JP6594192B2 - Wing production method - Google Patents

Wing production method Download PDF

Info

Publication number
JP6594192B2
JP6594192B2 JP2015248869A JP2015248869A JP6594192B2 JP 6594192 B2 JP6594192 B2 JP 6594192B2 JP 2015248869 A JP2015248869 A JP 2015248869A JP 2015248869 A JP2015248869 A JP 2015248869A JP 6594192 B2 JP6594192 B2 JP 6594192B2
Authority
JP
Japan
Prior art keywords
wing
elastic member
manufacturing
partial
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015248869A
Other languages
Japanese (ja)
Other versions
JP2017115596A (en
Inventor
隆一 梅原
宏治 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2015248869A priority Critical patent/JP6594192B2/en
Publication of JP2017115596A publication Critical patent/JP2017115596A/en
Application granted granted Critical
Publication of JP6594192B2 publication Critical patent/JP6594192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、蒸気タービンの静翼等に用いられる翼を製造する翼の製造方法に関するものである。   The present invention relates to a blade manufacturing method for manufacturing a blade used for a stationary blade or the like of a steam turbine.

従来、翼として、翼本体の内部に画成される空洞部に、付勢部材を設けた蒸気タービンの静翼が知られている(例えば、特許文献1参照)。この静翼は、腹側部材と背側部材とを組み合わせ、前縁部と後縁部とを溶接して結合することで、内部に空洞部が画成される翼本体を形成している。   Conventionally, as a blade, a stationary blade of a steam turbine in which a biasing member is provided in a hollow portion defined inside a blade body is known (for example, see Patent Document 1). This stationary blade combines a ventral member and a back member, and welds and joins a front edge portion and a rear edge portion, thereby forming a blade body in which a cavity portion is defined.

また、タービン動翼の製造方法として、三次元積層造形技術を用いて、タービン動翼を製造する方法が知られている(例えば、特許文献2参照)。   Further, as a method for manufacturing a turbine blade, a method for manufacturing a turbine blade using a three-dimensional additive manufacturing technique is known (for example, see Patent Document 2).

特開2015−124717号公報JP2015-124717A 特開2015−117626号公報JP2015-117626A

しかしながら、特許文献1の蒸気タービンの静翼は、翼本体の前縁部及び後縁部を溶接することから、溶接の品質によって、静翼の性能にばらつきが生じてしまう可能性がある。また、特許文献2では、三次元積層造形技術によりタービン動翼を製造しているものの、内部に付勢部材を設けた構成ではないことから、特許文献1のような静翼を製造することは困難である。   However, since the stationary blade of the steam turbine of Patent Document 1 welds the front edge portion and the rear edge portion of the blade body, the performance of the stationary blade may vary depending on the quality of the welding. Further, in Patent Document 2, although a turbine blade is manufactured by a three-dimensional additive manufacturing technique, since it is not a configuration in which an urging member is provided inside, manufacturing a stationary blade as in Patent Document 1 is not possible. Have difficulty.

そこで、本発明は、品質の安定した翼を製造することができる翼の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the wing | blade which can manufacture the wing | blade with stable quality.

本発明は、翼を製造する翼の製造方法において、前記翼は、内部に中空空間が形成される翼本体と、前記翼本体の前記中空空間内に設けられる弾性部材と、を備え、前記弾性部材は、前記翼本体の内面に固定される固定部と、前記翼本体の内面に接触して押圧する接触部と、を有しており、三次元積層造形法により、前記弾性部材と、前記弾性部材の前記固定部が固定される前記翼本体の固定部位と、を一体に造形して、部分翼を製造する第1造形工程と、前記第1造形工程後、前記部分翼の前記弾性部材を収縮させた状態で拘束する拘束工程と、前記拘束工程後、三次元積層造形法により、前記部分翼に対して、前記翼本体の残りの残存部位を一体に造形しながら、前記弾性部材の拘束状態を解除して、前記翼を製造する第2造形工程と、を備えることを特徴とする。   The present invention relates to a wing manufacturing method for manufacturing a wing, wherein the wing includes a wing body in which a hollow space is formed, and an elastic member provided in the hollow space of the wing body. The member has a fixed portion fixed to the inner surface of the wing body, and a contact portion that contacts and presses the inner surface of the wing body, and by means of a three-dimensional additive manufacturing method, the elastic member, A first shaping step for producing a partial wing by integrally shaping the fixed portion of the wing body to which the fixing portion of the elastic member is fixed; and after the first shaping step, the elastic member for the partial wing A constraining step of constraining the wing body in a contracted state, and after the constraining step, a three-dimensional additive manufacturing method is used to integrally mold the remaining remaining portion of the wing body with respect to the partial wing. A second modeling step of releasing the restraint state and manufacturing the wing; Characterized in that it comprises.

この構成によれば、三次元積層造形法により、弾性部材を内部に収容する翼を製造することができる。このため、溶接等を行う必要がないことから、翼の性能がばらつくことを抑制することができるため、翼の品質を安定させることができる。   According to this structure, the wing | blade which accommodates an elastic member inside can be manufactured by a three-dimensional additive manufacturing method. For this reason, since it is not necessary to perform welding or the like, it is possible to suppress variations in the performance of the blade, and thus it is possible to stabilize the quality of the blade.

また、前記拘束工程では、拘束ベルトを前記部分翼に巻き掛けて、前記部分翼の前記弾性部材を収縮させることが、好ましい。   In the restraining step, it is preferable that the restraining belt is wound around the partial wings to contract the elastic member of the partial wings.

この構成によれば、部分翼の弾性部材を、拘束ベルトを用いて、簡単に収縮させることができる。なお、拘束ベルトの巻き掛け方としては、部分翼の周囲を全周に亘って拘束ベルトを巻き付ける方法と、部分翼の弾性部材が設けられる部位に拘束ベルトを巻き掛ける方法とがある。   According to this configuration, the elastic member of the partial wing can be easily contracted using the restraining belt. As a method of winding the restraint belt, there are a method in which the restraint belt is wound around the entire circumference of the partial wing, and a method in which the restraint belt is wound around a portion where the elastic member of the partial wing is provided.

また、前記翼本体は、翼腹側の部位である腹側部位と、翼背側の部位である背側部位とを有し、前記第1造形工程では、前記翼本体の前記固定部位として、前記腹側部位を造形し、前記第2造形工程では、前記翼本体の前記残存部位として、前記背側部位を造形することが、好ましい。   Further, the wing body has a ventral side part that is a part on the flank side and a back side part that is a part on the back side of the wing, and in the first modeling step, as the fixing part of the wing body, Preferably, the ventral site is modeled, and in the second modeling process, the back side site is modeled as the remaining site of the wing body.

この構成によれば、第1造形工程において、弾性部材と腹側部位とが一体となる部分翼を形成することができ、第2造形工程において、部分翼と背側部位とが一体となる翼を形成することができる。   According to this configuration, in the first modeling process, it is possible to form a partial wing in which the elastic member and the ventral part are integrated, and in the second modeling process, the wing in which the partial wing and the dorsal part are integrated. Can be formed.

図1は、本実施形態に係る翼の製造方法により製造される蒸気タービンの静翼を表す断面図である。FIG. 1 is a cross-sectional view showing a stationary blade of a steam turbine manufactured by the blade manufacturing method according to the present embodiment. 図2は、本実施形態に係る翼の製造方法に関する一例の説明図である。Drawing 2 is an explanatory view of an example about the manufacturing method of the wing concerning this embodiment. 図3は、本実施形態に係る翼の製造方法に関する一例の説明図である。Drawing 3 is an explanatory view of an example about the manufacturing method of the wing concerning this embodiment. 図4は、本実施形態に係る翼の製造方法に関する一例の説明図である。FIG. 4 is an explanatory diagram of an example related to the method of manufacturing a wing according to the present embodiment.

以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined, and when there are a plurality of embodiments, the embodiments can be combined.

[実施形態]
図1は、本実施形態に係る翼の製造方法により製造される蒸気タービンの静翼を表す断面図である。図2から図4は、本実施形態に係る翼の製造方法に関する一例の説明図である。
[Embodiment]
FIG. 1 is a cross-sectional view showing a stationary blade of a steam turbine manufactured by the blade manufacturing method according to the present embodiment. FIG. 2 to FIG. 4 are explanatory diagrams of an example relating to the method for manufacturing a wing according to the present embodiment.

本実施形態の翼の製造方法により製造される翼は、例えば、蒸気タービンの静翼1に適用される。なお、本実施形態では、蒸気タービンの静翼1に適用したが、特に限定されず、他の翼に適用してもよい。先ず、静翼1の製造方法の説明に先立ち、図1を参照して、静翼1について説明する。   The blade manufactured by the blade manufacturing method of the present embodiment is applied to the stationary blade 1 of the steam turbine, for example. In addition, in this embodiment, although applied to the stationary blade 1 of a steam turbine, it is not specifically limited, You may apply to another blade. First, prior to the description of the manufacturing method of the stationary blade 1, the stationary blade 1 will be described with reference to FIG.

図1は、静翼1の長手方向に直交する面で切った断面図である。静翼1は、翼本体11と、翼本体11の内部に設けられる弾性部材12とを備えており、三次元積層造形法によって一体に形成されている。   FIG. 1 is a cross-sectional view taken along a plane orthogonal to the longitudinal direction of the stationary blade 1. The stationary blade 1 includes a blade body 11 and an elastic member 12 provided inside the blade body 11 and is integrally formed by a three-dimensional additive manufacturing method.

翼本体11は、腹側部位21と背側部位22とを有しており、その内部に中空空間25が形成されている。腹側部位21は、その外面側が、蒸気タービンに流入する蒸気が高圧となる高圧面側となっており、その内面側が、中空空間25に接する面となっている。そして、腹側部位21は、外面側から内面側に凸となる湾曲面に形成されている。背側部位22は、その外面側が、蒸気タービンに流入する蒸気が低圧となる低圧面側となっており、その内面側が、中空空間25に接する面となっている。そして、背側部位22は、内面側から外面側に凸となる湾曲面に形成されている。このとき、腹側部位21の湾曲(反り)と、背側部位22の湾曲(反り)とは、異なっている。   The wing body 11 has a ventral region 21 and a dorsal region 22, and a hollow space 25 is formed therein. The outer side of the ventral region 21 is a high-pressure surface side where the steam flowing into the steam turbine has a high pressure, and the inner surface side is a surface in contact with the hollow space 25. And the abdominal part 21 is formed in the curved surface which becomes convex from the outer surface side to the inner surface side. The outer surface side of the back side portion 22 is a low pressure surface side where the steam flowing into the steam turbine has a low pressure, and the inner surface side thereof is a surface in contact with the hollow space 25. And the back part 22 is formed in the curved surface which becomes convex from the inner surface side to the outer surface side. At this time, the curve (warp) of the ventral region 21 and the curve (warp) of the dorsal region 22 are different.

上記の腹側部位21と背側部位22とは、蒸気の流通方向において、上流側の部位となる前縁部23、及び下流側の部位となる後縁部24において、それぞれ接続されている。このように構成される翼本体11は、腹側部位21と背側部位22とにより囲まれた空間が中空空間25として画成される。   The ventral region 21 and the dorsal region 22 are connected to each other at a front edge 23 serving as an upstream region and a rear edge 24 serving as a downstream region in the direction of steam flow. In the wing body 11 configured as described above, a space surrounded by the ventral region 21 and the dorsal region 22 is defined as a hollow space 25.

弾性部材12は、中空空間25に設けられており、中空空間25の前縁側から後縁側に亘って設けられている。この弾性部材12は、固定部27と、接触部28と、連結部29とを有している。固定部27は、弾性部材12の一方側(前縁側)の端部と他方側(後縁側)の端部との間の中央部に位置しており、翼本体11の腹側部位21の内面に固定される部位となっている。この固定部27は、翼本体11と一体となっている。接触部28は、弾性部材12の両側の端部にそれぞれ設けられ、翼本体11の背側部位22の内面に接触する部位となっている。接触部28は、背側部位22の内面の形状に倣って設けられる。連結部29は、固定部27と両側の接触部28との間にそれぞれ設けられ、固定部27と各接触部28とをそれぞれ連結している。   The elastic member 12 is provided in the hollow space 25 and is provided from the front edge side to the rear edge side of the hollow space 25. The elastic member 12 includes a fixed portion 27, a contact portion 28, and a connecting portion 29. The fixing portion 27 is located at the center between the end portion on one side (front edge side) and the end portion on the other side (rear edge side) of the elastic member 12, and the inner surface of the ventral region 21 of the wing body 11. It is a part fixed to. The fixing portion 27 is integrated with the wing body 11. The contact portions 28 are provided at both ends of the elastic member 12 and are portions that contact the inner surface of the back portion 22 of the wing body 11. The contact portion 28 is provided following the shape of the inner surface of the back portion 22. The connecting portion 29 is provided between the fixed portion 27 and the contact portions 28 on both sides, and connects the fixed portion 27 and each contact portion 28 respectively.

このように構成される静翼1は、弾性部材12が翼本体11の内面から外面へ向かって押圧する。このため、静翼1が振動する場合、弾性部材12の接触部28が、翼本体11の内面と擦れ合うことで、静翼1の振動を減衰させ、これにより、静翼1の振動が抑制させる。   In the stationary blade 1 configured as described above, the elastic member 12 presses from the inner surface of the blade body 11 toward the outer surface. For this reason, when the stationary blade 1 vibrates, the contact portion 28 of the elastic member 12 rubs against the inner surface of the blade body 11 to attenuate the vibration of the stationary blade 1, thereby suppressing the vibration of the stationary blade 1. .

次に、図2から図4を参照して、上記の静翼1の製造方法について説明する。この製造方法では、図2に示す第1造形工程S1と、図3に示す拘束工程S2と、図4に示す第2造形工程S3と、を順に行っている。   Next, with reference to FIGS. 2 to 4, a method for manufacturing the stationary blade 1 will be described. In this manufacturing method, the first modeling step S1 shown in FIG. 2, the restraint step S2 shown in FIG. 3, and the second modeling step S3 shown in FIG. 4 are performed in order.

第1造形工程S1では、図2に示すように、三次元積層造形法により、弾性部材12と、弾性部材12の固定部27が固定される翼本体11の腹側部位21と、を一体に造形して、部分静翼(部分翼)30を製造する。つまり、第1造形工程S1では、三次元積層造形機を用いて部分静翼30を製造する。このとき、弾性部材12は、弾性変形前の状態で造形されることから、後工程で形成される背側部位22の内面よりも外側に位置する。また、第1造形工程S1において、弾性部材12は、弾性変形後のばね力が所定のばね力となるように造形される。   In the first modeling step S1, as shown in FIG. 2, the elastic member 12 and the ventral portion 21 of the wing body 11 to which the fixing portion 27 of the elastic member 12 is fixed are integrated by a three-dimensional layered manufacturing method. A partial stator blade (partial blade) 30 is manufactured by modeling. That is, in the first modeling step S1, the partial stationary blade 30 is manufactured using a three-dimensional additive manufacturing machine. At this time, since the elastic member 12 is modeled in a state before elastic deformation, the elastic member 12 is positioned outside the inner surface of the back portion 22 formed in a subsequent process. Moreover, in 1st modeling process S1, the elastic member 12 is modeled so that the spring force after elastic deformation may turn into a predetermined spring force.

拘束工程S2では、図3に示すように、部分静翼30の弾性部材12を収縮させた状態で拘束している。この拘束工程S2では、複数の拘束ベルト32が用いられ、複数の拘束ベルト32は、部分静翼30の長手方向に所定の間隔を空けて並べて配置される。そして、各拘束ベルト32は、部分静翼30に巻き掛けられることで、部分静翼30の弾性部材12を腹側部位21に収縮させている。このとき、弾性部材12は、後工程で形成される背側部位22の内面よりも内側に位置するように、複数の拘束ベルト32によって収縮させられる。ここで、図3に示すように、各拘束ベルト32は、部分静翼30の周囲の全周に亘って巻き付けられている。   In the restraining step S2, as shown in FIG. 3, the elastic member 12 of the partial stationary blade 30 is restrained in a contracted state. In the restraining step S <b> 2, a plurality of restraining belts 32 are used, and the plurality of restraining belts 32 are arranged side by side with a predetermined interval in the longitudinal direction of the partial stationary blade 30. Each of the restraining belts 32 is wound around the partial stationary blade 30 to contract the elastic member 12 of the partial stationary blade 30 to the ventral region 21. At this time, the elastic member 12 is contracted by the plurality of restraining belts 32 so as to be positioned on the inner side of the inner surface of the back side portion 22 formed in a subsequent process. Here, as shown in FIG. 3, each restraint belt 32 is wound around the entire circumference of the partial stationary blade 30.

第2造形工程S3では、図4に示すように、三次元積層造形法により、拘束された部分静翼30と、翼本体11の残りの残存部位である背側部位22とを、一体に造形しながら、弾性部材12の拘束状態を解除して、静翼1を製造する。つまり、第2造形工程S3においても、三次元積層造形機を用いて静翼1を製造する。具体的に、第2造形工程S3では、静翼1の長手方向における一方側の端部から他方側の端部に向かって、背側部位22を造形する(ステップS3a)。そして、背側部位22が拘束ベルト32の近傍まで造形されると、背側部位22の近傍に位置する拘束ベルト32を取り外す(ステップS3b)。この後、再び、静翼1の長手方向における一方側の端部から他方側の端部に向かって、背側部位22を造形する(ステップS3c)。ステップS3aからステップS3cまでを繰り返し行うことで、静翼1を製造する。   In the second modeling step S3, as shown in FIG. 4, the constrained partial stationary blade 30 and the back side portion 22 which is the remaining remaining portion of the wing body 11 are integrally molded by a three-dimensional layered modeling method. Meanwhile, the stationary state of the elastic member 12 is released, and the stationary blade 1 is manufactured. That is, in the second modeling step S3, the stationary blade 1 is manufactured using a three-dimensional layered modeling machine. Specifically, in 2nd modeling process S3, the back side site | part 22 is modeled toward the edge part of the other side from the edge part of the other side in the longitudinal direction of the stationary blade 1 (step S3a). And if the back side part 22 is modeled to the vicinity of the restraint belt 32, the restraint belt 32 located in the vicinity of the back side part 22 will be removed (step S3b). Thereafter, the back portion 22 is formed again from the one end in the longitudinal direction of the stationary blade 1 toward the other end (step S3c). The stationary blade 1 is manufactured by repeatedly performing steps S3a to S3c.

以上のように、本実施形態によれば、三次元積層造形法により、弾性部材12を内部に収容する静翼1を製造することができる。このため、溶接等を行う必要がないことから、静翼1の性能がばらつくことを抑制することができるため、静翼1の品質を安定させることができる。   As described above, according to the present embodiment, the stationary blade 1 that houses the elastic member 12 therein can be manufactured by the three-dimensional additive manufacturing method. For this reason, since it is not necessary to perform welding or the like, it is possible to suppress variations in the performance of the stationary blade 1, so that the quality of the stationary blade 1 can be stabilized.

また、本実施形態によれば、拘束工程S2において、部分静翼30の弾性部材12を、拘束ベルト32を用いて、簡単に収縮させることができる。   Further, according to the present embodiment, the elastic member 12 of the partial stationary blade 30 can be easily contracted using the restraining belt 32 in the restraining step S2.

また、本実施形態によれば、第1造形工程S1において、弾性部材12と腹側部位21とを一体に造形して部分静翼30を形成することができ、また、第2造形工程S3において、部分静翼30と背側部位22とを一体に造形して、静翼1を形成することができる。   Moreover, according to this embodiment, in the 1st modeling process S1, the elastic member 12 and the ventral part 21 can be modeled integrally, and the partial stationary blade 30 can be formed, and in the 2nd modeling process S3, The stationary blade 30 can be formed by integrally forming the partial stationary blade 30 and the back portion 22.

なお、本実施形態では、造形する弾性部材12の接触部28の形状を、背側部位22の内面に倣った形状としたが、この形状に限定されない。第1造形工程S1では、三次元積層造形法を用いることから、弾性部材12の接触部28を複雑な形状とすることができ、例えば、背側部位22の内面に対して複数の点接触または線接触する凹凸形状に形成してもよい。   In the present embodiment, the shape of the contact portion 28 of the elastic member 12 to be modeled is a shape that follows the inner surface of the back side portion 22, but is not limited to this shape. In the first modeling step S1, since the three-dimensional additive manufacturing method is used, the contact portion 28 of the elastic member 12 can be formed into a complicated shape. For example, a plurality of point contacts or You may form in the uneven | corrugated shape which carries out a line contact.

また、本実施形態では、拘束工程S2において、拘束ベルト32を用いて、部分静翼30の弾性部材12を収縮させたが、例えば、三次元積層造形機とは別体の装置を用いて、部分静翼30の弾性部材12を収縮させてもよく、特に限定されない。   Further, in the present embodiment, the elastic member 12 of the partial stationary blade 30 is contracted using the restraining belt 32 in the restraining step S2, but, for example, using an apparatus separate from the three-dimensional additive manufacturing machine, The elastic member 12 of the partial stationary blade 30 may be contracted, and is not particularly limited.

また、本実施形態では、拘束工程S2において、部分静翼30の全周に亘って拘束ベルト32を巻き付けたが、少なくとも部分静翼30の弾性部材12を収縮させればよい。このため、拘束工程S2において、部分静翼30の弾性部材12が設けられる部位に拘束ベルト32を巻き掛けて、部分静翼30の弾性部材12を収縮させてもよい。   In the present embodiment, the restraining belt 32 is wound around the entire circumference of the partial stationary blade 30 in the restraining step S2, but at least the elastic member 12 of the partial stationary blade 30 may be contracted. For this reason, in restraint process S2, the restraint belt 32 may be wound around the site | part in which the elastic member 12 of the partial stationary blade 30 is provided, and the elastic member 12 of the partial stationary blade 30 may be contracted.

1 静翼
11 翼本体
12 弾性部材
21 腹側部位
22 背側部位
23 前縁部
24 後縁部
25 中空空間
27 固定部
28 接触部
29 連結部
30 部分静翼
32 拘束ベルト
DESCRIPTION OF SYMBOLS 1 Stator blade 11 Blade | wing main body 12 Elastic member 21 Abdomen side part 22 Back side part 23 Front edge part 24 Rear edge part 25 Hollow space 27 Fixed part 28 Contact part 29 Connection part 30 Partial stator blade 32 Restraint belt

Claims (3)

翼を製造する翼の製造方法において、
前記翼は、
内部に中空空間が形成される翼本体と、
前記翼本体の前記中空空間内に設けられる弾性部材と、を備え、
前記弾性部材は、前記翼本体の内面に固定される固定部と、前記翼本体の内面に接触して押圧する接触部と、を有しており、
三次元積層造形法により、前記弾性部材と、前記弾性部材の前記固定部が固定される前記翼本体の固定部位と、を一体に造形して、部分翼を製造する第1造形工程と、
前記第1造形工程後、前記部分翼の前記弾性部材を収縮させた状態で拘束する拘束工程と、
前記拘束工程後、三次元積層造形法により、前記部分翼に対して、前記翼本体の残りの残存部位を一体に造形しながら、前記弾性部材の拘束状態を解除して、前記翼を製造する第2造形工程と、を備えることを特徴とする翼の製造方法。
In the method of manufacturing a wing for manufacturing a wing,
The wing
A wing body in which a hollow space is formed,
An elastic member provided in the hollow space of the wing body,
The elastic member has a fixed portion that is fixed to the inner surface of the wing body, and a contact portion that contacts and presses the inner surface of the wing body,
First modeling step of manufacturing a partial wing by integrally modeling the elastic member and the fixing portion of the wing body to which the fixing portion of the elastic member is fixed by a three-dimensional additive manufacturing method,
After the first modeling step, a restraint step of restraining the partial wing in a contracted state, and
After the restraining step, the restraint state of the elastic member is released while integrally shaping the remaining remaining part of the wing body with respect to the partial wing by a three-dimensional additive manufacturing method, and the wing is manufactured. A wing manufacturing method comprising: a second modeling step.
前記拘束工程では、拘束ベルトを前記部分翼に巻き掛けて、前記部分翼の前記弾性部材を収縮させることを特徴とする請求項1に記載の翼の製造方法。   2. The blade manufacturing method according to claim 1, wherein in the restraining step, a restraint belt is wound around the partial wing to contract the elastic member of the partial wing. 前記翼本体は、翼腹側の部位である腹側部位と、翼背側の部位である背側部位とを有し、
前記第1造形工程では、前記翼本体の前記固定部位として、前記腹側部位を造形し、
前記第2造形工程では、前記翼本体の前記残存部位として、前記背側部位を造形することを特徴とする請求項1または2に記載の翼の製造方法。
The wing body has a ventral part that is a part on the flank side, and a dorsal part that is a part on the back side of the wing,
In the first modeling step, the ventral site is modeled as the fixed site of the wing body,
3. The method for manufacturing a wing according to claim 1, wherein, in the second modeling step, the back side part is modeled as the remaining part of the wing body.
JP2015248869A 2015-12-21 2015-12-21 Wing production method Active JP6594192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248869A JP6594192B2 (en) 2015-12-21 2015-12-21 Wing production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248869A JP6594192B2 (en) 2015-12-21 2015-12-21 Wing production method

Publications (2)

Publication Number Publication Date
JP2017115596A JP2017115596A (en) 2017-06-29
JP6594192B2 true JP6594192B2 (en) 2019-10-23

Family

ID=59233949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248869A Active JP6594192B2 (en) 2015-12-21 2015-12-21 Wing production method

Country Status (1)

Country Link
JP (1) JP6594192B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939368B2 (en) * 2006-10-31 2012-05-23 三菱重工業株式会社 Stator blades and steam turbines
JP5660883B2 (en) * 2010-12-22 2015-01-28 三菱日立パワーシステムズ株式会社 Steam turbine vane, steam turbine
JP2015117626A (en) * 2013-12-18 2015-06-25 株式会社東芝 Turbine rotor blade, turbine, and method of manufacturing turbine rotor blade
JP6118242B2 (en) * 2013-12-26 2017-04-19 三菱重工業株式会社 Rotary machine blades and steam turbines

Also Published As

Publication number Publication date
JP2017115596A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP2018501978A5 (en)
JP2006170204A5 (en)
RU2016136644A (en) A method of manufacturing a car part in the form of a lever and a car part in the form of a lever
JP5662228B2 (en) Bellows manufacturing method and bellows manufacturing apparatus
US20170189210A1 (en) Stent and method for manufacturing stent
JP6594192B2 (en) Wing production method
CN106794514A (en) Die-casting system for forming the utilization ceramic mold of the part that can be used in gas-turbine unit
JP6256218B2 (en) Manufacturing method of cable with resin molded body and cable with resin molded body
JP2015218815A (en) Bent tube and its manufacturing method
JP6056781B2 (en) Muffler manufacturing method and muffler
JP2016140223A (en) Molding tool for segment coil
JP2014033973A5 (en)
JP2010157460A (en) Die device for manufacturing low-wind-noise and anti-snow-accretion wire, and manufacturing method for low-wind-noise and anti-snow-accretion wire
KR20190077881A (en) Method for manufacturing drawing shell
EP2570207A2 (en) Mold for casting a workpiece that includes one or more casting pins
JP2016017595A (en) Manufacturing method of cam shaft
JP5457151B2 (en) Manufacturing method of welding member
JP5607560B2 (en) Manufacturing method of metal parts
JP5667606B2 (en) Rigid core for tire formation
JP5235030B2 (en) Method of manufacturing a pipe for a retractor having a pretensioner
KR101349940B1 (en) Manufacture method for ring type clamp
JP6731867B2 (en) Manufacturing method of metal hollow sphere
JP2017109269A (en) Pipe processing device
JP6278681B2 (en) Oval cylinder molding method and elliptic cylinder molding apparatus
CN105518269A (en) Wound muffler manufacturing method and wound muffler

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20181127

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190924

R150 Certificate of patent or registration of utility model

Ref document number: 6594192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350