JP6596347B2 - Method for producing vanadium dioxide - Google Patents

Method for producing vanadium dioxide Download PDF

Info

Publication number
JP6596347B2
JP6596347B2 JP2016016744A JP2016016744A JP6596347B2 JP 6596347 B2 JP6596347 B2 JP 6596347B2 JP 2016016744 A JP2016016744 A JP 2016016744A JP 2016016744 A JP2016016744 A JP 2016016744A JP 6596347 B2 JP6596347 B2 JP 6596347B2
Authority
JP
Japan
Prior art keywords
vanadium dioxide
raw material
firing
material mixture
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016016744A
Other languages
Japanese (ja)
Other versions
JP2017132677A (en
Inventor
純也 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2016016744A priority Critical patent/JP6596347B2/en
Publication of JP2017132677A publication Critical patent/JP2017132677A/en
Application granted granted Critical
Publication of JP6596347B2 publication Critical patent/JP6596347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特に蓄熱材として有用な二酸化バナジウムの製造方法に関するものである。   The present invention relates to a method for producing vanadium dioxide particularly useful as a heat storage material.

蓄熱材は、物質に熱を蓄え、また、必要に応じてその熱を取り出すことができる材料である。蓄熱によって、蓄熱材自身や、蓄熱材が置かれた空間内等の温度を一定に保つことができる。   The heat storage material is a material that can store heat in a substance and take out the heat as necessary. By heat storage, the temperature of the heat storage material itself or the space where the heat storage material is placed can be kept constant.

蓄熱方式には、顕熱蓄熱、潜熱蓄熱、化学蓄熱があり、蓄熱時に使用される物理化学現象によって分類される。   Thermal storage methods include sensible heat storage, latent heat storage, and chemical heat storage, and are classified according to the physicochemical phenomenon used during heat storage.

潜熱蓄熱は、物質の相変化、転移に伴う転移熱を利用したもので転移熱を熱エネルギーとして蓄え、利用するものであり、潜熱蓄熱は、顕熱蓄熱に比べて、蓄熱密度が高く、相転移温度の一定温度で熱供給が可能で、また、化学蓄熱に比べて、相転移を繰り返すだけなので耐久性に優れている。   Latent heat storage uses the transition heat associated with the phase change and transition of materials, and stores and uses the transition heat as thermal energy.Latent heat storage has a higher heat storage density than phase sensible heat storage, Heat can be supplied at a constant transition temperature, and it has excellent durability because it only repeats phase transitions compared to chemical heat storage.

下記特許文献1及び下記特許文献2には、電子相転移熱を利用した新しいタイプの潜熱蓄熱材として、二酸化バナジウム系の強相関電子系遷移金属化合物を用いることが提案されている。このタイプの蓄熱材は、電子の持つ内部自由度であるスピンの自由度と、軌道の自由度とを含む複自由度の相転移を利用するものであり、固相状態で生じる相転移であるため、蓄熱材が容器から漏れる心配がない。また、無機塩水和物などの固体―液体相転移と異なり、相転移時の相分離や分解が生じる虞れがない、相転移時の体積変化が固体―液体相転移と比べて小さい、高い熱伝導率を有する等の利点もある。   Patent Document 1 and Patent Document 2 below propose using a vanadium dioxide-based strongly correlated electron transition metal compound as a new type of latent heat storage material using electronic phase transition heat. This type of heat storage material uses a phase transition of multiple degrees of freedom including the degree of freedom of spin, which is the internal degree of freedom of electrons, and the degree of freedom of orbit, and is a phase transition that occurs in the solid state. Therefore, there is no worry that the heat storage material leaks from the container. In addition, unlike solid-liquid phase transitions such as inorganic salt hydrates, there is no risk of phase separation or decomposition during phase transitions, and volume changes during phase transitions are small compared to solid-liquid phase transitions. There are also advantages such as having conductivity.

二酸化バナジウム系の強相関電子系遷移金属化合物を製造する方法として、特許文献1及び特許文献2には、各原料を所定量混合して得られる混合物を真空封入して昇温する方法が提案されているが、工業的に有利な方法とは言い難い。   As a method for producing a vanadium dioxide-based strongly correlated electron transition metal compound, Patent Document 1 and Patent Document 2 propose a method in which a mixture obtained by mixing a predetermined amount of each raw material is vacuum sealed and heated. However, this is not an industrially advantageous method.

また、二酸化バナジウム系の強相関電子系遷移金属化合物を製造する方法として、下記特許文献3には、可溶解性バナジウム化合物を含む溶液に、アルカリを添加して得られる沈殿物を水熱反応する方法が提案されている。また、下記特許文献4には、四価のバナジウム化合物を含む溶液と、該バナジウム化合物と錯形成する物質及びドーパント元素の溶液を反応させて得られる反応物を不活性ガス中で焼成する方法が提案されている。   In addition, as a method for producing a vanadium dioxide-based strongly correlated electron transition metal compound, Patent Document 3 listed below hydrothermally reacts a precipitate obtained by adding an alkali to a solution containing a soluble vanadium compound. A method has been proposed. Patent Document 4 below discloses a method of firing a reaction product obtained by reacting a solution containing a tetravalent vanadium compound with a solution of a substance complexing with the vanadium compound and a dopant element in an inert gas. Proposed.

特開2014−210835号公報JP, 2014-210835, A 特開2010−163510号公報JP 2010-163510 A 特表2014−505651号公報Special table 2014-505651 gazette 特開2014−198645号公報JP 2014-198645 A

しかしながら、特許文献3の方法によれば、工業的に有利な方法で二酸化バナジウムが得られるが、蓄熱特性に優れたものが得られ難い。
従って、本発明の目的は、蓄熱特性に優れた二酸化バナジウムを工業的に有利な方法で製造する方法を提供することにある。
However, according to the method of Patent Document 3, vanadium dioxide can be obtained by an industrially advantageous method, but it is difficult to obtain a material having excellent heat storage characteristics.
Accordingly, an object of the present invention is to provide a method for producing vanadium dioxide having excellent heat storage characteristics by an industrially advantageous method.

本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、下記一般式(1)
1-xx2 (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)で表わされる二酸化バナジウムの製造方法であって、
五酸化二バナジウム(V25)と、有機酸とを含有する原料混合液を噴霧乾燥したものを反応前駆体とし、次いで該反応前駆体を特定温度範囲で焼成することにより蓄熱材として有用な二酸化バナジウムが得られることを見出し本発明を完成するに到った。
As a result of intensive studies in view of the above circumstances, the present inventors have found that the following general formula (1)
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. A method for producing vanadium dioxide represented by:
Useful as a heat storage material by spray-drying a raw material mixture containing divanadium pentoxide (V 2 O 5 ) and an organic acid, and then firing the reaction precursor in a specific temperature range As a result, the inventors have found that vanadium dioxide can be obtained and have completed the present invention.

即ち、本発明が提供しようとする二酸化バナジウムの製造方法は、下記一般式(1)
1−x (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)で表わされる二酸化バナジウムの製造方法であって、
五酸化二バナジウムと有機酸とを含有する原料混合液を調製する第一工程、次いで該原料混合液を噴霧乾燥処理して、反応前駆体を得る第二工程と、
該反応前駆体を不活性ガス雰囲気中で600〜900℃で焼成する第三工程とを有し、必要により前記原料混合液にM源を添加し、前記有機酸が、有機カルボン酸であり、 前記原料混合液の前記有機酸の配合量が、五酸化二バナジウム中のバナジウム原子に対する有機酸中の炭素原子のモル比(C/V)で、0.90〜1.1であることを特徴とするものである。
That is, the method for producing vanadium dioxide to be provided by the present invention comprises the following general formula (1):
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. A method for producing vanadium dioxide represented by:
The first step of preparing a raw material mixture containing the pentoxide vanadium and an organic acid, and then the raw material mixture was spray-dried, a second step of obtaining a reaction precursor
A third step of firing the reaction precursor in an inert gas atmosphere at 600 to 900 ° C., and if necessary, adding an M source to the raw material mixture , and the organic acid is an organic carboxylic acid, The amount of the organic acid in the raw material mixture is 0.90 to 1.1 in terms of a molar ratio (C / V) of carbon atoms in the organic acid to vanadium atoms in divanadium pentoxide. It is what.

本発明の製造方法によれば、工業的に有利な方法で、蓄熱材として有用な二酸化バナジウムを提供することが出来る。   According to the production method of the present invention, vanadium dioxide useful as a heat storage material can be provided by an industrially advantageous method.

実施例1の第二工程で得られた反応前駆体のX線回折図。2 is an X-ray diffraction pattern of a reaction precursor obtained in the second step of Example 1. FIG. 実施例1の第二工程で得られた反応前駆体のSEM写真。3 is an SEM photograph of the reaction precursor obtained in the second step of Example 1. FIG. 実施例1で得られた二酸化バナジウムのX線回折図。2 is an X-ray diffraction pattern of vanadium dioxide obtained in Example 1. FIG. 実施例1で得られた二酸化バナジウムの示差走査熱量測定結果を示す図。The figure which shows the differential scanning calorimetry result of vanadium dioxide obtained in Example 1. FIG. 実施例2のアニール処理品試料のX線回折図。FIG. 4 is an X-ray diffraction diagram of an annealed product sample of Example 2. 実施例2のアニール処理品試料の示差走査熱量測定結果を示す図。The figure which shows the differential scanning calorimetry result of the annealed product sample of Example 2. FIG. 実施例2のアニール処理品試料のSEM写真。4 is an SEM photograph of an annealed product sample of Example 2. FIG. 実施例3のアニール処理品試料の示差走査熱量測定結果を示す図。The figure which shows the differential scanning calorimetry result of the annealed product sample of Example 3. 比較例1のアニール処理品試料の示差走査熱量測定結果を示す図。The figure which shows the differential scanning calorimetry result of the annealed product sample of the comparative example 1.

以下、本発明をその好ましい実施形態に基づいて説明する。
本発明の製造方法により得られる二酸化バナジウムは下記一般式(1)で表わされる化合物である。
1-xx2 (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)
Hereinafter, the present invention will be described based on preferred embodiments thereof.
Vanadium dioxide obtained by the production method of the present invention is a compound represented by the following general formula (1).
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. Show.)

潜熱蓄熱において、蓄熱は相転移温度付近で行われる。一般式(1)の式中のMは、本発明において必要により添加する元素である。   In latent heat storage, heat storage is performed near the phase transition temperature. M in the formula of the general formula (1) is an element added as necessary in the present invention.

本発明の製造方法で得られる二酸化バナジウムは、例えば、蓄熱材として使用する場合に、一般式(1)の式中のM及びxの値を調製することにより、相転移温度を所望の温度に調製することが出来る。例えば、二酸化バナジウムのバナジウムの一部をW、Ta、Nb、Ru、Mo、Re等の元素で置換することで、相転移温度を無置換の二酸化バナジウムに比べて低下させることが出来る。また、その置換量が多くなるほど相転移温度が低くなることが知られている(特開2010−163510号公報)。また、二酸化バナジウムのバナジウムの一部をCrで置換することで、相転移温度を無置換の二酸化バナジウムに比べて高くすることが出来る。また、その置換量が多くなるほど相転移温度が高くなることが知られている(特開2014−210835号公報)。   For example, when the vanadium dioxide obtained by the production method of the present invention is used as a heat storage material, the phase transition temperature is adjusted to a desired temperature by adjusting the values of M and x in the formula of the general formula (1). Can be prepared. For example, by substituting a part of vanadium vanadium with an element such as W, Ta, Nb, Ru, Mo, Re or the like, the phase transition temperature can be lowered as compared with unsubstituted vanadium dioxide. Further, it is known that the phase transition temperature decreases as the substitution amount increases (Japanese Patent Laid-Open No. 2010-163510). In addition, by replacing a part of vanadium of vanadium dioxide with Cr, the phase transition temperature can be made higher than that of unsubstituted vanadium dioxide. Further, it is known that the phase transition temperature increases as the substitution amount increases (Japanese Patent Laid-Open No. 2014-210835).

本製造方法に係る第一工程は、五酸化二バナジウムと有機酸とを水溶媒中で混合し、五酸化二バナジウムと有機酸とを含有する原料混合液を調製する工程である。   The first step according to this production method is a step of preparing a raw material mixture containing divanadium pentoxide and an organic acid by mixing divanadium pentoxide and an organic acid in an aqueous solvent.

第一工程に係る原料混合液は、五酸化二バナジウムが水溶媒中に溶解した溶液であってもよく、 五酸化二バナジウムが水溶媒に分散したスラリーであってもよい。また、五酸化二バナジウムが水溶媒に分散したスラリーは、五酸化二バナジウムが一部溶解したものであってもよい。なお、有機酸は、水溶媒に溶解していることが好ましい。   The raw material mixture liquid in the first step may be a solution in which divanadium pentoxide is dissolved in an aqueous solvent, or may be a slurry in which divanadium pentoxide is dispersed in an aqueous solvent. Further, the slurry in which divanadium pentoxide is dispersed in an aqueous solvent may be one in which divanadium pentoxide is partially dissolved. The organic acid is preferably dissolved in an aqueous solvent.

第一工程に係る五酸化二バナジウムは、工業的に入手できるものであれば特に制限はなく用いることが出来るが、原料混合液としてスラリーとする場合は、レーザー回折法により求められる平均粒径が50μm以下、好ましくは0.1〜30μmの反応性に優れたものを用いることが好ましい。   The vanadium pentoxide according to the first step can be used without particular limitation as long as it is industrially available, but when it is used as a slurry as a raw material mixture, the average particle size obtained by the laser diffraction method is It is preferable to use a material having excellent reactivity of 50 μm or less, preferably 0.1 to 30 μm.

五酸化二バナジウムの添加量は、水溶媒中100質量部に対して5〜50質量部、好ましくは10〜40質量部とすることが五酸化二バナジウムを適量溶解し、且つスラリーを攪拌、混合する際に粘度を適正に保つという観点から好ましい。なお、原料混合液としてスラリーを得る場合は、五酸化二バナジウムの添加量は水溶媒中100質量部に対して、10〜50質量部、好ましくは10〜40質量部とすることが好ましく、原料混合液として完全に溶解した溶解液を得る場合は、五酸化二バナジウムの添加量は水溶媒中100質量部に対して、10質量部未満、好ましくは1質量部以上10質量部未満とすることが好ましい。   The addition amount of divanadium pentoxide is 5 to 50 parts by mass, preferably 10 to 40 parts by mass with respect to 100 parts by mass in an aqueous solvent, and an appropriate amount of divanadium pentoxide is dissolved and the slurry is stirred and mixed This is preferable from the viewpoint of keeping the viscosity appropriate. In addition, when obtaining a slurry as a raw material liquid mixture, the addition amount of divanadium pentoxide is 10-50 mass parts with respect to 100 mass parts in an aqueous solvent, Preferably it is 10-40 mass parts, When obtaining a completely dissolved solution as a mixed solution, the addition amount of divanadium pentoxide is less than 10 parts by mass, preferably 1 part by mass or more and less than 10 parts by mass with respect to 100 parts by mass in the aqueous solvent. Is preferred.

第一工程に係る有機酸は、第一工程において、五酸化二バナジウムの水溶媒に対する溶解性を向上させ、また、第三工程では、五酸化二バナジウムを還元する還元剤として作用する成分となる。   The organic acid according to the first step improves the solubility of divanadium pentoxide in an aqueous solvent in the first step, and becomes a component that acts as a reducing agent to reduce divanadium pentoxide in the third step. .

用いることができる有機酸としては、例えば、ギ酸、酢酸、グリコール酸、乳酸、グルコン酸等のモノカルボン酸、シュウ酸、マレイン酸、マロン酸、リンゴ酸、酒石酸、コハク酸等のジカルボン酸、カルボキシル基の数が3であるクエン酸等のカルボン酸が五酸化二バナジウムを溶解し、均一組成の反応前駆体が得られる観点から好ましく、特にシュウ酸が反応性に優れた反応前駆体が得られる観点から好ましい。
なお、これら有機酸は、含水物であっても無水物であってもよい。
Examples of organic acids that can be used include monocarboxylic acids such as formic acid, acetic acid, glycolic acid, lactic acid, and gluconic acid, dicarboxylic acids such as oxalic acid, maleic acid, malonic acid, malic acid, tartaric acid, and succinic acid, carboxyl A carboxylic acid such as citric acid having 3 groups is preferable from the viewpoint of dissolving divanadium pentoxide and obtaining a reaction precursor having a uniform composition. In particular, oxalic acid is a reaction precursor having excellent reactivity. It is preferable from the viewpoint.
These organic acids may be hydrated or anhydrous.

五酸化二バナジウムと有機酸の配合量は、五酸化二バナジウム中のバナジウム原子に対する有機酸中の炭素原子のモル比(C/V)で0.90〜1.1、好ましくは0.98〜1.03、特に好ましくは1.00〜1.03である。この理由は五酸化二バナジウム中のバナジウム原子に対する有機酸中の炭素原子のモル比が0.90未満では焼成時に還元不足となり易く、一方、バナジウム原子に対する炭素原子のモル比が1.1を超えると焼成時に還元過剰になり炭素が不純物として二酸化バナジウム中に残存し易くなる傾向があるためである。   The compounding amount of divanadium pentoxide and the organic acid is 0.90 to 1.1, preferably 0.98 to 0.1 in terms of the molar ratio of carbon atoms in the organic acid to vanadium atoms in divanadium pentoxide (C / V). 1.03, particularly preferably 1.00 to 1.03. The reason for this is that if the molar ratio of carbon atoms in the organic acid to vanadium atoms in divanadium pentoxide is less than 0.90, reduction tends to be insufficient during firing, while the molar ratio of carbon atoms to vanadium atoms exceeds 1.1. This is because reduction tends to be excessive during firing and carbon tends to remain as an impurity in vanadium dioxide.

第一工程に係る水溶媒は、水に限らず、水と親水性溶媒との混合溶媒であってもよい。第一工程において、上記範囲の有機酸及び水溶媒の配合量如何では、五酸化二バナジウムを水溶媒中に溶解させることが難しい場合があるが、更に原料混合液を加熱処理することで五酸化二バナジウムの溶解性を高めて、五酸化二バナジウムを一部溶解させたスラリー得ることができる。本製造方法において、この五酸化二バナジウムを一部溶解させたスラリーを用いることで、反応前駆体及び二酸化バナジウムの粒径制御が容易になり、また、五酸化二バナジウムと有機酸とが一層緻密に混合された反応性に優れた反応前駆体を得ることができる観点からも好ましい。   The aqueous solvent according to the first step is not limited to water, and may be a mixed solvent of water and a hydrophilic solvent. In the first step, it may be difficult to dissolve divanadium pentoxide in the aqueous solvent depending on the blending amount of the organic acid and the aqueous solvent in the above range, but the pentoxide can be further treated by heating the raw material mixture. By increasing the solubility of divanadium, a slurry in which a portion of divanadium pentoxide is partially dissolved can be obtained. In this production method, by using a slurry in which part of this vanadium pentoxide is dissolved, it becomes easy to control the particle size of the reaction precursor and vanadium dioxide, and the vanadium pentoxide and organic acid are more densely packed. It is also preferable from the viewpoint of obtaining a reaction precursor excellent in reactivity mixed in the above.

加熱処理の温度は40〜130℃、好ましくは60〜100℃とすることが五酸化二バナジウムと有機酸を効率良く反応、溶解させる観点から好ましい。
加熱処理の時間は、本製造方法において臨界的ではなく、五酸化二バナジウムが一部溶解するまで十分な時間を行えばよく、通常は1時間以上、好ましくは2〜12時間である。
The temperature of the heat treatment is preferably 40 to 130 ° C., preferably 60 to 100 ° C. from the viewpoint of efficiently reacting and dissolving divanadium pentoxide and the organic acid.
The time for the heat treatment is not critical in the present production method, and a sufficient time may be used until part of the vanadium pentoxide is dissolved, and is usually 1 hour or longer, preferably 2 to 12 hours.

また、本製造方法では、必要により前記原料混合液に、M源を添加して、後述する第二工程を行うことができる。   Moreover, in this manufacturing method, M source can be added to the said raw material mixture as needed, and the 2nd process mentioned later can be performed.

必要に添加するM源としては、M元素自体であってもよく、また、M元素を含む化合物であってもよい。M元素を含む化合物としては、M元素の酸化物、モリブデン酸、タングステン酸のような金属酸、その金属酸塩又はアンモニウム塩、M元素のアルコラート或いはM元素の有機酸塩等が挙げられる。これらM源は溶液、懸濁液又は粉体として前記原料混合液に添加することが出来る。
M源の添加量は、得られる二酸化バナジウムの組成に合わせて適宜添加量を調製して添加することが好ましい。
The M source to be added may be the M element itself or a compound containing the M element. Examples of the compound containing M element include oxides of M element, metal acids such as molybdic acid and tungstic acid, metal acid salts or ammonium salts thereof, alcoholates of M element, or organic acid salts of M element. These M sources can be added to the raw material mixture as a solution, suspension or powder.
The addition amount of the M source is preferably adjusted according to the composition of the obtained vanadium dioxide and added.

第二工程は、第一工程で調製した該原料混合液を噴霧乾燥処理して、反応前駆体を得る工程である。   The second step is a step of obtaining a reaction precursor by spray drying the raw material mixture prepared in the first step.

スラリーや溶液の乾燥方法には噴霧乾燥法以外の方法も知られているが、本発明の製造方法においては、噴霧乾燥法を選択することが有利であるとの知見に基づき、この乾燥方法を採用している。   Methods other than spray drying are known as methods for drying slurries and solutions. However, in the production method of the present invention, this drying method is used based on the knowledge that it is advantageous to select a spray drying method. Adopted.

詳細には、噴霧乾燥法により乾燥を行うと、五酸化二バナジウムと有機酸を含有し、各原料が密に詰まった状態の物が得られることから、この物を本発明の製造方法では、反応前駆体とし、反応前駆体を後述する第3工程で焼成することにより、X線回折的には単相の二酸化バナジウム粒子を得ることができる。   Specifically, when drying is performed by a spray drying method, since a product containing divanadium pentoxide and an organic acid and each raw material being densely packed is obtained, this product is used in the production method of the present invention. By using the reaction precursor as a reaction precursor and firing the reaction precursor in a third step described later, single-phase vanadium dioxide particles can be obtained in terms of X-ray diffraction.

噴霧乾燥法においては、所定手段によって原料混合液を霧化し、それによって生じた微細な液滴を乾燥させることで反応前駆体を得る。原料混合液の霧化には、例えば回転円盤を用いる方法と、圧力ノズルを用いる方法がある。第2工程においてはいずれの方法も用いることもできる。   In the spray drying method, a reaction precursor is obtained by atomizing a raw material mixture by a predetermined means and drying fine droplets generated thereby. The atomization of the raw material mixture includes, for example, a method using a rotating disk and a method using a pressure nozzle. Any method can be used in the second step.

噴霧乾燥法においては、霧化された原料混合液の液滴の大きさと、それに含まれる粉砕処理物の粒子の大きさとの関係が、安定した乾燥や、得られる乾燥粉の性状に影響を与える。詳細には、液滴の大きさに対して粉砕処理物の原料粒子の大きさが小さすぎると、液滴が不安定になり、乾燥を首尾よく行いづらくなる。この観点から、霧化された液滴の大きさは、1〜40μmが好ましく、3〜30μmが特に好ましい。噴霧乾燥装置への原料混合液の供給量は、この観点を考慮して決定することが望ましい。   In the spray drying method, the relationship between the size of the droplets of the atomized raw material mixture and the size of the particles of the pulverized product contained therein affects stable drying and the properties of the resulting dry powder. . Specifically, if the size of the raw material particles of the pulverized product is too small relative to the size of the droplet, the droplet becomes unstable and difficult to dry successfully. From this viewpoint, the size of the atomized droplet is preferably 1 to 40 μm, and particularly preferably 3 to 30 μm. It is desirable to determine the supply amount of the raw material mixture to the spray drying apparatus in consideration of this viewpoint.

なお、噴霧乾燥装置における乾燥温度は、熱風入口温度が180〜300℃、好ましくは200〜250℃に調整して、熱風出口温度が100〜200℃、好ましくは105〜150℃となるように調整することが粉体の吸湿を防ぎ粉体の回収が容易になることから好ましい。   The drying temperature in the spray dryer is adjusted so that the hot air inlet temperature is 180 to 300 ° C, preferably 200 to 250 ° C, and the hot air outlet temperature is 100 to 200 ° C, preferably 105 to 150 ° C. It is preferable to prevent the powder from absorbing moisture and facilitate the recovery of the powder.

このようにして第二工程を行い得られた反応前駆体は、第三工程に付して、不活性ガス雰囲気中で焼成し、二酸化バナジウムを得る。   Thus, the reaction precursor obtained by performing a 2nd process is attached | subjected to a 3rd process, and is baked in inert gas atmosphere, and vanadium dioxide is obtained.

第三工程は、第二工程で得られた反応前駆体を不活性ガス雰囲気中で特定温度範囲で焼成して二酸化バナジウムを得る工程である。   The third step is a step of obtaining vanadium dioxide by firing the reaction precursor obtained in the second step in a specific temperature range in an inert gas atmosphere.

第三工程に係る焼成条件は、焼成温度が600〜900℃、好ましくは800〜900℃である。この理由は、焼成温度が600℃未満では、二酸化バナジウム結晶の生成が不完全となり、900℃を超えると、蓄熱特性に優れたものが得られ難く、また、坩堝への固着も起こり粉末状の二酸化バナジウムが得られにくいからである。   As for the firing conditions according to the third step, the firing temperature is 600 to 900 ° C, preferably 800 to 900 ° C. The reason for this is that when the firing temperature is less than 600 ° C., the generation of vanadium dioxide crystals is incomplete, and when it exceeds 900 ° C., it is difficult to obtain a product having excellent heat storage characteristics, and the powder is also fixed to the crucible. This is because it is difficult to obtain vanadium dioxide.

焼成時間は、本製造方法において臨界的ではなく、X線回折的に単相の二酸化バナジウムが生成するまで十分な時間を行えばよく、通常は1時間以上、好ましくは2〜30時間である。   The firing time is not critical in the present production method, and a sufficient time may be used until single-phase vanadium dioxide is produced by X-ray diffraction, and is usually 1 hour or longer, preferably 2 to 30 hours.

また、焼成雰囲気は、バナジウムの酸化防止のため、不活性ガス雰囲気とする。使用できる不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス等が挙げられる。   The firing atmosphere is an inert gas atmosphere to prevent oxidation of vanadium. Examples of the inert gas that can be used include nitrogen gas, argon gas, and helium gas.

また、第三工程の焼成は、上記温度範囲で多段焼成を行うことが粉末状の二酸化バナジウムを高純度で、収率よく製造するという観点から好ましい。
多段焼成の焼成温度条件は、600℃以上700℃未満で1時間以上、好ましくは2〜20時間第一焼成を行い、次いで700℃以上900℃以下で1時間以上、好ましくは2〜20時間第二焼成を行うことが粉末状の二酸化バナジウムを高純度で、収率よく製造する観点から好ましい。
In the third step, firing is preferably performed in the above temperature range from the viewpoint of producing powdery vanadium dioxide with high purity and high yield.
The firing temperature condition for the multi-stage firing is 600 ° C. or higher and lower than 700 ° C. for 1 hour or longer, preferably 2 to 20 hours, and then 700 ° C. or higher and 900 ° C. or lower for 1 hour or longer, preferably 2 to 20 hours. Two firing is preferable from the viewpoint of producing powdery vanadium dioxide with high purity and high yield.

焼成は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成を行ってもよい。   Firing may be performed as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the fired material may be pulverized and then refired.

第三工程後に得られる二酸化バナジウムは、必要により粉砕、解砕、分級等を行い製品とする。   The vanadium dioxide obtained after the third step is pulverized, crushed, classified, etc. as necessary to obtain a product.

第三工程後に得られる二酸化バナジウムはX線回折的に単相の二酸化バナジウムであるが、本製造方法では得られる二酸化バナジウムを、更にアニール処理を施すことで、熱量を向上させることが出来る。   The vanadium dioxide obtained after the third step is single-phase vanadium dioxide in terms of X-ray diffraction, but the amount of heat can be improved by further subjecting the vanadium dioxide obtained in this production method to an annealing treatment.

アニール処理することで熱量が向上する理由は明確ではないが、第三工程で得られる二酸化バナジウムには、酸素の欠損があり、アニール処理することで、構造中の酸素欠損の構造が補修されるためと本発明者らは推測している。   The reason why the amount of heat is improved by annealing treatment is not clear, but vanadium dioxide obtained in the third step has oxygen deficiency, and annealing treatment repairs the structure of oxygen deficiency in the structure. Therefore, the present inventors speculate.

アニール処理の条件は、処理温度が高すぎると5価のバナジウムに変化し所望の二酸化バナジウムを得ることが難しくなる傾向があることから、アニール処理温度は100〜550℃、特に200〜400℃であることが、バナジウムの酸化を防止しながら酸素欠損部位の補修を行うことができる観点から好ましい。   The annealing treatment condition is that if the treatment temperature is too high, it changes to pentavalent vanadium and it is difficult to obtain the desired vanadium dioxide, so the annealing treatment temperature is 100 to 550 ° C., particularly 200 to 400 ° C. It is preferable from the viewpoint that the oxygen deficiency site can be repaired while preventing vanadium oxidation.

アニール処理時間は1時間以上、特に1〜10時間とすることが好ましい。アニール処理の雰囲気は、酸素、大気等の酸化性雰囲気中で行う。なお、必要により、アニール処理は何度でも行うことができる。   The annealing time is preferably 1 hour or longer, particularly 1 to 10 hours. The annealing treatment is performed in an oxidizing atmosphere such as oxygen or air. Note that the annealing treatment can be performed as many times as necessary.

また、アニール処理後、必要により粉砕、解砕、分級等を行い製品とする。   In addition, after annealing, the product is crushed, crushed, classified, etc. as necessary.

かくして得られる本発明の二酸化バナジウムは、X線回折的に下記一般式(1)
1-xx2 (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる少なくとも1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)で表わされる二酸化バナジウム単層であり、示差走査熱量測定において、昇温過程と降温過程の両方で明確な相転移が観察される。また、本発明の二酸化バナジウムは、吸熱開始温度と発熱開始温度の差が好ましくは10℃以下、好ましくは5℃以下であることが好ましい。
The vanadium dioxide of the present invention thus obtained has the following general formula (1) in terms of X-ray diffraction.
V 1-x M x O 2 (1)
(In the formula, M represents at least one element selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru and Re. X represents 0 ≦ x ≦ 0.5. In the differential scanning calorimetry, a clear phase transition is observed in both the temperature rising process and the temperature lowering process. Further, the vanadium dioxide of the present invention preferably has a difference between the endothermic start temperature and the exothermic start temperature, preferably 10 ° C. or less, preferably 5 ° C. or less.

本製造方法で得られる二酸化バナジウムは、温度によって透過率や反射率等の光学的特性が可逆的に変化するサーモクロミック現象を示す材料としての利用の他、特に蓄熱材としての利用が期待できる。   Vanadium dioxide obtained by this production method is expected to be used as a heat storage material, in addition to being used as a material exhibiting a thermochromic phenomenon in which optical properties such as transmittance and reflectance change reversibly depending on temperature.

以下、本発明を実施例により詳細に説明するが本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

(相転移温度、熱量の測定)
各実施例において、相転移温度、熱量の測定は下記のように行った。
試料を示差走査熱量測定(DSC)用密閉式セル(SUSセル)に封入し、示差走査熱量測定装置(SIIエポリードサービス社製、形式DSC6200)にて昇温速度1℃/minにて100℃まで昇温し、その後20℃まで降温した.昇温過程で生じる吸熱ピーク、及び降温過程で生じる発熱ピークの開始温度、熱量を測定した.
(Measurement of phase transition temperature and heat quantity)
In each Example, the phase transition temperature and the calorific value were measured as follows.
The sample is enclosed in a closed cell (SUS cell) for differential scanning calorimetry (DSC), and 100 ° C. at a temperature rising rate of 1 ° C./min with a differential scanning calorimeter (model DSC6200, manufactured by SII Eporide Service). The temperature was raised to 20 ° C. and then lowered to 20 ° C. The endothermic peak generated during the temperature rising process and the starting temperature and calorific value of the exothermic peak generated during the temperature falling process were measured.

{実施例1}
第一工程;
容器に、V25(平均粒径;25μm)20g、シュウ酸・2水塩13.86g、イオン交換水100gを室温下(25℃)で仕込み、次いで昇温して80℃で3時間加熱処理してV25が一部溶解した原料混合液のスラリーを得た。
第二工程;
次いで、熱風入り口の温度を220℃、出口温度を120℃に設定した噴霧乾燥装置に、原料混合液のスラリーを供給し、反応前駆体を得た。得られた反応前駆体をXRDで測定した結果、反応前駆体はV25の回折ピークが確認された(図1参照)。また、反応前駆体のSEM写真を図2に示す。
第三工程;
第二工程で得られる反応前駆体をアルミナるつぼに投入し、窒素雰囲気中で650℃で5時間第1焼成を行い、次いで850℃で2時間第2焼成を行って焼成品試料を得た。
焼成品試料をXRD分析した結果、回折ピークのパターンがVO2と一致し、単斜晶のVO2単相であることを確認した。焼成品試料のX線回折図を図3に示す。
また、得られた焼成品試料について示差走査熱量計を用いた示差走査熱量測定により、昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。示差走査熱量測定の結果を図4に示す。
{Example 1}
First step;
A container was charged with 20 g of V 2 O 5 (average particle size; 25 μm), 13.86 g of oxalic acid dihydrate, and 100 g of ion-exchanged water at room temperature (25 ° C.), then heated to 80 ° C. for 3 hours. Heat treatment was performed to obtain a slurry of a raw material mixture in which V 2 O 5 was partially dissolved.
Second step;
Next, the slurry of the raw material mixture was supplied to a spray drying apparatus in which the hot air inlet temperature was set to 220 ° C. and the outlet temperature set to 120 ° C. to obtain a reaction precursor. The results of the obtained reaction precursor was measured by XRD, the reaction precursor diffraction peak of V 2 O 5 was observed (see Figure 1). Moreover, the SEM photograph of the reaction precursor is shown in FIG.
Third step;
The reaction precursor obtained in the second step was put into an alumina crucible and subjected to first firing at 650 ° C. for 5 hours in a nitrogen atmosphere, and then second firing was performed at 850 ° C. for 2 hours to obtain a fired product sample.
As a result of XRD analysis of the fired product sample, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a monoclinic VO 2 single phase. An X-ray diffraction pattern of the fired product sample is shown in FIG.
Moreover, about the obtained baked product sample, the starting temperature of the phase transition in the temperature rising and temperature lowering process and the amount of heat accompanying the phase transition were measured by differential scanning calorimetry using a differential scanning calorimeter. The results of differential scanning calorimetry are shown in FIG.

{実施例2}
実施例1で得られた焼成品試料をアルミナるつぼに投入し、大気中で300℃で3時間アリール処理を行いアニール処理品試料を得た。
アニール処理品試料をXRD分析した結果、回折ピークのパターンがVO2と一致し、単斜晶のVO2単相であることを確認した。アニール処理品試料のX線回折図を図5に示す。
また、実施例1と同様にして、得られたアニール処理品試料について示差走査熱量計を用いた示差走査熱量測定により、昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。示差走査熱量測定の結果を図6に示す。また、得られたアニール処理品のSEM写真を図7に示す。
{Example 2}
The fired product sample obtained in Example 1 was put into an alumina crucible and subjected to an aryl treatment at 300 ° C. for 3 hours in the air to obtain an annealed product sample.
As a result of XRD analysis of the annealed product sample, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a monoclinic VO 2 single phase. The X-ray diffraction pattern of the annealed product sample is shown in FIG.
Further, in the same manner as in Example 1, the obtained annealed product sample was subjected to differential scanning calorimetry using a differential scanning calorimeter, and the phase transition start temperature during the temperature rising and cooling process, and accompanying the phase transition. The amount of heat was measured. The results of differential scanning calorimetry are shown in FIG. Moreover, the SEM photograph of the obtained annealed product is shown in FIG.

{実施例3}
第三工程において、反応前駆体を、窒素雰囲気中で650℃で5時間第1焼成を行い、次いで800℃で2時間第2焼成を行った以外は、実施例1と同様にして焼成品試料を得た。焼成品試料をXRD分析した結果、回折ピークのパターンがVO2と一致し、単斜晶のVO2単相であることを確認した。
次いで、得られた焼成品を実施例2と同様にして、大気中で300℃で3時間アリール処理を行いアニール処理品試料を得た。アニール処理品試料をXRD分析した結果、回折ピークのパターンがVO2と一致し、単斜晶のVO2単相であることを確認した。
また、得られたアニール処理品試料について示差走査熱量計を用いた示差走査熱量測定により、昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。示差走査熱量測定の結果を図8に示す。
{Example 3}
In the third step, the reaction precursor was calcined in the same manner as in Example 1 except that the first calcination was performed at 650 ° C. for 5 hours in a nitrogen atmosphere and then the second calcination was performed at 800 ° C. for 2 hours. Got. As a result of XRD analysis of the fired product sample, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a monoclinic VO 2 single phase.
Next, the obtained fired product was subjected to aryl treatment in the atmosphere at 300 ° C. for 3 hours in the same manner as in Example 2 to obtain an annealed product sample. As a result of XRD analysis of the annealed product sample, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a monoclinic VO 2 single phase.
The obtained annealed product sample was measured by differential scanning calorimetry using a differential scanning calorimeter, and the starting temperature of the phase transition in the temperature rising and cooling processes and the amount of heat accompanying the phase transition were measured. The results of differential scanning calorimetry are shown in FIG.

{比較例1}
実施例1の第3工程において、窒素雰囲気中で650℃で5時間焼成、次いで1000℃で2時間焼成を行う以外は、実施例1と同様にして焼成品試料を得た。焼成品試料をXRD分析した結果、回折ピークのパターンがVO2と一致し、単斜晶のVO2単相であることを確認した。
次いで、得られた焼成品を実施例2と同様にして、大気中で300℃で3時間アリール処理を行いアニール処理品試料を得た。アニール処理品試料をXRD分析した結果、回折ピークのパターンがVO2と一致し、単斜晶のVO2単相であることを確認した。
また、得られたアニール処理品試料について示差走査熱量計を用いた示差走査熱量測定により、昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。示差走査熱量測定の結果を図9に示す。
{Comparative Example 1}
A calcined product sample was obtained in the same manner as in Example 1 except that in the third step of Example 1, baking was performed at 650 ° C. for 5 hours in a nitrogen atmosphere and then baking was performed at 1000 ° C. for 2 hours. As a result of XRD analysis of the fired product sample, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a monoclinic VO 2 single phase.
Next, the obtained fired product was subjected to aryl treatment in the atmosphere at 300 ° C. for 3 hours in the same manner as in Example 2 to obtain an annealed product sample. As a result of XRD analysis of the annealed product sample, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a monoclinic VO 2 single phase.
The obtained annealed product sample was measured by differential scanning calorimetry using a differential scanning calorimeter, and the starting temperature of the phase transition in the temperature rising and cooling processes and the amount of heat accompanying the phase transition were measured. The results of differential scanning calorimetry are shown in FIG.

注)「モル比(C/V)」は、V25中のバナジウム原子に対するシュウ酸2水塩中の炭素原子のモル比を示す。 Note) “Molar ratio (C / V)” indicates the molar ratio of carbon atoms in oxalic acid dihydrate to vanadium atoms in V 2 O 5 .

Claims (9)

下記一般式(1)
1−x (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)で表わされる二酸化バナジウムの製造方法であって、
五酸化二バナジウムと有機酸とを含有する原料混合液を調製する第一工程、次いで該原料混合液を噴霧乾燥処理して、反応前駆体を得る第二工程と、
該反応前駆体を不活性ガス雰囲気中で600〜900℃で焼成する第三工程とを有し、必要により前記原料混合液にM源を添加し、前記有機酸が、有機カルボン酸であり、 前記原料混合液の前記有機酸の配合量が、五酸化二バナジウム中のバナジウム原子に対する有機酸中の炭素原子のモル比(C/V)で、0.90〜1.1であることを特徴とする二酸化バナジウムの製造方法。
The following general formula (1)
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. A method for producing vanadium dioxide represented by:
A first step of preparing a raw material mixture containing divanadium pentoxide and an organic acid, then a second step of obtaining a reaction precursor by spray drying the raw material mixture,
A third step of firing the reaction precursor in an inert gas atmosphere at 600 to 900 ° C., and if necessary, adding an M source to the raw material mixture , and the organic acid is an organic carboxylic acid, The amount of the organic acid in the raw material mixture is 0.90 to 1.1 in terms of a molar ratio (C / V) of carbon atoms in the organic acid to vanadium atoms in divanadium pentoxide. A method for producing vanadium dioxide.
第一工程において、五酸化二バナジウムの添加量が水溶媒100重量部に対して10〜50重量部として原料混合液のスラリーを調製することを特徴とする請求項1記載の二酸化バナジウムの製造方法。   The method for producing vanadium dioxide according to claim 1, wherein in the first step, the slurry of the raw material mixture is prepared by adding 10 to 50 parts by weight of divanadium pentoxide with respect to 100 parts by weight of the aqueous solvent. . 第一工程は、原料混合液のスラリーを加熱処理する工程を含むことを特徴とする請求項2記載の二酸化バナジウムの製造方法。   The method for producing vanadium dioxide according to claim 2, wherein the first step includes a step of heat-treating the slurry of the raw material mixture. 有機酸が、シュウ酸であることを特徴とする請求項1乃至3の何れか一項に記載の二酸化バナジウムの製造方法。   The method for producing vanadium dioxide according to any one of claims 1 to 3, wherein the organic acid is oxalic acid. 第三工程の焼成は、多段焼成により行うことを特徴とする請求項1乃至の何れか一項に記載の二酸化バナジウムの製造方法。 The method for producing vanadium dioxide according to any one of claims 1 to 4 , wherein the firing in the third step is performed by multi-stage firing. 第三工程の焼成は、600℃以上700℃未満で第一焼成を行い、次いで700℃以上900℃以下で第二焼成を行うことを特徴とする請求項1乃至の何れか一項に記載の二酸化バナジウムの製造方法。 Firing the third step performs the first baking below 600 ° C. or higher 700 ° C., and then according to any one of claims 1 to 5, characterized in that the second firing at 700 ° C. or higher 900 ° C. or less Of manufacturing vanadium dioxide. 第三工程後に、更にアニール処理を行う工程を設けることを特徴とする請求項1乃至の何れか一項に記載の二酸化バナジウムの製造方法。 The method for producing vanadium dioxide according to any one of claims 1 to 6 , further comprising a step of performing an annealing treatment after the third step. アニール処理の温度が100〜550℃であることを特徴とする請求項に記載の二酸化バナジウムの製造方法。 The method for producing vanadium dioxide according to claim 7 , wherein the annealing temperature is 100 to 550 ° C. 蓄熱材として用いられることを特徴とする請求項1乃至の何れか一項に記載の二酸化バナジウムの製造方法。 It is used as a heat storage material, The manufacturing method of vanadium dioxide as described in any one of Claims 1 thru | or 8 characterized by the above-mentioned.
JP2016016744A 2016-01-30 2016-01-30 Method for producing vanadium dioxide Active JP6596347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016016744A JP6596347B2 (en) 2016-01-30 2016-01-30 Method for producing vanadium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016744A JP6596347B2 (en) 2016-01-30 2016-01-30 Method for producing vanadium dioxide

Publications (2)

Publication Number Publication Date
JP2017132677A JP2017132677A (en) 2017-08-03
JP6596347B2 true JP6596347B2 (en) 2019-10-23

Family

ID=59502170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016744A Active JP6596347B2 (en) 2016-01-30 2016-01-30 Method for producing vanadium dioxide

Country Status (1)

Country Link
JP (1) JP6596347B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225238B2 (en) * 2018-07-31 2023-02-20 日本化学工業株式会社 Method for producing vanadium dioxide
JP6990153B2 (en) * 2018-07-31 2022-02-03 日本化学工業株式会社 Manufacturing method of vanadium dioxide
CN112654829A (en) * 2018-11-13 2021-04-13 Nok株式会社 Heat exchanger
CN111186860A (en) * 2020-01-06 2020-05-22 济南大学 Preparation method for preparing monoclinic-phase vanadium dioxide nano powder from precursor obtained by thermal decomposition and ball milling
JP7471829B2 (en) 2020-01-10 2024-04-22 日本化学工業株式会社 Method for producing vanadium dioxide
CN112209442B (en) * 2020-10-16 2022-07-29 成都先进金属材料产业技术研究院股份有限公司 Method for preparing M-phase vanadium dioxide nano powder by salt-assisted ultrasonic pyrolysis method
CN112209440A (en) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 Process for preparing M-phase vanadium dioxide nano powder
CN112174207B (en) * 2020-10-16 2022-05-24 成都先进金属材料产业技术研究院有限公司 Method for directly preparing M-phase vanadium dioxide nano powder by ultrasonic spray pyrolysis
CN112209443A (en) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 Method for preparing M-phase vanadium dioxide by single ultrasonic atomization microwave method
CN112239229B (en) * 2020-10-19 2022-03-22 成都先进金属材料产业技术研究院股份有限公司 Method and device for preparing spherical VO2 nano powder by ultrasonic atomization method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116737A (en) * 2010-12-03 2012-06-21 National Institute Of Advanced Industrial Science & Technology Method of producing a-phase vanadium dioxide (vo2) particle
JP2014198645A (en) * 2013-03-29 2014-10-23 積水化学工業株式会社 Production method of composite vanadium oxide particle
WO2016006338A1 (en) * 2014-07-11 2016-01-14 株式会社村田製作所 Composite and cooling device
JP5902361B1 (en) * 2014-11-26 2016-04-13 新日本電工株式会社 Method for producing vanadium dioxide heat storage material
JP6351523B2 (en) * 2015-03-03 2018-07-04 日本化学工業株式会社 Method for producing vanadium dioxide

Also Published As

Publication number Publication date
JP2017132677A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6596347B2 (en) Method for producing vanadium dioxide
JP6351523B2 (en) Method for producing vanadium dioxide
JP4582178B2 (en) Method for producing composite oxide particles and method for producing dielectric particles
JP2005500239A (en) Method for producing barium titanate powder
Zhou et al. Investigation on the preparation and properties of monodispersed Al2O3ZrO2 nanopowder via Co-precipitation method
JP2017538262A (en) Cathode material manufacturing method and special cathode material
JP7471829B2 (en) Method for producing vanadium dioxide
JP6875605B2 (en) Method for Producing Lithium Cobalt Pyrophosphate and Method for Producing Lithium Cobalt Pyrophosphate Carbon Composite
JP6990153B2 (en) Manufacturing method of vanadium dioxide
JP2019119630A (en) Manufacturing method of barium titanate
Bel-Hadj-Tahar et al. Structural development and kinetic analysis of PbTiO3 powders processed at low-temperature via new sol-gel approach
JP6632455B2 (en) Method for producing vanadium dioxide based heat storage material
JP7225238B2 (en) Method for producing vanadium dioxide
JP2006249449A (en) Method for producing metal tantalum nanosheet and metal tantalum nanosheet produced by the method
JP2007191354A (en) Method for producing calcium zirconate by sol-gel process
JP6352210B2 (en) Method for producing perovskite oxynitride fine particles, perovskite oxynitride fine particles
TW201811430A (en) Method for producing oxide catalyst, method for producing unsaturated nitrile and method for producing unsaturated acid
CN109942018B (en) Preparation method of nanometer strontium titanate powder
TWI804647B (en) Method of manufacturing lithium cobalt phosphate and method of manufacturing carbon composite of lithium cobalt phosphate
CN108863354B (en) Preparation method of Y-TZP powder based on low-temperature self-propagating combustion
JP2007137686A (en) New type titanium dioxide and method for producing the same
JP5902361B1 (en) Method for producing vanadium dioxide heat storage material
TWI730626B (en) Manufacturing method of titanium oxide
JP7383327B1 (en) Acicular alumina particle aggregate and its manufacturing method
TWI783358B (en) Composition for producing catalyst, method for producing composition for producing catalyst, and method for producing oxide catalyst

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R150 Certificate of patent or registration of utility model

Ref document number: 6596347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250