JP6591884B2 - Bulky laminated nonwoven fabric - Google Patents

Bulky laminated nonwoven fabric Download PDF

Info

Publication number
JP6591884B2
JP6591884B2 JP2015242398A JP2015242398A JP6591884B2 JP 6591884 B2 JP6591884 B2 JP 6591884B2 JP 2015242398 A JP2015242398 A JP 2015242398A JP 2015242398 A JP2015242398 A JP 2015242398A JP 6591884 B2 JP6591884 B2 JP 6591884B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
polyester
corrugated
shape
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015242398A
Other languages
Japanese (ja)
Other versions
JP2017106144A (en
Inventor
木原 幸弘
幸弘 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2015242398A priority Critical patent/JP6591884B2/en
Publication of JP2017106144A publication Critical patent/JP2017106144A/en
Application granted granted Critical
Publication of JP6591884B2 publication Critical patent/JP6591884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、嵩高性に優れた積層不織布に関するものである。   The present invention relates to a laminated nonwoven fabric excellent in bulkiness.

従来より、不織布は、土木資材、農業資材、工業資材、家庭用品等の様々な分野における各種の用途に使用されている。また、各種の用途に適用する際には、その用途における要求性能に応じた機能を有する不織布が用いられる。 Conventionally, non-woven fabrics are used for various applications in various fields such as civil engineering materials, agricultural materials, industrial materials, and household products. Moreover, when applying to various uses, the nonwoven fabric which has a function according to the required performance in the use is used.

ところで、本発明者は、特殊な横断面形状を持つポリエステル不織布を開発した(特許文献1)。これは、ポリエステル長繊維を構成繊維とする不織布であって、該ポリエステル長繊維の横断面形状が、略Y字の下端で上下左右に連結した
形状(以下、「略Y4形状」という。)であることを特徴とするポリエステル不織布というものである。かかるポリエステル不織布は、高剛性であるという特性を持っている。
By the way, this inventor developed the polyester nonwoven fabric with a special cross-sectional shape (patent document 1). This is a non-woven fabric comprising polyester long fibers as a constituent fiber, and the cross-sectional shape of the polyester long fibers is connected to the top, bottom, left and right at the lower end of a substantially Y-shape.
It is a polyester nonwoven fabric characterized by having a shape (hereinafter referred to as “substantially Y4 shape”). Such a polyester nonwoven fabric has a characteristic of high rigidity.

特開2013−76182号公報JP2013-76182A

本発明者は、上記ポリエステル不織布を用いて種々研究を行っていたところ、このポリエステル不織布に座屈処理を施すと、厚み方向に圧縮しても座屈加工による山部と谷部の形状が変形しにくく、また、変形しても回復性が高い不織布が得られることを見出した。そして、この座屈加工を施してなる不織布に、短繊維ウェブを積層して高圧水流を施したところ、座屈加工を施した不織布は、凹凸を維持した状態で、積層した短繊維ウェブと絡み一体化していた。すなわち、高圧水流の圧力が加わった場合でも、歪むことなく凹凸形状を維持し、嵩高性の高い積層不織布を得られることを見出した。   The present inventor has conducted various studies using the polyester nonwoven fabric. When this polyester nonwoven fabric is subjected to buckling treatment, the shape of the peaks and valleys due to buckling is deformed even when compressed in the thickness direction. It was found that a non-woven fabric having high recoverability even when deformed is obtained. And, when the short fiber web was laminated to the nonwoven fabric formed by buckling and subjected to high-pressure water flow, the buckled nonwoven fabric was entangled with the laminated short fiber web while maintaining the unevenness. It was integrated. That is, it has been found that even when a high-pressure water flow is applied, a laminated nonwoven fabric having a high bulkiness can be obtained while maintaining an uneven shape without distortion.

本発明はかかる知見に基づくものである。したがって、本発明の課題は、嵩高性に優れる積層不織布を得ることにある。   The present invention is based on such knowledge. Therefore, the subject of this invention is obtaining the laminated nonwoven fabric excellent in bulkiness.

本発明は、ポリエステル長繊維で構成されてなるポリエステル不織布において、不織布全体に亘って、不織布の一方向に山部と谷部とが交互に波形状の凹凸を有してなる波形状凹凸不織布であり、
前記ポリエステル長繊維の横断面形状は、略Y字の下端で上下左右に連結した
形状(以下、「略Y4形状」という。)であり、
ポリエステル長繊維の単繊維繊度が、10デシテックス以上であり、
波形状凹凸不織布の上面または下面に、短繊維ウェブが積層され、短繊維ウェブを構成する短繊維同士は交絡により一体化し、
短繊維ウェブと波形状凹凸不織布とは、波形状凹凸不織布の山部または谷部に接する短繊維ウェブを構成する短繊維が波形状凹凸不織布の山部の略頂点または谷部の略頂点に絡み付き、積層一体化していることを特徴とする嵩高性積層不織布を要旨とする。
The present invention relates to a corrugated uneven nonwoven fabric in which, in a polyester nonwoven fabric composed of polyester long fibers, peaks and valleys alternately have corrugated irregularities in one direction of the nonwoven fabric over the entire nonwoven fabric. Yes,
The cross-sectional shape of the polyester continuous fiber is connected to the top, bottom, left and right at the lower end of a substantially Y shape.
Shape (hereinafter referred to as “substantially Y4 shape”),
The single fiber fineness of the polyester long fiber is 10 dtex or more,
The short fiber web is laminated on the upper or lower surface of the corrugated uneven nonwoven fabric, and the short fibers constituting the short fiber web are integrated by entanglement,
Short fiber web and corrugated nonwoven fabric are short fibers that make up the short fiber web in contact with the peaks or valleys of the corrugated nonwoven fabric. The gist is a bulky laminated nonwoven fabric characterized by being laminated and integrated.

また、本発明は、横断面形状が略Y4形状であり、単繊維繊度が10デシテックス以上であるポリエステル長繊維が多数本堆積してなるウェブを、熱エンボス装置に導入して、部分的に圧着してなる圧着部を形成させて、ポリエステル長繊維相互間を熱接着により一体化させ、ついで、座屈加工機に導入し座屈処理を施し、不織布全体に亘って、不織布の一方向に山部と谷部とを交互に形成させて波形状凹凸不織布を得、
次いで、得られた波形状凹凸不織布の片面に短繊維ウェブを載置して積層体を得、
積層体の短繊維ウェブ側から高圧水流を施して、短繊維ウェブの構成繊維同士を交絡させるとともに、波形状凹凸不織布の山部の頂点に接している短繊維とポリエステル長繊維とを交絡させて、波形状凹凸不織布と短繊維ウェブとを交絡により一体化させることを特徴とする嵩高性積層不織布の製造方法を要旨とする。
In addition, the present invention introduces a web in which a large number of polyester filaments having a cross-sectional shape of approximately Y4 and a single fiber fineness of 10 dtex or more are deposited into a heat embossing device, and is partially crimped Forming a crimped part and integrating the polyester long fibers together by thermal bonding, then introducing them into a buckling machine and applying a buckling treatment to the entire nonwoven fabric in one direction. Forming the corrugated uneven nonwoven fabric by alternately forming the part and the valley part,
Next, a short fiber web was placed on one side of the obtained wave-shaped uneven nonwoven fabric to obtain a laminate,
High-pressure water flow is applied from the short fiber web side of the laminate, and the constituent fibers of the short fiber web are entangled with each other, and the short fibers that are in contact with the tops of the ridges of the corrugated nonwoven fabric are entangled with the polyester long fibers. The gist of the present invention is a method for producing a bulky laminated nonwoven fabric characterized by integrating a corrugated nonwoven fabric and a short fiber web by entanglement.

まず、本発明で用いられるポリエステル長繊維について説明する。このポリエステル長繊維は、その横断面形状に特徴を有するものである。この横断面形状は、図1に示すような略Y字を四個持つものである。そして、略Y字の下端1で上下左右に連結して、図2に示すような略Y4形状となっている。この略Y4形状は、四個の凹部2と八個の凸部3と四個の小凹部4とを有している。このように多数の凹部2、多数の小凹部4、多数の凸部3を持っており、嵩高性に優れている。また、四個の凹部2の箇所に塵埃が捕捉されやすく、塵埃除去性に優れている。そして、中央の略+字部5と、略+字部5の各先端に連結された四個の略V字部6により、高剛性となっている。すなわち、六角形やY字等の単なる異形ではなく、剛性の高い略+字部5と略V字部6の組み合わせによって、より高剛性となるのである。かかるポリエステル長繊維を集積して、高剛性のポリエステル不織布を準備する。特に、ポリエステル長繊維相互間を熱融着等により結合して、嵩高で且つ高剛性のポリエステル不織布を準備することができる。長繊維相互間の結合は、熱エンボス装置に導入して、部分的に熱と圧力を加えて、圧着部を形成させて、ポリエステル長繊維相互間を熱接着により一体化させることが好ましい。   First, the polyester continuous fiber used by this invention is demonstrated. This polyester continuous fiber is characterized by its cross-sectional shape. This cross-sectional shape has four substantially Y-characters as shown in FIG. And it is connected to the upper and lower sides and the right and left at the lower end 1 of a substantially Y shape, and has a substantially Y4 shape as shown in FIG. The substantially Y4 shape has four concave portions 2, eight convex portions 3, and four small concave portions 4. Thus, it has many recessed parts 2, many small recessed parts 4, and many convex parts 3, and is excellent in bulkiness. In addition, dust is easily captured at the four recesses 2 and is excellent in dust removal. Further, high rigidity is achieved by the substantially + -shaped part 5 at the center and the four approximately V-shaped parts 6 connected to the respective tips of the approximately + -shaped part 5. In other words, it is not a simple shape such as a hexagon or a Y-shape, but a higher rigidity is achieved by a combination of the substantially + -shaped portion 5 and the substantially V-shaped portion 6 having high rigidity. Such polyester long fibers are accumulated to prepare a highly rigid polyester nonwoven fabric. In particular, it is possible to prepare a bulky and highly rigid polyester nonwoven fabric by bonding polyester long fibers together by heat fusion or the like. Bonding between the long fibers is preferably introduced into a heat embossing device, and heat and pressure are partially applied to form a crimped portion, and the polyester long fibers are integrated by thermal bonding.

ポリエステル長繊維は、一種類のポリエステルからなるものでもよいが、低融点ポリエステルと高融点ポリエステルとを組み合わせるのが好ましい。すなわち、ポリエステル長繊維の横断面形状の略V字部6が低融点ポリエステルで形成され、略+字部5が高融点ポリエステルで形成された複合型するのが好ましい。複合型ポリエステル長繊維を集積した後、低融点ポリエステルを軟化又は溶融させた後、固化させることにより、ポリエステル長繊維相互間が低融点ポリエステルによって熱融着されたポリエステル不織布が得られるからである。また、ポリエステル不織布を構成するポリエステル長繊維の繊度は、10デシテックス以上とする。繊度が10デシテックス未満になると、長繊維の剛性が低下する傾向が生じ、ひいてはポリエステル不織布の剛性も低下する傾向が生じ、形成してなる波形状を維持しにくくなる。また、ポリエステル不織布の目付は、15〜200g/m2であるのが好ましい。目付が15g/m2未満になると、ポリエステル不織布の剛性が低下する傾向が生じる。目付の上限は特に限定されないが、座屈加工によって、良好な波形状の山部と谷部を形成するためには、厚みが大きすぎないほうがよいため、200g/m2程度がよい。なお、本発明で用いるポリエステル不織布の詳細については、上記した特許文献1に詳述されている。 The polyester continuous fiber may be composed of one kind of polyester, but it is preferable to combine a low-melting polyester and a high-melting polyester. That is, it is preferable to use a composite type in which the substantially V-shaped portion 6 of the cross-sectional shape of the polyester long fiber is formed of low-melting polyester and the substantially + -shaped portion 5 is formed of high-melting polyester. This is because the polyester non-woven fabric in which the low-melting polyester is softened or melted and then solidified after the composite long polyester fibers have been accumulated is obtained. Moreover, the fineness of the polyester long fiber which comprises a polyester nonwoven fabric shall be 10 dtex or more. When the fineness is less than 10 dtex, the rigidity of the long fibers tends to decrease, and the rigidity of the polyester nonwoven fabric also tends to decrease, which makes it difficult to maintain the formed wave shape. Moreover, it is preferable that the fabric weight of a polyester nonwoven fabric is 15-200 g / m < 2 >. When the basis weight is less than 15 g / m 2 , the polyester nonwoven fabric tends to have low rigidity. The upper limit of the basis weight is not particularly limited, but in order to form good wave-shaped peaks and valleys by buckling, it is preferable that the thickness is not too large, so about 200 g / m 2 is preferable. The details of the polyester nonwoven fabric used in the present invention are described in detail in Patent Document 1 described above.

本発明におけるポリエステル不織布は、不織布全体に亘って、不織布の一方向に山部と谷部とが交互に波形状の凹凸として形成されている。不織布全体に亘って一方向に交互に波形状の凹凸が形成されているとは、一方向に進行する波状の凹凸(起伏)が形成されているという意味であり、一方向に波立っており、一つの波の山および谷は一方向と直交する方向に連続している。そして、不織布の一部分にこの波形状が付与されているのではなく、不織布全体に波形状が付与されている。   In the polyester nonwoven fabric in the present invention, peaks and valleys are alternately formed as wave-shaped irregularities in one direction of the nonwoven fabric throughout the nonwoven fabric. The fact that wavy irregularities are formed alternately in one direction over the entire nonwoven fabric means that wavy irregularities (undulations) that advance in one direction are formed, and are undulating in one direction. One wave crest and valley are continuous in a direction perpendicular to one direction. And this waveform is not given to a part of nonwoven fabric, but the waveform is given to the whole nonwoven fabric.

このような波形状の凹凸が形成されてなる波形状凹凸不織布は、以下の方法により製造することができる。すなわち、上記したポリエステル不織布を準備し、この不織布の一方向に座屈処理を施す。一般には、ポリエステル不織布の長手方向となる機械方向に座屈処理を施す。座屈処理は、ポリエステル不織布を一定の供給速度で進行させて、この供給速度よりも遅い速度で排出させることによって行うことができ、この速度差に応じて、ポリエステル不織布に曲げモーメントが働き、座屈処理が行われるのである。座屈処理を施す装置は、マイクレックス社製のマイクロクレーパー機を用いるとよい。マイクロクレーパー機によれば、ポリエステル不織布を、まず一対の供給ローラーを通し、レターダーに押し込む。この際、一対の供給ローラーの表面を若干加熱(例えば40〜100℃程度)しておいて、ポリエステル不織布を構成する長繊維が座屈しやすいようにしておいてもよい。レターダーに押し込まれることによって、ポリエステル不織布は導入された方向に座屈処理が施されて、波状起伏が生じる。従って、波形状の山の高さやピッチ(山と山との距離)は、供給速度 と排出速度の差及びレターダーの間隔等によって、任意に決定できるのである。   A wave-shaped uneven nonwoven fabric in which such wave-shaped unevenness is formed can be produced by the following method. That is, the above-described polyester nonwoven fabric is prepared, and a buckling treatment is performed in one direction of the nonwoven fabric. In general, the buckling treatment is performed in the machine direction which is the longitudinal direction of the polyester nonwoven fabric. The buckling treatment can be performed by advancing the polyester nonwoven fabric at a constant supply rate and discharging it at a rate slower than the supply rate. A bending moment acts on the polyester nonwoven fabric according to this speed difference, and the buckling treatment is performed. The bending process is performed. As a device for performing the buckling treatment, a micro creper machine manufactured by Mike Rex may be used. According to the micro creper machine, the polyester nonwoven fabric is first pushed through a pair of supply rollers and into a letterer. At this time, the surfaces of the pair of supply rollers may be slightly heated (for example, about 40 to 100 ° C.) so that the long fibers constituting the polyester nonwoven fabric are likely to buckle. By being pushed into the letterer, the polyester non-woven fabric is buckled in the introduced direction, thereby causing undulations. Therefore, the height and pitch of the wave-shaped mountain (the distance between the mountain and the mountain) can be arbitrarily determined by the difference between the supply speed and the discharge speed, the interval between the letterers, and the like.

そして、この座屈処理による波状起伏が生じている間に(波状起伏が消失しないうちに)、熱処理装置に通して熱処理し、形状を固定することがよい。熱処理は、ポリエステル不織布を構成している長繊維の融点以下の温度で行う。融点以上の温度で熱処理を行うと、長繊維が溶融する恐れがあり、得られる不織布の風合いが低下する恐れがある。また、この熱処理は、無押圧下で行う。押圧すると、座屈処理により生じた波状起伏が消失してしまう恐れがある。この熱処理によって、座屈処理により生じた波形状が不織布に熱固定されて、その形態が保持される。   Then, while the undulations due to the buckling treatment are occurring (before the undulations disappear), the shape is preferably fixed by heat treatment through a heat treatment apparatus. The heat treatment is performed at a temperature not higher than the melting point of the long fibers constituting the polyester nonwoven fabric. When heat treatment is performed at a temperature equal to or higher than the melting point, the long fibers may melt and the texture of the resulting nonwoven fabric may be lowered. Further, this heat treatment is performed without pressing. When pressed, the wavy undulation caused by the buckling process may be lost. By this heat treatment, the wave shape generated by the buckling treatment is heat-set to the nonwoven fabric and the form is maintained.

以上のような座屈処理をポリエステル不織布に施すことによって、波形状凹凸不織布を得ることができる。   By applying the buckling treatment as described above to the polyester nonwoven fabric, a wave-shaped uneven nonwoven fabric can be obtained.

本発明の積層不織布は、上記した波形状凹凸不織布の少なくとも片面に短繊維ウェブが積層されている。そして、短繊維ウェブを構成する短繊維同士は交絡により一体化し、短繊維ウェブと波形状凹凸不織布とは、波形状の凹凸不織布の山部の頂点または谷部の頂点に接する短繊維ウェブを構成する短繊維が波形状凹凸不織布の山部の略頂点または谷部の略頂点に絡み付き一体化している。   In the laminated nonwoven fabric of the present invention, a short fiber web is laminated on at least one surface of the wave-shaped uneven nonwoven fabric. The short fibers constituting the short fiber web are integrated by entanglement, and the short fiber web and the corrugated uneven nonwoven fabric constitute a short fiber web in contact with the apex of the peak or valley of the corrugated irregular nonwoven fabric. The short fibers to be entangled and integrated with the approximate apex of the peak or the approximate apex of the valley of the corrugated uneven nonwoven fabric.

波形状凹凸不織布の両面に短繊維ウェブが積層されてなるときは、上面に位置する短繊維ウェブは、波形状凹凸不織布の山部の頂点に接し、山部の略頂点の長繊維と短繊維とが絡み、下面に位置する短繊維ウェブは、波形状凹凸不織布の谷部の頂点に接し、谷部の略頂点の長繊維と短繊維とが絡む。そして、短繊維ウェブと波形状凹凸不織布とは、山部または谷部の略頂点と絡み合うことにより、山部の頂点付近または谷部の頂点付近と接してその箇所と交絡一体化しているが、山部の頂点付近以外の箇所および谷部の頂点付近以外の箇所とは接することなく、短繊維ウェブとの間に空隙が存在する。   When the short fiber web is laminated on both sides of the corrugated uneven nonwoven fabric, the short fiber web located on the upper surface is in contact with the apex of the peak portion of the corrugated uneven nonwoven fabric, and the long fiber and short fiber at the approximate apex of the corrugated nonwoven fabric. The short fiber web located on the lower surface is in contact with the top of the valley of the corrugated uneven nonwoven fabric, and the long fiber and the short fiber at the top of the valley are entangled. And, the short fiber web and the corrugated uneven nonwoven fabric are entangled with the vicinity of the peak of the peak or the peak of the valley by being entangled with the approximate peak of the peak or the valley, and are entangled and integrated with that part. There is a gap between the short fiber web and a portion other than the vicinity of the peak of the peak and a portion other than the vicinity of the peak of the valley.

すなわち、本発明の積層不織布は、波形状凹凸不織布が中芯となり、片面または両面より、短繊維ウェブからなる平らなライナーを積層または挟みこんだ立体構造となり、いわゆるダンボール構造を構成し、嵩高性に優れるのである。   That is, the laminated nonwoven fabric of the present invention has a three-dimensional structure in which a corrugated uneven nonwoven fabric is the core, and a flat liner made of short fiber webs is laminated or sandwiched from one side or both sides to form a so-called cardboard structure, which is bulky. It is excellent in.

波形状凹凸不織布の少なくとも片面に積層される短繊維ウェブとしては、水流交絡処理における水流の作用によって、繊維が動き、交絡することができるものであればよく、その素材としては、コットン、レーヨンやリヨセル、天然パルプ等のセルロース系繊維、ポリエステルやポリオレフィン等の熱可塑性繊維等が挙げられる。また、短繊維ウェブ中に熱バインダー繊維を適宜混合してもよい。熱バインダー繊維を混合した場合、ポリエステル不織布と短繊維ウェブとを交絡一体化した後に、熱処理を施して熱バインダー繊維を溶融軟化させて、短繊維同士や短繊維と長繊維とを熱接着することにより、より一層形態安定性に優れた積層不織布が得られる。短繊維の繊維長は、交絡性を考慮して、5〜70mm程度がよい。短繊維ウェブの目付は特に限定されず、所望により適宜選択すればよいが、15〜100g/m程度がよい。 The short fiber web laminated on at least one surface of the corrugated uneven nonwoven fabric may be any material that can move and entangle with the action of the water flow in the water entanglement treatment. Examples of the material include cotton, rayon, Examples thereof include cellulosic fibers such as lyocell and natural pulp, and thermoplastic fibers such as polyester and polyolefin. Moreover, you may mix a heat binder fiber suitably in a short fiber web. When thermal binder fibers are mixed, after the polyester nonwoven fabric and the short fiber web are entangled and integrated, heat treatment is performed to melt and soften the thermal binder fibers, and the short fibers and the short fibers and the long fibers are thermally bonded. As a result, a laminated nonwoven fabric having further excellent shape stability can be obtained. The fiber length of the short fibers is preferably about 5 to 70 mm in consideration of confounding properties. The basis weight of the short fiber web is not particularly limited and may be appropriately selected as desired, but is preferably about 15 to 100 g / m 2 .

積層不織布において、波形状凹凸不織布の波を形成している山の高さは、400μm以上であることが好ましい。波を形成している山の高さとは、波の起伏の高さであり、波の山と谷との距離であり、波形状凹凸不織布の厚みである。山の高さが500μm以上とすることで、より嵩高性が向上する。山の高さの上限は、適宜設計すればよいが、形状維持性を考慮すると、1500μm程度がよい。なお、積層不織布における波形状凹凸不織布の山の高さは、無荷重下での厚みをいう。 積層不織布において、波形状を形成する山と山との間隔(あるいは谷と谷との間隔)は、0.5〜3mmである。山と山との間隔(距離)は、拡大投影機を用いて、積層不織布断面より任意の10箇所を選択して、隣り合う山と山の間の距離を測定し、その平均値を求める。山と山との間隔が0.5mmmより小さいと、山の形状がシャープであり、山底の長さに対して山の頂点部の高さの比が大きいものであり、このような形状を維持するためには、長繊維に極めて過大な曲げモーメントを付加して折り曲げることを要することになり、山谷の形状を付与する際に長繊維が損傷しやすい。また、山と山との距離が3mm以下とすることにより、山と山との間隔または谷と谷との間隔が長くなりすぎず、所望の嵩高性を積層不織布に付与できる。   In the laminated nonwoven fabric, the height of the peak forming the wave of the corrugated uneven nonwoven fabric is preferably 400 μm or more. The height of the mountain forming the wave is the height of the wave undulation, the distance between the wave mountain and the valley, and the thickness of the wave-shaped uneven nonwoven fabric. Bulkiness improves more because the height of a mountain shall be 500 micrometers or more. The upper limit of the height of the mountain may be designed as appropriate, but considering the shape maintainability, it is preferably about 1500 μm. In addition, the height of the peak of the corrugated uneven nonwoven fabric in the laminated nonwoven fabric refers to the thickness under no load. In the laminated nonwoven fabric, the interval between the ridges forming the wave shape (or the interval between the valleys) is 0.5 to 3 mm. As for the distance (distance) between the mountains, an arbitrary 10 positions are selected from the cross section of the laminated nonwoven fabric using an enlargement projector, the distance between the adjacent mountains is measured, and the average value is obtained. When the distance between the peaks is smaller than 0.5 mm, the shape of the peaks is sharp, and the ratio of the height of the peak of the peaks to the length of the peaks is large. In order to maintain it, it is necessary to add a very excessive bending moment to the long fiber and bend it, and the long fiber is likely to be damaged when the shape of the valley is given. Moreover, when the distance between the peaks is 3 mm or less, the interval between the peaks or the peaks or the interval between the valleys and the valleys does not become too long, and a desired bulkiness can be imparted to the laminated nonwoven fabric.

本発明の積層不織布は、以下の方法により得ることができる。すなわち、前記した波形状凹凸不織布の少なくとも片面に短繊維ウェブを載置して積層体を得、この積層体をメッシュ状支持体に担持し、積層体の短繊維ウェブ側から高圧水流を施して、短繊維ウェブの構成繊維同士を交絡させるとともに、波形状凹凸不織布の山部に接している短繊維とポリエステル長繊維とを交絡させて、波形状凹凸不織布と短繊維ウェブとを交絡により一体化させる。   The laminated nonwoven fabric of the present invention can be obtained by the following method. That is, a short fiber web is placed on at least one side of the wave-shaped uneven nonwoven fabric described above to obtain a laminate, and this laminate is supported on a mesh-like support, and a high-pressure water stream is applied from the short fiber web side of the laminate. In addition to interlacing the constituent fibers of the short fiber web, the short fibers in contact with the ridges of the corrugated nonwoven fabric and the polyester long fibers are interlaced to integrate the corrugated nonwoven fabric and the short fiber web by confounding. Let

波形状凹凸不織布の両面に短繊維ウェブを積層する場合は、高圧水流は、積層体の両面より施す。   When laminating short fiber webs on both sides of the corrugated uneven nonwoven fabric, the high-pressure water stream is applied from both sides of the laminate.

この高圧水流は、孔径0.05〜2.0mmの噴射孔が、噴射孔間隔0.05〜10mmで一列又は複数列配置されている噴射装置を用い、水を噴射孔から1.5〜30MPaの圧力で噴射して得られるものである。そうすると、高圧水流はウェブに衝突して、短繊維に運動エネルギーを与える。この運動エネルギーにより、短繊維ウェブ内の短繊維同士が交絡し、また、短繊維は、波形状凹凸不織布を構成する長繊維に絡む。このとき、短繊維は、波形状凹凸不織布の凹凸の頂点付近の長繊維と絡み、頂点以外の箇所とは絡まず、波形状凹凸不織布の凹凸形状は、交絡前のその形態をほぼ維持する。高圧水流を施した際にそのような現象が生じるのは、波形状凹凸不織布の構成繊維が特殊な横断面形状となっているので、構成繊維相互間に大きな空隙が形成されており、高圧水流の通過性がよく、高圧水流による圧をまともに受けずに、凹凸形状が歪みにくいこと、および、特殊な横断面形状により剛性に優れるため、不織布自体も高剛性であり、高圧水流による圧を受けたとしても、それによって歪や変形が生じにくいため、凹凸形状を維持し、凹凸の頂点部付近にて接している短繊維と絡むのである。たとえば、横断面形状が略円形である長繊維を構成繊維と不織布であって、同様に波形状凹凸の凹凸形状が形成してなる不織布を用いると、構成繊維相互間に大きな空隙が形成されず、剛性も低いために、高圧水流による加圧によって、凹凸形状を維持できず、歪んで厚みが減少し、凹凸形状付与前の平坦な不織布の形状に近くなり、その形態で短繊維と絡むこととなるため、得られる積層不織布は、空隙部が小さく、厚みが小さく、嵩高性に劣るものとなる。   This high-pressure water flow uses an injection device in which injection holes having a hole diameter of 0.05 to 2.0 mm are arranged in one or more rows with an injection hole interval of 0.05 to 10 mm, and water is supplied from the injection holes to 1.5 to 30 MPa. It is obtained by spraying at a pressure of The high pressure water stream then impinges on the web and imparts kinetic energy to the short fibers. Due to this kinetic energy, the short fibers in the short fiber web are entangled with each other, and the short fibers are entangled with the long fibers constituting the corrugated uneven nonwoven fabric. At this time, the short fibers are entangled with the long fibers near the apex of the irregularities of the corrugated irregular nonwoven fabric, and are not intertwined with the portions other than the apexes, and the irregular shape of the corrugated irregular nonwoven fabric substantially maintains its form before entanglement. Such a phenomenon occurs when high-pressure water flow is applied because the constituent fibers of the corrugated uneven nonwoven fabric have a special cross-sectional shape, so that a large gap is formed between the constituent fibers. The non-woven fabric itself is highly rigid because it has good permeability and is not subject to pressure caused by high-pressure water flow, is not easily distorted, and is rigid due to its special cross-sectional shape. Even if it is received, distortion and deformation are less likely to occur, so that the concavo-convex shape is maintained and tangled with the short fibers that are in contact near the top of the concavo-convex. For example, if a non-woven fabric is used, which is composed of long fibers having a substantially circular cross-sectional shape, which are composed fibers and nonwoven fabrics, and are similarly formed with corrugated irregularities, no large gaps are formed between the constituent fibers. Because of its low rigidity, pressurization with a high-pressure water stream cannot maintain the uneven shape, distorts and decreases the thickness, becomes close to the shape of a flat nonwoven fabric before the uneven shape is imparted, and entangles with short fibers in that form Therefore, the laminated nonwoven fabric obtained has a small gap, a small thickness, and inferior bulkiness.

本発明の積層不織布は、ポリエステル不織布が有する波形状の凹凸を維持した状態で片面または両面に積層された短繊維ウェブを良好に積層一体化しているため、段ボールのごとき形態であり、嵩高性、クッション性に優れ、ボリューム感があり、通気性に優れるとともに、形態安定性、形態維持性に優れる。嵩高性や形態安定性を利用して、クッション材や緩衝材、衝撃吸収材、吸音材、フィルター材等の様々な分野に適用しうるものである。   The laminated nonwoven fabric of the present invention has a structure like a corrugated cardboard because the short fiber web laminated on one side or both sides is well laminated and integrated while maintaining the corrugated unevenness of the polyester nonwoven fabric. Excellent cushioning, voluminous feel, air permeability, form stability and form maintainability. It can be applied to various fields such as cushioning materials, cushioning materials, impact absorbing materials, sound absorbing materials, filter materials, etc. by utilizing its bulkiness and form stability.

本発明の積層不織布は、特定の異型断面を有する長繊維によって構成される高剛性のポリエステル不織布に、不織布の一方向に山部と谷部とが交互に波形状の凹凸として形成されており、この形状を維持した状態で、ポリエステル不織布の片面または両面に、短繊維ウェブが積層されて、交絡により一体化している。ポリエステル不織布自体が、高剛性であることから、形成された波形状の凹凸は、積層不織布の厚み方向に荷重を掛けても凹凸の形状を維持し、消失しにくく、嵩高性を良好に維持する。例えば、通常、長尺の不織布はロール巻きにして保管や搬送がされ、特にロール巻の中心部に近いほど厚み方向に荷重がかかるため変形しやすいが、本発明の積層不織布は、荷重をかけても凹凸の形状が消失しにくいため、当初の波形状の凹凸を維持することができる。   The laminated nonwoven fabric of the present invention is formed in a highly rigid polyester nonwoven fabric constituted by long fibers having a specific atypical cross section, and ridges and valleys are alternately formed as wave-shaped irregularities in one direction of the nonwoven fabric, In a state where this shape is maintained, a short fiber web is laminated on one side or both sides of the polyester nonwoven fabric and integrated by entanglement. Since the polyester nonwoven fabric itself is highly rigid, the formed corrugated irregularities maintain the shape of the irregularities even when a load is applied in the thickness direction of the laminated nonwoven fabric, are not easily lost, and maintain good bulkiness. . For example, a long nonwoven fabric is usually rolled and stored and transported. In particular, the closer to the center of the roll, the easier it is to deform because the load is applied in the thickness direction. However, since the uneven shape hardly disappears, the original wave-shaped unevenness can be maintained.

以下、実施例により本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、実施例における特性値は、以下により求めた。
(1)ポリエステルの極限粘度[η]:フェノールを四塩化エタンとの等質量比の混合溶媒100ccに試料0.5gを溶解し、測定した。
(2)融点:パーキンエルマー社製の示差走査熱量計DSC−7型を用い、昇温速度20℃/分で測定した。
(3)不織布または積層不織布の厚み(μm):標準状態の資料から、縦10cm×横10cmの資料片10点を作成し、JIS L 1913 6.1A法に準拠し、ダイヤルシックネスゲージ(プレッサーフード25mmφ、加重1.96kPa)を用いて、それぞれの厚みを測定し、その平均値を不織布の厚みとした。
(4)不織布を構成する長繊維の単繊維繊度(dtex):温度20℃、湿度60%の環境下で1昼夜保管した長さ1.8mの資料5点の質量について、上皿天秤(Mettler AE50)を用いて測定し、その平均値より単繊維繊度を求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to an Example. In addition, the characteristic value in an Example was calculated | required by the following.
(1) Intrinsic viscosity [η] of polyester: 0.5 g of a sample was dissolved in 100 cc of a mixed solvent having an equal mass ratio of phenol to ethane tetrachloride and measured.
(2) Melting point: Measured using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer Co., Ltd. at a heating rate of 20 ° C./min.
(3) Thickness (μm) of non-woven fabric or laminated non-woven fabric: 10 pieces of 10 cm long x 10 cm wide material pieces are prepared from standard state materials, and dial thickness gauge (pressor hood) according to JIS L 1913 6.1A method Each thickness was measured using 25 mmφ and a load of 1.96 kPa), and the average value was taken as the thickness of the nonwoven fabric.
(4) Single fiber fineness (dtex) of the long fibers constituting the non-woven fabric: For the mass of 5 items of 1.8 m long materials stored for one day in an environment of a temperature of 20 ° C. and a humidity of 60%, an upper pan balance (Mettler) AE50), and the single fiber fineness was determined from the average value.

実施例1
[ポリエステル不織布の準備]
ジカルボン酸成分としてテレフタル酸(TPA)92mol%及びイソフタール酸(IPA)8mol%を用い、ジオール成分としてエチレングリコール(EG)100mol%を用いて共重合し、低融点ポリエステル(相対粘度〔ηrel〕1.44、融点230℃)を得た。この低融点ポリエステルに、結晶核剤として4.0質量%の酸化チタンを添加して、低融点ポリエステル重合体を準備した。一方、ジカルボン酸成分としてテレフタル酸(TPA)100mol%とジオール成分としてエチレングリコール(EG)100mol%を用いて共重合し、高融点ポリエステル重合体(ポリエチレンテレフタレート、相対粘度〔ηrel〕1.38、融点260℃)を準備した。そして、図3に示したノズル孔を用い、V字部に低融点ポリエステル樹脂を供給し、+字部に高融点ポリエステル樹脂を供給して、紡糸温度285℃、単孔吐出量8.33g/分で溶融紡糸した。なお、低融点ポリエステル樹脂の供給量と高融点ポリエステル樹脂の供給量の重量比は、1:2であった。
Example 1
[Preparation of polyester nonwoven fabric]
Copolymerization was carried out using terephthalic acid (TPA) 92 mol% and isophthalic acid (IPA) 8 mol% as the dicarboxylic acid component, and ethylene glycol (EG) 100 mol% as the diol component, and a low-melting polyester (relative viscosity [ηrel] 1. 44, melting point 230 ° C.). To this low melting point polyester, 4.0% by mass of titanium oxide was added as a crystal nucleating agent to prepare a low melting point polyester polymer. On the other hand, 100 mol% of terephthalic acid (TPA) as a dicarboxylic acid component and 100 mol% of ethylene glycol (EG) as a diol component were copolymerized to obtain a high melting point polyester polymer (polyethylene terephthalate, relative viscosity [ηrel] 1.38, melting point). 260 ° C.). Then, using the nozzle hole shown in FIG. 3, a low melting point polyester resin is supplied to the V-shaped part, and a high melting point polyester resin is supplied to the + -shaped part, and the spinning temperature is 285 ° C., the single hole discharge rate is 8.33 g / Melt spun in minutes. In addition, the weight ratio of the supply amount of the low melting point polyester resin and the supply amount of the high melting point polyester resin was 1: 2.

ノズル孔から排出されたフィラメント群を、2m下のエアーサッカー入口に導入し、複合型ポリエステル長繊維の繊度が17デシテックスとなるように牽引した。エアーサッカー出口から排出された複合型ポリエステル長繊維群を開繊装置にて開繊した後、移動するネット製コンベア上に集積し、繊維ウェブを得た。この繊維ウェブを、表面温度が213℃のエンボスロール(各エンボス凸部先端の面積は0.7mm2で、ロール全面積に対するエンボス凸部の占める面積率は15%)とフラットロールからなる熱融着装置に導入し、両ロール間の線圧490N/cmの条件として、複合型ポリエステル長繊維相互間を低融点成分で熱融着して、目付40g/m2、厚み(荷重1.96kPa)341μmのポリエステル不織布を得た。 The filament group discharged from the nozzle hole was introduced into the air soccer entrance 2 m below and pulled so that the fineness of the composite polyester long fiber was 17 dtex. The composite polyester long fiber group discharged from the air soccer exit was opened with a fiber opening device and then collected on a moving net conveyor to obtain a fiber web. This fiber web is heat-fused with a flat roll and an embossing roll having a surface temperature of 213 ° C. (the area at the tip of each embossing protrusion is 0.7 mm 2 and the area ratio of the embossing protrusion relative to the total area of the roll is 15%). Introduced into the dressing device, the composite polyester filaments were thermally fused together with a low melting point component under the condition of a linear pressure of 490 N / cm between both rolls, and the basis weight was 40 g / m 2 , thickness (load 1.96 kPa) A polyester nonwoven fabric of 341 μm was obtained.

[波形状の凹凸を形成させた不織布の製造]
上記したポリエステル不織布を、マイクレックス社製のマイクロクレーパー機に導入した。すなわち、ポリエステル不織布の機械方向に沿って、マイクロクレーパー機に導入して、不織布の機械方向に山部と谷部とが交互に波形状の凹凸として形成させた。なお、マイクロクレーパー機における供給ローラーの表面温度は40℃に設定した。
得られた波形状凹凸不織布は、目付51.5g/m2、山の高さ(荷重1.96kPa)870μm、山と山との距離は1.7mmであった。
[Manufacture of nonwoven fabric with corrugated irregularities]
The polyester nonwoven fabric described above was introduced into a microcreper machine manufactured by Mike Rex. That is, it was introduced into a microcreper machine along the machine direction of the polyester nonwoven fabric, and crests and valleys were alternately formed as corrugated irregularities in the machine direction of the nonwoven fabric. In addition, the surface temperature of the supply roller in a micro creper machine was set to 40 degreeC.
The obtained wave-shaped uneven nonwoven fabric had a basis weight of 51.5 g / m 2 , a peak height (load 1.96 kPa) 870 μm, and a distance between the peak and the peak of 1.7 mm.

また、圧縮に対する形態保持性(圧縮歪)を評価するために、波形状凹凸不織布を平板に挟んで、22.54kPaの荷重を加えて厚みの変化を確認した。すなわち、上記した荷重1.96kPaでの厚みに対して、荷重24.5kPaかけた際の厚みの減少率を算出したところ、21.53%であり、大きく荷重をかけた際でも、凹凸を維持していた。また、かけた荷重22.54kPaを解放した後の厚み(荷重1.96kPa)を測定したところ、820μmであり、荷重をかけた後の形態回復性にも優れていた。   Moreover, in order to evaluate the shape retention property (compression distortion) with respect to compression, the wavy uneven nonwoven fabric was pinched | interposed into the flat plate, the load of 22.54 kPa was added, and the change of thickness was confirmed. That is, the thickness reduction rate when the load of 24.5 kPa was applied to the thickness at the load of 1.96 kPa was calculated to be 21.53%, and the unevenness was maintained even when a large load was applied. Was. Moreover, when the thickness (load 1.96 kPa) after releasing the applied load 22.54 kPa was measured, it was 820 μm, and the form recoverability after applying the load was excellent.

[積層不織布の製造]
この波形状凹凸不織布の片面に、目付30g/m2のコットン繊維100質量%からなるコットン繊維ウェブを積層し、コットン表面ウェブ/波形状凹凸不織布なる積層体を得た。コットン繊維ウェブは、精錬・漂白したコットン繊維(繊維長約25〜35mm)を用いて、大和機工株式会社製のサンプルローラーカード機にて開繊集積して得たものである。この積層体を100メッシュのステンレスネット上に載せ、ノズル径0.13mm、水圧4.17MPaの条件で、コットン表面ウェブ側から高圧水流を施して、2層が一体化し、乾燥工程を経て、積層不織布を得た。
[Manufacture of laminated nonwoven fabric]
A cotton fiber web composed of 100% by mass of cotton fibers having a basis weight of 30 g / m 2 was laminated on one surface of the corrugated uneven nonwoven fabric to obtain a laminate comprising a cotton surface web / corrugated uneven nonwoven fabric. The cotton fiber web is obtained by opening and accumulating with a sample roller card machine manufactured by Yamato Kiko Co., Ltd. using refined and bleached cotton fibers (fiber length of about 25 to 35 mm). This laminate is placed on a 100-mesh stainless steel net and subjected to a high-pressure water flow from the cotton surface web side under the conditions of a nozzle diameter of 0.13 mm and a water pressure of 4.17 MPa. A nonwoven fabric was obtained.

得られた積層不織布は、厚み(荷重1.96kPa)が1010μm、積層不織布における波形状凹凸不織布の山の高さ(無荷重下)は750μm、山と山の距離が1.85mm、目付は91.8g/m2であり、嵩密度が0.091g/cmの嵩高性に優れたものであった。 The obtained laminated nonwoven fabric has a thickness (load 1.96 kPa) of 1010 μm, the height of the peak of the wave-shaped uneven nonwoven fabric (under no load) in the laminated nonwoven fabric is 750 μm, the distance between the peaks and the peaks is 1.85 mm, and the basis weight is 91. It was 0.8 g / m 2 and the bulk density was 0.091 g / cm 3 , which was excellent in bulkiness.

また、この積層不織布の圧縮に対する形態保持性(圧縮歪)を評価するために、平板に挟んで、22.54kPaの荷重を加えて厚みの変化を確認した。すなわち、上記した荷重1.96kPaでの厚みに対して、荷重24.5kPaかけた際の厚みの減少率を算出したところ、9.7%であり、大きく荷重をかけた際でも、凹凸を維持し、嵩を維持していた。また、かけた荷重22.54kPaを解放した後の厚み(荷重1.96kPa)を測定したところ、915μmであり、荷重をかけた後の形態回復性にも優れていた。   Moreover, in order to evaluate the form retention property (compression distortion) with respect to compression of this laminated nonwoven fabric, the load of 22.54 kPa was applied across the flat plate, and the change of thickness was confirmed. That is, the thickness reduction rate when the load of 24.5 kPa was applied to the thickness at the load of 1.96 kPa was calculated to be 9.7%, and the unevenness was maintained even when a large load was applied. And the bulk was maintained. Moreover, when the thickness (load 1.96 kPa) after releasing the applied load 22.54 kPa was measured, it was 915 μm, and the form recoverability after applying the load was excellent.

比較例1
[長繊維不織布の製造]
融点260℃、極限粘度[η]0.70ポリエチレンテレフタレートを準備し、公知の溶融紡糸装置を用い、繊維の横断面が円形となる紡糸孔を30個備えた紡糸口金より、紡糸温度280℃でポリエステル長繊維を溶融紡出した。紡糸口金とエアーサッカーまでの距離は140cmに設定し、紡出長繊維をエアーサッカーに導入した。このとき、ひとつのエアーサッカーに30本の長繊維を導入した。そして、エアーサッカーにて、長繊維の繊度が3.0デシテックスとなるように紡糸速度5000m/分で牽引し、紡出長繊維は、開繊装置でばらばらになるように開繊させた後、コンベアネット上に捕集・堆積させて、長繊維ウェブを得た。得られた長繊維ウエブを、エンボスロール(エンボスロールの凸部の面積0.42mm2、面積率37%)とフラットロールとからなる熱エンボス装置に導き、両ロールの表面温度235℃、線圧490N/cmの条件下で部分的に熱圧接処理を施し、目付40g/m2、厚み(荷重1.96kPa)248μmの長繊維不織布を得た。この長繊維不織布は、構成繊維である長繊維の横断面が円形であり、単繊維繊度が小さいため、実施例1で用いたポリエステル不織布に比べて、剛性も低いものであった。
Comparative Example 1
[Manufacture of long-fiber nonwoven fabric]
A melting point of 260 ° C., intrinsic viscosity [η] 0.70 polyethylene terephthalate was prepared, and a spinning temperature of 280 ° C. was obtained from a spinneret equipped with 30 spinning holes having a circular cross section of the fiber using a known melt spinning apparatus. Polyester filaments were melt spun. The distance from the spinneret to the air soccer was set to 140 cm, and the spinning long fiber was introduced into the air soccer. At this time, 30 long fibers were introduced into one air soccer. Then, in air soccer, after pulling at a spinning speed of 5000 m / min so that the fineness of the long fiber becomes 3.0 dtex, the spun long fiber is opened by the opening device so as to be separated, A long fiber web was obtained by collecting and depositing on a conveyor net. The obtained long fiber web was led to a heat embossing device composed of an embossing roll (the area of the convex part of the embossing roll was 0.42 mm 2 and the area ratio was 37%) and a flat roll. A partial heat treatment was performed under the condition of 490 N / cm to obtain a long fiber nonwoven fabric having a basis weight of 40 g / m 2 and a thickness (load 1.96 kPa) of 248 μm. This long fiber nonwoven fabric had a low cross section of the long fibers, which are constituent fibers, and had a small single fiber fineness. Therefore, the long fiber nonwoven fabric had lower rigidity than the polyester nonwoven fabric used in Example 1.

[波形状の凹凸を形成させた不織布の製造]
得られた上記した比較例の長繊維不織布を、マイクレックス社製のマイクロクレーパー機に導入した。導入する際の条件は、実施例1と同様として、不織布の機械方向に山部と谷部とが交互に波形状の凹凸として形成させた。
得られた不織布は、目付60.89g/m2、山の高さ(荷重1.96kPa)780μm、山と山との距離は1.39mmであった。
[Manufacture of nonwoven fabric with corrugated irregularities]
The obtained long-fiber nonwoven fabric of the above comparative example was introduced into a micro creper machine manufactured by Mike Rex. The conditions at the time of introduction were the same as in Example 1, and crests and troughs were alternately formed as corrugated irregularities in the machine direction of the nonwoven fabric.
The obtained nonwoven fabric had a basis weight of 60.89 g / m 2 , a peak height (load 1.96 kPa) 780 μm, and a distance between the peaks and the peaks was 1.39 mm.

また、圧縮に対する形態保持性(圧縮歪)を評価するために、不織布を平板に挟んで、荷重を24.5kPaかけて厚みの変化を確認したところ、厚みの減少率は29.0%であり、実施例と比べて大きく変形していた。   Moreover, in order to evaluate the shape retention property (compression distortion) with respect to compression, when the change of thickness was confirmed by putting a nonwoven fabric between flat plates and applying a load of 24.5 kPa, the reduction rate of thickness was 29.0%. Compared with the example, it was greatly deformed.

[積層不織布の製造]
比較例1の波形状凹凸不織布の片面に、目付30g/m2のコットン繊維100質量%からなるコットン繊維ウェブを積層し、コットン表面ウェブ/波形状凹凸不織布なる積層体を得た。コットン繊維ウェブは、精錬・漂白したコットン繊維(繊維長約25〜35mm)を用いて、大和機工株式会社製のサンプルローラーカード機にて開繊集積して得たものである。この積層体を100メッシュのステンレスネット上に載せ、ノズル径0.13mm、水圧4.17MPaの条件で、コットン表面ウェブ側から高圧水流を施して、乾燥工程を経た。
[Manufacture of laminated nonwoven fabric]
A cotton fiber web composed of 100% by mass of cotton fibers having a basis weight of 30 g / m 2 was laminated on one surface of the corrugated uneven nonwoven fabric of Comparative Example 1 to obtain a laminate comprising a cotton surface web / corrugated uneven nonwoven fabric. The cotton fiber web is obtained by opening and accumulating with a sample roller card machine manufactured by Yamato Kiko Co., Ltd. using refined and bleached cotton fibers (fiber length of about 25 to 35 mm). This laminate was placed on a 100-mesh stainless steel net and subjected to a drying process by applying a high-pressure water flow from the cotton surface web side under the conditions of a nozzle diameter of 0.13 mm and a water pressure of 4.17 MPa.

得られた不織布は、コットンウェブ層と波形状凹凸不織布とにおいて、層間の繊維同士が交絡していなかったため、容易に2層の状態に剥離し、積層一体化したものではなく、かった。コットンウェブ層と波形状凹凸不織布とが重なりあっているものにすぎなかった。   Since the obtained nonwoven fabric was not entangled between the fibers in the cotton web layer and the corrugated uneven nonwoven fabric, it was not easily peeled into two layers and laminated and integrated. The cotton web layer and the corrugated uneven nonwoven fabric were merely overlapping.

本発明で用いるポリエステル長繊維の横断面形状である略Y4形状の一つの略Y字を示した図である。It is the figure which showed one substantially Y character of the substantially Y4 shape which is the cross-sectional shape of the polyester long fiber used by this invention. 本発明で用いるポリエステル長繊維の横断面形状である略Y4形状を示した図である。It is the figure which showed the substantially Y4 shape which is the cross-sectional shape of the polyester continuous fiber used by this invention. 実施例1で用いたポリエステル不織布を製造するときに用いる紡糸孔の形状を示した図である。It is the figure which showed the shape of the spinning hole used when manufacturing the polyester nonwoven fabric used in Example 1. FIG.

1 ポリエステル長繊維の横断面形状である略Y4形状の一つの略Y字の下端
2 略Y4形状で形成された凹部
3 略Y4形状で形成された凸部
4 略Y4形状で形成された小凹部
5 略Y4形状中の略+字部
6 略Y4形状中の略V字部
DESCRIPTION OF SYMBOLS 1 Lower end of one substantially Y shape of the substantially Y4 shape which is the cross-sectional shape of a polyester continuous fiber 2 The recessed part formed in the substantially Y4 shape 3 The convex part formed in the substantially Y4 shape 4 The small recessed part formed in the substantially Y4 shape 5 Substantially + -shaped part in approximately Y4 shape 6 Substantially V-shaped part in approximately Y4 shape

Claims (4)

ポリエステル長繊維で構成されてなるポリエステル不織布において、不織布全体に亘って、不織布の一方向に山部と谷部とが交互に波形状の凹凸を有してなる波形状凹凸不織布であり、
前記ポリエステル長繊維の横断面形状は、略Y字の下端で上下左右に連結した
形状(以下、「略Y4形状」という。)であり、
ポリエステル長繊維の単繊維繊度が、10デシテックス以上であり、
波形状凹凸不織布の上面または下面に、短繊維ウェブが積層され、短繊維ウェブを構成する短繊維同士は交絡により一体化し、
短繊維ウェブと波形状凹凸不織布とは、波形状凹凸不織布の山部または谷部に接する短繊維ウェブを構成する短繊維が波形状凹凸不織布の山部の略頂点または谷部の略頂点に絡み付き、積層一体化していることを特徴とする嵩高性積層不織布。
In the polyester nonwoven fabric composed of polyester long fibers, the corrugated uneven nonwoven fabric in which the ridges and valleys alternately have corrugated irregularities in one direction of the nonwoven fabric over the entire nonwoven fabric,
The cross-sectional shape of the polyester continuous fiber is connected to the top, bottom, left and right at the lower end of a substantially Y shape.
Shape (hereinafter referred to as “substantially Y4 shape”),
The single fiber fineness of the polyester long fiber is 10 dtex or more,
The short fiber web is laminated on the upper or lower surface of the corrugated uneven nonwoven fabric, and the short fibers constituting the short fiber web are integrated by entanglement,
Short fiber web and corrugated nonwoven fabric are short fibers that make up the short fiber web in contact with the peaks or valleys of the corrugated nonwoven fabric. A bulky laminated nonwoven fabric characterized by being laminated and integrated.
波形状凹凸不織布の山の高さが400μm以上、
隣り合う山と山の距離が0.5〜3mmであることを特徴とする請求項1記載の嵩高性積層不織布。
The peak height of the corrugated uneven nonwoven fabric is 400 μm or more,
The bulky laminated nonwoven fabric according to claim 1, wherein the distance between adjacent mountains is 0.5 to 3 mm.
ポリエステル長繊維が、略Y4形状の各々の略V字部が低融点ポリエステルよりなり、その他の略+字部が高融点ポリエステルよりなる複合型ポリエステル長繊維であり、
不織布は、圧着部と非圧着部とを有し、圧着部では、該低融点ポリエステルを介して、該ポリエステル長繊維相互間が接着されていることを特徴とする請求項1または2記載の嵩高性積層不織布。
Each of the polyester long fibers is a composite polyester long fiber in which each substantially V-shaped portion of the substantially Y4 shape is made of a low-melting polyester, and the other substantially + -shaped portions are made of a high-melting polyester.
The bulky fabric according to claim 1 or 2, wherein the nonwoven fabric has a pressure-bonding portion and a non-pressure-bonding portion, and the polyester long fibers are bonded to each other through the low-melting point polyester. Laminated nonwoven fabric.
横断面形状が略Y字の下端で上下左右に連結した
形状(以下、「略Y4形状」という。)であり、単繊維繊度が10デシテックス以上であるポリエステル長繊維が多数本堆積してなるウェブを、熱エンボス装置に導入して、部分的に圧着してなる圧着部を形成させて、ポリエステル長繊維相互間を熱接着により一体化させ、ついで、座屈加工機に導入し座屈処理を施し、不織布全体に亘って、不織布の一方向に山部と谷部とを交互に形成させて波形状凹凸不織布を得、
次いで、得られた波形状凹凸不織布の片面に短繊維ウェブを載置して積層体を得、
積層体の短繊維ウェブ側から高圧水流を施して、短繊維ウェブの構成繊維同士を交絡させるとともに、波形状凹凸不織布の山部の頂点に接している短繊維とポリエステル長繊維とを交絡させて、波形状凹凸不織布と短繊維ウェブとを交絡により一体化させることを特徴とする嵩高性積層不織布の製造方法。
The cross-sectional shape is connected to the top, bottom, left and right at the lower end of the approximate Y
A web having a shape (hereinafter referred to as “substantially Y4 shape”) in which a large number of polyester long fibers having a single fiber fineness of 10 dtex or more are deposited is introduced into a hot embossing device and partially crimped. Forming a crimped part and integrating the polyester long fibers together by thermal bonding, then introducing them into a buckling machine and applying a buckling treatment to the entire nonwoven fabric in one direction of the nonwoven fabric. And corrugated nonwoven fabric by alternately forming valleys and valleys,
Next, a short fiber web was placed on one side of the obtained wave-shaped uneven nonwoven fabric to obtain a laminate,
High-pressure water flow is applied from the short fiber web side of the laminate, and the constituent fibers of the short fiber web are entangled with each other, and the short fibers that are in contact with the tops of the ridges of the corrugated nonwoven fabric are entangled with the polyester long fibers. A method for producing a bulky laminated nonwoven fabric, wherein a corrugated nonwoven fabric and a short fiber web are integrated by entanglement.
JP2015242398A 2015-12-11 2015-12-11 Bulky laminated nonwoven fabric Active JP6591884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015242398A JP6591884B2 (en) 2015-12-11 2015-12-11 Bulky laminated nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015242398A JP6591884B2 (en) 2015-12-11 2015-12-11 Bulky laminated nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2017106144A JP2017106144A (en) 2017-06-15
JP6591884B2 true JP6591884B2 (en) 2019-10-16

Family

ID=59059270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242398A Active JP6591884B2 (en) 2015-12-11 2015-12-11 Bulky laminated nonwoven fabric

Country Status (1)

Country Link
JP (1) JP6591884B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153351A (en) * 1990-10-12 1992-05-26 Unitika Ltd Laminated nonwoven fabric and preparation thereof
JP3562667B2 (en) * 1995-07-10 2004-09-08 ユニチカ株式会社 Method for producing stretchable long-fiber nonwoven fabric
JP3403589B2 (en) * 1996-10-09 2003-05-06 大和紡績株式会社 Bulk nonwoven fabric and method for producing the same
JP3680456B2 (en) * 1996-11-14 2005-08-10 日本製紙株式会社 Composite sheet for wipes
JPH1143857A (en) * 1997-07-22 1999-02-16 Oji Paper Co Ltd Biodegradable non-woven fabric
JP4219139B2 (en) * 2002-09-09 2009-02-04 旭化成せんい株式会社 Composite non-woven wiper
JP5854458B2 (en) * 2011-09-30 2016-02-09 ユニチカ株式会社 Method for producing polyester long fiber nonwoven fabric
JP6242061B2 (en) * 2013-03-14 2017-12-06 ユニチカ株式会社 Spunlace composite nonwoven fabric
JP6254800B2 (en) * 2013-09-17 2017-12-27 ユニチカ株式会社 Manufacturing method of composite nonwoven fabric
JP6284228B2 (en) * 2014-03-31 2018-02-28 ユニチカ株式会社 Three-layer nonwoven fabric with raised pattern and method for producing the same
JP2016089291A (en) * 2014-10-31 2016-05-23 ユニチカ株式会社 Nonwoven fabric in double layer structure
JP6585443B2 (en) * 2015-09-18 2019-10-02 ユニチカ株式会社 Long fiber nonwoven fabric with excellent stretch recovery

Also Published As

Publication number Publication date
JP2017106144A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
US20210007908A1 (en) Soft Nonwoven Fabric and Method of Manufacturing Thereof
JP6242061B2 (en) Spunlace composite nonwoven fabric
JP5019991B2 (en) Method for producing spunlace composite nonwoven fabric
US10610814B2 (en) Air filter material
TWI575132B (en) Stretchable nonwoven fabric and fabricating method thereof
CN104395518A (en) Nonwoven wipe with bonding pattern
JP5329860B2 (en) Composite sheet and manufacturing method thereof
JP2016089291A (en) Nonwoven fabric in double layer structure
JP2006104629A (en) Spun lace nonwoven fabric imparted with uneven pattern and method for producing the same
JP5902257B2 (en) Method for producing composite nonwoven sheet
JP6591884B2 (en) Bulky laminated nonwoven fabric
JP2014210993A (en) Polyester laminated nonwoven fabric and method for manufacturing the same
JP6404089B2 (en) 2-layer non-woven fabric
JP6585443B2 (en) Long fiber nonwoven fabric with excellent stretch recovery
JP6284228B2 (en) Three-layer nonwoven fabric with raised pattern and method for producing the same
JP6462344B2 (en) Method for producing nonwoven fabric with uneven pattern and excellent water absorption
JP3961343B2 (en) Nonwoven fabric for cleaning
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JP4916978B2 (en) Method for producing spunlace nonwoven fabric comprising short fibers
JP6695077B2 (en) Laminated nonwoven fabric with uneven pattern
JP7104963B2 (en) Laminated continuous fiber nonwoven fabric and method for producing the same
JP2017136154A (en) Cleaning cloth
JP6671685B2 (en) Manufacturing method of high void laminated board
JPH0931857A (en) Laminated nonwoven fabric and its production
JP3984095B2 (en) Method for producing a non-woven fabric having a homogeneous appearance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6591884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150