JP6590387B1 - Leakage current detection device and ground leakage current detection method - Google Patents

Leakage current detection device and ground leakage current detection method Download PDF

Info

Publication number
JP6590387B1
JP6590387B1 JP2018229900A JP2018229900A JP6590387B1 JP 6590387 B1 JP6590387 B1 JP 6590387B1 JP 2018229900 A JP2018229900 A JP 2018229900A JP 2018229900 A JP2018229900 A JP 2018229900A JP 6590387 B1 JP6590387 B1 JP 6590387B1
Authority
JP
Japan
Prior art keywords
current
voltage
signal
component
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018229900A
Other languages
Japanese (ja)
Other versions
JP2020091250A (en
Inventor
賢也 松下
賢也 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanashin Denki Co Ltd
Original Assignee
Tanashin Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanashin Denki Co Ltd filed Critical Tanashin Denki Co Ltd
Priority to JP2018229900A priority Critical patent/JP6590387B1/en
Application granted granted Critical
Publication of JP6590387B1 publication Critical patent/JP6590387B1/en
Publication of JP2020091250A publication Critical patent/JP2020091250A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】活線状態でノイズの影響を低減して精度よく対地漏洩電流を検出可能な漏洩電流検出装置の提供。【解決手段】インバータ機器2から所定の駆動周波数の多相駆動電圧が三相モータ3に印加されているときに、三相モータ3を通じて流れる対地漏洩電流を検出する漏洩電流検出装置であって、インバータ機器2を制御して、電源周波数及び駆動周波数のいずれとも異なる信号周波数を有する交流電圧信号を互いに同相で多相駆動電圧の各々に重畳して出力させるコントローラ5と、インバータ機器2と三相モータ3とを接続する電路4を流れる信号周波数の交流電流成分を抽出して検出する電流センサ6とを備える。【選択図】図1Provided is a leakage current detection device capable of accurately detecting a ground leakage current by reducing the influence of noise in a live line state. A leakage current detecting device for detecting a ground leakage current flowing through a three-phase motor when a multi-phase driving voltage having a predetermined driving frequency is applied to the three-phase motor from an inverter device. A controller 5 for controlling the inverter device 2 to output an alternating voltage signal having a signal frequency different from both the power supply frequency and the drive frequency in the same phase and superimposed on each of the multiphase drive voltages; and the inverter device 2 and the three-phase And a current sensor 6 that extracts and detects an alternating current component of a signal frequency that flows through the electric circuit 4 connecting the motor 3. [Selection] Figure 1

Description

本発明は、漏洩電流検出装置及び対地漏洩電流検出方法に係り、より詳細には、交流電源を電源とするインバータ機器から多相駆動電圧が三相モータ等の負荷機器に印加されているときに、負荷機器を通じて流れる対地漏洩電流を検出する漏洩電流検出装置及び対地漏洩電流検出方法に関する。   The present invention relates to a leakage current detection device and a ground leakage current detection method, and more specifically, when a multiphase drive voltage is applied to a load device such as a three-phase motor from an inverter device using an AC power supply as a power source. The present invention relates to a leakage current detection device and a ground leakage current detection method for detecting a ground leakage current flowing through a load device.

従来の漏洩電流検出装置の一例が特許文献1に記載されている。特許文献1には、所定の交流電源を電源とするインバータ機器によって駆動されるモータの抵抗成分電流、即ちモータの絶縁抵抗を通じて流れる対地漏洩電流を算出する装置が記載されている。かかる装置では、モータの運転を停止することなく活線状態のままで対地漏洩電流値を算出できるようになっている。   An example of a conventional leakage current detection device is described in Patent Document 1. Patent Document 1 describes a device that calculates a resistance component current of a motor driven by an inverter device that uses a predetermined AC power source as a power source, that is, a ground leakage current that flows through an insulation resistance of the motor. In such a device, the ground leakage current value can be calculated in a live line state without stopping the operation of the motor.

特開2011−153910号公報JP 2011-153910 A

ところで、インバータ機器の出力には、交流電源の周波数成分、及び三相モータなどの負荷機器の駆動周波数成分が含まれ、これらの成分は、いずれも磁界ノイズ及び容量結合ノイズを発生させる。これらノイズは、零相変流器(Zero-phase-sequence Current Transformer:ZCT)を用いた対地漏洩電流検出に影響を与え、検出精度低下の原因となる。このため、対地漏洩電流の検出精度を高めるためには、ノイズ対策を講じる必要があった。
また、三相モータを初めとする負荷機器においては、対地間静電容量に流れる対地漏洩電流(容量成分電流)が周波数に比例して増大し、容量成分電流も対地漏洩電流の抵抗成分電流を検出する際に影響を与えていた。
By the way, the output of the inverter device includes a frequency component of the AC power source and a driving frequency component of a load device such as a three-phase motor, both of which generate magnetic field noise and capacitive coupling noise. These noises affect ground leakage current detection using a zero-phase-sequence current transformer (ZCT) and cause a reduction in detection accuracy. For this reason, in order to improve the detection accuracy of the ground leakage current, it is necessary to take measures against noise.
Also, in load devices such as three-phase motors, the ground leakage current (capacitance component current) flowing in the capacitance between the ground increases in proportion to the frequency, and the capacitance component current also increases the resistance component current of the ground leakage current. It had an impact on detection.

本発明は、上記の事情に鑑みてなされたものであり、活線状態でノイズの影響を低減して対地漏洩電流を精度良く検出することができる漏洩電流検出装置及び対地漏洩電流検出方法の提供を目的としている。   The present invention has been made in view of the above circumstances, and provides a leakage current detection device and a ground leakage current detection method capable of accurately detecting a ground leakage current by reducing the influence of noise in a live line state. It is an object.

上記目的を達成するため、本発明の第1の漏洩電流検出装置は、インバータ機器から所定の駆動周波数の多相駆動電圧が負荷機器に印加されているときに、前記負荷機器を通じて流れる対地漏洩電流を検出する漏洩電流検出装置であって、前記インバータ機器を制御して、前記電源周波数及び前記駆動周波数のいずれとも異なる信号周波数を有する複数の信号周波数の交流電圧信号を前記多相駆動電圧の各々に互いに同相で重畳して出力させるコントローラと、前記インバータ機器と前記負荷機器とを接続する電路を流れる前記信号周波数の交流電流成分を抽出して検出する電流センサと、前記交流電圧信号の電圧を取得する電圧取得部と、前記電流センサで検出された前記交流電流成分と、前記電圧取得部で取得された前記交流電圧信号との位相差に基づいて、前記交流電流成分のうち、前記交流電圧信号に対して位相が90°ずれている対地間静電容量に流れる容量成分電流を含まない、前記交流電圧信号と同位相の抵抗成分電流を算出する処理部と、を備え、前記電圧取得部は、前記複数の信号周波数それぞれにおける前記交流電圧信号の電圧を取得し、前記処理部は、前記複数の信号周波数それぞれにおいて、前記交流電流成分のうちの前記抵抗成分電流を算出し、前記処理部は、前記複数の信号周波数それぞれにおける前記抵抗成分電流に基づいて、前記信号周波数が0Hzであるときの抵抗成分電流を、前記信号周波数に依存する対地間静電容量での誘電損失成分を含まない、正味の抵抗成分電流である絶縁抵抗成分として更に算出することを特徴としている。 In order to achieve the above object, a first leakage current detection apparatus of the present invention is a ground leakage current that flows through a load device when a multiphase drive voltage having a predetermined drive frequency is applied from the inverter device to the load device. A leakage current detecting device for detecting a plurality of AC voltage signals having a signal frequency different from both the power supply frequency and the drive frequency by controlling the inverter device, and each of the multiphase drive voltages. A controller that outputs the AC voltage component in phase with each other, a current sensor that extracts and detects an AC current component of the signal frequency flowing through an electric circuit connecting the inverter device and the load device, and a voltage of the AC voltage signal. A voltage acquisition unit to acquire; the AC current component detected by the current sensor; and the AC voltage signal acquired by the voltage acquisition unit. A resistor having the same phase as that of the AC voltage signal, which does not include a capacitive component current flowing in the ground-to-ground capacitance that is 90 ° out of phase with the AC voltage signal, based on the phase difference. A processing unit that calculates a component current , wherein the voltage acquisition unit acquires a voltage of the AC voltage signal at each of the plurality of signal frequencies, and the processing unit acquires the AC at each of the plurality of signal frequencies. The resistance component current of the current components is calculated, and the processing unit calculates the resistance component current when the signal frequency is 0 Hz based on the resistance component current at each of the plurality of signal frequencies. It is further characterized in that it is further calculated as an insulation resistance component that is a net resistance component current that does not include a dielectric loss component in the capacitance between the grounds depending on .

また、本発明の第1の対地漏洩電流検出方法は、インバータ機器から所定の駆動周波数の多相駆動電圧が負荷機器に印加されているときに、前記負荷機器を通じて流れる対地漏洩電流を検出する対地漏洩電流検出方法であって、前記インバータ機器を制御して、前記電源周波数及び前記駆動周波数のいずれとも異なる信号周波数を有する複数の信号周波数の交流電圧信号を前記多相駆動電圧の各々に互いに同相で重畳して出力させる工程と、前記インバータ機器と前記負荷機器とを接続する電路を流れる前記信号周波数の交流電流成分を抽出して検出する工程と、前記交流電圧信号の電圧を取得する電圧取得工程と、前記交流電流成分と、前記交流電圧信号との位相差に基づいて、前記交流電流成分のうち、前記交流電圧信号に対して位相が90°ずれている対地間静電容量に流れる容量成分電流を含まない、前記交流電圧信号と同位相の抵抗成分電流を算出する処理工程と、を有し、前記電圧取得工程において、前記複数の信号周波数それぞれにおける前記交流電圧信号の電圧を取得し、前記処理工程において、前記複数の信号周波数それぞれにおいて、前記交流電流成分のうちの前記抵抗成分電流を算出し、前記処理工程において、前記複数の信号周波数それぞれにおける前記抵抗成分電流に基づいて、前記信号周波数が0Hzであるときの抵抗成分電流を、前記信号周波数に依存する対地間静電容量での誘電損失成分を含まない、正味の抵抗成分電流である絶縁抵抗成分として更に算出することを特徴としている。 The first ground leakage current detection method of the present invention detects ground leakage current flowing through the load device when a multiphase drive voltage having a predetermined drive frequency is applied from the inverter device to the load device. A leakage current detecting method, comprising: controlling the inverter device so that an AC voltage signal having a plurality of signal frequencies having different signal frequencies from the power supply frequency and the drive frequency is in phase with each of the multiphase drive voltages. And a step of extracting and detecting an alternating current component of the signal frequency flowing through an electric circuit connecting the inverter device and the load device, and a voltage acquisition for acquiring the voltage of the alternating voltage signal a step, and the alternating current component, based on the phase difference between the alternating voltage signal, of the alternating current component in phase with respect to the AC voltage signal A processing step of calculating a resistance component current in the same phase as the AC voltage signal, which does not include a capacitance component current flowing in a ground-to-ground capacitance shifted by 0 °, and in the voltage acquisition step, Obtaining the voltage of the alternating voltage signal at each signal frequency, calculating the resistance component current of the alternating current component at each of the plurality of signal frequencies in the processing step; and Based on the resistance component current at each signal frequency, the resistance component current when the signal frequency is 0 Hz does not include the dielectric loss component at the electrostatic capacitance depending on the signal frequency. It is further calculated as an insulation resistance component which is a current.

本発明の第1の漏洩電流検出装置及び第1の対地漏洩電流検出方法によれば、インバータ機器を制御して、交流電圧信号又は直流電圧信号を互いに同相で多相駆動電圧の各々に重畳して出力させる。重畳される交流電圧信号又は直流電圧信号は、互いに同相であるため、モータの回転数など負荷機器の駆動に影響を与えない。その結果、負荷機器を停止させることなく活線状態で検出を行うことができる。
そして、負荷機器からの対地漏洩がない場合には、重畳された信号周波数の交流電流成分又は直流電流成分の電流は電路に流れない。一方、負荷機器の絶縁劣化等により対地漏洩がある場合には、重畳された信号周波数の交流電流成分又は直流電流成分の電流が電路に流れる。
この信号周波数成分は、電源周波数及び駆動周波数のいずれとも異なるため、信号周波数成分を抽出することにより、電源周波数成分及び負荷機器の駆動周波数成分による磁界ノイズ及び容量結合ノイズの影響を低減することができる。その結果、信号周波数成分の対地漏洩電流を精度良く検出することができる。
さらに、信号周波数を低下させるほど、対地間静電容量に流れる対地漏洩電流(容量成分電流)が減少するため、負荷機器の絶縁抵抗の劣化により流れる対地漏洩電流(抵抗成分電流)の検出精度を向上させることができる。
このように、本発明の第1の漏洩電流検出装置及び第1の対地漏洩電流検出方法によれば、活線状態でノイズの影響を低減して対地漏洩電流を精度良く検出することができる。
According to the first leakage current detection device and the first ground leakage current detection method of the present invention, the inverter device is controlled to superimpose an AC voltage signal or a DC voltage signal on each of the multiphase drive voltages in the same phase. Output. Since the superimposed AC voltage signal or DC voltage signal is in phase with each other, it does not affect the driving of the load device such as the rotational speed of the motor. As a result, detection can be performed in a live line state without stopping the load device.
Then, when there is no ground leakage from the load device, the alternating current component of the superimposed signal frequency or the current of the direct current component does not flow through the electric circuit. On the other hand, when there is a ground leakage due to insulation deterioration of the load equipment, an alternating current component or a direct current component current of the superimposed signal frequency flows through the electric circuit.
Since this signal frequency component is different from both the power supply frequency and the drive frequency, the influence of magnetic field noise and capacitive coupling noise due to the power frequency component and the drive frequency component of the load device can be reduced by extracting the signal frequency component. it can. As a result, the ground leakage current of the signal frequency component can be detected with high accuracy.
Furthermore, as the signal frequency is lowered, the ground leakage current (capacitance component current) that flows in the capacitance between the ground decreases, so the detection accuracy of the ground leakage current (resistance component current) that flows due to the deterioration of the insulation resistance of the load equipment is improved. Can be improved.
As described above, according to the first leakage current detection device and the first ground leakage current detection method of the present invention, it is possible to detect the ground leakage current with high accuracy by reducing the influence of noise in a live line state.

本発明の第1及び第2実施形態に係る漏洩電流検出装置の構成を示す図である。It is a figure which shows the structure of the leakage current detection apparatus which concerns on 1st and 2nd embodiment of this invention. (a)は、交流電源から出力される3相交流電圧波形を示し、(b)は、インバータ機器における整流後の対地電圧のプラス電圧波形とマイナス電圧波形を示し、(c)は、インバータ機器の出力波形を示す。(A) shows the three-phase AC voltage waveform output from the AC power supply, (b) shows the positive voltage waveform and negative voltage waveform of the ground voltage after rectification in the inverter device, and (c) shows the inverter device. The output waveform of is shown. (a)は、インバータ機器の出力波形に含まれる商用周波数成分波形を示し、(b)は、インバータ機器の出力波形に含まれるU相のモータ回転周期成分波形を示し、(c)は、インバータ機器の出力波形に含まれるV相のモータ回転周期成分波形を示し、(d)は、インバータ機器の出力波形に含まれるW相のモータ回転周期成分波形を示す。(A) shows the commercial frequency component waveform included in the output waveform of the inverter device, (b) shows the U-phase motor rotation period component waveform included in the output waveform of the inverter device, and (c) shows the inverter The V phase motor rotation cycle component waveform included in the output waveform of the device is shown, and (d) shows the W phase motor rotation cycle component waveform included in the output waveform of the inverter device. インバータ機器の出力波形図であり、(a)は、U相の商用周波数成分とモータ回転周期成分の合成電圧波形を示し、(b)は、V相の商用周波数成分とモータ回転周期成分の合成電圧波形を示し、(c)は、W相の商用周波数成分とモータ回転周期成分の合成電圧波形を示す。It is an output waveform figure of an inverter apparatus, (a) shows the synthetic | combination voltage waveform of a commercial frequency component of U phase and a motor rotation period component, (b) is a synthesis | combination of the commercial frequency component of V phase and a motor rotation period component. A voltage waveform is shown, (c) shows the synthetic | combination voltage waveform of the commercial frequency component of W phase, and a motor rotation period component. 電流センサで検出する電流波形図であり、(a)は、UVW相の各々に同じ値の容量成分電流が存在する場合の対地漏洩電流波形を示し、(b)は、U相に抵抗成分電流が存在する場合の電流波形を示す。It is a current waveform diagram detected by a current sensor, (a) shows a ground leakage current waveform when a capacitance component current of the same value exists in each of the UVW phases, (b) shows a resistance component current in the U phase. The current waveform in the case where is present is shown. (a)は、重畳される低周波小信号の波形を示し、(b)は、低周波小信号を重畳させたインバータ機器のU相の出力波形を示し、(c)は、低周波小信号を重畳させたインバータ機器のV相の出力波形を示し、(d)は、低周波小信号を重畳させたインバータ機器のW相の出力波形を示す。(A) shows the waveform of the low-frequency small signal to be superimposed, (b) shows the U-phase output waveform of the inverter device on which the low-frequency small signal is superimposed, and (c) shows the low-frequency small signal. (D) shows the output waveform of the W phase of the inverter device on which the low-frequency small signal is superimposed. 低周波小信号を重畳させた対地漏洩電流波形図であり、(a)は、UVW相の各々に同じ値の容量成分電流が存在する場合の対地漏洩電流波形を示し、(b)は、U相に抵抗成分電流が存在する場合の電流波形を示す。It is a ground leakage current waveform diagram in which a low frequency small signal is superimposed, and (a) shows a ground leakage current waveform when a capacitive component current of the same value exists in each UVW phase, and (b) shows U The current waveform when a resistance component current exists in a phase is shown. 対地漏洩電流の抵抗成分電流と容量成分電流との関係を示す電流ベクトルを示す。The current vector which shows the relationship between the resistance component current and the capacitance component current of the ground leakage current is shown. (a)及び(b)は、信号周波数と抵抗成分電流との関係を模式的に示すグラフである。(A) And (b) is a graph which shows typically the relationship between a signal frequency and resistance component current. 本発明の第3及び第4実施形態に係る漏洩電流検出装置の構成を示す図である。It is a figure which shows the structure of the leakage current detection apparatus which concerns on 3rd and 4th embodiment of this invention.

以下、図面を参照して、本発明に係る漏洩電流検出装置及び対地漏洩電流検出方法の実施形態を説明する。   Hereinafter, embodiments of a leakage current detection device and a ground leakage current detection method according to the present invention will be described with reference to the drawings.

[第1実施形態]
まず、第1実施形態として、本発明の第1の漏洩電流検出装置及び第1の対地漏洩電流検出方法の一例を説明する。
[First Embodiment]
First, as a first embodiment, an example of a first leakage current detection device and a first ground leakage current detection method of the present invention will be described.

図1に示すように、本実施形態に係る漏洩電流検出装置は、所定の電源周波数の交流電源としての商用交流電源1を電源とするインバータ機器2から所定の駆動周波数の多相駆動電圧が負荷機器としての三相モータ3に印加されている電路を測定対象とし、活線状態で、三相モータ3の絶縁抵抗を通じて流れる対地漏洩電流を検出可能に構成されている。   As shown in FIG. 1, the leakage current detection device according to the present embodiment is loaded with a multiphase drive voltage of a predetermined drive frequency from an inverter device 2 that uses a commercial AC power supply 1 as an AC power supply of a predetermined power supply frequency as a power source. The electric circuit applied to the three-phase motor 3 as a device is an object to be measured, and the ground leakage current flowing through the insulation resistance of the three-phase motor 3 can be detected in a live line state.

そのために、本実施形態の漏洩電流検出装置は、インバータ機器2を制御して、インバータ機器2に交流電圧信号を重畳して出力させるコントローラ5と、インバータ機器2と三相モータ3とを接続する三相三線の電路4を流れる電流を検出する電流センサ6とをから構成されている。   For this purpose, the leakage current detection apparatus of the present embodiment controls the inverter device 2 to connect the inverter device 2 and the three-phase motor 3 to the controller 5 that superimposes and outputs an AC voltage signal to the inverter device 2. And a current sensor 6 for detecting a current flowing through the three-phase three-wire electric circuit 4.

さらに、本実施形態の漏洩電流検出装置は、交流電圧信号の電圧を取得する電圧取得部7と、電流センサ6で検出された交流電流成分と、電圧取得部7で取得された交流電圧信号とを処理する処理部8とを備えている。
電圧取得部7は、例えば、電圧計で構成することができる。また、処理部8は、例えば、マイクロコンピュータで構成することができる。
Furthermore, the leakage current detection apparatus of this embodiment includes a voltage acquisition unit 7 that acquires the voltage of the AC voltage signal, an AC current component detected by the current sensor 6, and an AC voltage signal acquired by the voltage acquisition unit 7. And a processing unit 8 for processing.
The voltage acquisition part 7 can be comprised with a voltmeter, for example. Further, the processing unit 8 can be configured by a microcomputer, for example.

コントローラ5は、インバータ機器2において、三相モータ3の各相(U,V,W)に入力される駆動電圧(UV,VV,WV)を生成するスイッチング素子(図示せず)を制御して、各相の駆動電圧(UV,VV,WV)に、互いに同相の交流電圧信号を重畳させてインバータ機器2から出力させる。   The controller 5 controls switching elements (not shown) that generate drive voltages (UV, VV, WV) input to the phases (U, V, W) of the three-phase motor 3 in the inverter device 2. The AC voltage signals having the same phase are superimposed on the driving voltages (UV, VV, WV) of each phase and output from the inverter device 2.

インバータ機器2は、三相モータ3の各相の駆動電圧をPWM制御して出力している。PWM制御に使用されるデューティー比は、0〜100%の全範囲の場合もあるが、0〜100%の全範囲が使用されない場合もある。
そこで、コントローラ5は、負荷機器3の駆動電圧のPWM制御に使用されていない部分のデューティー比を利用することにより、交流電圧信号を駆動電圧に重畳して出力させる。例えば、PWM制御にデューティー比0〜95%の範囲が使用されている場合、コントローラ5は、残りのデューティー比95〜100%の範囲内においてインバータ機器2を更に制御して交流電圧信号を駆動電圧に重畳して出力させる。
The inverter device 2 outputs the drive voltage of each phase of the three-phase motor 3 by PWM control. The duty ratio used for PWM control may be in the entire range of 0 to 100%, but may not be used in the entire range of 0 to 100%.
Therefore, the controller 5 superimposes the AC voltage signal on the drive voltage and outputs it by using the duty ratio of the portion not used for the PWM control of the drive voltage of the load device 3. For example, when the duty ratio range of 0 to 95% is used for PWM control, the controller 5 further controls the inverter device 2 within the remaining duty ratio range of 95 to 100% to drive the AC voltage signal to the drive voltage. Superimposed on the output.

重畳される交流電圧信号は、互いに同相であるため、三相モータ3の回転数に影響を与えない。その結果、三相モータ3を停止させることなく活線状態で対地漏洩電流の検出を行うことができる。   Since the superimposed AC voltage signals are in phase with each other, the rotational speed of the three-phase motor 3 is not affected. As a result, the ground leakage current can be detected in the live line state without stopping the three-phase motor 3.

ここで、交流電圧信号の信号周波数は、商用交流電源1の電源周波数(例えば、50Hz又は60Hz)及び駆動周波数(例えば、200Hz)のいずれとも異なり、好ましくは、いずれよりも低く、例えば、10Hz〜20Hzである。
また、交流電圧信号の電圧は、各相の駆動電圧(UV,VV,WV、例えば、100V)よりも低く、例えば、5〜10Vである。以下、本実施形態において重畳される交流電圧信号を「低周波小信号」とも称する。
なお、コントローラ5は、インバータ機器2と一体として設けてもよいし、インバータ機器2と別体として設けてもよい。
Here, the signal frequency of the AC voltage signal is different from both the power supply frequency (for example, 50 Hz or 60 Hz) and the drive frequency (for example, 200 Hz) of the commercial AC power supply 1, and is preferably lower than either, for example, 10 Hz to 20 Hz.
The voltage of the AC voltage signal is lower than the driving voltage (UV, VV, WV, for example, 100 V) of each phase, and is, for example, 5 to 10 V. Hereinafter, the alternating voltage signal superimposed in the present embodiment is also referred to as “low frequency small signal”.
The controller 5 may be provided integrally with the inverter device 2 or may be provided separately from the inverter device 2.

電流センサ6は、電路4が貫通するように構成された零相変流器61と、零相変流器(ZCT)61の零相電流のうち信号周波数の成分を抽出して検出する検出部62とから構成されている。零相変流器61は、例えば、クランプタイプとして電路4に設置することができる。   The current sensor 6 includes a zero-phase current transformer 61 configured to penetrate the electric circuit 4 and a detection unit that extracts and detects a signal frequency component from the zero-phase current of the zero-phase current transformer (ZCT) 61. 62. The zero-phase current transformer 61 can be installed in the electric circuit 4 as a clamp type, for example.

零相変流器61は、インバータ機器2と三相モータ3との間の電路4に流れる三相の合成された零相電流を測定する。この零相電流は、電路4の対地間静電容量(C)各相の容量成分電流(Iocu,Iocv,Iosw)と、絶縁抵抗(R)を介して三相モータ3各相から大地に流れる抵抗成分電流(Iv,Iu,Iw)とを合成した値(Iocu+Iocv+Iosw+Iv+Iu+Iw)として測定される。
このとき、三相モータ3を通じての対地漏洩がない場合には、重畳された低周波小信号の信号周波数成分の電流は電路4に流れない。一方、三相モータ3の絶縁劣化等により対地漏洩がある場合には、重畳された低周波小信号の信号周波数成分の電流も電路4に流れることになる。
The zero-phase current transformer 61 measures a three-phase combined zero-phase current flowing in the electric circuit 4 between the inverter device 2 and the three-phase motor 3. This zero-phase current flows from each phase of the three-phase motor 3 to the ground via the capacitance component current (Iocu, Iocv, Isw) of each phase electrostatic capacitance (C) of the electric circuit 4 and the insulation resistance (R). It is measured as a value (Iocu + Iocv + Ios + Iv + Iu + Iw) obtained by combining the resistance component currents (Iv, Iu, Iw).
At this time, when there is no ground leakage through the three-phase motor 3, the current of the signal frequency component of the superimposed low frequency small signal does not flow through the electric circuit 4. On the other hand, when there is a ground leakage due to insulation deterioration of the three-phase motor 3 or the like, the current of the signal frequency component of the superimposed low frequency small signal also flows through the electric circuit 4.

検出部62は、例えば、ローパスフィルタ、バンドパスフィルタなどの周波数フィルタを備え、零相変流器61が検出した零相電流(Iocu+Iocv+Iosw+Iv+Iu+Iw)のうち、低周波小信号の信号周波数の交流電流成分を抽出して対地漏洩電流Ioとして検出する。
この信号周波数成分は、商用交流電源1の周波数(例えば、50Hz又は60Hz)及び三相モータ3の駆動周波数(例えば、200Hz)のいずれよりも低い周波数(例えば、10Hz〜20Hz)であるため、信号周波数成分を抽出することにより、商用交流電源1の周波数成分及び三相モータの駆動周波数成分による磁界ノイズ及び容量結合ノイズの影響を低減することができる。さらに、信号周波数成分が低周波数であるため、容量成分電流の影響も低減することができる。その結果、本実施形態の漏洩電流検出装置及び方法によれば、活線状態でノイズの影響を低減して対地漏洩電流を精度良く検出することができる。
The detection unit 62 includes, for example, a frequency filter such as a low-pass filter or a band-pass filter, and among the zero-phase currents (Ioc + Iocv + Ios + Iv + Iu + Iw) detected by the zero-phase current transformer 61, an alternating current component of the signal frequency of the low-frequency small signal is detected. Extracted and detected as ground leakage current Io.
Since this signal frequency component is a frequency (for example, 10 Hz to 20 Hz) lower than either the frequency of the commercial AC power supply 1 (for example, 50 Hz or 60 Hz) and the driving frequency of the three-phase motor 3 (for example, 200 Hz), By extracting the frequency component, it is possible to reduce the influence of magnetic field noise and capacitive coupling noise due to the frequency component of the commercial AC power supply 1 and the driving frequency component of the three-phase motor. Furthermore, since the signal frequency component is a low frequency, the influence of the capacitance component current can be reduced. As a result, according to the leakage current detection apparatus and method of the present embodiment, it is possible to accurately detect the ground leakage current by reducing the influence of noise in a live line state.

ここで、図2〜図7の波形図を参照して、本実施形態の漏洩電流検出装置の動作例を説明する。
図2(a)に、交流電源から出力される3相交流電圧波形を示す。同図では、R相、S相及びT相の対地電圧波形をそれぞれ曲線I,II及びIIIで示す。
図1に示したS相を接地した三相デルタ結線方式の配電形態を有する商用交流電源1では、図2(a)に示すように、三相のうちS相が接地相となるため0Vとなり、R相とT相の対地電圧波形が、位相が互いに60°ずれた正弦波となる。
Here, an example of the operation of the leakage current detection device of the present embodiment will be described with reference to the waveform diagrams of FIGS.
FIG. 2A shows a three-phase AC voltage waveform output from the AC power supply. In the figure, the ground voltage waveforms of R phase, S phase and T phase are shown by curves I, II and III, respectively.
In the commercial AC power supply 1 having a three-phase delta connection type distribution form in which the S phase shown in FIG. 1 is grounded, as shown in FIG. The ground voltage waveforms of the R phase and the T phase are sine waves whose phases are shifted from each other by 60 °.

インバータ機器2では、入力される正弦波を、ダイオード及び平滑コンデンサ(図示せず)を介して整流する。図2(b)に、インバータ機器2における整流後のプラス電圧波形IVとマイナス電圧波形Vを示す。プラス電圧波形IVは、R,S,T相の最大値をトレースした形となり、マイナス電圧波形Vは、R,S,T相の最小値をトレースした形となっている。このプラス電圧とマイナス電圧との間の電圧が直流電圧として使用される。   In the inverter device 2, the input sine wave is rectified via a diode and a smoothing capacitor (not shown). FIG. 2B shows a positive voltage waveform IV and a negative voltage waveform V after rectification in the inverter device 2. The positive voltage waveform IV has a form in which the maximum values of the R, S, and T phases are traced, and the negative voltage waveform V has a form in which the minimum values of the R, S, and T phases are traced. A voltage between the plus voltage and the minus voltage is used as a DC voltage.

インバータ機器2において、整流された直流電圧は、更にスイッチング素子(図示せず)でON/OFF制御される。ON/OFF制御によりキャリア周波数のDutyを変化させるPWM制御により、所望の三相モータ3の回転周波数が生成される。その結果、インバータ機器2の出力波形は、図2(c)に示すように、図2(b)に示したプラス電圧波形IVとマイナス電圧波形Vとの間を行き来する波形となる。
なお、図2(c)に示すインバータ出力波形は、低周波小信号を重畳していないものを示している。
In the inverter device 2, the rectified DC voltage is further ON / OFF controlled by a switching element (not shown). The desired rotation frequency of the three-phase motor 3 is generated by PWM control that changes the duty of the carrier frequency by ON / OFF control. As a result, the output waveform of the inverter device 2 is a waveform that goes back and forth between the positive voltage waveform IV and the negative voltage waveform V shown in FIG. 2B, as shown in FIG.
Note that the inverter output waveform shown in FIG. 2C shows a waveform in which a low-frequency small signal is not superimposed.

図2(c)に示すインバータの出力波形には、以下の1〜3の周波数成分が含まれている。
1.キャリア周波数成分(例えば、1kHz以上)
2.商用交流電源1の周波数成分(例えば、50Hz又は60Hz)
3.三相モータ3の回転周期成分(例えば、200Hz)
The output waveform of the inverter shown in FIG. 2C includes the following frequency components 1 to 3.
1. Carrier frequency component (for example, 1kHz or more)
2. Frequency component of commercial AC power supply 1 (for example, 50 Hz or 60 Hz)
3. Rotational period component of the three-phase motor 3 (for example, 200 Hz)

図3(a)に、インバータ機器の出力波形に含まれる商用周波数成分波形Iを示す。同図に示すように、商用周波数成分波形Iは、商用交流電源1の周波数成分と同じであり、商用交流電源1の周波数が例えば50Hzならば50Hzであり、商用交流電源1の周波数が例えば60Hzならば60Hzとなる。この商用周波数成分は、三相モータ3の各相(U,V,W)にそれぞれ入力される出力波形に互いに同相で存在している。
なお、実際には、インバータ機器2の出力波形にキャリア周波数成分が重畳されているが、発明の理解を容易にするため、図3(a)では、キャリア周波数成分を除去した波形を示している。以下、図3〜図7の各波形図においても同様である。
FIG. 3A shows a commercial frequency component waveform I included in the output waveform of the inverter device. As shown in the figure, the commercial frequency component waveform I is the same as the frequency component of the commercial AC power supply 1, and is 50 Hz if the frequency of the commercial AC power supply 1 is 50 Hz, for example, and the frequency of the commercial AC power supply 1 is 60 Hz, for example. Then, it becomes 60 Hz. This commercial frequency component exists in phase with each other in the output waveforms respectively input to the phases (U, V, W) of the three-phase motor 3.
In practice, a carrier frequency component is superimposed on the output waveform of the inverter device 2, but in order to facilitate understanding of the invention, FIG. 3A shows a waveform from which the carrier frequency component is removed. . The same applies to the waveform diagrams of FIGS.

次に、図3(b)、図3(c)及び図3(d)に、それぞれインバータ機器2の出力波形に含まれる、三相モータ3のU相、V相及びW相の回転周期成分波形II,III及びIVを示す。U相、V相及びW相の回転周期成分波形II,III及びIVは、位相が互いに120°ずれている。U相の位相を基準(0°)とすると、V相は120°、W相は240°ずれた位相となっている。   Next, in FIG. 3B, FIG. 3C, and FIG. 3D, the rotation period components of the U-phase, V-phase, and W-phase of the three-phase motor 3 included in the output waveform of the inverter device 2, respectively. Waveforms II, III and IV are shown. The U-phase, V-phase, and W-phase rotation period component waveforms II, III, and IV are 120 ° out of phase with each other. If the phase of the U phase is the reference (0 °), the V phase is shifted by 120 ° and the W phase is shifted by 240 °.

実際のインバータ機器2の出力には、図3(a)に示した商用周波数成分と、図3(b),図3(c),図3(d)に示したモータ回転周期成分とが含まれ、図4(a),図4(b),図4(c)に示す合成電圧波形I,II,IIIとなっている。
図4(a)に示すU相の合成電圧波形I、図4(b)に示すV相の合成電圧波形II、図4(c)に示すW相の合成電圧波形IIIは、いずれも、商用周波数とモータ回転周期との差分に応じたうなり波形となっている。
The actual output of the inverter device 2 includes the commercial frequency component shown in FIG. 3A and the motor rotation period component shown in FIGS. 3B, 3C, and 3D. Thus, the composite voltage waveforms I, II, and III shown in FIGS. 4 (a), 4 (b), and 4 (c) are obtained.
The U-phase composite voltage waveform I shown in FIG. 4A, the V-phase composite voltage waveform II shown in FIG. 4B, and the W-phase composite voltage waveform III shown in FIG. It has a beat waveform corresponding to the difference between the frequency and the motor rotation period.

次に、図5に、電流センサ6で検出する電流波形図を示す。インバータ機器2の出力側に絶縁抵抗及び対地静電容量が存在する場合、図4に示した合成電圧波形に対応した対地漏洩電流が流れる。電流センサ6の零相変流器61の零相電流は、各相の対地漏洩電流の合算値となる。このため、零相電流の電流波形は、各相の抵抗成分電流と容量成分電流に応じて変化する。   Next, FIG. 5 shows a current waveform diagram detected by the current sensor 6. When an insulation resistance and a ground capacitance exist on the output side of the inverter device 2, a ground leakage current corresponding to the combined voltage waveform shown in FIG. 4 flows. The zero-phase current of the zero-phase current transformer 61 of the current sensor 6 is a total value of the ground leakage current of each phase. For this reason, the current waveform of the zero-phase current changes according to the resistance component current and the capacitance component current of each phase.

容量成分電流は、三相モータ3の配線長さや三相モータ3内部の電線長さで決まるため、三相モータ3のU相、V相及びW相にそれぞれ同じ値の容量成分電流が存在する容量成分電流は基本的に互いに同量となる。三相モータ3の各相の回転周期成分が120°ずつずれているため、各相の容量成分電流の合算値は0となる。したがって、三相モータ3の絶縁劣化がない良好な状態の場合には、商用周波数成分のみが残り、図5(a)に示す電流波形Iとなる。
なお、図5(a)に示す電流波形Iは、電圧波形に対して90°進んでいる。
Since the capacity component current is determined by the wiring length of the three-phase motor 3 and the length of the electric wire inside the three-phase motor 3, there are capacity component currents of the same value in the U phase, V phase and W phase of the three phase motor 3, respectively. The capacitive component currents are basically the same amount. Since the rotation period component of each phase of the three-phase motor 3 is shifted by 120 °, the total value of the capacity component current of each phase is zero. Therefore, when the three-phase motor 3 is in a good state with no insulation deterioration, only the commercial frequency component remains, and a current waveform I shown in FIG.
Note that the current waveform I shown in FIG. 5A is advanced by 90 ° with respect to the voltage waveform.

一方、三相モータ3の絶縁劣化が発生した場合には、絶縁劣化が発生した相の電圧波形に同期した対地漏洩電流が流れる。このため、例えば、U相に絶縁劣化が発生した場合の電流波形は、図5(b)に波形IIで示すように、図4(a)の合成電圧波形Iと同じ波形となり、商用交流電源1の周波数成分及び三相モータ3の回転周期成分が含まれている。
なお、V相又はW相に絶縁劣化が発生した場合の電流波形も、位相が120°ずつずれているだけでU相の電流波形IIと同様の波形となる。
On the other hand, when the insulation deterioration of the three-phase motor 3 occurs, a ground leakage current synchronized with the voltage waveform of the phase where the insulation deterioration occurs flows. For this reason, for example, the current waveform when the insulation deterioration occurs in the U phase becomes the same waveform as the combined voltage waveform I in FIG. 4A as shown by the waveform II in FIG. 1 frequency component and the rotation period component of the three-phase motor 3 are included.
It should be noted that the current waveform when the insulation deterioration occurs in the V-phase or W-phase is the same as the U-phase current waveform II just by shifting the phase by 120 °.

このように、図5(a)に示す電流波形Iには、商用交流電源1の周波数成分が含まれ、また、図5(b)に示す電流波形IIには、商用交流電源1の周波数成分及び三相モータ3の回転周期成分が含まれている。これらの成分は、ノイズとして、零相変流器を用いた対地漏洩電流検出に悪影響を与え、誤差の原因となってしまう。   As described above, the current waveform I shown in FIG. 5A includes the frequency component of the commercial AC power supply 1, and the current waveform II shown in FIG. 5B includes the frequency component of the commercial AC power supply 1. And the rotation period component of the three-phase motor 3 is included. These components, as noise, adversely affect ground leakage current detection using a zero-phase current transformer and cause errors.

そこで、本実施形態では、インバータ機器3を制御して、低周波小信号を互いに同相で各相に重畳して、インバータ機器2から出力させる。
その結果、U相の出力波形は、図4(a)の合成電圧波形Iに、図6(a)に示す低周波小信号波形Iを重畳させた図6(b)に示す出力波形IIとなる。
同様に、V相の出力波形は、図4(b)の合成電圧波形IIに、図6(a)に示す低周波小信号波形Iを重畳させた図6(c)に示す出力波形IIIとなる。
同様に、W相の出力波形は、図4(b)の合成電圧波形IIに、図6(a)に示す低周波信小号波形Iを重畳させた図6(d)に示す出力波形IVとなる。
Therefore, in this embodiment, the inverter device 3 is controlled so that the low-frequency small signals are superimposed on each phase in the same phase and output from the inverter device 2.
As a result, the U-phase output waveform is the same as the output waveform II shown in FIG. 6B in which the low-frequency small signal waveform I shown in FIG. 6A is superimposed on the combined voltage waveform I shown in FIG. Become.
Similarly, the V-phase output waveform is the same as the output waveform III shown in FIG. 6C in which the low-frequency small signal waveform I shown in FIG. 6A is superimposed on the composite voltage waveform II shown in FIG. Become.
Similarly, the output waveform of the W phase is the output waveform IV shown in FIG. 6 (d) in which the low frequency signal small waveform I shown in FIG. 6 (a) is superimposed on the composite voltage waveform II shown in FIG. 4 (b). It becomes.

これにより、電流波形I三相モータ3の絶縁劣化がない良好な状態の場合、図5(a)に示した電流波形Iは、図6(a)に示した低周波小信号波形Iに応じた信号成分が重畳されて、図7(a)に示す電流波形Iとなる。   Thus, when the current waveform I is in a good state with no insulation deterioration of the three-phase motor 3, the current waveform I shown in FIG. 5A corresponds to the low-frequency small signal waveform I shown in FIG. The signal components are superimposed to obtain a current waveform I shown in FIG.

一方、例えば、U相に絶縁劣化が発生した場合の電流波形は、図5(b)に示した電流波形IIに、図6(a)に示した低周波小信号波形Iに応じた信号周波数成分が重畳されて、図7(b)に示す電流波形IIとなる。
そして、検出部62で信号周波数の交流電流成分を抽出することにより、商用交流電源1の周波数成分及び三相モータ3の駆動周波数成分による磁界ノイズの影響を低減することができるため、対地漏洩電流を精度良く検出することができる。
On the other hand, for example, when the insulation deterioration occurs in the U phase, the current waveform is the current waveform II shown in FIG. 5B and the signal frequency corresponding to the low-frequency small signal waveform I shown in FIG. The components are superimposed to obtain a current waveform II shown in FIG.
And since the influence of the magnetic field noise by the frequency component of the commercial AC power supply 1 and the drive frequency component of the three-phase motor 3 can be reduced by extracting the alternating current component of the signal frequency by the detection unit 62, the ground leakage current Can be detected with high accuracy.

[容量成分電流の分離]
ところで、本実施形態では、重畳する低周波小信号又は印加する低周波信号が交流電圧信号であるため、信号周波数の交流電流成分として検出された対地漏洩電流Iには、絶縁劣化による抵抗成分電流Iorだけでなく、対地間静電容量に流れる容量成分電流Iocも含まれる。
[Separation of capacitance component current]
By the way, in this embodiment, since the low frequency small signal to be superimposed or the low frequency signal to be applied is an AC voltage signal, the ground leakage current I 0 detected as the AC current component of the signal frequency has a resistance component due to insulation degradation. current Ior well, also included a capacity component current I oc flowing through the ground between the electrostatic capacitance.

抵抗成分電流Iorの電流ベクトルの位相は、電圧波形の位相と同位相である。一方、容量成分電流Iocの電流ベクトルの位相は、電圧波形の位相Vに対して90°進んでいる。このため、図8に示すように、対地漏洩電流(交流電流成分)Iは、抵抗成分電流Iorと、誘容量成分電流Iocとの合成ベクトルとなる。 The phase of the current vector of the resistance component current Ior is the same as the phase of the voltage waveform. On the other hand, the phase of the current vector of the capacitive component current I oc is advanced by 90 ° with respect to the phase V of the voltage waveform. Therefore, as shown in FIG. 8, the ground leakage current (alternating current component) I 0 is a combined vector of the resistance component current Ior and the induced capacitance component current I oc .

容量成分電流Iocは、周波数に比例するため、信号周波数が低いいほど、対地漏洩電流Iの検出に与える容量成分電流Iocの影響を低減することができる。したがって、信号周波数は、電源周波数及び駆動周波数のいずれよりも低いことが好ましい。 Since the capacitance component current I oc is proportional to the frequency, the influence of the capacitance component current I oc on the detection of the ground leakage current I 0 can be reduced as the signal frequency is lower. Therefore, the signal frequency is preferably lower than both the power supply frequency and the drive frequency.

本実施形態においては、対地漏洩電流をより精度良く検出するため、処理部8は、電流センサ6で検出された交流電流成分Iと、電圧取得部7で取得された交流電圧信号Vとから位相差θを求め、この位相差θに基づいて、交流電流成分Iのうち、前記交流電圧信号に対して位相が90°ずれている対地間静電容量に流れる容量成分電流Iocを含まない、交流電圧信号と同位相の抵抗成分電流Iorを算出する。 In the present embodiment, in order to more accurately detect the ground leakage current, processor 8 from the alternating current component I o detected by the current sensor 6, and an AC voltage signal V obtained by the voltage acquiring section 7 A phase difference θ is obtained, and based on the phase difference θ, a capacitance component current I oc flowing in the capacitance between the grounds that is 90 ° out of phase with the AC voltage signal is included in the AC current component I o. The resistance component current Ior having the same phase as that of the AC voltage signal is calculated.

具体的には、処理部8は、下記の式(1)により、抵抗成分電流Iorを算出する。
Ior=Icosθ ・・・(1)
このように、容量成分電流の分離することにより、対地漏洩電流をより精度良く検出することできる。
Specifically, the processing unit 8 calculates the resistance component current Ior by the following equation (1).
Ior = I o cos θ (1)
Thus, by separating the capacitive component current, the ground leakage current can be detected with higher accuracy.

なお、処理部8は、交流電源1の電圧と、コントローラ5がインバータ機器2を制御する制御信号とから、交流電圧信号Vの電圧を算出するとともに、制御信号のタイミングに基づいて、交流電流成分Iと交流電圧信号Vとの位相差θを求めることにより取得してもよい。その場合、処理部8が電圧取得部7を兼ねることができる。 The processing unit 8 calculates the voltage of the AC voltage signal V from the voltage of the AC power source 1 and the control signal for the controller 5 to control the inverter device 2, and based on the timing of the control signal, the AC current component You may acquire by calculating | requiring the phase difference (theta) of Io and the alternating voltage signal V. FIG. In that case, the processing unit 8 can also serve as the voltage acquisition unit 7.

[誘電損失の分離]
ところで、従来は、工場設備の漏洩電流を検出する場合、通常、設備全体での対地漏洩電流が測定されていた。その場合の対地漏洩電流の検出精度には、例えば、ミリアンペア(mA)のオーダーの精度が必要であった。
これに対し、1つの三相モータのような負荷機器3を通じて流れる対地漏洩電流を検出する場合の検出精度には、例えば、マイクロアンペア(μA)のオーダーの精度が必要となることがある。
[Dielectric loss separation]
By the way, conventionally, when detecting the leakage current of a factory facility, the ground leakage current in the entire facility is usually measured. In this case, the ground leakage current detection accuracy requires, for example, an accuracy of the order of milliamperes (mA).
On the other hand, the detection accuracy in the case of detecting the ground leakage current flowing through the load device 3 such as one three-phase motor may require an accuracy of the order of microamperes (μA), for example.

そこで、本実施形態では、対地漏洩電流をより一層精度良く検出するため、処理部8は、誘電損失Lを含まない、正味の抵抗成分電流である絶縁抵抗成分を更に算出する。
誘電損失Lは、対地間静電容量に電流電圧が印加されたときに、抵抗と同様に熱が発生する現象であり、図8に示すように、電圧波形Vの位相と同位相を有する。
Therefore, in this embodiment, in order to detect the ground leakage current with higher accuracy, the processing unit 8 further calculates an insulation resistance component that does not include the dielectric loss L and is a net resistance component current.
The dielectric loss L is a phenomenon in which heat is generated in the same manner as the resistance when a current voltage is applied to the capacitance between the ground and has the same phase as the phase of the voltage waveform V as shown in FIG.

正味の抵抗成分電流は、信号周波数が変化しても変化しない特性を有する。一方、誘電損失は、周波数が上昇すると増加する特性を有する。このため、この特性の違いを利用して、抵抗成分電流Iorから正味の抵抗成分電流(絶縁抵抗成分)を誘電損失と分離して算出することができる。   The net resistance component current has a characteristic that does not change even if the signal frequency changes. On the other hand, the dielectric loss has a characteristic of increasing as the frequency increases. Therefore, by utilizing this difference in characteristics, the net resistance component current (insulation resistance component) can be calculated from the resistance component current Ior separately from the dielectric loss.

誘電損失Lを分離するため、コントローラ8は、インバータ機器2に、複数の信号周波数の交流電圧信号を前記電路に重畳して出力させる。電圧取得部7は、複数の信号周波数それぞれにおける交流電圧信号の電圧を取得する。
なお、複数の信号周波数は、同時に重畳しても良いし、タイミングをずらして重畳してもよい。
In order to separate the dielectric loss L, the controller 8 causes the inverter device 2 to output an AC voltage signal having a plurality of signal frequencies superimposed on the electric circuit. The voltage acquisition unit 7 acquires the voltage of the AC voltage signal at each of a plurality of signal frequencies.
A plurality of signal frequencies may be superimposed at the same time or may be superimposed at different timings.

そして、処理部8は、複数の信号周波数それぞれにおいて、対地漏洩電流Iのうちの抵抗成分電流Iorを、上記の式(1)に従って算出する。続いて、処理部8は、複数の信号周波数それぞれにおける抵抗成分電流Iorに基づいて、信号周波数が0Hzであるときの抵抗成分電流を、信号周波数に依存する対地間静電容量での誘電損失成分を含まない、正味の抵抗成分電流である絶縁抵抗成分として更に算出する。 Then, the processing unit 8, in each of the plurality of signal frequencies, the resistive component current Ior of the ground leakage current I o, is calculated according to the above equation (1). Subsequently, based on the resistance component current Ior at each of the plurality of signal frequencies, the processing unit 8 converts the resistance component current when the signal frequency is 0 Hz into the dielectric loss component at the capacitance between the grounds depending on the signal frequency. Is further calculated as an insulation resistance component that is a net resistance component current that does not include.

具体的には、例えば、誘電損失の周波数変化を、図9(a)のグラフに直線Iで示す1次関数と仮定して、表1に示す少なくとも2つ信号周波数(f1及びf2)における抵抗成分電流(Ior1及びIor2)及び交流電圧信号(V1及びV2)に基づいて、以下の連立方程式(2)及び(3)を解いて、正味の抵抗成分電流である絶縁抵抗成分Iを算出するとよい。
図9(a)のグラフにおいて、絶縁抵抗成分は、信号周波数=0Hzのときの抵抗成分電流(Ior1)、即ち、直線Iの切片の値に相当する。
Specifically, for example, assuming that the frequency change of the dielectric loss is a linear function indicated by a straight line I in the graph of FIG. 9A, the resistance at at least two signal frequencies (f1 and f2) shown in Table 1 based on the component current (IOR1 and Ior2) and alternating voltage signal (V1 and V2), by solving the following simultaneous equations (2) and (3), calculating the insulation resistance component I R is the net resistance component current Good.
In the graph of FIG. 9A, the insulation resistance component corresponds to the resistance component current (Ior1) when the signal frequency = 0 Hz, that is, the value of the intercept of the straight line I.

Ior =b(f1)+I ・・・(2)
Ior・(V1/V2) =b(f2)+I ・・・(3)
なお、式(2)及び式(3)中のbは、図9(a)のグラフの直線定数を表す。
また、図9(a)のグラフのIor’は、交流電圧信号を同条件とするために規格化したIor・(V1/V2)を表す。
Ior 1 = b (f1) + I R (2)
Ior 2 · (V1 / V2) = b (f2) + I R (3)
Note that b in the formulas (2) and (3) represents a linear constant in the graph of FIG.
Further, Ior 2 ′ in the graph of FIG. 9A represents Ior 2 · (V1 / V2) standardized to make the AC voltage signal the same condition.

また、f2=2×f1の場合には、以下のようにして正味の抵抗成分電流である絶縁抵抗成分Iを算出することもできる。 Also, f2 = in the case of 2 × f1 can also be as follows to calculate the insulation resistance component I R is the resistance component current net.

(1)まず、コントローラ5が、インバータ機器2に、交流電圧信号として、2つの信号周波数(f1,f2)の交流電圧信号(V1,V2)をインバータ機器2からそれぞれ重畳出力させる。
なお、2つの信号周波数(f1,f2)は、同時に重畳してもよいし、1つの周波数を重畳する都度、次の(2)及び(3)の工程を繰り返してもよい。
(1) First, the controller 5 causes the inverter device 2 to superimpose and output AC voltage signals (V1, V2) of two signal frequencies (f1, f2) from the inverter device 2 as AC voltage signals.
The two signal frequencies (f1, f2) may be superimposed at the same time, or the following steps (2) and (3) may be repeated each time one frequency is superimposed.

(2)そして、電圧取得部7が、これらの2つの信号周波数(f1,f2)それぞれにおける交流電流成分の電圧(V1,V2)を測定するとともに、電流センサ6の検出回路62が、2つの信号周波数(f1,f2)それぞれにおける交流電流成分の電流(Io1,Io2)のレベルをそれぞれ測定する。さらに、処理部8が、交流電流成分と交流電流成分との位相差θを求める。   (2) The voltage acquisition unit 7 measures the voltage (V1, V2) of the alternating current component at each of the two signal frequencies (f1, f2), and the detection circuit 62 of the current sensor 6 includes two The levels of the currents (Io1, Io2) of the alternating current components at the signal frequencies (f1, f2) are measured. Further, the processing unit 8 obtains the phase difference θ between the alternating current component and the alternating current component.

(3)次いで、処理部8が、2つの信号周波数(f1,f2)それぞれにおける交流電圧信号の電圧と電流(Io1,Io2)との位相差から、2つの信号周波数(f1,f2)それぞれにおける対地漏洩電流(Io1,Io2)のうちの抵抗成分電流(Ior,Ior)を算出する。 (3) Next, the processing unit 8 determines the phase difference between the voltage of the AC voltage signal and the current (Io1, Io2) at each of the two signal frequencies (f1, f2) at each of the two signal frequencies (f1, f2). Of the ground leakage currents (Io1, Io2), resistance component currents (Ior 1 , Ior 2 ) are calculated.

(4)次いで、2つの信号周波数(f1,f2)それぞれにおける抵抗成分電流(Ior,Ior)から、負荷機器の絶縁抵抗の劣化により流れる対地漏洩電流である正味の抵抗成分電流(絶縁抵抗電流)が信号周波数に依存しないことを利用して、絶縁抵抗成分と誘電損失とを次のよう分離する。 (4) Next, the resistance component current (Ior 1 , Ior 2 ) at each of the two signal frequencies (f1, f2) is a net resistance component current (insulation resistance) that is a ground leakage current that flows due to deterioration of the insulation resistance of the load device. Using the fact that (current) does not depend on the signal frequency, the insulation resistance component and the dielectric loss are separated as follows.

ここでは、第2の信号周波数f2が第1の信号周波数f1の2倍としているので、図9(a)に示すように、第1の信号周波数(f1)のときの抵抗成分電流(Ior)と第2の信号周波数(f2)の規格化した抵抗成分電流(Ior’=(V1/V2)×Ior)との差分(Ior’−Ior)が、第1の信号周波数(f1)のとき抵抗成分電流(Ior)の誘電損失Lと等しくなっている。
したがって、第1の信号周波数(f1)のときの抵抗成分電流(Ior)から、差分(Ior’−Ior)を除算した値が、正味の抵抗成分電流である絶縁抵抗成分Iとなる。
このようにして、絶縁抵抗成分Iを容易に求めることができる。
Here, since the second signal frequency f2 is twice the first signal frequency f1, as shown in FIG. 9A, the resistance component current (Ior 1 ) at the first signal frequency (f1) is obtained. ) and second (normalized resistance component currents f2) (Ior 2 signal frequency '= (V1 / V2) × Ior 2) and the difference (Ior 2' -IOR 1) is, first signal frequency ( In the case of f1), it is equal to the dielectric loss L of the resistance component current (Ior 1 ).
Thus, the resistance component current when the first signal frequency (f1) (Ior 1), the difference (Ior 2 '-Ior 1) is a value obtained by dividing and an insulating resistance component I R is the net resistance component current Become.
In this manner, it is possible to determine easily the insulation resistance component I R.

さらに、交流電圧信号の電圧(V1)を絶縁抵抗成分Iで除算することにより、三相モータ3の絶縁抵抗R(V1/I)を精度良く算出することができる。 Further, by dividing the voltage of the alternating voltage signal (V1) in the insulation resistance component I R, it is possible to accurately calculate the three-phase motor 3 of the insulation resistance R (V1 / I R).

なお、誘電損失Lも三相モータ3のような負荷機器の絶縁劣化を知るパラメータの一つであるため、交流電圧信号の電圧(V1)を抵抗成分電流Ior1で除算したものを、三相モータ3の絶縁抵抗Rとして算出してもよい。
また、交流電圧信号の電圧(V1)を交流電流成分Ioで除算したものを、三相モータ3の絶縁抵抗Rとして算出することもできる。
Since the dielectric loss L is one of the parameters for knowing the insulation deterioration of the load device such as the three-phase motor 3, the voltage obtained by dividing the voltage (V1) of the AC voltage signal by the resistance component current Ior1 is the three-phase motor. It may be calculated as an insulation resistance R of 3.
Also, the voltage obtained by dividing the voltage (V1) of the AC voltage signal by the AC current component Io can be calculated as the insulation resistance R of the three-phase motor 3.

また、例えば、誘電損失の周波数変化を、図9(b)のグラフに曲線IIで示す2次関数と仮定して、表2に示す少なくとも3つ信号周波数(f3、f4、f5)における抵抗成分電流(Ior3、Ior4、Ior5)及び交流電圧信号(V3、V4、V5)に基づいて、以下の連立方程式(4)〜(6)を解いて、正味の抵抗成分電流である絶縁抵抗成分Iを算出してもとよい。
図9(b)のグラフにおいて、絶縁抵抗成分Iは、信号周波数f=0Hzのときの抵抗成分電流(Ior)の値に相当する。
Further, for example, assuming that the frequency change of the dielectric loss is a quadratic function indicated by a curve II in the graph of FIG. 9B, the resistance component at at least three signal frequencies (f3, f4, f5) shown in Table 2 Based on the current (Ior3, Ior4, Ior5) and the AC voltage signal (V3, V4, V5), the following simultaneous equations (4) to (6) are solved to obtain the insulation resistance component I R that is the net resistance component current. May be calculated.
In the graph of FIG. 9 (b), the insulation resistance component I R corresponds to the value of the resistance component current (Ior) when the signal frequency f = 0 Hz.

Ior3 =a(f3)+b(f3)+I ・・・(4)
Ior4・(V3/V4) =a(f4)+b(f4)+I ・・・(5)
Ior5・(V3/V5) =a(f5)+b(f5)+I ・・・(6)
なお、式(4)〜式(6)中のa及びbは、図9(b)のグラフの曲線IIの傾きを表す定数である。
また、図9(b)のグラフのIor’及びIor’は、それぞれ交流電圧信号を同条件とするために規格化したIor・(V3/V4)及びIor・(V3/V5)を表す。
Ior3 = a (f3) 2 + b (f3) + I R ··· (4)
Ior4 · (V3 / V4) = a (f4) 2 + b (f4) + I R (5)
Ior5 · (V3 / V5) = a (f5) 2 + b (f5) + I R (6)
In the equations (4) to (6), a and b are constants representing the slope of the curve II in the graph of FIG. 9B.
Also, Ior 4 ′ and Ior 5 ′ in the graph of FIG. 9B are Ior 4 · (V3 / V4) and Ior 5 · (V3 / V5), which are normalized to make the AC voltage signal the same condition, respectively. Represents.

[第2実施形態]
本実施形態の漏洩電流検出装置は、図1に示した第1実施形態のものと基本的に同じ構成を有する。このため、本実施形態では、第1実施形態と同じ構成及び動作の説明を省略する。
本実施形態では、コントローラ5は、三相モータ3のような負荷機器の駆動電圧のPWM制御に使用されていない部分のデューティー比を利用してインバータ機器2を更に制御することにより、直流電圧信号を駆動電圧に重畳して出力させる。例えば、PWM制御にデューティー比0〜95%の範囲が使用されている場合、コントローラ5は、残りのデューティー比95〜100%の範囲内においてインバータ機器2を更に制御して直流電圧信号を駆動電圧に重畳して出力させる。
[Second Embodiment]
The leakage current detection device of this embodiment has basically the same configuration as that of the first embodiment shown in FIG. For this reason, in this embodiment, description of the same structure and operation | movement as 1st Embodiment is abbreviate | omitted.
In the present embodiment, the controller 5 further controls the inverter device 2 using the duty ratio of the portion not used for the PWM control of the drive voltage of the load device such as the three-phase motor 3, so that the DC voltage signal Is superimposed on the drive voltage and output. For example, when the duty ratio range of 0 to 95% is used for PWM control, the controller 5 further controls the inverter device 2 within the remaining duty ratio range of 95 to 100% to drive the DC voltage signal to the drive voltage. Superimposed on the output.

そして、三相モータ3の対地漏洩がない場合には、重畳された直流電圧信号による直流成分電流は電路4に流れない。一方、三相モータ3の絶縁劣化等により対地漏洩がある場合には、直流成分電流が電路4に流れる。   When there is no ground leakage of the three-phase motor 3, the DC component current due to the superimposed DC voltage signal does not flow through the electric circuit 4. On the other hand, when there is a ground leakage due to insulation deterioration of the three-phase motor 3, a DC component current flows through the electric circuit 4.

また、直流電圧を重畳した場合には、電流センサ6として、零相変流器61の代わりに、フラックスゲート方式を用いた電流センサのような、微小直流電流を測定できるセンサにより直流成分電流を検出するとよい。
なお、フラックスゲート方式を用いた電流センサは、交流電流成分も検出することができ、第1実施形態における零相変流器61を用いた電流センサ6の代わりに用いることもできる。
In addition, when a DC voltage is superimposed, a DC component current is obtained as a current sensor 6 by a sensor capable of measuring a minute DC current, such as a current sensor using a fluxgate system, instead of the zero-phase current transformer 61. It is good to detect.
The current sensor using the fluxgate method can also detect an alternating current component, and can be used instead of the current sensor 6 using the zero-phase current transformer 61 in the first embodiment.

本実施形態では、直流成分電流を検出するので、商用交流電源1の周波数成分及び三相モータ3の駆動周波数成分による磁界ノイズの影響を低減することができる。さらに、直流成分電流Iorは、容量成分電流を含まないため、三相モータ3の絶縁劣化による正味の抵抗成分電流Iだけを直流成分電流Iorとして容易に検出することができる。これにより、対地漏洩電流を精度良く検出することができる。 In this embodiment, since the DC component current is detected, the influence of magnetic field noise due to the frequency component of the commercial AC power supply 1 and the drive frequency component of the three-phase motor 3 can be reduced. Further, the DC component current Ior is because it does not contain a capacitive component current, it is possible to easily detect only the resistive component current I R of the net due to insulation degradation of the three-phase motor 3 as a DC component current Ior. Thereby, the ground leakage current can be detected with high accuracy.

さらに、直流電圧信号の電圧(DCV)を、直流電流成分の電流Iorで除算することにより、三相モータ3の絶縁抵抗R(=DCV/Ior)を精度良く算出することができる。   Furthermore, the insulation resistance R (= DCV / Ior) of the three-phase motor 3 can be accurately calculated by dividing the voltage (DCV) of the DC voltage signal by the current Ior of the DC current component.

第1参考例
次に、第1参考例(以下、便宜的に「本実施形態」とも称する。)を説明する。
[ First Reference Example ]
Next, a first reference example (hereinafter also referred to as “this embodiment” for convenience) will be described.

図10に示すように、本実施形態に係る漏洩電流検出装置も、第1実施形態と同じく、所定の電源周波数の交流電源としての商用交流電源1を電源とするインバータ機器2から所定の駆動周波数の多相駆動電圧が負荷機器としての三相モータ3に印加されている電路を測定対象とし、活線状態で、三相モータ3の絶縁抵抗を通じて流れる対地漏洩電流を検出可能に構成されている。
このため、本実施形態では、第1実施形態と同じ構成及び動作の説明を省略する。
As shown in FIG. 10, the leakage current detection apparatus according to the present embodiment also has a predetermined drive frequency from an inverter device 2 that uses a commercial AC power source 1 as an AC power source having a predetermined power frequency as a power source, as in the first embodiment. The electric current applied to the three-phase motor 3 as a load device is measured, and the ground leakage current flowing through the insulation resistance of the three-phase motor 3 can be detected in a live state. .
For this reason, in this embodiment, description of the same structure and operation | movement as 1st Embodiment is abbreviate | omitted.

本実施形態の漏洩電流検出装置は、インバータ機器2と三相モータ3とを接続する三相三線の電路4の少なくとも一つに交流電圧信号を印加する高圧発生回路50と、インバータ機器2と三相モータ3とを接続する電路4を流れる電流を検出する電流センサ6とをから構成されている。電流センサ6の構成は、第1実施形態のものと同じである。   The leakage current detection apparatus according to the present embodiment includes a high-voltage generation circuit 50 that applies an AC voltage signal to at least one of the three-phase three-wire electric circuit 4 that connects the inverter device 2 and the three-phase motor 3, And a current sensor 6 for detecting a current flowing through the electric circuit 4 connecting the phase motor 3. The configuration of the current sensor 6 is the same as that of the first embodiment.

さらに、本実施形態の漏洩電流検出装置も、第1実施形態と同じく、交流電圧信号の電圧を取得する電圧取得部7と、電流センサ6で検出された交流電流成分と、電圧取得部7で取得された交流電圧信号とを処理する処理部8とを備えている。   Furthermore, the leakage current detection apparatus according to the present embodiment also includes the voltage acquisition unit 7 that acquires the voltage of the AC voltage signal, the AC current component detected by the current sensor 6, and the voltage acquisition unit 7, as in the first embodiment. And a processing unit 8 for processing the acquired AC voltage signal.

高圧発生回路5が電路4に印加する交流電圧信号は、三相モータ3に印加される多相駆動電圧(例えば、200V)よりも高い電圧(例えば、300V)で、商用交流電源1の周波数(例えば、50Hz又は60Hz)及び三相モータ3の駆動周波数(例えば、200Hz)のいずれよりも低い信号周波数(例えば、10Hz〜20Hz)を有する。   The AC voltage signal applied to the electric circuit 4 by the high voltage generation circuit 5 is a voltage (for example, 300 V) higher than the multiphase drive voltage (for example, 200 V) applied to the three-phase motor 3, and the frequency of the commercial AC power supply 1 ( For example, it has a signal frequency (for example, 10 Hz to 20 Hz) that is lower than both of the drive frequency (for example, 200 Hz) of the three-phase motor 3 and 50 Hz or 60 Hz.

印加される交流電圧信号(以下、「低周波信号」とも称する。)はまた、所定の抵抗51を介して電路4に印加される。
抵抗51の抵抗値は、印加した低周波信号が三相モータ3の駆動に実質的に影響しない程度に大きい値が望ましく、かつ、漏洩検出対象の負荷機器3の絶縁抵抗値よりも小さいことが望ましい。
また、抵抗51の抵抗値は、一定値(例えば、1MΩ)を設定してもよいし、複数のレンジの抵抗値(例えば、10kΩ、100kΩ、1MΩ、10MΩ)を設定してレンジを切り替えてもよい。複数のレンジの抵抗値を設けることにより、広いレンジの対地漏洩電流を検出することができる。
なお、低周波信号は、電路4を構成する三線のうちの一つに印加すれば十分であるが、三線うちの2つ以上に互いに同相で印加してもよい。
An applied AC voltage signal (hereinafter also referred to as “low frequency signal”) is also applied to the electric circuit 4 via a predetermined resistor 51.
The resistance value of the resistor 51 is desirably large so that the applied low-frequency signal does not substantially affect the driving of the three-phase motor 3 and is smaller than the insulation resistance value of the load device 3 to be detected for leakage. desirable.
Further, the resistance value of the resistor 51 may be set to a constant value (for example, 1 MΩ), or may be switched by setting a plurality of ranges of resistance values (for example, 10 kΩ, 100 kΩ, 1 MΩ, 10 MΩ). Good. By providing resistance values in a plurality of ranges, a wide range of ground leakage current can be detected.
It is sufficient to apply the low frequency signal to one of the three wires constituting the electric circuit 4, but the low frequency signal may be applied to two or more of the three wires in phase with each other.

高電圧の低周波信号を印加した結果、多相駆動電圧に実質的にオフセット電圧が発生する。そして、三相モータ3からの対地漏洩がない場合には、印加された低周波信号の信号周波数成分の電流は電路4に流れない。一方、三相モータ3の絶縁劣化等により対地漏洩がある場合には、オフセット電圧を発生させている低周波信号の信号周波数成分の電流も電路に流れる。   As a result of applying the high-voltage low-frequency signal, an offset voltage is substantially generated in the multiphase drive voltage. When there is no ground leakage from the three-phase motor 3, the current of the signal frequency component of the applied low frequency signal does not flow through the electric circuit 4. On the other hand, when there is a ground leakage due to insulation deterioration of the three-phase motor 3 or the like, the current of the signal frequency component of the low frequency signal generating the offset voltage also flows in the electric circuit.

本実施形態における信号周波数(例えば、10Hz〜20Hz)は、商用交流電源1の周波数(例えば、50Hz又は60Hz)及び駆動周波数(例えば、200Hz)のいずれとも異なるため、信号周波数の交流電流成分を抽出することにより、商用交流電源1の周波数成分及び三相モータ3の駆動周波数成分による磁界ノイズの影響を低減することができる。さらに、信号周波数を商用交流電源1の周波数及び駆動周波数のいずれよりも低くすれば、容量成分電流に流れる対地漏洩電流を減少させることができる。その結果、負荷機器3の絶縁抵抗の劣化により流れる対地漏洩電流(抵抗成分電流)の検出精度を向上させることができる。   Since the signal frequency (for example, 10 Hz to 20 Hz) in the present embodiment is different from both the frequency (for example, 50 Hz or 60 Hz) and the drive frequency (for example, 200 Hz) of the commercial AC power supply 1, an AC current component of the signal frequency is extracted. By doing so, the influence of the magnetic field noise by the frequency component of the commercial AC power supply 1 and the drive frequency component of the three-phase motor 3 can be reduced. Furthermore, if the signal frequency is lower than both the frequency of the commercial AC power supply 1 and the driving frequency, the ground leakage current flowing in the capacitance component current can be reduced. As a result, the detection accuracy of the ground leakage current (resistance component current) that flows due to the deterioration of the insulation resistance of the load device 3 can be improved.

また、本実施形態においても、第1実施形態において説明したのと同様にして、交流電流成分Iorから、容量成分電流Iorを除去し、さらに、誘電損失Lを除去して、正味の抵抗成分電流である絶縁抵抗成分Iを算出することが好ましい。
さらに、本実施形態においても、交流電圧信号の電圧Vを絶縁抵抗成分Iで除算して、負荷機器3の絶縁抵抗値を算出することが好ましい。
Also in the present embodiment, in the same manner as described in the first embodiment, the capacitive component current Ior is removed from the alternating current component Ior, and the dielectric loss L is removed to obtain the net resistance component current. it is preferable to calculate the insulation resistance component I R is.
Further, in the present embodiment, the voltage V of the AC voltage signal is divided by the insulating resistance component I R, it is preferable to calculate the insulation resistance of the load device 3.

第2参考例
第2参考例(以下、「本実施形態」とも称する。)の漏洩電流検出装置は、図10に示した第1参考例のものと基本的に同じ構成を有する。このため、第2参考例では、第1参考例と同じ構成及び動作の説明を省略する。
[ Second Reference Example ]
The leakage current detection device of the second reference example (hereinafter also referred to as this embodiment ”) has basically the same configuration as that of the first reference example shown in FIG. For this reason, in the second reference example , description of the same configuration and operation as in the first reference example is omitted.

ただし、本実施形態では、高圧発生回路50により、電路4に直流電圧を印加する。高圧発生回路50により印加される直流電圧は、多相駆動電圧よりも高い電圧であるため、直流電圧信号を印加する結果、電路4の多相駆動電圧にオフセット電圧が発生する。また、この直流電圧による直流電圧信号は、高抵抗を介して印加されているため、三相モータ3の駆動電流として実質的に影響しない。   However, in this embodiment, a DC voltage is applied to the electric circuit 4 by the high voltage generation circuit 50. Since the DC voltage applied by the high voltage generation circuit 50 is higher than the multiphase drive voltage, as a result of applying the DC voltage signal, an offset voltage is generated in the multiphase drive voltage of the electric circuit 4. Moreover, since the DC voltage signal by this DC voltage is applied via a high resistance, it does not substantially affect the driving current of the three-phase motor 3.

そして、三相モータ3の対地漏洩がない場合には、印加された直流電圧による電流は電路4に流れない。一方、三相モータ3の絶縁劣化等により対地漏洩がある場合には、直流成分の電流も電路4に流れる。   When there is no ground leakage of the three-phase motor 3, no current due to the applied DC voltage flows through the electric circuit 4. On the other hand, when there is a ground leakage due to insulation deterioration of the three-phase motor 3, a DC component current also flows through the electric circuit 4.

また、直流電圧を印加した場合には、電流センサ6として、零相変流器5の代わりに、フラックスゲート方式を用いた電流センサのような微小直流電流を測定できるセンサにより直流成分を検出するとよい。   When a DC voltage is applied, instead of the zero-phase current transformer 5, the DC component is detected by a sensor capable of measuring a minute DC current, such as a current sensor using a fluxgate system, instead of the zero-phase current transformer 5. Good.

本実施形態では、直流成分電流を検出するので、商用交流電源1の周波数成分及び三相モータ3の駆動周波数成分による磁界ノイズの影響を低減することができる。さらに、直流成分電流Iorは、容量成分電流を含まないため、三相モータ3の絶縁劣化による正味の抵抗成分電流Iだけを直流成分電流Iorとして容易に検出することができる。これにより、対地漏洩電流を精度良く検出することができる。 In this embodiment, since the DC component current is detected, the influence of magnetic field noise due to the frequency component of the commercial AC power supply 1 and the drive frequency component of the three-phase motor 3 can be reduced. Further, the DC component current Ior is because it does not contain a capacitive component current, it is possible to easily detect only the resistive component current I R of the net due to insulation degradation of the three-phase motor 3 as a DC component current Ior. Thereby, the ground leakage current can be detected with high accuracy.

さらに、直流電圧信号の電圧(DCV)を、直流電流成分の電流Iorで除算することにより、三相モータ3の絶縁抵抗R(=DCV/Ior)を精度良く算出することができる。   Furthermore, the insulation resistance R (= DCV / Ior) of the three-phase motor 3 can be accurately calculated by dividing the voltage (DCV) of the DC voltage signal by the current Ior of the DC current component.

以上、本発明の漏洩電流検出装置及び対地漏洩電流検出方法の実施形態について説明したが、本発明に係る漏洩電流検出装置及び対地漏洩電流検出方法は上述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能である。
例えば、上述した実施形態では、三相モータを負荷機器とした例を説明したが、本発明では、負荷機器はモータに限定されず、また、三相以外のモータにも適用することができる。
また、上述した各実施形態では、電源周波数及び駆動周波数のいずれよりも低い信号周波数を有し、かつ、多相駆動電圧よりも低い電圧を有する低周波の交流電圧信号を交流電圧信号として重畳し例を説明したが、本発明では、交流電圧信号は、低周波の信号に限定されず、電源周波数及び駆動周波数のいずれとも異なる周波数であればよく、これらの周波数よりも高い周波数であってもよい。また、交流電圧信号の周波数は、電流センサにおいて、電源周波数及び駆動周波数と分離して抽出できる程度に、電源周波数及び駆動周波数のいずれの周波数からも離れていることが好ましい。
As mentioned above, although embodiment of the leakage current detection apparatus and ground leakage current detection method of this invention was described, the leakage current detection apparatus and ground leakage current detection method which concern on this invention are not limited only to embodiment mentioned above. Various modifications can be made within the scope of the present invention.
For example, in the above-described embodiment, an example in which a three-phase motor is a load device has been described. However, in the present invention, the load device is not limited to a motor, and can be applied to a motor other than a three-phase motor.
In each of the above-described embodiments, a low-frequency AC voltage signal having a signal frequency lower than both the power supply frequency and the drive frequency and having a voltage lower than the multiphase drive voltage is superimposed as an AC voltage signal. In the present invention, the AC voltage signal is not limited to a low-frequency signal, and may be any frequency different from both the power supply frequency and the drive frequency, and may be higher than these frequencies. Good. Moreover, it is preferable that the frequency of the AC voltage signal is separated from both the power supply frequency and the drive frequency to such an extent that it can be extracted separately from the power supply frequency and the drive frequency in the current sensor.

本発明は、三相モータを初めとする負荷機器の絶縁抵抗を通じて流れる対地漏洩電流検出する漏洩電流検出装置において広く利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely used in a leakage current detection device that detects a ground leakage current flowing through an insulation resistance of a load device such as a three-phase motor.

1 交流電源(商用交流電源)
2 インバータ機器
3 負荷機器(三相モータ)
4 電路
5 コントローラ
50 高圧発生器
51 抵抗
6 電流センサ
61 零相変流器
62 検出部
7 電圧取得部
8 処理部
1 AC power supply (commercial AC power supply)
2 Inverter equipment 3 Load equipment (three-phase motor)
4 Electric Circuit 5 Controller 50 High Voltage Generator 51 Resistance 6 Current Sensor 61 Zero Phase Current Transformer 62 Detector 7 Voltage Acquisition Unit 8 Processing Unit

Claims (2)

インバータ機器から所定の駆動周波数の多相駆動電圧が負荷機器に印加されているときに、前記負荷機器を通じて流れる対地漏洩電流を検出する漏洩電流検出装置であって、
前記インバータ機器を制御して、電源周波数及び前記駆動周波数のいずれとも異なる信号周波数を有する複数の信号周波数の交流電圧信号を前記多相駆動電圧の各々に互いに同相で重畳して出力させるコントローラと、
前記インバータ機器と前記負荷機器とを接続する電路を流れる前記信号周波数の交流電流成分を抽出して検出する電流センサと、
前記交流電圧信号の電圧を取得する電圧取得部と、
前記電流センサで検出された前記交流電流成分と、前記電圧取得部で取得された前記交流電圧信号との位相差に基づいて、前記交流電流成分のうち、前記交流電圧信号に対して位相が90°ずれている対地間静電容量に流れる容量成分電流を含まない、前記交流電圧信号と同位相の抵抗成分電流を算出する処理部と、
を備え、
前記電圧取得部は、前記複数の信号周波数それぞれにおける前記交流電圧信号の電圧を取得し、
前記処理部は、前記複数の信号周波数それぞれにおいて、前記交流電流成分のうちの前記抵抗成分電流を算出し、
前記処理部は、前記複数の信号周波数それぞれにおける前記抵抗成分電流に基づいて、前記信号周波数が0Hzであるときの抵抗成分電流を、前記信号周波数に依存する対地間静電容量での誘電損失成分を含まない、正味の抵抗成分電流である絶縁抵抗成分として更に算出する
ことを特徴とする、漏洩電流検出装置。
A leakage current detection device for detecting a ground leakage current flowing through the load device when a multiphase drive voltage of a predetermined drive frequency is applied to the load device from the inverter device,
A controller that controls the inverter device and outputs an alternating voltage signal having a plurality of signal frequencies having a signal frequency different from both of a power supply frequency and the drive frequency and superimposed on each of the multiphase drive voltages in the same phase;
A current sensor for extracting and detecting an alternating current component of the signal frequency flowing through an electric circuit connecting the inverter device and the load device;
A voltage acquisition unit for acquiring the voltage of the AC voltage signal;
Based on the phase difference between the AC current component detected by the current sensor and the AC voltage signal acquired by the voltage acquisition unit, the phase of the AC current component is 90 with respect to the AC voltage signal. A processing unit for calculating a resistance component current having the same phase as that of the AC voltage signal, which does not include a capacitance component current flowing in the capacitance between the ground and the ground,
With
The voltage acquisition unit acquires the voltage of the AC voltage signal at each of the plurality of signal frequencies,
The processing unit calculates the resistance component current of the alternating current component at each of the plurality of signal frequencies,
Based on the resistance component current at each of the plurality of signal frequencies, the processing unit converts a resistance component current when the signal frequency is 0 Hz into a dielectric loss component at a capacitance to ground depending on the signal frequency. The leakage current detecting device is further calculated as an insulation resistance component that is a net resistance component current that does not include
インバータ機器から所定の駆動周波数の多相駆動電圧が負荷機器に印加されているときに、前記負荷機器を通じて流れる対地漏洩電流を検出する対地漏洩電流検出方法であって、
前記インバータ機器を制御して、電源周波数及び前記駆動周波数のいずれとも異なる信号周波数を有する複数の信号周波数の交流電圧信号を前記多相駆動電圧の各々に互いに同相で重畳して出力させる工程と、
前記インバータ機器と前記負荷機器とを接続する電路を流れる前記信号周波数の交流電流成分を抽出して検出する工程と、
前記交流電圧信号の電圧を取得する電圧取得工程と、
前記交流電流成分と、前記交流電圧信号との位相差に基づいて、前記交流電流成分のうち、前記交流電圧信号に対して位相が90°ずれている対地間静電容量に流れる容量成分電流を含まない、前記交流電圧信号と同位相の抵抗成分電流を算出する処理工程と、
を有し、
前記電圧取得工程において、前記複数の信号周波数それぞれにおける前記交流電圧信号の電圧を取得し、
前記処理工程において、前記複数の信号周波数それぞれにおいて、前記交流電流成分のうちの前記抵抗成分電流を算出し、
前記処理工程において、前記複数の信号周波数それぞれにおける前記抵抗成分電流に基づいて、前記信号周波数が0Hzであるときの抵抗成分電流を、前記信号周波数に依存する対地間静電容量での誘電損失成分を含まない、正味の抵抗成分電流である絶縁抵抗成分として更に算出する
ことを特徴とする、対地漏洩電流検出方法。
A ground leakage current detection method for detecting a ground leakage current flowing through the load device when a multiphase drive voltage of a predetermined drive frequency is applied to the load device from the inverter device,
A step of controlling the inverter device to output an alternating voltage signal having a plurality of signal frequencies having a signal frequency different from both the power supply frequency and the drive frequency in an in-phase manner with each of the multiphase drive voltages;
Extracting and detecting an alternating current component of the signal frequency flowing through an electric circuit connecting the inverter device and the load device;
A voltage acquisition step of acquiring a voltage of the AC voltage signal;
Based on the phase difference between the AC current component and the AC voltage signal , a capacitance component current flowing in the capacitance between the ground that is 90 ° out of phase with the AC voltage signal is included in the AC current component. A processing step of calculating a resistance component current having the same phase as that of the AC voltage signal,
Have
In the voltage acquisition step, the voltage of the AC voltage signal at each of the plurality of signal frequencies is acquired,
In the processing step, for each of the plurality of signal frequencies, the resistance component current of the alternating current component is calculated,
In the processing step, based on the resistance component current at each of the plurality of signal frequencies, a resistance component current when the signal frequency is 0 Hz is converted into a dielectric loss component at a capacitance to ground depending on the signal frequency. A ground leakage current detection method characterized by further calculating as an insulation resistance component which is a net resistance component current not including
JP2018229900A 2018-12-07 2018-12-07 Leakage current detection device and ground leakage current detection method Expired - Fee Related JP6590387B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018229900A JP6590387B1 (en) 2018-12-07 2018-12-07 Leakage current detection device and ground leakage current detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018229900A JP6590387B1 (en) 2018-12-07 2018-12-07 Leakage current detection device and ground leakage current detection method

Publications (2)

Publication Number Publication Date
JP6590387B1 true JP6590387B1 (en) 2019-10-16
JP2020091250A JP2020091250A (en) 2020-06-11

Family

ID=68234952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018229900A Expired - Fee Related JP6590387B1 (en) 2018-12-07 2018-12-07 Leakage current detection device and ground leakage current detection method

Country Status (1)

Country Link
JP (1) JP6590387B1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099545B2 (en) * 1992-09-10 2000-10-16 株式会社明電舎 Simple measurement method of insulation resistance
JP3355905B2 (en) * 1995-02-13 2002-12-09 三菱電機株式会社 Insulation monitoring system
JP2003102125A (en) * 2001-09-20 2003-04-04 Sumitomo Metals (Kokura) Ltd Ground fault detecting apparatus and ground fault detecting system in electric power system
JP2003199356A (en) * 2001-12-26 2003-07-11 Ebara Corp Inverter apparatus
JP2006238573A (en) * 2005-02-24 2006-09-07 Meidensha Corp Method and apparatus for measuring insulation resistance of frequency converter
JP2009115754A (en) * 2007-11-09 2009-05-28 Sbc Co Ltd Device and method for measuring leakage current in electric equipment
JP5477020B2 (en) * 2010-01-27 2014-04-23 株式会社三和技術総合研究所 Leakage current measuring device and measuring method in electrical equipment
CN102812369B (en) * 2010-04-14 2014-12-10 三菱电机株式会社 Insulation deterioration diagnosis device
JP6127824B2 (en) * 2013-08-07 2017-05-17 日新電機株式会社 Power conditioner system for photovoltaic power generation
JP2017175795A (en) * 2016-03-24 2017-09-28 東芝三菱電機産業システム株式会社 Power conversion device and ground fault detection method therefor
JP6460146B2 (en) * 2017-04-21 2019-01-30 オムロン株式会社 Leakage current calculation device and leakage current calculation method

Also Published As

Publication number Publication date
JP2020091250A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
EP1312932B1 (en) Method for measuring motor constant of induction motor
TWI474014B (en) Leakage current calculating device and leakage current calculating method
US9091742B2 (en) Fault identification techniques for high resistance grounded systems
US9255970B2 (en) On-line monitoring of stator insulation in motors and generators
JP5530769B2 (en) DC circuit leakage detection device
US11088614B2 (en) Conductive noise suppressor, power converter, and motor device
US9651592B2 (en) Impedance detector apparatus and method
JP6416416B2 (en) Insulation resistance measuring device
KR102198674B1 (en) Leakage current calculation device and leakage current calculation method
JP6583952B1 (en) Leakage current detection device and leakage current detection method
JP2019158672A (en) Abnormal current detector for three-phase AC cable
US10725116B2 (en) Automatic system grounding condition detection
JP6590387B1 (en) Leakage current detection device and ground leakage current detection method
US11611286B2 (en) Method for determining rectifier-stage output current or grid-side currents of a frequency converter
US10581348B2 (en) Speed detection circuits for permanent magnet alternators
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP6887057B1 (en) Power converter and open phase detector
JP7409560B2 (en) Insulation resistance calculation device and insulation resistance calculation method
KR102564785B1 (en) Apparatus and method for generating virtual neutral point of three-phase three-wire system
RU204691U1 (en) DEVICE FOR MEASURING THE FREQUENCY OF THREE-PHASE SINUSOID VOLTAGE
EP3435539B1 (en) Power conversion device and power conversion method
JP6845732B2 (en) Voltage measuring device, voltage measuring method
JP2011196810A (en) Leak detection system and method for dc circuit
JP2015155870A (en) Method for measuring voltage-dividing error
JP2015154495A (en) noise current detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190201

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6590387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees