil 20 at a predetermined pitch T around each side of the annular band-shaped magnetic plate 10 in each step, the predetermined shown in FIGS. 3D and 3E. If the coil currents Ia and Ic of the conductor coil 20 having the pitch T are brought close to each other on the XY plane like the coil currents Ia and Ic of the conductor coil 20 shown in FIGS. It can be expected that the magnetic field distribution of FIG. 5 made by the coil 20 is brought close to the magnetic field distribution of FIG. 4 made by the single-stage coil 20 of FIG. 2 to reduce the leakage magnetic field. Therefore, the predetermined pitch T of the conductive coil 20 continuously wound around each side (900 mm) of the ring-shaped magnetic plate 10 of FIG. 3 is (a) 100 mm (900 mm width 9 turns), (b) 50 mm (900 mm width) 18 turns), (c) 20 mm (45 turns for a 900 mm width), and (d) 10 mm (90 turns for a 900 mm width), and the experiment for sequentially obtaining the leakage magnetic field in the evaluation target region R by numerical simulation was repeated.

導線コイル20の所定ピッチTに拘わらず,環帯状磁性板10の内部に誘起される磁束密度を実験例1(図2の1段コイルの場合)と揃えると,(a)所定ピッチT=100mmのときはシェイキング電流の電流値を1.414A,(b)50mmのときは1.118A,(c)20mmのときは1.020A,(d)10mmのときは1.005Aとなる。また,所定ピッチTを小さくするとターン数(巻き数)が多くなるので,ターン数の増加に応じてシェイキング電流の電流値を小さくすることにより,シェイキングノイズの漏洩を更に低減することが期待できる。   Regardless of the predetermined pitch T of the conductor coil 20, when the magnetic flux density induced in the ring-shaped magnetic plate 10 is aligned with that of Experimental Example 1 (in the case of the single-stage coil in FIG. 2), (a) the predetermined pitch T = 100 mm In this case, the current value of the shaking current is 1.414 A, (b) 50 mm is 1.118 A, (c) 20 mm is 1.020 A, and (d) 10 mm is 1.005 A. Moreover, since the number of turns (the number of turns) increases when the predetermined pitch T is reduced, it is expected that the leakage of the shaking noise can be further reduced by reducing the current value of the shaking current as the number of turns increases.

一般に環帯状磁性板10の内部をシェイキングするために必要なシェイキング電流(励磁電流)は,巻き付けた導線コイル20の電流値(A)×ターン数(T)=アンペアターン(AT)で表すことができる。そこで本実験では,導線コイル20の所定ピッチTに拘わらず,ターン数を考慮してアンペアターン(AT)が実験例1(図2の1段コイルの場合)と一致するように,(a)所定ピッチT=100mmのときはシェイキング電流の電流値を1.414A,(b)50mmのときは0.559A,(c)20mmのときは0.204A,(d)10mmのときは0.100Aに設定した。本実験の結果を表1,及び図10のグラフに示す。   In general, the shaking current (excitation current) necessary to shake the inside of the ring-shaped magnetic plate 10 can be expressed by the current value (A) of the wound conductive coil 20 × the number of turns (T) = ampere turns (AT). it can. Therefore, in this experiment, (a) so that the ampere turn (AT) coincides with Experimental Example 1 (in the case of the one-stage coil in FIG. 2) in consideration of the number of turns, regardless of the predetermined pitch T of the conductor coil 20. When the predetermined pitch T = 100 mm, the current value of the shaking current is 1.414 A, (b) 0.559 A when 50 mm, (c) 0.204 A when 20 mm, and (d) 0.100 A when 10 mm. Set to. The results of this experiment are shown in Table 1 and the graph of FIG.

表1の5段コイル(連続)の欄は,図8のように5段の環帯状磁性板10に所定ピッチ100mmで連続的に巻き付けた導線コイル20の評価対象域Rにおける漏洩磁場を示す。また表1の1段コイル(連続)の漏洩磁場の平均値欄は,図3の1段導線コイル20の所定ピッチTを100mm,50mm,20mm,10mmと切り替えたときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示している。図10は,表1の1段コイル(連続)の水平面における漏洩磁場の水平成分,垂直成分,及び両者を合成した漏洩磁場の平均値の変化をグラフで表している。図10(B)及び(C)のグラフから分かるように,図3の1段コイルのつくる漏洩磁場の垂直成分は,図8の5段コイルのつくる漏洩磁場の垂直成分よりも大きいが,1段コイルの所定ピッチTを小さく(ターン数を大きく)するとコイル電流Ia,IcがXY平面において接近するので(図3(D)及び(E)参照),漏洩磁場の打ち消し率を高めて垂直成分を低減することができる。   The column of 5-stage coil (continuous) in Table 1 shows the leakage magnetic field in the evaluation target region R of the conductive coil 20 continuously wound around the 5-stage annular belt-like magnetic plate 10 at a predetermined pitch of 100 mm as shown in FIG. The average value field of the leakage magnetic field of the first stage coil (continuous) in Table 1 shows the leakage of the evaluation target area R when the predetermined pitch T of the first stage conductive coil 20 in FIG. 3 is switched to 100 mm, 50 mm, 20 mm, and 10 mm. The average value of the magnetic field in the horizontal plane and the change in the average value in the vertical plane are shown. FIG. 10 is a graph showing changes in the horizontal and vertical components of the leakage magnetic field in the horizontal plane of the one-stage coil (continuous) in Table 1 and the average value of the leakage magnetic field obtained by combining both. As can be seen from the graphs of FIGS. 10B and 10C, the vertical component of the leakage magnetic field generated by the one-stage coil of FIG. 3 is larger than the vertical component of the leakage magnetic field generated by the five-stage coil of FIG. When the predetermined pitch T of the step coil is reduced (the number of turns is increased), the coil currents Ia and Ic approach in the XY plane (see FIGS. 3D and 3E), so that the canceling rate of the leakage magnetic field is increased and the vertical component is increased. Can be reduced.

表1及び図10のグラフから,磁気シールド空間1を囲む環帯状磁性板10の各段に軸方向に沿って導線コイル(1段コイル)20を所定ピッチTで巻き付け,導線コイル20外側の漏洩磁場が打ち消されるように導線コイル20の所定巻き付けピッチTを設定することにより,環帯状磁性板10の内部の磁束を均等に揺らして磁気特性を効率的に向上させると同時に,磁気シールド空間1への漏洩磁場(シェイキングノイズ)を小さく抑えられることが分かる。ただし,1段コイルの所定ピッチTを10mmにまで小さくしても,漏洩磁場は所定ピッチが100mmの5段コイルよりも小さくならないので,漏洩磁場を更に低減するためにはピッチの設定以外の対策が求められる。   From the graphs of Table 1 and FIG. 10, a conducting coil (one-stage coil) 20 is wound around each stage of the ring-shaped magnetic plate 10 surrounding the magnetic shield space 1 along the axial direction at a predetermined pitch T, and leakage outside the conducting coil 20 is detected. By setting a predetermined winding pitch T of the conductive coil 20 so that the magnetic field is canceled, the magnetic flux inside the ring-shaped magnetic plate 10 is evenly shaken to improve the magnetic characteristics efficiently, and at the same time to the magnetic shield space 1. It can be seen that the leakage magnetic field (shaking noise) can be kept small. However, even if the predetermined pitch T of the first stage coil is reduced to 10 mm, the leakage magnetic field does not become smaller than that of the five-stage coil having a predetermined pitch of 100 mm. Therefore, in order to further reduce the leakage magnetic field, measures other than the pitch setting are required. Is required.

もっとも,表1及び図10のグラフは図3のモデル実験による漏洩磁場のシミュレーション結果であり,モデルが異なれば漏洩磁場も異なってくる。図3のモデル実験は比較的小型であるため漏洩磁場が大きくなっているが,磁気シールド空間1の大きさが変わると距離減衰効果によって漏洩磁場は低下し,通常の医療施設や研究施設の磁気シールドルームのサイズまで大きくすると漏洩磁場は大幅に低下するものと考えられる。すなわち,設計条件及び要求性能に応じて導線コイル20の所定ピッチTを適切に設定すれば,本発明のシェイキング式の開放型磁気シールド構造は十分に実用化可能である。   However, the graphs in Table 1 and FIG. 10 are the simulation results of the leakage magnetic field by the model experiment of FIG. 3, and the leakage magnetic field differs depending on the model. Although the model experiment of FIG. 3 is relatively small, the leakage magnetic field is large. However, when the size of the magnetic shield space 1 is changed, the leakage magnetic field is reduced by the distance attenuation effect, and the magnetic field of a normal medical facility or research facility is reduced. It is considered that the leakage magnetic field is greatly reduced when the size of the shield room is increased. That is, if the predetermined pitch T of the conductor coil 20 is appropriately set according to the design conditions and required performance, the shaking type open magnetic shield structure of the present invention can be sufficiently put into practical use.

[実験例4]
実験例3で確認したように,磁気シールド空間1を囲む環帯状磁性板10の各段に導線コイル20を連続的に巻き付けた開放型磁気シールド構造5zは比較的大きなシェイキングノイズ(垂直成分)を漏洩することから,図1(A)に示すように,環状の磁性体回路の外形(中心軸の長さ)が950mmの環帯状磁性板10(磁性体回路)を5段配置した開放型磁気シールド構造5zの各段の間隔dzにそれぞれ環帯状磁性板10と実質上同じ外形950mmの環状導体50を芯合わせしながら平行に挿入し,コイル駆動装置30により導線コイル20の各段に同じ向きのシェイキング電流I1(周波数200Hz)を印加しながら,導体駆動装置60により環状導体50の各段にシェイキング電流I1と逆向きのキャンセル電流I2を印加した場合の漏洩磁場(シェイキングノイズ)を数値シミュレーションにより求める実験を行った。
[Experimental Example 4]
As confirmed in Experimental Example 3, the open type magnetic shield structure 5z in which the conductive coil 20 is continuously wound around each stage of the ring-shaped magnetic plate 10 surrounding the magnetic shield space 1 generates relatively large shaking noise (vertical component). Because of leakage, as shown in FIG. 1 (A), an open magnetic circuit in which an annular magnetic plate 10 (magnetic circuit) having an outer shape (center axis length) of 950 mm is arranged in five stages as shown in FIG. An annular conductor 50 having substantially the same outer shape 950 mm as that of the ring-shaped magnetic plate 10 is inserted in parallel with each other at intervals dz between the steps of the shield structure 5 z and aligned in the same direction in each step of the conducting coil 20 by the coil driving device 30. A canceling current I2 opposite to the shaking current I1 is applied to each stage of the annular conductor 50 by the conductor driving device 60 while applying the shaking current I1 (frequency 200 Hz). Experiments determined by numerical simulation the leakage magnetic field (shaking noise) when the Been.

本実験においても,環帯状磁性板10の各辺(900mm)に連続的に巻き付ける導線コイル20の所定ピッチTを,(a)100mm,(b)50mm,(c)20mm,(d)10mmと変えながら実験を繰り返した。導線コイル20に印加するシェイキング電流I1は,実験例3の場合と同様に,(a)所定ピッチT=100mmのときは1.414A,(b)50mmのときは0.559A,(c)20mmのときは0.204A,(d)10mmのときは0.100Aとした。また,環状導体50に印加する逆向きのキャンセル電流I2は,導電コイル20に印加するシェイキング電流I1と逆向きで同じ大きさとし,(a)所定ピッチT=100mmのときは−1.414A,(b)50mmのときは−0.559A,(c)20mmのときは−0.204A,(d)10mmのときは−0.100Aに設定した。本実験の結果を,上述した実験例3の結果と共に,表1及び図10のグラフに合わせて示す。   Also in this experiment, the predetermined pitch T of the conductive coil 20 continuously wound around each side (900 mm) of the ring-shaped magnetic plate 10 is (a) 100 mm, (b) 50 mm, (c) 20 mm, (d) 10 mm. The experiment was repeated while changing. The shaking current I1 applied to the conductor coil 20 is (a) 1.414 A when the predetermined pitch T = 100 mm, (b) 0.559 A when 50 mm, and (c) 20 mm, as in Experiment 3. In this case, it was 0.204 A, and when (d) 10 mm, it was 0.100 A. Further, the reverse cancellation current I2 applied to the annular conductor 50 has the same magnitude in the reverse direction as the shaking current I1 applied to the conductive coil 20, and (a) −1.414A when the predetermined pitch T = 100 mm, ( b) -0.559 A for 50 mm, (c) -0.204 A for 20 mm, and (d) -0.100 A for 10 mm. The result of this experiment is shown in Table 1 and the graph of FIG. 10 together with the result of Experimental Example 3 described above.

表1のキャンセル電流の漏洩磁場の平均値欄は,環状導体50にキャンセル電流I2を印加したときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示す。また図10のグラフ(キャンセル電流)は,水平面における漏洩磁場の水平成分,垂直成分,及び両者を合成した漏洩磁場の平均値の変化を表している。図10(B)及び(C)のグラフは,環帯状磁性板10の各段のシェイキング電流I1を流す導線コイル20の所定ピッチTが20mmより小さい場合に,環状導体50に流すキャンセル電流I2によって,1段コイルのシェイキング電流I1のつくる漏洩磁場(シェイキングノイズ)を,図8の5段コイルのつくる漏洩磁場よりも小さくできることを示している。   The average value column of the leakage current of the cancellation current in Table 1 shows the change in the average value in the horizontal plane and the average value in the vertical plane of the leakage magnetic field in the evaluation target region R when the cancellation current I2 is applied to the annular conductor 50. . The graph (cancellation current) in FIG. 10 represents the horizontal component, the vertical component of the leakage magnetic field on the horizontal plane, and the change in the average value of the leakage magnetic field obtained by combining both. 10B and 10C show the cancellation current I2 that flows through the annular conductor 50 when the predetermined pitch T of the conducting coil 20 that flows the shaking current I1 of each stage of the ring-shaped magnetic plate 10 is smaller than 20 mm. , The leakage magnetic field (shaking noise) generated by the shaking current I1 of the first stage coil can be made smaller than the leakage magnetic field generated by the five stage coil of FIG.

本実験により,環帯状磁性板10の各段の間隔dzにそれぞれ実質上同径の環状導体50を平行に挿入し,その環状導体50にシェイキング電流と逆向きのキャンセル電流I2を流すことにより,その環状導体50をキャンセル回路として機能させ,環帯状磁性板10の漏洩磁場(シェイキングノイズ)を環状導体50の発生する磁場(キャンセル磁場)により打ち消すことができることを確認できた。図1(A)において環状導体50は平面Pzと平行な環状コイルであり,環状導体10の平面Pz上で発生するキャンセル磁場は垂直成分のみであることから,垂直成分が支配的な環帯状磁性板10のシェイキングノイズを効率的に打ち消すことができたと考えられる。   As a result of this experiment, an annular conductor 50 having substantially the same diameter is inserted in parallel to the interval dz of each step of the ring-shaped magnetic plate 10, and a canceling current I2 opposite to the shaking current is passed through the annular conductor 50, It was confirmed that the annular conductor 50 functions as a cancel circuit, and the leakage magnetic field (shaking noise) of the ring-shaped magnetic plate 10 can be canceled by the magnetic field (cancellation magnetic field) generated by the annular conductor 50. In FIG. 1A, the annular conductor 50 is an annular coil parallel to the plane Pz, and the canceling magnetic field generated on the plane Pz of the annular conductor 10 is only the vertical component. It is considered that the shaking noise of the plate 10 could be canceled efficiently.

なお,本実験では環状導体(キャンセル回路)50の外形を環帯状磁性板10の外形と一致させて同径としているが,環状導体50の外形は環帯状磁性板10の外形と厳密に一致させる必要はなく,環帯状磁性板10の外形と実質上同径であれば,環帯状磁性板10の導線コイル20からの漏洩磁場(シェイキングノイズ)を環状導体50によって十分に打ち消すことが期待できる。必要に応じて,シェイキングノイズを最も効率的に打ち消すことができるように,環帯状磁性板10の外形(径)に対応させて環状導体50の外形(径)を設計することも可能である。   In this experiment, the outer shape of the annular conductor (cancellation circuit) 50 is made to be the same as the outer shape of the annular belt-shaped magnetic plate 10, but the outer shape of the annular conductor 50 is exactly matched to the outer shape of the annular belt-shaped magnetic plate 10. It is not necessary, and if the outer diameter of the annular belt-shaped magnetic plate 10 is substantially the same, it can be expected that the annular conductor 50 sufficiently cancels the leakage magnetic field (shaking noise) from the conductive coil 20 of the annular belt-shaped magnetic plate 10. If necessary, the outer shape (diameter) of the annular conductor 50 can be designed in accordance with the outer shape (diameter) of the ring-shaped magnetic plate 10 so that the shaking noise can be canceled most efficiently.

[実験例5]
図1(A)の開放型磁気シールド構造5zにおいて,図1(B)のように複数段の環状導体50に印加するキャンセル電流I2,I3の電流値を段毎に独立に設定することにより,環帯状磁性板10の導線コイル20からのシェイキングノイズの漏洩を更に低減することが期待できる。すなわち,開放型磁気シールド構造内側の評価対象域Rの中心点におけるシェイキングノイズが最小となるように,複数段の環状導体50に印加するキャンセル電流I2,I3を段毎に独立に最適化することができる。
[Experimental Example 5]
In the open type magnetic shield structure 5z in FIG. 1A, by setting the current values of the cancel currents I2 and I3 applied to the annular conductors 50 in a plurality of stages as shown in FIG. It can be expected that leakage of shaking noise from the conductive coil 20 of the ring-shaped magnetic plate 10 is further reduced. That is, the canceling currents I2 and I3 applied to the annular conductors 50 of the plurality of stages are optimized independently for each stage so that the shaking noise at the center point of the evaluation target area R inside the open type magnetic shield structure is minimized. Can do.

例えば,図1(B)の5段の開放型磁気シールド構造5zにおいて,先ず2段目,3段目,4段目の3段の環帯状磁性板10に導線コイル20にシェイキング電流I1を流したときの磁気シールド構造内側の中心点の磁場(シェイキングノイズ)を求める。次に,2段目,3段目の環状導体50に逆向きのキャンセル電流I2を印加しながら,磁気シールド構造内側の中心点の磁場が打ち消されて最小(例えばゼロ)となるようなキャンセル電流I2の電流値を決定する。このようにして決定した3段モデルの結果を5段モデルに適用し,5段モデルの環帯状磁性板10に導線コイル20にシェイキング電流I1を流しながら,2段目,3段目の環状導体50に逆向きのキャンセル電流I2を印加したときの磁気シールド構造内側の中心点の磁場を求める。次いで,1段目,4段目の環状導体50に逆向きのキャンセル電流I3を印加し,磁気シールド構造内側の中心点の磁場が打ち消されて最小(例えばゼロ)となるような1段目,4段目のキャンセル電流I3の電流値を決定する。   For example, in the five-stage open type magnetic shield structure 5z shown in FIG. 1B, a shaking current I1 is first supplied to the conducting coil 20 through the second-stage, third-stage, and fourth-stage three-band annular magnetic plates 10. The magnetic field (shaking noise) at the center point inside the magnetic shield structure is obtained. Next, a canceling current that cancels the magnetic field at the center point inside the magnetic shield structure to a minimum (for example, zero) while applying a reverse canceling current I2 to the second and third annular conductors 50. The current value of I2 is determined. The results of the three-stage model determined in this way are applied to the five-stage model, and the second and third-stage annular conductors are applied while flowing the shaking current I1 through the conducting coil 20 through the ring-shaped magnetic plate 10 of the five-stage model. 50, the magnetic field at the center point inside the magnetic shield structure when the reverse cancel current I2 is applied is obtained. Next, a reverse current I3 is applied to the first and fourth annular conductors 50 so that the magnetic field at the center point inside the magnetic shield structure is canceled and minimized (for example, zero), The current value of the fourth stage cancellation current I3 is determined.

図1(B)の開放型磁気シールド構造5zにおいて,5段の環帯状磁性板10に導線コイル20にシェイキング電流I1を流しながら,環状導体50に印加するキャンセル電流I2,I3を最適化した磁気シールド空間1の漏洩磁場を数値シミュレーションにより求める実験を行った。具体的には,(a)所定ピッチT=100mmのときはシェイキング電流I1=1.414A,キャンセル電流I2=−1.964A,キャンセル電流I3=−1.090A,(b)50mmのときはシェイキング電流I1=0.559A,キャンセル電流I2=−0.777A,キャンセル電流I3=−0.430A,(c)20mmのときはシェイキング電流I1=0.204A,キャンセル電流I2=−0.283A,キャンセル電流I3=−0.157A,(d)10mmのときはシェイキング電流I1=0.100A,キャンセル電流I2=−0.139A,キャンセル電流I3=−0.077Aに設定した。本実験の結果を,上述した実験例3の結果と共に,表1及び図10のグラフに合わせて示す。   In the open type magnetic shield structure 5z shown in FIG. 1B, the canceling currents I2 and I3 to be applied to the annular conductor 50 are optimized while the shaking current I1 is passed through the conductive coil 20 through the five-step annular magnetic plate 10. An experiment was performed to obtain the leakage magnetic field of the shield space 1 by numerical simulation. Specifically, (a) when the predetermined pitch T = 100 mm, the shaking current I1 = 1.414 A, the cancellation current I2 = −1.964 A, the cancellation current I3 = −1.090 A, and (b) the shaking when 50 mm. Current I1 = 0.559A, cancel current I2 = −0.777A, cancel current I3 = −0.430A, (c) Shaking current I1 = 0.204A, cancel current I2 = −0.283A, cancel When the current I3 = −0.157 A and (d) 10 mm, the shaking current I1 = 0.100 A, the cancel current I2 = −0.139 A, and the cancel current I3 = −0.077 A were set. The result of this experiment is shown in Table 1 and the graph of FIG. 10 together with the result of Experimental Example 3 described above.

表1のキャンセル電流(最適電流値)の漏洩磁場の平均値欄は,環状導体50のキャンセル電流の電流値I2,I3を最適化したときの評価対象域Rの漏洩磁場の水平面における平均値,及び垂直面における平均値の変化をそれぞれ示している。また図10のグラフ(キャンセル電流(最適電流値))は,水平面における漏洩磁場の水平成分,垂直成分,及び両者を合成した漏洩磁場の平均値の変化を表している。図10(B)及び(C)のグラフは,環帯状磁性板10の各段の間隔dzにそれぞれ実質上同径の環状導体50を芯合わせしながら平行に挿入し,その環状導体50に最適化されたキャンセル電流I2,I3を流すことにより,1段コイルのつくる漏洩磁場を,その1段コイルの所定ピッチTに拘わらず,図8の5段コイルのつくる漏洩磁場よりも小さくできることを示している。更に,キャンセル電流I2,I3の最適化に加えて,各段の導線コイル20の所定ピッチTを導線コイル20漏洩磁場が最小となるように設定することが可能であり,導線コイル20の所定ピッチTを10mm程度に小さくすることにより,所定ピッチTが100mmの場合に比してシェイキングノイズを1/10程度に低減できることを示している。   The mean value field of the leakage magnetic field of the cancellation current (optimum current value) in Table 1 is an average value in the horizontal plane of the leakage magnetic field in the evaluation target region R when the current values I2 and I3 of the cancellation current of the annular conductor 50 are optimized. And the change of the average value in the vertical plane. The graph (cancellation current (optimum current value)) in FIG. 10 represents the horizontal component and vertical component of the leakage magnetic field in the horizontal plane, and the change in the average value of the leakage magnetic field obtained by combining both. The graphs of FIGS. 10B and 10C show that an annular conductor 50 having substantially the same diameter is inserted in parallel with the interval dz of each step of the ring-shaped magnetic plate 10 while being aligned, and is optimal for the annular conductor 50. 8 shows that the leakage magnetic field generated by the first stage coil can be made smaller than the leakage magnetic field generated by the five-stage coil of FIG. 8 regardless of the predetermined pitch T of the first-stage coil by flowing the canceled cancellation currents I2 and I3. ing. Further, in addition to the optimization of the cancellation currents I2 and I3, the predetermined pitch T of the conductive coil 20 at each stage can be set so that the leakage magnetic field of the conductive coil 20 is minimized. It is shown that by reducing T to about 10 mm, the shaking noise can be reduced to about 1/10 compared with the case where the predetermined pitch T is 100 mm.

更に図10(B)及び(C)は,上述した実験例3のように環状導体50を挿入しない場合は,1段コイルの所定ピッチTを10mmにまで小さくしても漏洩磁場を5段コイルよりも小さくすることはできない実験例3の結果を併せて示しており,実験例3と対比することにより,環帯状磁性板10の間隔に環状導体50を設けて最適化されたキャンセル電流I2,I3を流すことにより,環帯状磁性板10の導線コイル20の漏洩するシェイキングノイズを効率的に低減できることを表している。更に,1段コイルの所定ピッチTを20mm以下とすることにより,5段コイルの場合に比して,磁気シールド空間1へのシェイキングノイズの漏洩を1/5以下(20%以下)に低減することができる。   Further, FIGS. 10B and 10C show that when the annular conductor 50 is not inserted as in Experimental Example 3 described above, the leakage magnetic field is reduced to 5 mm even if the predetermined pitch T of the 1-stage coil is reduced to 10 mm. The results of Experimental Example 3 that cannot be made smaller than the above are also shown. By contrasting with Experimental Example 3, an optimized canceling current I2, which is obtained by providing the annular conductor 50 in the interval between the ring-shaped magnetic plates 10 is shown. By flowing I3, it is shown that the shaking noise leaking from the conductive coil 20 of the ring-shaped magnetic plate 10 can be efficiently reduced. Furthermore, by reducing the predetermined pitch T of the 1-stage coil to 20 mm or less, the leakage of shaking noise to the magnetic shield space 1 is reduced to 1/5 or less (20% or less) compared to the case of the 5-stage coil. be able to.

なお,5段より段数の多い開放型磁気シールド構造のモデルにおいても,上述した図1(B)の最適化方法と同様にして,環状導体20に印加するキャンセル電流の最適電流値を求めることができる。或いは,図1(C)に示すように,複数段の環状導体50に印加するキャンセル電流をそれぞれ異なる電流値Ia,Ib,Ic,Idとすることも可能である。図1(C)のモデルによれば,複数段の環帯状磁性板10の導線コイル20に印加するシェイキング電流が段毎に異なる場合でも,磁気シールド構造内側の中心点の磁場が最小となるようなキャンセル電流の電流値Ia,Ib,Ic,Idを設定することも容易である。   Even in an open magnetic shield structure model having more than five stages, the optimum current value of the cancel current applied to the annular conductor 20 can be obtained in the same manner as the optimization method of FIG. it can. Alternatively, as shown in FIG. 1C, the cancel currents applied to the plurality of stages of annular conductors 50 can be set to different current values Ia, Ib, Ic, and Id. According to the model of FIG. 1 (C), the magnetic field at the center point inside the magnetic shield structure is minimized even when the shaking current applied to the conducting coil 20 of the annular belt-shaped magnetic plate 10 of the plurality of stages is different for each stage. It is also easy to set the current values Ia, Ib, Ic, and Id of the cancel currents.

また,図1(A)〜(C)のような開放型磁気シールド構造5zでは,環帯状磁性板10の複数段の間隔dzに環状導体50を配置し,その環状導体50の一端及び他端を入出力ライン50a,50bに接続し,交流電源である導体駆動装置60から入出力ライン50a,50bにキャンセル電流を印加しているので,入出力ライン50a,50bからの磁場の漏洩も問題となりうる。しかし,上述した導線コイル20の入出力ライン20a,20bと同様に,導体駆動装置60の入出力ライン50a,50bを隣接させて平行に配置することにより,入出力ライン50a,50bの発生磁場を逆向きの入出力電流によって打ち消して漏洩磁場を小さく抑えることができる。必要に応じて出力ライン50a,50bを撚ることにより打ち消し効果を高めることも有効である。   Further, in the open type magnetic shield structure 5z as shown in FIGS. 1A to 1C, the annular conductor 50 is arranged at a plurality of intervals dz of the ring-shaped magnetic plate 10, and one end and the other end of the annular conductor 50 are arranged. Is connected to the input / output lines 50a and 50b, and a canceling current is applied to the input / output lines 50a and 50b from the conductor drive device 60, which is an AC power supply, so that magnetic field leakage from the input / output lines 50a and 50b also becomes a problem. sell. However, similarly to the input / output lines 20a and 20b of the conductive coil 20, the input / output lines 50a and 50b of the conductor driving device 60 are arranged adjacent to each other in parallel, so that the generated magnetic fields of the input / output lines 50a and 50b are changed. The leakage magnetic field can be kept small by canceling with the reverse input / output current. It is also effective to enhance the cancellation effect by twisting the output lines 50a and 50b as necessary.

こうして本発明の目的である「シェイキングノイズの漏洩を小さく抑えることができるシェイキング式の開放型磁気シールド構造」の提供を達成できる。   Thus, it is possible to achieve the “shaking type open magnetic shield structure capable of minimizing leakage of shaking noise”, which is an object of the present invention.

図1の開放型磁気シールド構造5zは主にXY平面の一方向又は二方向の外乱磁場の遮蔽を目的としているが,外乱磁場の方向が決まっていない磁気シールド対象空間1において三方向の外乱磁場を遮蔽対象とする場合は,図1の構造を基本ユニットとして,図11(A)〜(C)のような複数ユニットを組み合わせた開放型磁気シールド構造とすることができる。図11は,医療施設や研究施設に設置される外寸2550mmを基本サイズとした立方体形状の開放型磁気シールドルームの一例を示す。   The open magnetic shield structure 5z in FIG. 1 is mainly intended for shielding a disturbance magnetic field in one or two directions in the XY plane, but in a magnetic shield target space 1 in which the direction of the disturbance magnetic field is not determined, the three-way disturbance magnetic field is shown. 1 can be used as an open type magnetic shield structure in which a plurality of units as shown in FIGS. 11A to 11C are combined with the structure of FIG. 1 as a basic unit. FIG. 11 shows an example of a cube-shaped open type magnetic shield room having an outer size of 2550 mm as a basic size installed in a medical facility or research facility.

図11(A)は,磁気シールド対象空間1を貫く第1方向軸Az(Z軸)と所定間隔dzで交差する複数段の平行な平面Pz上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた図1と同様の開放型磁気シールド構造5zを示す。また,図11(B)は磁気シールド対象空間1を貫く第2方向軸Ax(X軸)と所定間隔dxで交差する複数段の平行な平面Px上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた開放型磁気シールド構造5xを示し,図11(C)は磁気シールド対象空間1を貫く第3方向軸Ay(Y軸)と所定間隔dyで交差する複数段の平行な平面Py上にそれぞれ対象空間1を所定帯幅Wで囲むように環帯状磁性板10を設けた開放型磁気シールド構造5yを示す。磁気シールド対象空間1の周囲に3つの開放型磁気シールド構造5z,5x,5yを入れ子状に配置し,或いは開放型磁気シールド構造5z,5x,5yのうち何れか2つを選択して入れ子状に配置して一体化することにより,三方向の外乱磁場を遮蔽する磁気シールドルームとすることできる。   FIG. 11A shows the target space 1 surrounded by a predetermined band width W on a plurality of parallel planes Pz intersecting the first direction axis Az (Z axis) penetrating the magnetic shield target space 1 at a predetermined interval dz. An open type magnetic shield structure 5z similar to that shown in FIG. 1 provided with an annular magnetic plate 10 is shown. FIG. 11B shows the target space 1 with a predetermined width W on a plurality of parallel planes Px intersecting the second direction axis Ax (X axis) penetrating the magnetic shield target space 1 at a predetermined interval dx. An open-type magnetic shield structure 5x provided with a ring-shaped magnetic plate 10 so as to surround is shown. FIG. 11C shows a plurality of crossing with a third direction axis Ay (Y axis) penetrating the magnetic shield target space 1 at a predetermined interval dy. An open type magnetic shield structure 5y is shown in which a ring-shaped magnetic plate 10 is provided so as to surround the target space 1 with a predetermined band width W on each of the parallel planes Py. Three open type magnetic shield structures 5z, 5x, 5y are arranged in a nested manner around the magnetic shield target space 1, or any two of the open type magnetic shield structures 5z, 5x, 5y are selected and nested. It is possible to provide a magnetic shield room that shields disturbance magnetic fields in three directions by arranging and integrating them.

図11(A)〜(C)の環帯状磁性板10は,それぞれコバルト系アモルファス(厚さ23μm×20枚積層,幅50mm)の帯板を井桁状に組んで構成し,例えば所定間隔dz=200mmで12段配置して開放型磁気シールド構造5z,5x,5yとすることができる。開放型磁気シールド構造5z,5xには,同じ帯状磁性板(コバルト系アモルファス)10で構成された扉枠14a,14b,14c,14dで囲まれた開口が設けられ,その開口にPCパーマロイ板(厚さ1mm×2枚積層)の2層(内側,外側)構造の扉12が取り付けられている。   Each of the ring-shaped magnetic plates 10 of FIGS. 11 (A) to 11 (C) is formed by arranging strips of cobalt-based amorphous (thickness 23 μm × 20 layers, width 50 mm) in a cross-beam shape, for example, a predetermined interval dz = The open magnetic shield structures 5z, 5x, and 5y can be formed by arranging 12 stages at 200 mm. Open-type magnetic shield structures 5z and 5x are provided with openings surrounded by door frames 14a, 14b, 14c and 14d made of the same strip-shaped magnetic plate (cobalt-based amorphous) 10, and PC permalloy plates ( A door 12 having a two-layer structure (inner side and outer side) having a thickness of 1 mm × two layers is attached.

開放型磁気シールド構造5z,5x,5yの各段の環帯状磁性板10には,図1の場合と同様にそれぞれ環状軸に沿って所定ピッチTで導線コイル20を巻き付け,コイル駆動装置30により各導線コイル20に所定周波数のシェイキング電流を印加して磁気シールド構造5z,5x,5yを磁気シェイキングする。また,環帯状磁性板10の各段の間隔dz,dx,dyにそれぞれ実質上同径の環状導体50を平行に挿入し,導体駆動装置60により各環状導体50にシェイキング電流と逆向きのキャンセル電流を流すことにより,環帯状磁性板10の漏洩磁場(シェイキングノイズ)を環状導体50の発生する磁場(キャンセル磁場)によって打ち消す。導線コイル20に印加するシェイキング電流の電流値及び向き,環状導体50に印加するキャンセル電流の電流値及び向きは,設計条件及び要求性能に応じて適宜決定することができる。   As in the case of FIG. 1, the conductive coil 20 is wound around the annular axis at the predetermined pitch T along the annular axis on the annular magnetic plate 10 of each stage of the open type magnetic shield structure 5z, 5x, 5y. By applying a shaking current having a predetermined frequency to each conductive wire coil 20, the magnetic shield structures 5z, 5x, and 5y are magnetically shaken. In addition, annular conductors 50 having substantially the same diameter are inserted in parallel to the intervals dz, dx, dy of each step of the ring-shaped magnetic plate 10, and a canceling operation in the direction opposite to the shaking current is applied to each annular conductor 50 by the conductor driving device 60. By flowing a current, the leakage magnetic field (shaking noise) of the ring-shaped magnetic plate 10 is canceled by the magnetic field (cancellation magnetic field) generated by the annular conductor 50. The current value and direction of the shaking current applied to the conductor coil 20 and the current value and direction of the cancel current applied to the annular conductor 50 can be appropriately determined according to design conditions and required performance.

図12(A)は,開口のない開放型磁気シールド構造5yの各段の環帯状磁性板(磁性体回路)10に1本の導線コイル20を連続的に巻き付ける方法の一例を示す。コイル駆動装置30のシェイキング電流は,入出力ライン20a(又は20b)を介して1段目の磁性体回路の位置番号1に入力され,位置番号2〜6の順で1段目の磁性体回路を周回する。次いで,位置番号7から2段目の磁性体回路に移り,位置番号8〜12の順で周回する。同様に12段目の位置番号68〜72まで周回を繰り返したのち,位置番号73を経由して1段目まで戻り,位置番号74から入出力ライン20b(又は20a)を介して出力される。   FIG. 12A shows an example of a method in which one conductive coil 20 is continuously wound around the ring-shaped magnetic plate (magnetic circuit) 10 of each stage of the open type magnetic shield structure 5y having no opening. The shaking current of the coil driving device 30 is input to the position number 1 of the first-stage magnetic circuit via the input / output line 20a (or 20b), and the first-stage magnetic circuit in the order of position numbers 2-6. Go around. Next, the position number 7 moves to the second-stage magnetic circuit, and the circuit circulates in the order of position numbers 8-12. Similarly, after repeating the circulation from the position number 68 to 72 of the 12th stage, the position returns to the 1st stage via the position number 73 and is output from the position number 74 via the input / output line 20b (or 20a).

図12(A)において,各段の導線コイル20の所定ピッチTを適切に設定することにより,各段の磁性体回路のシェイキングノイズを低減することができる。各段のシェイキング電流を最適化する場合は,電流値自体を段毎に変えることはできないが,各段の所定ピッチT(ターン数)を調整することで実質的に対応できる。各段の磁性体回路からのシェイキングノイズと共に,隣接する磁性体回路に移行する経路でのシェイキングノイズの漏洩も懸念されるが,これについては入出力ライン20a,20bと同様に,位置番号7,13,19,25,31,37,43,49,55,61,67と位置番号73とは電流値が同じで方向が逆のため,隣接させて平行に配置することにより逆向き電流によって互いに打ち消して漏洩を小さく抑えることができる。必要に応じて両者を撚ることにより打ち消し効果を高めることも有効である。   In FIG. 12A, by appropriately setting the predetermined pitch T of the conductive coil 20 at each stage, the shaking noise of the magnetic circuit at each stage can be reduced. When the shaking current of each stage is optimized, the current value itself cannot be changed for each stage, but it can be substantially handled by adjusting the predetermined pitch T (number of turns) of each stage. In addition to the shaking noise from the magnetic circuit at each stage, there is a concern about leakage of the shaking noise in the path that moves to the adjacent magnetic circuit. However, as with the input / output lines 20a and 20b, the position number 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67 and position number 73 have the same current value and opposite directions. It can be canceled out and leakage can be kept small. It is also effective to enhance the cancellation effect by twisting the two as necessary.

また図12(B)は,開放型磁気シールド構造5yの各段の間隙dyに1本の環状導体(キャンセル回路)50を連続的に配置する方法の一例を示す。導体駆動装置60のキャンセル電流は,入出力ライン50a(又は50b)を介して1段目のキャンセル回路の位置番号1に入力され,位置番号2〜6の順で1段目のキャンセル回路を周回する。キャンセル電流は,シェイキング電流とは逆向きである。次いで,位置番号7から2段目のキャンセル回路に移り,位置番号7〜12の順で周回する。同様に11段目の位置番号52〜56まで周回を繰り返したのち,位置番号57を経由して1段目のキャンセル回路まで戻り,位置番号58から入出力ライン50b(又は50a)を介して出力される。   FIG. 12B shows an example of a method in which one annular conductor (cancel circuit) 50 is continuously arranged in the gap dy of each stage of the open type magnetic shield structure 5y. The cancel current of the conductor driving device 60 is input to the position number 1 of the first-stage cancel circuit via the input / output line 50a (or 50b), and goes around the first-stage cancel circuit in the order of position numbers 2-6. To do. The cancellation current is in the opposite direction to the shaking current. Next, the process proceeds from the position number 7 to the second-stage cancel circuit, and circulates in the order of the position numbers 7-12. Similarly, after repeating the laps to the 11th stage position numbers 52 to 56, the position number 57 is returned to the first stage cancel circuit, and the position number 58 is output via the input / output line 50b (or 50a). Is done.

図12(B)において,各段のキャンセル電流を最適化する場合は,図1(B)と同様に複数段のキャンセル回路をグループ分けして別々の導体駆動装置60を設け,又は図1(C)と同様に段毎のキャンセル回路に別々の導体駆動装置60を設けることができる。隣接するキャンセル回路に移行する経路での磁場の漏洩も懸念されるが,これについては入出力ライン50a,50bと同様に,位置番号6〜7,11〜12,16〜17,21〜22,26〜27,31〜32,36〜37,41〜42,46〜47,51〜52と位置番号57とは電流値が同じで方向が逆のため,接近させて平行に設置することにより逆向き電流によって互いに打ち消して漏洩磁場を小さく抑えることができる。必要に応じて両者を撚ることにより打ち消し効果を高めることも有効である。   12B, in order to optimize the cancel current of each stage, a plurality of stages of cancel circuits are grouped as in FIG. 1B, and separate conductor driving devices 60 are provided, or FIG. As in C), a separate conductor driving device 60 can be provided in the cancel circuit for each stage. There is also a concern about leakage of the magnetic field in the path moving to the adjacent cancel circuit. However, as with the input / output lines 50a and 50b, the position numbers 6 to 7, 11 to 12, 16 to 17, 21 to 22, 26-27, 31-32, 36-37, 41-42, 46-47, 51-52 and position number 57 have the same current value and reverse direction, so they are reversed by being placed in parallel and close to each other. The leakage magnetic field can be kept small by canceling each other by the direction current. It is also effective to enhance the cancellation effect by twisting the two as necessary.

図13(A)は,開口のある開放型磁気シールド構造5zの各段の環帯状磁性板10に1本の導線コイル20を連続的に巻き付ける方法の一例を示す。シェイキング電流は,入出力ライン20a(又は20b)を介して1段目の磁性体回路の位置番号1に入力され,位置番号2〜7を周回する。次いで,位置番号8から2段目の磁性体回路に移って位置番号9に至り,ここで扉12により流れを遮られた電流は,扉枠14a,14d,14bの位置番号10〜12を介して迂回したのち位置番号13〜17の順で周回し,位置番号18を介して3段目の磁性体回路に移る。同様に11段目の位置番号99から扉枠14a,14c,14bの位置番号100〜102を迂回して位置番号103〜107まで周回を繰り返したのち,位置番号108から12段目の磁性体回路に移る。更に,位置番号109〜114の順で巡回したのち,位置番号115を介して1段目まで戻り,位置番号116から入出力ライン20b(又は20a)を介して出力される。   FIG. 13A shows an example of a method in which one conductive coil 20 is continuously wound around the ring-shaped magnetic plate 10 at each stage of the open magnetic shield structure 5z having an opening. The shaking current is inputted to the position number 1 of the first-stage magnetic circuit circuit via the input / output line 20a (or 20b) and goes around the position numbers 2 to 7. Next, the position number 8 moves to the magnetic circuit of the second stage to reach the position number 9, where the current blocked by the door 12 passes through the position numbers 10 to 12 of the door frames 14a, 14d and 14b. After detouring, the circuit circulates in the order of position numbers 13 to 17, and moves to the third-stage magnetic circuit via position number 18. Similarly, the position number 99 from the 11th stage bypasses the position numbers 100 to 102 of the door frames 14a, 14c, and 14b and repeats the circulation from the position numbers 103 to 107, and then the magnetic circuit of the 12th stage from the position number 108. Move on. Further, after circulating in the order of the position numbers 109 to 114, it returns to the first stage via the position number 115 and is output from the position number 116 via the input / output line 20b (or 20a).

図13(A)において,隣接する磁性体回路間を移行する経路のシェイキングノイズの漏洩は,位置番号8,18,28,38,48,58,68,78,88,98,108と位置番号115とは電流値が同じで方向が逆であるため,隣接させて平行に配置することにより逆向き電流によって互いに打ち消して漏洩を小さく抑えることができる。必要に応じて両者を撚ることにより打ち消し効果を高めることも有効である。なお,図13(A)においてシェイキング電流の扉12の迂回方向は,距離が短い方となる。   In FIG. 13A, the leakage of the shaking noise in the path moving between adjacent magnetic circuits is the position numbers 8, 18, 28, 38, 48, 58, 68, 78, 88, 98, 108 and the position numbers. Since the current value is the same as that of 115 and the direction is opposite, by arranging them adjacent to each other in parallel, they can cancel each other out by the reverse current and suppress leakage. It is also effective to enhance the cancellation effect by twisting the two as necessary. In FIG. 13A, the detour direction of the door 12 with the shaking current is the shorter distance.

また図13(B)は,開放型磁気シールド構造5zの各段の間隙dzに1本の環状導体(キャンセル回路)50を連続的に配置する方法の一例を示す。キャンセル電流は,入出力ライン50a(又は50b)を介して1段目のキャンセル回路の位置番号1に入力され,位置番号2から位置番号3に至り,ここで扉12により流れを遮られた電流は,扉枠14a,14d,14bの位置番号4〜6を介して迂回したのち位置番号7〜11の順で周回する。キャンセル電流は,シェイキング電流とは逆向きである。次いで,位置番号12から2段目のキャンセル回路に移って位置番号13に至り,ここで扉12により流れを遮られた電流は,扉枠14a,14d,14bの位置番号14〜16を介して迂回したのち位置番号17〜21の順で周回する。同様に位置番号12から11段目のキャンセル回路に移って位置番号103に至り,ここで扉12により流れを遮られた電流は,扉枠14a,14c,14bの位置番号104〜106を介して迂回したのち位置番号107〜111の順で周回する。   FIG. 13B shows an example of a method in which one annular conductor (cancellation circuit) 50 is continuously arranged in the gap dz of each stage of the open type magnetic shield structure 5z. The cancel current is input to the position number 1 of the first-stage cancel circuit via the input / output line 50a (or 50b) and reaches the position number 3 from the position number 2 where the flow is blocked by the door 12 here. Circulates in the order of position numbers 7 to 11 after detouring via the position numbers 4 to 6 of the door frames 14a, 14d and 14b. The cancellation current is in the opposite direction to the shaking current. Next, the position number 12 shifts to the cancellation circuit in the second stage to reach the position number 13, where the current blocked by the door 12 passes through the position numbers 14-16 of the door frames 14a, 14d, 14b. After detouring, go around in order of position number 17-21. Similarly, the position number 12 shifts to the eleventh stage cancel circuit to reach the position number 103, where the current blocked by the door 12 passes through the position numbers 104 to 106 of the door frames 14a, 14c and 14b. After detouring, it circulates in the order of position numbers 107-111.

図13(B)において,キャンセル電流の扉12の迂回方向も,距離が短い方となる。11段目のキャンセル回路は,位置番号111から位置番号112を介して1段目まで戻り,位置番号113から入出力ライン50b(又は50a)を介して出力される。隣接するキャンセル回路に移行する経路での磁場の漏洩は,位置番号11〜12,21〜22,31〜32,41〜42,51〜52,61〜62,71〜72,81〜82,91〜92,101〜102と位置番号112とは電流値が同じで方向が逆のため,接近させて平行に設置することにより逆向き電流によって互いに打ち消して漏洩磁場を小さく抑えることができる。必要に応じて両者を撚ることにより打ち消し効果を高めることも有効である。   In FIG. 13B, the detour direction of the cancellation current door 12 is also the shorter one. The eleventh stage cancel circuit returns from the position number 111 to the first stage via the position number 112 and is output from the position number 113 via the input / output line 50b (or 50a). The leakage of the magnetic field in the path to the adjacent cancel circuit is the position numbers 11 to 12, 21 to 22, 31 to 32, 41 to 42, 51 to 52, 61 to 62, 71 to 72, 81 to 82, 91. Since .about.92, 101.about.102 and position number 112 have the same current value and opposite directions, they can be placed close to each other in parallel to cancel each other out by a reverse current and suppress the leakage magnetic field to be small. It is also effective to enhance the cancellation effect by twisting the two as necessary.

図13(C)〜(F)は,隣接する磁性体回路への移行経路となる扉枠14c,14a,14b,14dのシェイキング電流及びキャンセル電流をまとめて示したものである。図13(C)の扉枠14cでは,位置符号61,71,81,91,101(シェイキング電流)は右向きであり,位置番号65,75,85,95,105(キャンセル電流)は左向きであるから,これらを合成するとゼロとなる。図13(F)の扉枠14dでは,位置符号11,21,31,41,51(シェイキング電流)は右向きであり,位置番号5,15,25,35,45,55(キャンセル電流)は左向きであるから,これらを合成すると左向き電流が単独で存在することになる。   FIGS. 13C to 13F collectively show shaking currents and canceling currents of the door frames 14c, 14a, 14b, and 14d that are transition paths to adjacent magnetic circuits. In the door frame 14c of FIG. 13C, the position codes 61, 71, 81, 91, 101 (shaking current) are directed to the right, and the position numbers 65, 75, 85, 95, 105 (cancellation current) are directed to the left. Therefore, when these are combined, it becomes zero. In the door frame 14d in FIG. 13F, the position codes 11, 21, 31, 41, 51 (shaking current) are directed to the right, and the position numbers 5, 15, 25, 35, 45, 55 (cancellation current) are directed to the left. Therefore, when these are combined, a leftward current exists alone.

また,図13(D)の扉枠14aでは,位置番号60,70,80,90,100(シェイキング電流)と,位置番号6,16,26,36,46,56(キャンセル電流)は上向きであり,位置番号10,20,30,40,50(シェイキング電流)と,位置番号66,76,86,96,106(キャンセル電流)は下向きであるから,これらを合成すると上向き電流が1段おきに単独で存在する。更に図13(E)の窓枠14bでは,位置番号12,22,32,42,52(シェイキング電流)と,位置番号64,74,84,94,104(キャンセル電流)は上向きであり,位置番号62,72,82,92,102(シェイキング電流)と,位置番号4,14,24,34,44,54(キャンセル電流)は下向きであるから,これらを合成すると下向き電流が1段おきに単独で存在する。   Further, in the door frame 14a of FIG. 13D, the position numbers 60, 70, 80, 90, 100 (shaking current) and the position numbers 6, 16, 26, 36, 46, 56 (cancellation current) are upward. Yes, position numbers 10, 20, 30, 40, 50 (shaking current) and position numbers 66, 76, 86, 96, 106 (cancellation current) are downwards. Exist alone. Further, in the window frame 14b of FIG. 13E, the position numbers 12, 22, 32, 42, 52 (shaking current) and the position numbers 64, 74, 84, 94, 104 (cancellation current) are facing upward, Since the numbers 62, 72, 82, 92, 102 (shaking current) and the position numbers 4, 14, 24, 34, 44, 54 (cancellation current) are downward, when these are combined, the downward current is every other stage. Exists alone.

このように扉枠14a,14b,14dにおいて逆向き電流によって打ち消すことができない電流が存在しており,これらの経路から磁場(シェイキングノイズ)の漏洩が懸念される。そのため,図13(G)及び(H)に示すように,扉枠14a,14b,14dに沿って例えばPCパーマロイ製のスリット23付き磁気シールド筒体22(角筒又は円筒)を設置し,その筒体22内に隣接する回路への移行経路部分を収容することが望ましい。スリット23は,シールド筒体22の長手方向に沿って設けられており,単線の導線コイル20からの磁場の漏洩方向を制御する機能を有し,シールド対象空間1と反対側に向けることで対象空間1へのシェイキングノイズの漏洩を低減する(特許文献5参照)。スリット23は,導線コイル20及び環状導体50の引き入れ,引き出しの際にも利用できる。なお,シェイキング電流及びキャンセル電流の電流値を最適化した場合は,段毎に電流値が相違するために隣接する回路への移行経路部分で逆向き電流の打ち消し効果が低下しうるが,そのような場合にもスリット23付き磁気シールド筒体22に移行経路部分を収容することで漏洩磁場を抑えることができる。   As described above, there is a current that cannot be canceled by the reverse current in the door frames 14a, 14b, and 14d, and there is a concern about leakage of a magnetic field (shaking noise) from these paths. Therefore, as shown in FIGS. 13 (G) and 13 (H), a magnetic shield cylinder 22 (square tube or cylinder) with a slit 23 made of, for example, PC Permalloy is installed along the door frames 14a, 14b, 14d. It is desirable to accommodate a transition path portion to an adjacent circuit in the cylindrical body 22. The slit 23 is provided along the longitudinal direction of the shield cylinder 22, has a function of controlling the leakage direction of the magnetic field from the single wire conductor coil 20, and is directed to the opposite side to the shield target space 1. The leakage of shaking noise to the space 1 is reduced (see Patent Document 5). The slit 23 can also be used when the lead coil 20 and the annular conductor 50 are drawn in and pulled out. Note that when the current values of the shaking current and the cancellation current are optimized, the current value is different for each stage, so that the reverse current canceling effect may be reduced at the transition path part to the adjacent circuit. Even in this case, the leakage magnetic field can be suppressed by accommodating the transition path portion in the magnetic shield cylinder 22 with the slit 23.

1…磁気シールド対象空間 2…帯状磁性板
3…シールド簾体 5…開放型磁気シールド構造
8…磁気センサ 9…端縁(重ね合わせ部)
10…環帯状磁性板 12…扉
14a,14b,14c,14d…扉枠
20…導線コイル 20a,20b…入出力ライン
22…シールド筒体 23…スリット
30…コイル駆動装置
40…磁気シールド部材 41…基材
42a,42b…磁性薄帯 43…導線コイル(シェイキングコイル)
44…入力端子 45…出力端子
50…環状導体 50a,50b…入出力ライン
60…導体駆動装置
Ax,Ay,Az…軸 d…間隔
I…電流 L…電流担体(コイル)
M…外乱磁場 O…中心点
Px,Py,Pz…平面 R…評価対象域
T…ピッチ W…環帯状磁性板の帯幅
DESCRIPTION OF SYMBOLS 1 ... Magnetic shield object space 2 ... Strip | belt-shaped magnetic board 3 ... Shield housing 5 ... Open type magnetic shield structure 8 ... Magnetic sensor 9 ... Edge (overlapping part)
DESCRIPTION OF SYMBOLS 10 ... Ring-shaped magnetic plate 12 ... Door 14a, 14b, 14c, 14d ... Door frame 20 ... Conductor coil 20a, 20b ... Input / output line 22 ... Shield cylinder 23 ... Slit 30 ... Coil drive device 40 ... Magnetic shield member 41 ... Base material 42a, 42b ... Magnetic ribbon 43 ... Conductor coil (shaking coil)
44 ... input terminal 45 ... output terminal 50 ... annular conductors 50a, 50b ... input / output lines 60 ... conductor drive devices Ax, Ay, Az ... axes d ... interval I ... current L ... current carrier (coil)
M ... disturbance magnetic field O ... center point Px, Py, Pz ... plane R ... evaluation target area T ... pitch W ... band width of ring-shaped magnetic plate

Claims (7)

磁気シールド対象空間を貫く第1方向軸と所定間隔で交差する複数段の平行な平面上にそれぞれ当該空間を所定帯幅で囲むように設けた環帯状磁性板,前記環帯状磁性板の各段にそれぞれ環状軸に沿って所定ピッチで巻き付けた導線コイル,前記環帯状磁性板の各段の間隔にそれぞれ当該環帯状磁性板と実質上同径で平行に設けた環状導体,前記導線コイルに所定周波数のシェイキング電流を印加するコイル駆動装置,及び前記環状導体にキャンセル電流を印加する導体駆動装置を備え,前記導線コイル内側の発生磁場により環帯状磁性板を磁気シェイキングすると共に前記導線コイル外側の漏洩磁場を環状導体の発生する磁場により打ち消してなるシェイキング式の開放型磁気シールド構造。 A ring-shaped magnetic plate provided on a plurality of parallel planes intersecting the first direction axis passing through the magnetic shield target space at a predetermined interval so as to surround the space with a predetermined band width, and each step of the ring-shaped magnetic plate A conductor coil wound at a predetermined pitch along the annular axis, an annular conductor provided substantially parallel to the annular belt-like magnetic plate at intervals of each step of the annular belt-like magnetic plate, and a predetermined coil conductor A coil driving device for applying a frequency-shaking current, and a conductor driving device for applying a canceling current to the annular conductor, and magnetically shaking the ring-shaped magnetic plate by a magnetic field generated inside the conductor coil and leaking outside the conductor coil Shaking type open type magnetic shield structure in which the magnetic field is canceled by the magnetic field generated by the annular conductor. 請求項1の構造において,前記導体駆動装置が環状導体に印加するキャンセル電流の電流値を,前記導線コイル外側の漏洩磁場が最小となるように段毎に独立に設定してなるシェイキング式の開放型磁気シールド構造。 2. A shaking type opening in which the current value of the canceling current applied to the annular conductor by the conductor driving device is independently set for each stage so that the leakage magnetic field outside the conducting coil is minimized. Type magnetic shield structure. 請求項1又は2の構造において,前記環帯状磁性板の各段の導線コイルの所定ピッチを前記導線コイル外側の漏洩磁場が最小となるように設定してなるシェイキング式の開放型磁気シールド構造。 3. The shaking type open magnetic shield structure according to claim 1, wherein a predetermined pitch of the conductive coil at each stage of the ring-shaped magnetic plate is set so that a leakage magnetic field outside the conductive coil is minimized. 請求項1から3の何れかの構造において,前記導線コイル及び環状導体の各段に平行配置の入出力ラインを含め,当該入出力ラインの漏洩磁場を逆向きの入出力電流により打ち消してなるシェイキング式の開放型磁気シールド構造。 4. A shaker according to claim 1, wherein input / output lines arranged in parallel at each stage of the conductor coil and the annular conductor are included, and the leakage magnetic field of the input / output lines is canceled by an input / output current in a reverse direction. Open type magnetic shield structure. 請求項4の構造において,前記導線コイル及び環状導体の各段の入出力ラインを収容するスリット付き磁気シールド筒体を設けてなるシェイキング式の開放型磁気シールド構造。 5. The shaking type open magnetic shield structure according to claim 4, wherein a magnetic shield cylinder with slits is provided to accommodate input / output lines of each stage of the conductor coil and the annular conductor. 請求項1から5の何れかの構造において,前記磁気シールド対象空間を貫く第2方向軸と所定間隔で交差する複数段の平行な平面上にそれぞれ当該空間を所定帯幅で囲むように設けた第2環帯状磁性板の群,前記第2環帯状磁性板の各段にそれぞれ環状軸に沿って所定ピッチで巻き付けた第2導線コイル,及び前記第2環帯状磁性板の各段の間隔にそれぞれ当該第2環帯状磁性板と実質上同径で平行に設けた第2環状導体を設け,前記対象空間の周囲に環帯状磁性板群と第2環帯状磁性板群とを入れ子状に配置し,前記コイル駆動装置により各導線コイルに所定周波数のシェイキング電流を印加して各環帯状磁性板群を磁気シェイキングすると共に前記導体駆動装置により各環状導体にキャンセル電流を印加して各導電コイル外側の漏洩磁場を打ち消してなるシェイキング式の開放型磁気シールド構造。 6. The structure according to claim 1, wherein each space is provided on a plurality of parallel planes intersecting the second direction axis penetrating the magnetic shield target space at a predetermined interval so as to surround the space with a predetermined band width. A group of second annular belt-like magnetic plates, a second conductor coil wound around each stage of the second annular belt-like magnetic plate at a predetermined pitch along an annular axis, and an interval between each stage of the second annular belt-like magnetic plate A second annular conductor provided substantially in parallel with the second annular belt-shaped magnetic plate is provided, and the annular belt-shaped magnetic plate group and the second annular belt-shaped magnetic plate group are nested around the target space. The coil drive device applies a shaking current of a predetermined frequency to each conductor coil to magnetically shake each ring-shaped magnetic plate group, and the conductor drive device applies a cancel current to each annular conductor to Leakage magnetic field Open magnetic shield structure shaking expression that cancels. 請求項6の構造において,前記磁気シールド対象空間を貫く第3方向軸と所定間隔で交差する複数段の平行な平面上にそれぞれ当該空間を所定帯幅で囲むように設けた第3環帯状磁性板の群,前記第3環帯状磁性板の各段にそれぞれ環状軸に沿って所定ピッチで巻き付けた第3導線コイル,及び前記第3環帯状磁性板の各段の間隔にそれぞれ当該第3環帯状磁性板と実質上同径で平行に設けた第3環状導体を設け,前記対象空間の周囲に環帯状磁性板群と第2環帯状磁性板群と第3環帯状磁性板群とを入れ子状に配置し,前記コイル駆動装置により各導線コイルに所定周波数のシェイキング電流を印加して各環帯状磁性板群を磁気シェイキングすると共に前記導体駆動装置により各環状導体にキャンセル電流を印加して各導電コイル外側の漏洩磁場を打ち消してなるシェイキング式の開放型磁気シールド構造。 7. The structure of claim 6, wherein a third annular belt-like magnet is provided on each of a plurality of parallel planes intersecting with a third direction axis passing through the magnetic shield target space at a predetermined interval so as to surround the space with a predetermined band width. A group of plates, a third conductor coil wound around each stage of the third annular belt-like magnetic plate at a predetermined pitch along the annular axis, and a third ring at intervals of each stage of the third annular belt-like magnetic plate, respectively. A third annular conductor having substantially the same diameter and parallel to the belt-like magnetic plate is provided, and an annular belt-like magnetic plate group, a second annular belt-like magnetic plate group, and a third annular belt-like magnetic plate group are nested around the target space. The coil driving device applies a shaking current having a predetermined frequency to each conducting coil to magnetically shake each ring-shaped magnetic plate group, and the conductor driving device applies a canceling current to each annular conductor. Leak outside the conductive coil Open magnetic shield structure shaking expression that cancels a magnetic field.
JP2016016784A 2016-01-31 2016-01-31 Shaking type open magnetic shield structure Expired - Fee Related JP6599258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016016784A JP6599258B2 (en) 2016-01-31 2016-01-31 Shaking type open magnetic shield structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016784A JP6599258B2 (en) 2016-01-31 2016-01-31 Shaking type open magnetic shield structure

Publications (2)

Publication Number Publication Date
JP2017135354A JP2017135354A (en) 2017-08-03
JP6599258B2 true JP6599258B2 (en) 2019-10-30

Family

ID=59503039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016784A Expired - Fee Related JP6599258B2 (en) 2016-01-31 2016-01-31 Shaking type open magnetic shield structure

Country Status (1)

Country Link
JP (1) JP6599258B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161998A (en) * 1989-11-21 1991-07-11 Kosuke Harada Plane coil
JP2004179550A (en) * 2002-11-28 2004-06-24 Sangaku Renkei Kiko Kyushu:Kk Split type cylindrical magnetic shield apparatus
JP2005217341A (en) * 2004-02-02 2005-08-11 Kri Inc Environmental magnetism noise shielding equipment
JP4354898B2 (en) * 2004-11-08 2009-10-28 新日本製鐵株式会社 Magnetic shield structure for AC power single wire cable
JP4794353B2 (en) * 2006-05-17 2011-10-19 新日本製鐵株式会社 Magnetic shield structure and magnetic shield method
JP5328599B2 (en) * 2009-10-09 2013-10-30 鹿島建設株式会社 Composite magnetic shield structure and system
JP5930400B2 (en) * 2012-10-26 2016-06-08 鹿島建設株式会社 Open magnetic shield structure with conductor circuit

Also Published As

Publication number Publication date
JP2017135354A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
EP1605742B1 (en) Open magnetic shield structure and its magnetic frame
US10578582B2 (en) Wire rope flaw detector
JP5328599B2 (en) Composite magnetic shield structure and system
JP6599258B2 (en) Shaking type open magnetic shield structure
JP5930400B2 (en) Open magnetic shield structure with conductor circuit
JP2017135353A (en) Shaking open type magnetic shield structure
JP5076161B2 (en) Separate type magnetic shield device
JP2017147412A (en) Low leakage shaking open type magnetic shield structure
JP2010142586A (en) Gradient magnetic field coil device, nuclear magnetic resonance imaging device, and coil pattern design method
US5786694A (en) Gradient coil system for use in a diagnostic magnetic resonance apparatus
JP7165505B2 (en) Active magnetic shield system and magnetocardiography system using it
US10790078B2 (en) Apparatus and method for magnetic field compression
JP5592193B2 (en) Method of constructing a composite magnetic shield for disturbance magnetic fields
JP5900014B2 (en) Magnetic shield device
JP2511990B2 (en) Deflection magnet and its excitation device
JP4254921B2 (en) Magnetic shield room for magnetic resonance imaging equipment
CN110975964B (en) Design method and application of magnetic device
Rodriguez et al. Construction and first magnetic field test of a superconducting transversal gradient undulator for the laser wakefield accelerator in Jena
JP2018026466A (en) Shield structure of transformer
JP2017020882A (en) Three-dimensional magnetic field electromagnet device
JPH0373598A (en) Magnetic shielding device
JPH0832273A (en) Magnetic shield
JPS6148280B2 (en)
Kim Magnetic field analysis of helical undulators
JPH01191405A (en) Uniform magnetic field coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191002

R150 Certificate of patent or registration of utility model

Ref document number: 6599258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees