JP6593144B2 - Cooling water valve control mechanism - Google Patents

Cooling water valve control mechanism Download PDF

Info

Publication number
JP6593144B2
JP6593144B2 JP2015244087A JP2015244087A JP6593144B2 JP 6593144 B2 JP6593144 B2 JP 6593144B2 JP 2015244087 A JP2015244087 A JP 2015244087A JP 2015244087 A JP2015244087 A JP 2015244087A JP 6593144 B2 JP6593144 B2 JP 6593144B2
Authority
JP
Japan
Prior art keywords
temperature
intake air
cooling water
air temperature
heater core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015244087A
Other languages
Japanese (ja)
Other versions
JP2017110522A (en
Inventor
仁 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015244087A priority Critical patent/JP6593144B2/en
Publication of JP2017110522A publication Critical patent/JP2017110522A/en
Application granted granted Critical
Publication of JP6593144B2 publication Critical patent/JP6593144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

この発明は、内燃機関を冷却する冷却水によって車室の暖房を行う車両に採用される冷却水バルブ制御機構に関する。   The present invention relates to a cooling water valve control mechanism employed in a vehicle that heats a passenger compartment with cooling water that cools an internal combustion engine.

エンジン等の内燃機関を備えた車両の冷間始動時においては、ガソリン等の燃料の気化が不十分となって燃料効率が低下し、燃費が低下する問題がある。そこで、例えば特許文献1に示すように、内燃機関から排出された排気と、内燃機関を冷却する冷却水との間で、熱交換器を介して熱交換する冷却水流通機構を構成し、冷間始動した内燃機関(冷却水)が速やかに加熱されるようにしている。この冷却水流通機構においては、内燃機関と熱交換器との間の冷却水の流路内に、車室内に温風を送り込むための熱源となるヒータコアが配置されており、熱交換器によって加熱された冷却水によってヒータコアを加熱するように構成されている(本文献の段落0038〜0041等を参照)。   At the time of cold start of a vehicle equipped with an internal combustion engine such as an engine, there is a problem that fuel such as gasoline is insufficiently vaporized to lower fuel efficiency and fuel consumption. Therefore, for example, as shown in Patent Document 1, a cooling water circulation mechanism for exchanging heat via a heat exchanger is configured between the exhaust discharged from the internal combustion engine and the cooling water for cooling the internal combustion engine. The internal combustion engine (cooling water) that has been started is heated quickly. In this cooling water circulation mechanism, a heater core serving as a heat source for sending warm air into the passenger compartment is disposed in the flow path of the cooling water between the internal combustion engine and the heat exchanger, and is heated by the heat exchanger. The heater core is configured to be heated by the cooled water (see paragraphs 0038 to 0041 of this document).

特開2015−68180号公報Japanese Patent Laying-Open No. 2015-68180

特許文献1に係る冷却水流通機構においては、室内の暖房に用いられるヒータコアは、排気と冷却水との間で熱交換を行う熱交換器を経由する流路内に設けられている。このため、内燃機関の始動直後のように、ヒータコアが温まっていないときは、熱交換器で加熱された冷却水が、ヒータコアを通過する際に冷却される。このため、冷却水の温度がなかなか上昇せず、燃費が低下する問題がある。その一方で、冷却水の加熱が完了するまでヒータコアへの冷却水の流れを完全に止めると、車室内を全く暖房することができない。このため、特に外気温が低い状況で乗員が車室内で寒さに耐えなければならず、車室の居住性が低下する問題がある。   In the cooling water distribution mechanism according to Patent Document 1, a heater core used for indoor heating is provided in a flow path that passes through a heat exchanger that performs heat exchange between exhaust gas and cooling water. For this reason, when the heater core is not warmed immediately after starting the internal combustion engine, the cooling water heated by the heat exchanger is cooled when passing through the heater core. For this reason, there is a problem that the temperature of the cooling water does not increase easily and the fuel consumption decreases. On the other hand, if the flow of the cooling water to the heater core is completely stopped until the heating of the cooling water is completed, the vehicle interior cannot be heated at all. For this reason, the passenger | crew must endure cold in a vehicle interior especially in the condition where external temperature is low, and there exists a problem which the comfortability of a vehicle interior falls.

そこで、この発明は、内燃機関の冷間始動時における燃費低下の防止と居住性向上の両立を図ることを課題とする。   In view of this, an object of the present invention is to achieve both prevention of fuel consumption reduction and improvement of comfort in cold start of an internal combustion engine.

上記課題を解決するために、この発明においては、車室暖房用の空気を暖めるヒータコアに内燃機関によって温められた冷却水を送るヒータコア流路と、前記ヒータコアを迂回するように設けられるバイパス流路と、前記ヒータコア流路と前記バイパス流路の間で前記冷却水の流路を切り替え可能とする切替バルブと、前記内燃機関によって吸入される空気の吸気温が、第一吸気温以上のときに第一水温を、前記第一吸気温よりも低いときに前記第一水温から前記吸気温の低下とともに低下する第二水温を基準水温として設定し、前記冷却水の水温が、前記吸気温に対応する前記基準水温以上のときに前記冷却水が前記ヒータコア流路側に流入するよう前記切替バルブを切り替え、前記吸気温に対応する前記基準水温よりも低いときに前記冷却水が前記バイパス流路側に流入するように前記切替バルブを切り替えるバルブ制御手段と、を備えた冷却水バルブ制御機構を構成した。   In order to solve the above-mentioned problems, in the present invention, a heater core flow path for sending cooling water heated by an internal combustion engine to a heater core for heating air for heating a passenger compartment, and a bypass flow path provided so as to bypass the heater core A switching valve capable of switching the cooling water flow path between the heater core flow path and the bypass flow path, and when the intake air temperature of the air sucked by the internal combustion engine is equal to or higher than the first intake air temperature When the first water temperature is lower than the first intake air temperature, a second water temperature that decreases from the first water temperature as the intake air temperature decreases is set as a reference water temperature, and the cooling water temperature corresponds to the intake air temperature. The switching valve is switched so that the cooling water flows into the heater core flow path when the reference water temperature is higher than the reference water temperature, and the cooling water is cooled when the temperature is lower than the reference water temperature corresponding to the intake air temperature. Water constituted the cooling water valve control mechanism and a valve control means for switching the switching valve so as to flow into the bypass flow.

前記構成においては、前記第二水温が前記吸気温に対してリニアに変化しており、前記第一吸気温よりも低い第二吸気温と前記第一吸気温との間の第一温度領域よりも、前記第二吸気温よりも低い第二温度領域の方が、前記吸気温に対する温度依存性が小さい構成とするのが好ましい。   In the above configuration, the second water temperature changes linearly with respect to the intake air temperature, and from a first temperature region between the second intake air temperature that is lower than the first intake air temperature and the first intake air temperature. However, it is preferable that the second temperature region, which is lower than the second intake air temperature, has a smaller temperature dependency on the intake air temperature.

前記第二吸気温を規定する構成においては、空調の設定温度を高くするのに伴って、前記第二吸気温を高温側にシフトさせるのが好ましい。   In the configuration for defining the second intake air temperature, it is preferable to shift the second intake air temperature to the high temperature side as the set temperature of the air conditioning is increased.

また、第二吸気温を規定する構成においては、車両の車速の低下に伴って、前記第一吸気温及び前記第二吸気温を同じ温度だけ高温側にシフトさせるのが好ましい。   Further, in the configuration that defines the second intake air temperature, it is preferable that the first intake air temperature and the second intake air temperature are shifted to the higher temperature side by the same temperature as the vehicle speed decreases.

前記各構成においては、前記バルブ制御手段が、前記内燃機関によって吸入される空気の吸気温に関係なく、前記冷却水の温度が第三水温よりも高いときに前記切替バルブを前記ヒータコア流路側に、前記冷却水の温度が前記第三水温よりも低いときに前記切替バルブを前記バイパス流路側にそれぞれ切り替える燃費優先モードをさらに有する構成とするのが好ましい。   In each of the above configurations, the valve control means sets the switching valve to the heater core flow path side when the temperature of the cooling water is higher than the third water temperature regardless of the intake air temperature of the air sucked by the internal combustion engine. It is preferable to further include a fuel efficiency priority mode for switching the switching valve to the bypass flow path side when the temperature of the cooling water is lower than the third water temperature.

前記各構成においては、前記冷却水を加熱するヒータをさらに備え、前記ヒータへの通電加熱時には、前記ヒータコア流路に前記冷却水を流す構成とするのが好ましい。   In each of the above configurations, it is preferable to further include a heater for heating the cooling water, and to flow the cooling water through the heater core flow path when the heater is energized and heated.

この発明によると、予め定めたバルブ制御基準(判定マップ)に基づいて冷却水の流路を、ヒータコアを加熱するヒータコア流路と、ヒータコアを迂回して内燃機関を優先的に加熱するバイパス流路の間で切り替えることができる。このため、内燃機関の冷間始動時において、速やかに内燃機関の温度を上昇させることで燃費の低下を防止しつつ、車室内の温度をできるだけ速やかに上昇させて居住性の向上を図ることができる。   According to the present invention, a cooling water flow path based on a predetermined valve control standard (determination map), a heater core flow path for heating the heater core, and a bypass flow path for preferentially heating the internal combustion engine by bypassing the heater core Can be switched between. For this reason, at the time of cold start of the internal combustion engine, the temperature of the internal combustion engine can be quickly raised to prevent a reduction in fuel consumption, and the temperature in the passenger compartment can be raised as quickly as possible to improve comfort. it can.

この発明に係る冷却水バルブ制御機構の一実施形態を示す全体構成図Overall configuration diagram showing an embodiment of a cooling water valve control mechanism according to the present invention 図1に示す冷却水バルブ制御機構の制御フローの一例を示すフローチャートThe flowchart which shows an example of the control flow of the cooling water valve control mechanism shown in FIG. 図2に示す制御フロー中の(a)暖房優先モード、(b)燃費優先モード、の判定マップの一例を示す図The figure which shows an example of the determination map of (a) heating priority mode and (b) fuel consumption priority mode in the control flow shown in FIG. 車速を変更したときの暖房優先モードにおける、(a)高速時、(b)低速時、の判定マップの一例を示す図The figure which shows an example of the determination map at the time of (a) high speed and (b) low speed in the heating priority mode when the vehicle speed is changed 暖房の設定温度を変更したときの暖房優先モードにおける、(a)低温時、(b)高温時、の判定マップの一例を示す図The figure which shows an example of the determination map in (a) low temperature, (b) high temperature in the heating priority mode when the preset temperature of heating is changed

この発明に係る冷却水バルブ制御機構の一実施形態の全体構成図を図1に示す。この冷却水バルブ制御機構は、エンジン等の内燃機関10を冷却する冷却水によって車室の暖房を行う車両に採用され、ヒータコア流路20、バイパス流路30、切替バルブ40、及び、バルブ制御手段50を主要な構成要素としている。   FIG. 1 shows an overall configuration diagram of an embodiment of a cooling water valve control mechanism according to the present invention. This cooling water valve control mechanism is employed in a vehicle that heats the passenger compartment with cooling water that cools the internal combustion engine 10 such as an engine, and includes a heater core flow path 20, a bypass flow path 30, a switching valve 40, and valve control means. 50 is a main component.

ヒータコア流路20は、内燃機関10の内部に設けられ、この内燃機関10を冷却するウォータジャケット11から、車室暖房用の空気を暖めるヒータコア21に、内燃機関10によって温められた冷却水を送る循環経路の一部を構成している。このウォータジャケット11は、内燃機関10のシリンダ12を覆うように設けられており、このウォータジャケット11の出口側に、内燃機関10によって加熱された冷却水をヒータコア21に送る第一送り管13が接続されている。また、ヒータコア21とウォータジャケット11は第一戻り管14で接続されている。ヒータコア21にはファン22が併設されており、このファン22を作動させることによって、ヒータコア21によって暖められた空気を車室内に送り込む。   The heater core flow path 20 is provided inside the internal combustion engine 10, and sends the cooling water heated by the internal combustion engine 10 from the water jacket 11 that cools the internal combustion engine 10 to the heater core 21 that warms the air for heating the passenger compartment. It constitutes a part of the circulation path. The water jacket 11 is provided so as to cover the cylinder 12 of the internal combustion engine 10, and a first feed pipe 13 that sends cooling water heated by the internal combustion engine 10 to the heater core 21 is provided on the outlet side of the water jacket 11. It is connected. The heater core 21 and the water jacket 11 are connected by a first return pipe 14. The heater core 21 is provided with a fan 22, and the air warmed by the heater core 21 is sent into the vehicle interior by operating the fan 22.

バイパス流路30は、ヒータコア21を迂回するように、ヒータコア流路20と並列して設けられている。バイパス流路30の上流側は、ヒータコア流路20の第一送り管13と切替バルブ40を介して接続されている。また、バイパス流路30の下流側は、ヒータコア流路20の第一戻り管14と接続されている。この切替バルブ40は、冷却水の流路を内燃機関10(ウォータジャケット11)から第一送り管13を経由してヒータコア流路20に向かう流路と、内燃機関10(ウォータジャケット11)から第一送り管13を経由してバイパス流路30に向かう流路のいずれかの流路に切り替える切替機能を有している。ここでは、切替バルブ30として三方弁が採用されているが、切替機能を有するものであれば三方弁に限定されない。   The bypass flow path 30 is provided in parallel with the heater core flow path 20 so as to bypass the heater core 21. The upstream side of the bypass flow path 30 is connected to the first feed pipe 13 of the heater core flow path 20 via the switching valve 40. Further, the downstream side of the bypass flow path 30 is connected to the first return pipe 14 of the heater core flow path 20. The switching valve 40 has a cooling water flow path from the internal combustion engine 10 (water jacket 11) to the heater core flow path 20 via the first feed pipe 13 and the internal combustion engine 10 (water jacket 11). It has a switching function for switching to one of the flow paths toward the bypass flow path 30 via the one feed pipe 13. Here, a three-way valve is employed as the switching valve 30, but the switching valve 30 is not limited to a three-way valve as long as it has a switching function.

バルブ制御手段50は、内燃機関10によって吸入される空気の吸気温(外気温度)等に基づいて、切替バルブ40に切替指示を発して、冷却水の流路をヒータコア流路20又はバイパス流路30のいずれかの流路に切り替える機能を有している。このバルブ制御手段50は、車両全体の制御を行なう電子制御装置(図示せず)の一部を構成している。この実施形態に係るバルブ制御手段50は、暖房優先モード(図2のS3参照)と、燃費優先モード(図2のS7参照)の二つのモードを有し、いずれかのモードの判断基準(判定マップ(図3〜図5参照))に基づいて、切替バルブ40に切替指示を発する。この暖房優先モード及び燃費優先モードについては、後で詳しく説明する。   The valve control means 50 issues a switching instruction to the switching valve 40 based on the intake air temperature (outside air temperature) of the air sucked by the internal combustion engine 10, and the cooling water flow path is changed to the heater core flow path 20 or the bypass flow path. 30 has a function of switching to any one of the flow paths. The valve control means 50 constitutes a part of an electronic control device (not shown) that controls the entire vehicle. The valve control means 50 according to this embodiment has two modes, a heating priority mode (see S3 in FIG. 2) and a fuel efficiency priority mode (see S7 in FIG. 2). Based on the map (see FIGS. 3 to 5)), a switching instruction is issued to the switching valve 40. The heating priority mode and the fuel efficiency priority mode will be described in detail later.

内燃機関10には、冷却水を冷却するラジエータ15が設けられている。ウォータジャケット11の出口側には、ラジエータ15に冷却水を送る第二送り管16が接続されている。さらに、ラジエータ15とウォータジャケット11は、ラジエータ15からウォータジャケット11に冷却水を戻す第二戻り管17で接続されている。第一戻り管14と第二戻り管17は、管路の途中で連結されており、ヒータコア流路20又はバイパス流路30を通った冷却水と、ラジエータ15を通った冷却水は、両戻り管14、17の連結箇所で合流した上で、ウォータジャケット11に還流する。この連結箇所の下流側にはウォータポンプ18が設けられており、このウォータポンプ18を作動させることによって、ヒータコア流路20又はバイパス流路30、及びラジエータ15に冷却水を流すことができる。   The internal combustion engine 10 is provided with a radiator 15 for cooling the cooling water. Connected to the outlet side of the water jacket 11 is a second feed pipe 16 that sends cooling water to the radiator 15. Further, the radiator 15 and the water jacket 11 are connected by a second return pipe 17 that returns cooling water from the radiator 15 to the water jacket 11. The first return pipe 14 and the second return pipe 17 are connected in the middle of the pipeline, and the cooling water that has passed through the heater core flow path 20 or the bypass flow path 30 and the cooling water that has passed through the radiator 15 are both returned. After joining at the connection location of the pipes 14, 17, it returns to the water jacket 11. A water pump 18 is provided on the downstream side of the connecting portion. By operating the water pump 18, the cooling water can flow through the heater core flow path 20 or the bypass flow path 30 and the radiator 15.

この発明に係る冷却水バルブ制御機構の制御フローの一例を図2を用いて、図1の全体構成図を参照しつつ説明する。この冷却水バルブ制御機構を備えた車両には、エコスイッチ(図1において図示せず)が設けられている。乗員がこのエコスイッチをON状態とすることによりエコモードに移行し、燃費向上に一層の重点を置いた制御がなされるように予めプログラミングされている。   An example of the control flow of the cooling water valve control mechanism according to the present invention will be described with reference to FIG. A vehicle equipped with this cooling water valve control mechanism is provided with an eco switch (not shown in FIG. 1). When the occupant turns on the eco switch, the eco mode is entered, and the program is programmed in advance so that control with further emphasis on fuel efficiency improvement is performed.

まず、車両の空調がON状態か否かが判断される(図2S1)。OFF状態のときは(本図S1のN側)、ON状態となるまで、この判断ステップがループされる。なお、空調がOFF状態のときは、ヒータコア21を暖める必要性がないため、冷却水がバイパス流路30を流れるように切替バルブ40の制御がなされる。空調がON状態のときは(本図S1のY側)、エコスイッチがON状態か否かが判断される(本図S2)。OFF状態のときは(本図S2のN側)、暖房優先モードが選択される(本図S3)。   First, it is determined whether the air conditioning of the vehicle is in an ON state (S1 in FIG. 2). In the OFF state (N side in FIG. S1), this determination step is looped until the ON state is reached. Note that when the air conditioning is in the OFF state, there is no need to warm the heater core 21, so the switching valve 40 is controlled so that the cooling water flows through the bypass flow path 30. When the air conditioning is in the ON state (Y side in FIG. S1), it is determined whether the eco switch is in the ON state (S2 in this diagram). When in the OFF state (N side in FIG. S2), the heating priority mode is selected (S3 in this figure).

暖房優先モードは、車両の燃費向上よりも、車室内を速やかに暖めて、居住性向上を優先するモードである。暖房優先モードにおいて切替バルブ40の切り替えのタイミングを決定する判定マップの一例を図3(a)に示す。この暖房優先モードにおいては、内燃機関10によって吸入される空気の吸気温が、予め定めた第一吸気温Ta以上のときに、一定の高さの第一水温Twが基準水温として採用される。また、前記吸気温が、第一吸気温Taよりも低いときに、第一水温Twから吸気温の低下とともに線形に低下する第二水温Twが基準水温として採用される。 The heating priority mode is a mode in which priority is given to improving the comfortability by warming the passenger compartment more quickly than improving the fuel efficiency of the vehicle. An example of a determination map for determining the switching timing of the switching valve 40 in the heating priority mode is shown in FIG. In this heating priority mode, the intake air temperature of the air sucked by the internal combustion engine 10, is employed when the first intake air temperature Ta 1 or more predetermined, as a first water temperature Tw 1 reference water temperature constant height The Further, when the intake air temperature is lower than the first intake air temperature Ta 1 , the second water temperature Tw 2 that linearly decreases from the first water temperature Tw 1 as the intake air temperature decreases is adopted as the reference water temperature.

吸気温が第一吸気温Ta(例えば15℃)以上のときは、車室内の乗員はそれほど寒さを感じることはなく、すぐに暖房を開始しなくても車室の居住性はそれほど低下しない。そこで、冷却水の水温が第一水温Tw(例えば80℃)に到達するまでは、冷却水がバイパス流路30を流れるように切替バルブ40を切り替えて、ヒータコア21によって冷却水の熱が奪われるのを防止し、速やかに内燃機関10の冷却水を加熱する。その一方で、冷却水の水温が第一水温Twに到達したら、冷却水がヒータコア流路20を流れるように切替バルブ40を切り替えて、ヒータコア21を加熱して車室内を暖める。このように、冷却水の水温に対応して切替バルブ40の切り替え制御を行なうことにより、燃費低下の防止と居住性向上の両立を図ることができる。 When the intake air temperature is equal to or higher than the first intake air temperature Ta 1 (for example, 15 ° C.), passengers in the passenger compartment do not feel so cold, and the comfort of the passenger compartment does not deteriorate so much even if heating is not started immediately. . Therefore, until the coolant temperature reaches the first coolant temperature Tw 1 (for example, 80 ° C.), the switching valve 40 is switched so that the coolant flows through the bypass flow path 30, and the heat from the coolant is removed by the heater core 21. The cooling water of the internal combustion engine 10 is quickly heated. On the other hand, when the coolant temperature reaches the first temperature Tw 1, the cooling water by switching the switching valve 40 to flow through the heater core passage 20, heat the passenger compartment to heat the heater core 21. Thus, by performing switching control of the switching valve 40 corresponding to the coolant temperature, it is possible to achieve both prevention of fuel consumption reduction and improvement in comfort.

その一方で、吸気温が第一吸気温Taよりも低いときは、車室内の乗員が寒さを感じることが多く、燃費低下の防止を考慮しつつ、車室をできるだけ速やかに暖める必要がある。上記のように、第二水温Twが、第一水温Twから吸気温の低下とともに線形に低下するようにすることにより、第一水温Twよりも低い水温で、バイパス流路30からヒータコア流路20に冷却水の流路が切り替えられる。このため、内燃機関10による冷却水の加熱への影響を極力防止しつつ、ヒータコア21を必要最小限加熱することができ、燃費低下の防止と居住性向上の両立を図ることができる。 On the other hand, when the intake air temperature is lower than the first intake air temperature Ta 1 , passengers in the passenger compartment often feel cold, and it is necessary to warm the passenger compartment as quickly as possible while considering the prevention of fuel consumption. . As described above, the second water temperature Tw 2 is linearly lowered from the first water temperature Tw 1 as the intake air temperature is lowered, so that the heater core from the bypass channel 30 is lower than the first water temperature Tw 1. The flow path of the cooling water is switched to the flow path 20. For this reason, it is possible to heat the heater core 21 as much as possible while preventing the influence of the internal combustion engine 10 on the heating of the cooling water as much as possible, and to achieve both prevention of fuel consumption reduction and improvement of comfort.

この第二水温Twは、第一吸気温Taよりも低い第二吸気温Ta(例えば10℃)と第一吸気温Taとの間の吸気温における基準水温となる第一温度領域と、第二吸気温Taよりも低い吸気温における基準水温となる第二温度領域の二領域に区分されている。第一温度領域よりも第二温度領域の方が、吸気温に対する温度依存性が小さく(すなわち、吸気温に対する傾きが小さく)なっている。このため、第一温度領域及び第二温度領域の全体に亘ってリニアに第二水温Twを変化させる場合と比較して、第一温度領域においては、燃費向上よりも居住性向上に重点を置いた制御がなされる一方で、第二温度領域においては、第一温度領域における制御と連続性を保ちつつ、燃費向上に重点を置いた制御がなされる。これにより、第二水温Twの領域全体として、燃費低下の防止と居住性向上の両立を図ることができる。 The second water temperature Tw 2, the first temperature range which is a reference temperature in the intake air temperature between the lower than the first intake air temperature Ta 1 second intake air temperature Ta 2 (e.g. 10 ° C.) and the first intake air temperature Ta 1 And a second temperature region that is a reference water temperature at an intake air temperature lower than the second intake air temperature Ta 2 . The temperature dependency on the intake air temperature is smaller in the second temperature region than the first temperature region (that is, the slope with respect to the intake air temperature is small). Therefore, as compared with the case where the second water temperature Tw 2 is varied linearly over the entire first temperature range and a second temperature region, in the first temperature range, the emphasis on comfort improvement than fuel efficiency On the other hand, in the second temperature range, control with an emphasis on improving fuel efficiency is performed while maintaining continuity with the control in the first temperature range. Thus, the overall region of the second water temperature Tw 2, it is possible to achieve both comfort improvement and prevention of decrease in fuel efficiency.

内燃機関10の冷却水の水温が、その時の吸気温における基準水温(第一水温Tw又は第二水温Tw)以上のときは(図2S4のY側)、冷却水がヒータコア流路20を流れるように、バルブ制御手段50によって切替バルブ40が切り替えられる(本図S5)。これによって、冷却水の熱がヒータコア21に伝えられ、車室内を暖めることができる。その一方で、冷却水の水温が、その時の吸気温における基準水温よりも低いときは(本図S4のN側)、冷却水がバイパス流路30を流れるように、バルブ制御手段50によって切替バルブ40が切り替えられる(本図S6)。これによって、冷却水の熱がヒータコア21に奪われるのを防止して、冷却水を速やかに加熱することができる。 When the coolant temperature of the internal combustion engine 10 is equal to or higher than the reference water temperature (first water temperature Tw 1 or second water temperature Tw 2 ) at the intake air temperature at that time (Y side in FIG. 2 S 4 ), the cooling water passes through the heater core channel 20. The switching valve 40 is switched by the valve control means 50 so that it flows (this figure S5). As a result, the heat of the cooling water is transmitted to the heater core 21 and the vehicle interior can be warmed. On the other hand, when the coolant temperature is lower than the reference water temperature at the intake air temperature at that time (N side in FIG. 4), the switching valve is operated by the valve control means 50 so that the coolant flows through the bypass passage 30. 40 is switched (this figure S6). Thereby, it is possible to prevent the heat of the cooling water from being taken away by the heater core 21 and to quickly heat the cooling water.

エコスイッチがON状態のときは(本図S2のY側)、燃費優先モードが選択される(本図S7)。   When the eco-switch is in the ON state (Y side in FIG. S2), the fuel efficiency priority mode is selected (S7 in this diagram).

燃費優先モードは、車室の居住性向上よりも、冷却水を速やかに加熱して、燃費低下の防止を優先するモードである。燃費優先モードにおいて切替バルブ40の切り替えのタイミングを決定する判定マップの一例を図3(b)に示す。この燃費優先モードにおいては、内燃機関10によって吸入される空気の吸気温に関係なく、一定の高さの第三水温Twが基準水温として採用される。この第三水温Twは、暖房優先モードにおける第一水温Twと同じ温度にしてもよいし、第一水温Twとは異なる温度としてもよい。 The fuel efficiency priority mode is a mode in which the cooling water is heated more quickly than the improvement of the comfort of the passenger compartment, and priority is given to prevention of fuel efficiency deterioration. An example of a determination map for determining the switching timing of the switching valve 40 in the fuel efficiency priority mode is shown in FIG. In this fuel economy priority mode, regardless of the intake air temperature of the air sucked by the internal combustion engine 10, the third water temperature Tw 3 of a predetermined height is employed as a reference temperature. The third water temperature Tw 3 may be the same temperature as the first water temperature Tw 1 in the heating priority mode, or may be a temperature different from the first water temperature Tw 1 .

燃費優先モードにおいては、冷却水の温度が第三水温Tw(例えば80℃)に到達するまでは、冷却水がバイパス流路30を流れるように切替バルブ40を切り替えて、ヒータコア21によって冷却水の熱が奪われるのを防止することにより速やかに冷却水を加熱する。その一方で、冷却水の水温が第三水温Twに達したら、冷却水がヒータコア流路20を流れるように切替バルブ40を切り替えて、ヒータコア21を加熱して車室を暖める。このように、吸気温に関係なく常に冷却水の水温に基づいてヒータコア流路20とバイパス流路30との間の流路の切り替えを行うことにより、暖房優先モードのときと比較して、一層の燃費低下の防止効果が発揮される。 In the fuel efficiency priority mode, the switching valve 40 is switched so that the cooling water flows through the bypass flow path 30 until the temperature of the cooling water reaches the third water temperature Tw 3 (for example, 80 ° C.). The cooling water is quickly heated by preventing the heat from being taken away. On the other hand, when the temperature of the cooling water reaches the third water temperature Tw 3, the cooling water by switching the switching valve 40 to flow through the heater core passage 20, heat the passenger compartment to heat the heater core 21. In this way, by always switching the flow path between the heater core flow path 20 and the bypass flow path 30 based on the coolant temperature regardless of the intake air temperature, the heating priority mode is further improved. The effect of preventing a decrease in fuel consumption is exhibited.

内燃機関10の冷却水の水温が基準水温(第三水温Tw)以上のときは(図2S8のY側)、冷却水がヒータコア流路20を流れるように切替バルブ40が切り替えられる(本図S9)。これによって、冷却水の熱がヒータコア21に伝えられ、車室を暖めることができる。その一方で、冷却水の水温が、その時の吸気温における基準水温よりも低いときは(本図S8のN側)、冷却水がバイパス流路30を流れるように切替バルブ40が切り替えられる(本図S10)。これによって、冷却水の熱がヒータコア21に奪われるのを防止して、冷却水を速やかに加熱することができる。 When the coolant temperature of the internal combustion engine 10 is equal to or higher than the reference water temperature (third water temperature Tw 3 ) (Y side in FIG. 2), the switching valve 40 is switched so that the coolant flows through the heater core channel 20 (this diagram). S9). Thereby, the heat of the cooling water is transmitted to the heater core 21 and the passenger compartment can be warmed. On the other hand, when the coolant temperature is lower than the reference coolant temperature at the intake air temperature at that time (N side in FIG. 8), the switching valve 40 is switched so that the coolant flows through the bypass passage 30 (this book). FIG. S10). Thus, the heat of the cooling water can be prevented from being taken away by the heater core 21, and the cooling water can be quickly heated.

なお、エコスイッチを備えていない車両の場合は、暖房優先モードに基づいて、切替バルブ40の切り替え制御がなされるようにするとよい。   In the case of a vehicle that does not include an eco switch, the switching control of the switching valve 40 may be performed based on the heating priority mode.

車両によっては、ヒータが循環流路中に併設されることがある。このヒータは、吸気温(外気温)に対して空調の設定温度が所定の温度差以上の場合に自動的に作動して、内燃機関10による冷却水の加熱を補助する作用を有している。このように、冷却水の加熱を補助することによって、ヒータコア21を速やかに加熱することができ、空調効果を高めることができる。このヒータが作動するときは、乗員が車室を速やかに暖めたいという意思を有していると考えられるため、強制的にヒータコア流路20側に切替バルブ40が切り替えられて、ヒータコア21を加熱するように切替バルブ40の切り替え制御がなされる。このヒータを作動させるか否かについては、上記のように吸気温と空調の設定温度の温度差によって判断する他に、例えば、車速、車室温度等の種々のパラメータを採用した計算式に基づいて判断してもよい。   Depending on the vehicle, a heater may be provided in the circulation flow path. The heater automatically operates when the set temperature of the air conditioning is equal to or higher than a predetermined temperature difference with respect to the intake air temperature (outside air temperature), and has an action of assisting heating of the cooling water by the internal combustion engine 10. . Thus, by assisting the heating of the cooling water, the heater core 21 can be quickly heated, and the air conditioning effect can be enhanced. When this heater is activated, it is considered that the occupant has an intention to quickly warm the passenger compartment. Therefore, the switching valve 40 is forcibly switched to the heater core channel 20 side to heat the heater core 21. Thus, switching control of the switching valve 40 is performed. Whether or not to operate the heater is determined based on the temperature difference between the intake air temperature and the set temperature of the air conditioning as described above, for example, based on a calculation formula that employs various parameters such as the vehicle speed and the passenger compartment temperature. You may judge.

また、図2に示す処理フローの途中で、手動操作が介入した場合(例えば、冷却水水温の上昇待ち(本図S4、S6)の間に、エコスイッチがON状態とされた場合)には、この処理フローを一旦強制的に終了して、改めて処理フローを始めから(本図S1〜)行うのが好ましい。   In addition, when manual operation intervenes in the middle of the processing flow shown in FIG. 2 (for example, when the eco switch is turned on while waiting for the cooling water temperature to rise (this diagram S4, S6)). It is preferable to forcibly end the process flow and start the process flow from the beginning (S1 in FIG. 1).

図2に示した処理フローにおいては、切替バルブ40の切り替えによって、ヒータコア流路20又はバイパス流路30のいずれかの流路を択一的に選択したが、ヒータコア流路20側及びバイパス流路30側の流量をそれぞれ調節し得るようにして、冷却水を両流路20、30に同時に流す構成とすることもできる。   In the processing flow shown in FIG. 2, either the heater core channel 20 or the bypass channel 30 is alternatively selected by switching the switching valve 40, but the heater core channel 20 side and the bypass channel are selected. It is also possible to adopt a configuration in which the cooling water is allowed to flow through both flow paths 20 and 30 at the same time so that the flow rate on the 30 side can be adjusted.

図3(a)に示した暖房優先モードにおける判定マップは、車両の運転状況等の諸条件に対応して、適宜変更を加えることができる。   The determination map in the heating priority mode shown in FIG. 3A can be appropriately changed in accordance with various conditions such as the driving state of the vehicle.

例えば、図4に示すように、車速が大きい場合(本図(a)参照)と比較して、車速が小さい場合(本図(b)参照)において、第一吸気温Ta及び第二吸気温Taを高温側に同じ温度だけシフトさせることができる(本図(b)中の符号Ta’、Ta’参照)。車速が小さいときは、車速が大きいときと比較して、内燃機関10の周囲に熱がこもりやすくなり、冷却水の水温が上昇しやすい。そこで、このように第一吸気温Ta及び第二吸気温Taをシフトさせて、吸気温が同じ場合における基準水温を車速に対応して変化させることにより、内燃機関10及びヒータコア21の熱環境を同程度に保つことができ、車速に関係なく同等の燃費特性及び居住性を確保することができる。 For example, as shown in FIG. 4, as compared with when the vehicle speed is large (see the figure (a)), when the vehicle speed is low (see the diagram (b)), the first intake air temperature Ta 1 and the second intake The temperature Ta 2 can be shifted to the high temperature side by the same temperature (see symbols Ta 1 ′ and Ta 2 ′ in FIG. 5B). When the vehicle speed is low, compared to when the vehicle speed is high, heat tends to be trapped around the internal combustion engine 10, and the coolant temperature is likely to rise. Therefore, the heat of the internal combustion engine 10 and the heater core 21 is changed by shifting the first intake air temperature Ta 1 and the second intake air temperature Ta 2 and changing the reference water temperature corresponding to the vehicle speed when the intake air temperature is the same. The environment can be maintained at the same level, and the same fuel efficiency and comfort can be ensured regardless of the vehicle speed.

図4(b)に示すように、第一吸気温Ta及び第二吸気温Taの両方を高温側に同じ温度だけシフトする代わりに、第一吸気温Taの温度を変えることなく、第二吸気温Taのみ高温側にシフトさせてもよい。この場合も、内燃機関10及びヒータコア21の熱環境を同程度に保つことができ、車速に関係なく同等の燃費特性及び居住性を確保することができる。 As shown in FIG. 4 (b), instead of both the first intake air temperature Ta 1 and the second intake air temperature Ta 2 is shifted by the same temperature to the high temperature side, without changing the first temperature of the intake air temperature Ta 1, Only the second intake air temperature Ta 2 may be shifted to the high temperature side. Also in this case, the thermal environments of the internal combustion engine 10 and the heater core 21 can be kept at the same level, and the same fuel efficiency characteristics and comfortability can be ensured regardless of the vehicle speed.

また、例えば、図5に示すように、空調の設定温度が低い場合(本図(a)参照)と比較して、設定温度が高い場合(本図(b)参照)において、第二吸気温Taを高温側にシフトさせることができる(本図(b)中の符号Ta’’参照)。空調の設定温度が高いときは、設定温度が低いときと比較して、乗員の暖房要求が高いと考えられる。このときに、第二吸気温Taを高温側にシフトすると、吸気温が同じ場合における第二水温Twが低温側にシフトし、より低い水温でバイパス流路30からヒータコア流路20に切替バルブ40が切り替えられる。このため、ヒータコア21を加熱して車室内を速やかに暖めることができる。 For example, as shown in FIG. 5, the second intake air temperature is higher when the set temperature is higher (see FIG. 5B) than when the set temperature of air conditioning is lower (see FIG. 5A). Ta 2 can be shifted to the high temperature side (see symbol Ta 2 ″ in FIG. 5B). When the set temperature of air conditioning is high, it is considered that the passenger's request for heating is higher than when the set temperature is low. At this time, if the second intake air temperature Ta 2 is shifted to the high temperature side, the second water temperature Tw 2 when the intake air temperature is the same is shifted to the low temperature side and switched from the bypass flow path 30 to the heater core flow path 20 at a lower water temperature. The valve 40 is switched. For this reason, the vehicle interior can be quickly warmed by heating the heater core 21.

図5(b)に示すように、第二吸気温Taのみを高温側にシフトする代わりに、第一吸気温Ta及び第二吸気温Taの両方を高温側に同じ温度だけシフトさせてもよい。この場合も、上記と同様に、車室内を速やかに暖めることができる。 As shown in FIG. 5 (b), instead of shifting only the second intake air temperature Ta 2 to the high temperature side, shifting the both the first intake air temperature Ta 1 and the second intake air temperature Ta 2 by the same temperature to the high temperature side May be. In this case as well, the vehicle interior can be quickly warmed as described above.

また、空調の風量を大風量に設定したときも、空調の設定温度を高くしたときと同様に、乗員の暖房要求が高いと考えられる。このため、図5に示したのと同様に、第二吸気温Taを高温側にシフトさせることによって、車室内を速やかに暖めることができる。 Further, when the air volume of the air conditioning is set to a large air volume, it is considered that the passenger's heating demand is high as in the case where the set temperature of the air conditioning is increased. Therefore, in the same manner as shown in FIG. 5, by shifting the second intake air temperature Ta 2 to the high temperature side, it is possible to warm the passenger compartment quickly.

上記の実施形態はあくまでも一例であって、内燃機関10の冷間始動時における燃費低下の防止と居住性向上の両立を図る、という本願発明の課題を解決し得る限りにおいて、各構成要素の配置や制御フロー等を適宜変更することができる。   The above-described embodiment is merely an example, and as long as the problem of the present invention of achieving compatibility between prevention of reduction in fuel consumption and improvement in comfort during cold start of the internal combustion engine 10 can be solved, the arrangement of each component The control flow and the like can be changed as appropriate.

例えば、図3〜図5に示した判定マップにおいては、第一水温Tw及び第三水温Twを吸気温に関係なく一定としたが、吸気温の変化とともに変化させてもよい。また、これらの判定マップにおいては、第二水温Twを吸気温の変化に対してリニアに変化させたが、吸気温の変化に対して非リニアに変化させてもよい。 For example, in the determination maps shown in FIGS. 3 to 5, the first water temperature Tw 1 and the third water temperature Tw 3 are constant regardless of the intake air temperature, but may be changed as the intake air temperature changes. Further, in these determination map, but linearly changing the second water temperature Tw 2 to changes in intake air temperature, may be changed to a non-linearly with respect to changes in intake air temperature.

10 内燃機関
11 ウォータジャケット
12 シリンダ
13 第一送り管
14 第一戻り管
15 ラジエータ
16 第二送り管
17 第二戻り管
18 ウォータポンプ
20 ヒータコア流路
21 ヒータコア
22 ファン
30 バイパス流路
40 切替バルブ
50 バルブ制御手段
Ta 第一吸気温
Ta 第二吸気温
Tw 第一水温
Tw 第二水温
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 Water jacket 12 Cylinder 13 1st feed pipe 14 1st return pipe 15 Radiator 16 2nd feed pipe 17 2nd return pipe 18 Water pump 20 Heater core flow path 21 Heater core 22 Fan 30 Bypass flow path 40 Switching valve 50 Valve Control means Ta 1 first intake air temperature Ta 2 second intake air temperature Tw 1 first water temperature Tw 2 second water temperature

Claims (6)

車室暖房用の空気を暖めるヒータコアに内燃機関によって温められた冷却水を送るヒータコア流路と、
前記ヒータコアを迂回するように設けられるバイパス流路と、
前記ヒータコア流路と前記バイパス流路の間で前記冷却水の流路を切り替え可能とする切替バルブと、
前記内燃機関によって吸入される空気の吸気温が、第一吸気温以上のときに第一水温を、前記第一吸気温よりも低いときに前記第一水温から前記吸気温の低下とともに低下する第二水温を基準水温として設定し、前記冷却水の水温が、前記吸気温に対応する前記基準水温以上のときに前記冷却水が前記ヒータコア流路側に流入するよう前記切替バルブを切り替え、前記吸気温に対応する前記基準水温よりも低いときに前記冷却水が前記バイパス流路側に流入するように前記切替バルブを切り替えるバルブ制御手段と、
を備えた冷却水バルブ制御機構。
A heater core flow path for sending cooling water heated by the internal combustion engine to a heater core for heating air for heating the passenger compartment;
A bypass passage provided to bypass the heater core;
A switching valve capable of switching the cooling water flow path between the heater core flow path and the bypass flow path;
The first water temperature decreases when the intake air temperature of the air sucked by the internal combustion engine is equal to or higher than the first intake air temperature, and decreases when the intake air temperature decreases from the first water temperature when the intake air temperature is lower than the first intake air temperature. Two water temperature is set as a reference water temperature, and when the cooling water temperature is equal to or higher than the reference water temperature corresponding to the intake air temperature, the switching valve is switched so that the cooling water flows into the heater core channel side, and the intake air temperature is changed. Valve control means for switching the switching valve so that the cooling water flows into the bypass flow path when lower than the reference water temperature corresponding to
Cooling water valve control mechanism equipped with.
前記第二水温が前記吸気温に対してリニアに変化しており、前記第一吸気温よりも低い第二吸気温と前記第一吸気温との間の第一温度領域よりも、前記第二吸気温よりも低い第二温度領域の方が、前記吸気温に対する温度依存性が小さい請求項1に記載の冷却水バルブ制御機構。   The second water temperature changes linearly with respect to the intake air temperature, and the second temperature is lower than the first temperature region between the second intake air temperature and the first intake air temperature which is lower than the first intake air temperature. The cooling water valve control mechanism according to claim 1, wherein the temperature dependence on the intake air temperature is smaller in the second temperature region lower than the intake air temperature. 空調の設定温度を高くするのに伴って、前記第二吸気温を高温側にシフトさせた請求項2に記載の冷却水バルブ制御機構。   The cooling water valve control mechanism according to claim 2, wherein the second intake air temperature is shifted to a high temperature side as the set temperature of the air conditioning is increased. 車両の車速の低下に伴って、前記第一吸気温及び前記第二吸気温を同じ温度だけ高温側にシフトさせた請求項2又は3に記載の冷却水バルブ制御機構。   The cooling water valve control mechanism according to claim 2 or 3, wherein the first intake air temperature and the second intake air temperature are shifted to a higher temperature side by the same temperature as the vehicle speed decreases. 前記バルブ制御手段が、前記内燃機関によって吸入される空気の吸気温に関係なく、前記冷却水の温度が第三水温よりも高いときに前記切替バルブを前記ヒータコア流路側に、前記冷却水の温度が前記第三水温よりも低いときに前記切替バルブを前記バイパス流路側にそれぞれ切り替える燃費優先モードをさらに有する請求項1から4のいずれか1項に記載の冷却水バルブ制御機構。   Regardless of the intake air temperature of the air taken in by the internal combustion engine, the valve control means sets the switching valve to the heater core channel side when the temperature of the cooling water is higher than the third water temperature, and the temperature of the cooling water. The cooling water valve control mechanism according to any one of claims 1 to 4, further comprising a fuel efficiency priority mode for switching the switching valve to the bypass flow path side when the temperature is lower than the third water temperature. 前記冷却水を加熱するヒータをさらに備え、前記ヒータへの通電加熱時には、前記ヒータコア流路に前記冷却水を流すようにした請求項1から5のいずれか1項に記載の冷却水バルブ制御機構。   The cooling water valve control mechanism according to any one of claims 1 to 5, further comprising a heater for heating the cooling water, wherein the cooling water is caused to flow through the heater core flow path when the heater is energized and heated. .
JP2015244087A 2015-12-15 2015-12-15 Cooling water valve control mechanism Active JP6593144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015244087A JP6593144B2 (en) 2015-12-15 2015-12-15 Cooling water valve control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015244087A JP6593144B2 (en) 2015-12-15 2015-12-15 Cooling water valve control mechanism

Publications (2)

Publication Number Publication Date
JP2017110522A JP2017110522A (en) 2017-06-22
JP6593144B2 true JP6593144B2 (en) 2019-10-23

Family

ID=59080485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015244087A Active JP6593144B2 (en) 2015-12-15 2015-12-15 Cooling water valve control mechanism

Country Status (1)

Country Link
JP (1) JP6593144B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119698B2 (en) * 2018-07-24 2022-08-17 株式会社デンソー vehicle air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221708A (en) * 1982-06-18 1983-12-23 Nippon Radiator Co Ltd Car heater
JP2011080450A (en) * 2009-10-09 2011-04-21 Toyota Motor Corp Control device for vehicle
JP5633390B2 (en) * 2011-01-25 2014-12-03 三菱自動車工業株式会社 Cooling device for internal combustion engine
JP5505331B2 (en) * 2011-02-23 2014-05-28 株式会社デンソー Internal combustion engine cooling system
JP2013072350A (en) * 2011-09-28 2013-04-22 Daihatsu Motor Co Ltd Cooling device of engine
JP2013253537A (en) * 2012-06-06 2013-12-19 Calsonic Kansei Corp Thermal storage system for vehicle
JP6139354B2 (en) * 2013-09-24 2017-05-31 トヨタ自動車株式会社 Fuel cell vehicle and control method of fuel cell vehicle

Also Published As

Publication number Publication date
JP2017110522A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US7721683B2 (en) Integrated engine thermal management
JP5582133B2 (en) Engine coolant circulation system
JP5505331B2 (en) Internal combustion engine cooling system
US9321479B2 (en) Vehicle power steering waste heat recovery
JP5787994B2 (en) INTERNAL COMBUSTION ENGINE HAVING COOLANT COLLECTION TUBE FOR COOLING DURING COLD OR OPERATION
JP6096492B2 (en) Engine cooling system
JP6090138B2 (en) Engine cooling system
JPWO2011030394A1 (en) Vehicle cooling device
JP2008038827A (en) Method of controlling rapid heating system for engine
JP5772652B2 (en) Vehicle cooling device
JP2017067015A (en) Cooling control device
JP2008291690A (en) Cooling system
KR101550981B1 (en) Mode Control Method of Variable Divide Cooling System in Vehicle
JP2009250147A (en) Liquid circulation circuit of liquid-cooled engine
JP2016061232A (en) Control device of cooling system and control method of cooling system
JP6593144B2 (en) Cooling water valve control mechanism
WO2014074430A1 (en) Thermal system cold start layout circuit with egr
JP2010065544A (en) Hydraulic fluid temperature control system
JP5801593B2 (en) Thermal storage heating system for vehicles
JP2012184671A (en) Engine cooling device
JP5633390B2 (en) Cooling device for internal combustion engine
JP6225931B2 (en) Cooling device for internal combustion engine
JP2007126046A (en) Heating device
JP2016210298A (en) Cooling device of internal combustion engine
JP2010260443A (en) Vehicle heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R151 Written notification of patent or utility model registration

Ref document number: 6593144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151