JP6584908B2 - Spunbond nonwoven fabric with flexibility - Google Patents

Spunbond nonwoven fabric with flexibility Download PDF

Info

Publication number
JP6584908B2
JP6584908B2 JP2015203921A JP2015203921A JP6584908B2 JP 6584908 B2 JP6584908 B2 JP 6584908B2 JP 2015203921 A JP2015203921 A JP 2015203921A JP 2015203921 A JP2015203921 A JP 2015203921A JP 6584908 B2 JP6584908 B2 JP 6584908B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
carbon dioxide
resin
dioxide generation
generation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015203921A
Other languages
Japanese (ja)
Other versions
JP2017075427A (en
Inventor
佑哉 正時
佑哉 正時
一哉 税所
一哉 税所
矢放 正広
正広 矢放
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2015203921A priority Critical patent/JP6584908B2/en
Publication of JP2017075427A publication Critical patent/JP2017075427A/en
Application granted granted Critical
Publication of JP6584908B2 publication Critical patent/JP6584908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、土木、建築、農業、産業、生活資材等の資材用途に適した燃焼時二酸化炭素発生量を抑制するスパンボンド不織布に関する。   The present invention relates to a spunbonded nonwoven fabric that suppresses the amount of carbon dioxide generated during combustion, which is suitable for materials such as civil engineering, architecture, agriculture, industry, and daily life.

スパンボンド不織布は、布強度が強く、低コストで生産性が高いため、土木、建築、農業、産業、生活資材を中心に広範な用途で使用されている一方で、大量に普及したことから廃棄時の焼却処分における有害物質発生等の環境問題を引き起こしている。その中で地球温暖化への影響から排出量削減が強く望まれている二酸化炭素は燃焼の最終生成物であることから削減が難しいのが現状である。   Spunbond nonwoven fabrics are strong in fabric strength, low in cost and high in productivity, so they are used in a wide range of applications mainly in civil engineering, construction, agriculture, industry, and living materials, but discarded because they have spread in large quantities. Causing environmental problems such as the generation of hazardous substances during incineration. Among them, the current situation is that it is difficult to reduce carbon dioxide, which is strongly desired to reduce emissions due to its impact on global warming, because it is the final product of combustion.

他方、この焼却への対策として、埋め立てによって自然分解する生分解性樹脂も存在するが、大量に使用されるスパンボンド不織布を置き換え、全て埋め立てによって処分することは困難である為、廃棄方法は焼却が重要な位置を占めているのが現状である。
また、排気量そのものを削減する方法として、再生利用が行われているが、再生利用は未だ一部でしか採用されておらず、再利用を重ねるごとに強度等の物性が落ち、最終的に焼却されることとなるため、二酸化炭素排出の根本的な解決とはならない。以上の様な二酸化炭素排出問題を解決するため、二酸化炭素量を抑制する化合物を樹脂に配合する方法(例えば、特許文献1、2参照)が提案されている。
On the other hand, as a countermeasure against this incineration, there is a biodegradable resin that is naturally decomposed by landfill, but it is difficult to replace a large amount of spunbond nonwoven fabric and dispose of it by landfill. Currently occupies an important position.
In addition, recycling is used as a method to reduce the exhaust amount itself, but recycling is still used only partially, and physical properties such as strength decrease each time reuse is repeated. Since it will be incinerated, it will not be a fundamental solution to carbon dioxide emissions. In order to solve the carbon dioxide emission problem as described above, a method of blending a compound that suppresses the amount of carbon dioxide with a resin (see, for example, Patent Documents 1 and 2) has been proposed.

特許文献1や2では、二酸化炭素の発生を抑制する化合物を樹脂に添加して製造したポリエチレンフィルムについての記載がされている。しかし、特許文献1や2に記載している様な添加剤は通常フィルム生産工程で凝集を起こし、ゲル化(フィッシュアイ)や、繊維生産工程では糸切れを発生させる原因となる。特に繊維中における添加剤の凝集は繊維断面積が小さいため、紡糸時の繊維生産工程において曳糸性に顕著に影響する。
また、二酸化炭素発生量抑制剤の様な添加剤を添加すると通常繊維中の結晶配向性は抑制され、繊維・不織布の強度・伸度(タフネス)は低下するものである。また、ボンディング加工を強めることで不織布としての強度を得ることはできるが、タフネスは低下することで不織布の柔軟性は低下する。
Patent Documents 1 and 2 describe a polyethylene film produced by adding a compound that suppresses the generation of carbon dioxide to a resin. However, additives such as those described in Patent Documents 1 and 2 usually cause aggregation in the film production process, and cause gelation (fish eye) and yarn breakage in the fiber production process. In particular, the aggregation of additives in the fiber has a small fiber cross-sectional area, and thus significantly affects the spinnability in the fiber production process during spinning.
Moreover, when an additive such as a carbon dioxide generation amount inhibitor is added, the crystal orientation in the fiber is usually suppressed, and the strength / elongation (toughness) of the fiber / nonwoven fabric is lowered. Moreover, although the intensity | strength as a nonwoven fabric can be acquired by strengthening a bonding process, the softness | flexibility of a nonwoven fabric falls by toughness falling.

国際公開第2011/037238号International Publication No. 2011/037238 特開2013−122020号公報JP 2013-122020 A

本発明が解決しようとする課題は、二酸化炭素発生量抑制剤を、繊維を構成するポリエステル系樹脂又はポリアミド系樹脂中に均一に分散し、かつ、紡糸条件を最適化することにより該繊維の結晶配向性・布の柔軟性を維持し、さらに燃焼時二酸化炭素発生量を抑制したスパンボンド不織布を提供することである。   The problem to be solved by the present invention is that a carbon dioxide generation amount inhibitor is uniformly dispersed in a polyester-based resin or a polyamide-based resin constituting a fiber, and the spinning condition is optimized, thereby crystallizing the fiber. An object of the present invention is to provide a spunbonded nonwoven fabric that maintains orientation and fabric flexibility and further suppresses the amount of carbon dioxide generated during combustion.

本発明の不織布に添加する二酸化炭素発生量抑制剤は、耐熱性が良く、紡糸時に繊維内に直接混練することができ、また、繊維を構成するポリエステル系樹脂又はポリアミド系樹脂中に均一に分散されることで、凝集を引き起こすことがなく、繊維生産工程における曳糸性が良好となり、糸切れが発生することなく高紡速の繊維を得ることができ、強度の強い繊維を形成することが可能となる。更に該二酸化炭素発生量抑制剤は、繊維を構成するポリエステル系樹脂又はポリアミド系樹脂中へ添加しても該繊維の結晶配向性を低下することはなく、逆に紡糸条件を制御することで結晶配向性を向上させることができ、該繊維さらには形成される不織布の強伸度を向上させることができる。柔軟性を有する不織布は生産上の工程安定性や使用時の耐久性が向上したものであるため、土木、建築、農業、産業、生活資材、特に柔軟性が必要とされるカイロ等の包装材料に好適に使用できる。   The carbon dioxide generation amount inhibitor added to the nonwoven fabric of the present invention has good heat resistance, can be kneaded directly into the fiber during spinning, and is uniformly dispersed in the polyester resin or polyamide resin constituting the fiber As a result, agglomeration is not caused, the spinnability in the fiber production process is improved, a high spinning speed fiber can be obtained without causing yarn breakage, and a strong fiber can be formed. It becomes possible. Further, the carbon dioxide generation amount inhibitor does not decrease the crystal orientation of the fiber even when added to the polyester resin or polyamide resin constituting the fiber, and conversely, by controlling the spinning conditions, The orientation can be improved, and the strength and elongation of the nonwoven fabric can be improved. Flexible non-woven fabrics have improved production process stability and durability during use, so civil engineering, architecture, agriculture, industry, life materials, especially packaging materials such as warmers that require flexibility Can be suitably used.

即ち、本発明は下記の通りのものである。
[1]ポリエステル系樹脂又はポリアミド系樹脂から構成されるポリエステル系又はポリアミド系スパンボンド不織布であって、該ポリエステル系樹脂又はポリアミド系樹脂に、粒子径150nm〜250nmの二酸化炭素発生量抑制剤が分散され、0.03〜0.30重量%で含有されており、かつ、該二酸化炭素発生量抑制剤が、酸化マグネシウム、アルミノケイ酸塩、及びチタン酸化合物からなる群から選ばれる少なくとも1種であることを特徴とする前記不織布。
[2]前記不織布の引張強度が20〜400N/50mmであり、引張伸度が10〜70%であり、かつ、タフネス指数が40〜300である、[1]に記載のスパンボンド不織布。
[3]前記不織布を構成する繊維の平均単糸繊度が0.7〜3.0dtexであり、かつ、前記不織布の目付が8〜100g/mである、[1]又は[2]に記載のスパンボンド不織布。
[4]前記ポリエステル系樹脂又はポリアミド系樹脂に分散助剤がさらに含有されている、[1]〜[3]のいずれかに記載のスパンボンド不織布。
]前記分散助剤が、脂肪酸金属塩、高分子界面活性剤、及び両親媒性脂質から成る群から選ばれる少なくとも1種である、[]に記載のスパンボンド不織布。
]前記ポリエステル系樹脂又はポリアミド系樹脂が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ナイロン6、及びナイロン66からなる群から選ばれる少なくとも1種である、[1]〜[]のいずれかに記載のスパンボンド不織布。
]土木、建築、農業、産業又は生活資材用の、[1]〜[]のいずれかに記載のスパンボンド不織布。
][1]〜[]のいずれかに記載のスパンボンド不織布を含む包装材料。
That is, the present invention is as follows.
[1] A polyester-based or polyamide-based spunbonded nonwoven fabric composed of a polyester-based resin or a polyamide-based resin, and a carbon dioxide generation amount inhibitor having a particle diameter of 150 nm to 250 nm is dispersed in the polyester-based resin or polyamide-based resin. 0.03 to 0.30% by weight , and the carbon dioxide generation inhibitor is at least one selected from the group consisting of magnesium oxide, aluminosilicates, and titanic acid compounds. The said nonwoven fabric characterized by the above-mentioned.
[2] The spunbonded nonwoven fabric according to [1], wherein the nonwoven fabric has a tensile strength of 20 to 400 N / 50 mm, a tensile elongation of 10 to 70%, and a toughness index of 40 to 300.
[3] The average single yarn fineness of the fibers constituting the nonwoven fabric is 0.7 to 3.0 dtex, and the basis weight of the nonwoven fabric is 8 to 100 g / m 2. Spunbond nonwoven fabric.
[4] The spunbonded nonwoven fabric according to any one of [1] to [3], wherein the polyester resin or polyamide resin further contains a dispersion aid.
[ 5 ] The spunbonded nonwoven fabric according to [ 4 ], wherein the dispersion aid is at least one selected from the group consisting of fatty acid metal salts, polymer surfactants, and amphiphilic lipids.
[ 6 ] The polyester resin or polyamide resin is at least one selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, nylon 6 and nylon 66, and is described in any one of [1] to [ 5 ]. Spunbond nonwoven fabric.
[ 7 ] The spunbonded nonwoven fabric according to any one of [1] to [ 6 ] for civil engineering, construction, agriculture, industry, or daily life materials.
[ 8 ] A packaging material comprising the spunbonded nonwoven fabric according to any one of [1] to [ 6 ].

通常、繊維を構成する樹脂に添加剤を添加することは、添加剤凝集により、繊維生産工程で糸切れを発生させる原因となるし、また、繊維中の結晶配向性は抑制され、繊維・不織布の強度・伸度(タフネス)も低下する。これに反し、本発明の不織布は、二酸化炭素発生量抑制剤が均一分散されており、タフネス指数が向上され、燃焼時二酸化炭素発生量が抑制され、且つ、強伸度を有し、生産上の工程安定性や使用時の耐久性が向上したものであるため、土木、建築、農業、産業、生活資材として好適に利用可能である。   Usually, adding an additive to the resin constituting the fiber causes the yarn breakage in the fiber production process due to the aggregation of the additive, and the crystal orientation in the fiber is suppressed. The strength / elongation (toughness) is also reduced. On the other hand, the nonwoven fabric of the present invention has a carbon dioxide generation amount inhibitor uniformly dispersed, an improved toughness index, a suppressed carbon dioxide generation amount at the time of combustion, and a high elongation. Therefore, it can be suitably used as civil engineering, construction, agriculture, industry, and daily life materials.

以下、本発明の実施形態について詳述する。
本実施形態の不織布を構成する繊維は、ポリエステル系樹脂及びポリアミド系樹脂からなる群から選ばれる。
Hereinafter, embodiments of the present invention will be described in detail.
The fibers constituting the nonwoven fabric of the present embodiment are selected from the group consisting of polyester resins and polyamide resins.

前記ポリエステル系樹脂としては、熱可塑性ポリエステル、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートやポリトリメチレンテレフタレートが代表例として挙げられる。また、熱可塑性ポリエステルは、エステルを形成する酸成分としてイソフタル酸やフタル酸等が重合または共重合されたポリエステルであってもよい。前記ポリエステル系樹脂の何れでも構わない。なかでも、強度、寸法安定性からポリエチレンテレフタレートを選択することが好ましい。   Typical examples of the polyester resin include thermoplastic polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate. The thermoplastic polyester may be a polyester obtained by polymerizing or copolymerizing isophthalic acid or phthalic acid as an acid component for forming an ester. Any of the polyester resins may be used. Especially, it is preferable to select polyethylene terephthalate from strength and dimensional stability.

前記ポリアミド系樹脂としては、ナイロン6、ナイロン66、ナイロン4、ナイロン46、ナイロン11、ナイロン12、ナイロンMXD6(ポリメタキシレンアジパミド)が挙げられる。前記ポリアミド系樹脂の何れでも構わない。なかでも、強度、寸法安定性からナイロン6又はナイロン66を選択することが好ましい。
また、前記ポリエステル系樹脂又はポリアミド系樹脂には、他の添加剤、例えば、核剤、難燃剤、無機充填剤、顔料、滑材、着色剤、耐熱安定剤、帯電防止剤、酸化防止剤等を添加してもよい。
Examples of the polyamide-based resin include nylon 6, nylon 66, nylon 4, nylon 46, nylon 11, nylon 12, and nylon MXD6 (polymetaxylene adipamide). Any of the polyamide-based resins may be used. Especially, it is preferable to select nylon 6 or nylon 66 from strength and dimensional stability.
The polyester-based resin or polyamide-based resin includes other additives such as a nucleating agent, a flame retardant, an inorganic filler, a pigment, a lubricant, a colorant, a heat stabilizer, an antistatic agent, an antioxidant, and the like. May be added.

本実施形態のスパンボンド不織布は以下の方法で製造されうる。ポリエステル系樹脂又はポリアミド系樹脂を溶融押出し、多数の紡糸孔を有する紡糸口金から糸条として吐出させる。次いで吐出された糸条を5℃〜20℃に制御した冷風をあて冷却しながら牽引装置により牽引する。牽引装置より出た糸条を搬送コンベア上に堆積させ不織ウェブとして搬送する。搬送中の不織布ウェブを積層し、多層積層の不織ウェブとしてもよい。目的に応じて、本発明のスパンボンド(S)不織布をメルトブローン(M)繊維と積層してもよく、SM、SMS、SMMS、SMSMSと積層した構造であってもよい。   The spunbond nonwoven fabric of this embodiment can be manufactured by the following method. A polyester resin or a polyamide resin is melt-extruded and discharged as a thread from a spinneret having a large number of spinning holes. Next, the discharged yarn is pulled by a pulling device while being cooled by applying cold air controlled at 5 ° C. to 20 ° C. The yarns coming out of the traction device are accumulated on a conveyor and conveyed as a nonwoven web. The nonwoven webs being conveyed may be laminated to form a multilayer laminated nonwoven web. Depending on the purpose, the spunbond (S) nonwoven fabric of the present invention may be laminated with meltblown (M) fibers, or may have a structure laminated with SM, SMS, SMMS, and SMSMS.

紡糸温度は、好ましくは、樹脂の融点より30℃〜100℃高く、好ましくは40℃〜95℃、より好ましくは45℃〜70℃、さらに好ましくは50℃〜65℃高い温度である。紡糸温度は融点より100℃を超えない範囲であれば、樹脂分解物による紡口表面の汚れが少なく、さらに樹脂の粘度が低くなることによる糸切れの発生を抑制することができる。他方、紡糸温度が融点より30℃を超える範囲であれば、樹脂の粘度が高くなることによる糸切れの発生を抑制し、さらに紡糸時の紡口内圧力が高くなることによる樹脂漏れなどを抑制することができる。
樹脂の融点の測定には、SIIナノテクノロジー社製のDSC210を使用し、測定雰囲気:窒素ガス50ml/min、昇温速度:10℃/min、測定温度範囲:25〜300℃の条件下で行い、融解ピークの導入部分における変曲点の漸近線とTgより高い温度領域でのベースラインが交わる温度を融点とした。
The spinning temperature is preferably 30 ° C to 100 ° C higher than the melting point of the resin, preferably 40 ° C to 95 ° C, more preferably 45 ° C to 70 ° C, and even more preferably 50 ° C to 65 ° C. If the spinning temperature is within a range not exceeding 100 ° C. from the melting point, it is possible to suppress the occurrence of yarn breakage due to less contamination of the spinneret surface due to the resin decomposition product and lowering of the resin viscosity. On the other hand, if the spinning temperature is in a range exceeding 30 ° C. from the melting point, the occurrence of yarn breakage due to an increase in the viscosity of the resin is suppressed, and further, resin leakage due to an increase in the spinneret pressure during spinning is suppressed. be able to.
For the measurement of the melting point of the resin, DSC210 manufactured by SII NanoTechnology Co., Ltd. is used, and measurement is performed under the conditions of measurement atmosphere: nitrogen gas 50 ml / min, heating rate: 10 ° C./min, measurement temperature range: 25 to 300 ° C. The temperature at which the asymptotic line of the inflection point in the melting peak introduction portion and the baseline in the temperature region higher than Tg intersect was defined as the melting point.

本実施形態のスパンボンド繊維で構成された不織布ウェブを接合して不織布となす場合の接合手段としては、フラットカレンダーロールプレス、エンボスロールプレス等のカレンダー加熱接着方法、その他加熱接着方法では、熱風循環型、熱風貫通型、赤外線ヒーター型、不織布の両面に熱風を吹き付ける方法、あるいは加熱気体中に導入する方法等、各種の加熱する方法が用いられる。また、非加熱方式では、ニードルパンチ法、水流交絡接着等が用いられる。不織ウェブの形態保持や最終的に得られる不織布の強度の観点から、フラットカレンダーロールプレス又はエンボスロールプレスを選択することが好ましい。   In the case of joining the nonwoven web composed of the spunbond fibers of the present embodiment to form a nonwoven fabric, as a joining means, a calender heating adhesive method such as a flat calender roll press and an emboss roll press, and other heat adhering methods, hot air circulation Various heating methods such as a mold, a hot air penetration type, an infrared heater type, a method of blowing hot air on both surfaces of a nonwoven fabric, or a method of introducing into a heated gas are used. In the non-heating method, a needle punch method, hydroentangled adhesion, or the like is used. From the viewpoint of maintaining the shape of the nonwoven web and the strength of the finally obtained nonwoven fabric, it is preferable to select a flat calender roll press or an emboss roll press.

前記フラットカレンダーロールプレスは、金属ロールと金属ロールの組み合わせの一対のロールに通して加工してもよいし、金属ロールと弾性ロールの組み合わせの一対又は二対のロールに通して加工してもよい。表面平滑性の観点では前者金属ロールと金属ロールの組み合わせを選択することが好ましく、不織布の通気性保持の観点では後者を選択することが好ましい。   The flat calender roll press may be processed through a pair of rolls of a combination of a metal roll and a metal roll, or may be processed through a pair of rolls of a combination of a metal roll and an elastic roll. . The combination of the former metal roll and the metal roll is preferably selected from the viewpoint of surface smoothness, and the latter is preferably selected from the viewpoint of maintaining the breathability of the nonwoven fabric.

前記エンボスロールプレスは、金属エンボスロールと金属フラットロールの組合せの一対のロールに通して加工することが生産性の面から好ましい。不織ウェブの形態保持や最終的に得られる不織布の強度の観点から、エンボス面積率は5〜40%、好ましくは5〜30%、更に好ましくは6〜20%である。エンボス形状は特に限定することはないが、円形状、楕円形状、ダイヤ形状、矩形状であることが好ましく、土木、建築、農業、産業、生活資材に好適に使用できる強伸度および柔軟性を有する不織布を得ることができる。   It is preferable from the viewpoint of productivity that the embossing roll press is processed through a pair of rolls of a combination of a metal embossing roll and a metal flat roll. From the viewpoint of maintaining the shape of the nonwoven web and the strength of the finally obtained nonwoven fabric, the embossed area ratio is 5 to 40%, preferably 5 to 30%, and more preferably 6 to 20%. The embossed shape is not particularly limited, but is preferably a circular shape, an elliptical shape, a diamond shape, or a rectangular shape, and has a high elongation and flexibility that can be suitably used for civil engineering, architecture, agriculture, industry, and daily life materials. The nonwoven fabric which has can be obtained.

本実施形態の不織布の引張強度は20N/50mm以上400N/50mm以下であり、且つ引張伸度は20%以上70%以下である。また、タフネス指数は以下の式(1):
タフネス指数=引張強度(N/50mm)×引張伸度(%)/目付(g/m) …式(1)
で算出され、好ましくは40以上300以下であり、より好ましくは45以上250以下であり、更に好ましくは50以上200以下である。
引張強度、引張伸度、及びタフネス指標がこの範囲であると、不織布の加工性の面や土木、建築、農業、産業、生活資材として使用に適した範囲となる。タフネス指数が当範囲から外れると、工程上での布破断や、皺発生等の不具合が発生し易くなる。
The tensile strength of the nonwoven fabric of this embodiment is 20 N / 50 mm or more and 400 N / 50 mm or less, and tensile elongation is 20% or more and 70% or less. The toughness index is expressed by the following formula (1):
Toughness index = tensile strength (N / 50 mm) × tensile elongation (%) / weight per unit area (g / m 2 ) Formula (1)
And is preferably 40 or more and 300 or less, more preferably 45 or more and 250 or less, and still more preferably 50 or more and 200 or less.
When the tensile strength, tensile elongation, and toughness index are within this range, the nonwoven fabric is suitable for use as a workable surface, civil engineering, architecture, agriculture, industry, or daily life. When the toughness index is out of this range, problems such as cloth breakage and wrinkle generation on the process are likely to occur.

また、不織布を構成する繊維の繊度について制限はなく、通常のスパンボンド不織布に使用される繊維の繊度は生産性や通気性、風合いの点から、好ましくは0.7〜3.0dtex程度、より好ましくは1.0〜2.8dtex、更に好ましくは1.2〜2.5dtexである。   Moreover, there is no restriction | limiting about the fineness of the fiber which comprises a nonwoven fabric, The fineness of the fiber used for a normal spunbonded nonwoven fabric from the point of productivity, air permeability, and a texture, Preferably it is about 0.7-3.0 dtex, and more Preferably it is 1.0-2.8 dtex, More preferably, it is 1.2-2.5 dtex.

本実施形態の不織布の目付は、好ましくは8g/m以上100g/m以下が好ましく、さらに好ましくは10g/m以上60g/m以下、特に好ましくは10g/m以上30g/m以下である。8g/m以上であれば土木、建築、農業、産業、生活資材に使用される不織布としての強度を満足し、100g/m以下であれば、土木、建築、農業、産業、生活資材に使用される不織布の通気性を満足し、広範な用途への適応が可能である。 The basis weight of the nonwoven fabric of this embodiment is preferably 8 g / m 2 or more and 100 g / m 2 or less, more preferably 10 g / m 2 or more and 60 g / m 2 or less, and particularly preferably 10 g / m 2 or more and 30 g / m 2. It is as follows. If it is 8 g / m 2 or more, it satisfies the strength as a non-woven fabric used in civil engineering, construction, agriculture, industry, and living materials, and if it is 100 g / m 2 or less, it is suitable for civil engineering, building, agriculture, industry, and living materials. Satisfies the breathability of the nonwoven fabric used and can be applied to a wide range of applications.

本実施形態のスパンボンド不織布は、燃焼時二酸化炭素発生量を抑制することができ、使用後焼却廃棄している土木、建築、農業、産業、生活資材に好適に使用することができる。例えば、土木資材、建築資材であれば屋根下材、土木安定シート、断熱材面材、床材、ハウスラップなどが挙げられる。農業資材であれば、べた掛け、農資ポットなどが挙げられる。産業資材、生活資材であれば、食品包材、風呂敷、テープヤーン、靴資材、カイロ、ティーバック、クリーンカバー、メディカルガウン、自動車用資材、合紙、電線被覆材、テープ基材、膜機材、液体フィルター、エアーフィルター、不織布ワイパー、防護服などが挙げられる。尚、スパンボンド不織布が適応できるものであれば本用途は限定されるものではない。   The spunbond nonwoven fabric of the present embodiment can suppress the amount of carbon dioxide generated during combustion, and can be suitably used for civil engineering, construction, agriculture, industry, and daily life materials that are incinerated and discarded after use. For example, in the case of civil engineering materials and building materials, roofing materials, civil engineering stabilization sheets, heat insulating surface materials, flooring materials, house wraps and the like can be mentioned. In the case of agricultural materials, stickers, agricultural pots and the like can be mentioned. For industrial materials and household materials, food packaging materials, furoshiki, tape yarns, shoe materials, warmers, tea bags, clean covers, medical gowns, automotive materials, slip sheets, wire coating materials, tape base materials, membrane equipment, Examples include liquid filters, air filters, non-woven wipers and protective clothing. In addition, this application will not be limited if a spunbond nonwoven fabric can be applied.

本実施形態の不織布は二酸化炭素発生量抑制剤が繊維中に150〜250nmの粒子径で均一分散している事が好ましい。さらに好ましくは150〜200nmであり、粒子径が150nm以上であれば二酸化炭素発生量を抑制する効果を発現し、250nm以下であれば凝集を引き起こすことがなく、紡糸工程において糸切れを発生することがない。繊維に均一分散している二酸化炭素発生量抑制剤の添加量は0.03〜0.30重量%が好ましい。好ましくは0.05〜0.25重量%、更に好ましくは0.10〜0.20重量%である。添加量が多すぎると、紡糸時糸切れを発生させる原因となるものである。特に繊維中における添加剤の凝集は繊維断面積が小さいため、紡糸時の繊維生産工程において曳糸性に顕著に影響する。他方、添加量が0.03重量%未満では、二酸化炭素発生量抑制効果が発現しないものである。   In the nonwoven fabric of this embodiment, it is preferable that the carbon dioxide generation amount inhibitor is uniformly dispersed in the fiber with a particle diameter of 150 to 250 nm. More preferably, the particle diameter is 150 to 200 nm. If the particle diameter is 150 nm or more, an effect of suppressing the amount of carbon dioxide generated is expressed, and if it is 250 nm or less, aggregation is not caused and yarn breakage occurs in the spinning process. There is no. The addition amount of the carbon dioxide generation amount inhibitor uniformly dispersed in the fiber is preferably 0.03 to 0.30% by weight. Preferably it is 0.05-0.25 weight%, More preferably, it is 0.10-0.20 weight%. If the amount added is too large, thread breakage may occur during spinning. In particular, the aggregation of additives in the fiber has a small fiber cross-sectional area, and thus significantly affects the spinnability in the fiber production process during spinning. On the other hand, when the addition amount is less than 0.03% by weight, the carbon dioxide generation amount suppressing effect is not exhibited.

本願明細書中、二酸化炭素発生量抑制剤とは、二酸化炭素を化学的又は物理的に吸着する物質であればいかなるものでも構わないが、例えば、金属水酸化物、金属酸化物、アルミノケイ酸塩、チタン酸化合物、リチウムシリケート、シリカゲル、アルミナ、活性炭が挙げられる。 In the specification of the present application, the carbon dioxide generation amount inhibitor may be any substance as long as it is a substance that chemically or physically adsorbs carbon dioxide. For example, metal hydroxide, metal oxide, aluminosilicate is used. , Titanic acid compounds , lithium silicate, silica gel, alumina, activated carbon.

前記金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等が挙げられる。   Examples of the metal hydroxide include lithium hydroxide, sodium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide.

前記金属酸化物としては、酸化マグネシウム、酸化カルシウム、酸化亜鉛等が挙げられる。   Examples of the metal oxide include magnesium oxide, calcium oxide, and zinc oxide.

前記アルミノケイ酸塩としては、非晶質アルミノシリケート、天然ゼオライト、合成ゼオライト等が挙げられる。   Examples of the aluminosilicate include amorphous aluminosilicate, natural zeolite, and synthetic zeolite.

前記チタン酸化合物としては、チタン酸バリウム、オルソチタン酸バリウム等が挙げられる。   Examples of the titanate compound include barium titanate and barium orthotitanate.

前記ポリエステル系樹脂又はポリアミド系樹脂には分散助剤をされに添加してもよい。該における分散助剤は脂肪酸金属塩、高分子界面活性剤、両親媒性脂質のうち少なくとも1種であることができる。   A dispersion aid may be added to the polyester resin or polyamide resin. The dispersion aid may be at least one of a fatty acid metal salt, a polymeric surfactant, and an amphiphilic lipid.

例えば、微小なカプセル状のリポソームによって二酸化炭素発生量抑制剤及び結晶核剤を内包し、前記樹脂中に効率よく均一分散させることができる。   For example, a carbon dioxide generation amount inhibitor and a crystal nucleating agent can be encapsulated by minute capsule-like liposomes and efficiently dispersed uniformly in the resin.

また、二酸化炭素発生量抑制剤と分散助剤とを、分散処理、超臨界流体処理、超音波照射、撹拌処理等の方法で混合し、得られた二酸化炭素発生量抑制剤と分散助剤との混合物を、樹脂に添加することにより、樹脂との相溶性が低い二酸化炭素発生量抑制剤を凝集させずに、該樹脂に均一に分散させることができ、高い二酸化炭素の吸収効果を有する二酸化炭素発生量抑制樹脂を得ることができる。   Further, the carbon dioxide generation amount inhibitor and the dispersion aid are mixed by a method such as dispersion treatment, supercritical fluid treatment, ultrasonic irradiation, stirring treatment, etc. Is added to the resin, so that the carbon dioxide generation amount inhibitor having low compatibility with the resin can be uniformly dispersed in the resin without agglomeration, and has a high carbon dioxide absorption effect. A carbon generation suppression resin can be obtained.

二酸化炭素発生量抑制効果としては30%以上が好ましく、より好ましくは40%以上、さらに好ましくは50%以上である。この範囲の二酸化炭素発生量抑制効果であれば、地球温暖化への影響から望まれている二酸化炭素削減効果と言える。   The carbon dioxide generation amount suppressing effect is preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. If it is the carbon dioxide generation amount suppression effect of this range, it can be said that it is the carbon dioxide reduction effect desired from the influence on global warming.

本実施形態のスパンボンド不織布の製造においては、二酸化炭素発生量抑制剤が繊維中に均一に分散されているので、曳糸性が良く、紡糸工程において繊維の糸切れが発生しにくい。更に繊維の結晶配向性は低下しておらず、逆に紡糸条件を特定範囲で制御することで結晶配向性を向上させることができため、得られる繊維さらには形成される不織布の強伸度を向上させることができる。   In the production of the spunbonded nonwoven fabric of the present embodiment, the carbon dioxide generation amount inhibitor is uniformly dispersed in the fiber, so that the spinnability is good and fiber breakage hardly occurs in the spinning process. Furthermore, the crystal orientation of the fiber is not lowered, and conversely, the crystal orientation can be improved by controlling the spinning conditions within a specific range. Can be improved.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記実施例のみに限定されるものではない。
尚、実施例及び比較例において使用した各種特性の評価方法は下記のとおりであり、得られた物性を以下の表1及び2に示す。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited only to the following Example.
In addition, the evaluation method of the various characteristics used in the Example and the comparative example is as follows, and the obtained physical property is shown in the following Tables 1 and 2.

1.平均単糸繊度(dtex)
不織布のCD方向に5等分して1cm角の試験片を採取し、キーエンス社製マイクロスコープVHX−700Fで繊維の直径を各20点ずつ測定し、その平均値を算出した。
1. Average single yarn fineness (dtex)
A test piece of 1 cm square was sampled by dividing it into 5 parts in the CD direction of the nonwoven fabric, 20 diameters of each fiber were measured with a Keyence microscope VHX-700F, and the average value was calculated.

2.目付(g/m
JIS−L1906に準じ、MD方向20cm×CD方向5cmの試験片を不織布のCD方向に採取位置が均等になるように5枚採取して質量を測定し、その平均値を単位面積あたりの重量に換算して目付(g/m)として求めた。
2. Weight per unit (g / m 2 )
In accordance with JIS-L1906, five test pieces of MD direction 20 cm × CD direction 5 cm were sampled so that the sampling positions were uniform in the CD direction of the nonwoven fabric, the mass was measured, and the average value was taken as the weight per unit area. The weight per unit area was calculated as a basis weight (g / m 2 ).

3.引張強度(N/5cm)、引張伸度(%)、タフネス指標
JIS L−1906に準じ、CD方向均等になる様に、CD方向5cm、MD方向20cmの試験片を不織布のCD方向に採取位置が均等になるように5枚採取して、引張試験機で、つかみ間隔10cm、引張速度30cm/分で測定した。MD方向各5点の試料を測定し、測定値を平均して引張強度と引張伸度を算出した。タフネス指数は以下の式:
タフネス指数=引張強度(N/5cm)×引張伸度(%)/目付(g/m
から算出した。
3. Tensile strength (N / 5cm), tensile elongation (%), toughness index In accordance with JIS L-1906, the specimens in the CD direction 5cm and MD direction 20cm are collected in the CD direction of the nonwoven fabric so that they are uniform in the CD direction. Five samples were collected so as to be uniform, and measured with a tensile tester at a gripping interval of 10 cm and a tensile speed of 30 cm / min. Samples at five points in the MD direction were measured, and the measured values were averaged to calculate the tensile strength and the tensile elongation. The toughness index is:
Toughness index = tensile strength (N / 5 cm) × tensile elongation (%) / weight per unit (g / m 2 )
Calculated from

4.二酸化炭素発生量抑制剤の平均粒子径
粒度分布計(Particle Sizing System Co.製 NICOMP 380ZLS型)を用いて測定した。
4). The average particle size of the carbon dioxide generation inhibitor was measured using a particle size distribution analyzer (NICOMP 380ZLS type manufactured by Particle Sizing System Co.).

5.二酸化炭素発生量抑制剤の分散性
凝集する目安として剤粒子の大きさが400nm以上とし、超高分解能電界放出形走査電子顕微鏡 S-5500(株式会社 日立ハイテクノロジーズ社製)明視野STEMにて20000倍率の繊維断面を観察した。400nm以上のサイズの塊が無ければ分散性を「良」、あれば「悪」として評価した。
6.二酸化炭素発生量抑制効果
<低温熱分解物の調製>
一般的な自治体焼却炉で使用されているストーカ炉を想定し、各実施例で得られた二酸化炭素発生量抑制不織布と、二酸化炭素発生量抑制を含有しない不織布とをTG/DTA装置で雰囲気ガス窒素/空気、測定範囲30〜400℃、昇温速度10℃/分、ガス流量200mL/分条件で処理し低温熱分解物を得た。
<不織布の二酸化炭素発生量抑制効果の測定>
上記で調製した熱分解物10mgをJIS−K7217に準じ、空気下800℃で10分間燃焼させ、その際に発生した二酸化炭素を、熱伝導度検出器を備えたガスクロマトグラフで定量測定した。二酸化炭素発生量抑制剤を含有しない不織布から発生した二酸化炭素量と各実施例で得られた不織布から発生した二酸化炭素量との差の割合から二酸化炭素削減効果を算出した。
5. Dispersibility of carbon dioxide generation inhibitor As a measure of aggregation, the size of the agent particles should be 400 nm or more. Ultra-high resolution field emission scanning electron microscope S-5500 (manufactured by Hitachi High-Technologies Corporation) 20000 in bright field STEM A magnification fiber cross section was observed. The dispersibility was evaluated as “good” if there was no lump having a size of 400 nm or more, and “bad” if it was not.
6). Carbon dioxide generation suppression effect <Preparation of low-temperature pyrolysis product>
Assuming a stalker furnace used in general municipal incinerators, the carbon dioxide generation-suppressed nonwoven fabric obtained in each example and the nonwoven fabric that does not contain carbon dioxide generation-supplement suppression are added to the atmosphere gas using a TG / DTA device. A low temperature pyrolyzate was obtained by treatment under conditions of nitrogen / air, measurement range of 30 to 400 ° C., heating rate of 10 ° C./min, gas flow rate of 200 mL / min.
<Measurement of carbon dioxide generation suppression effect of nonwoven fabric>
In accordance with JIS-K7217, 10 mg of the pyrolyzate prepared above was combusted in air at 800 ° C. for 10 minutes, and carbon dioxide generated at that time was quantitatively measured with a gas chromatograph equipped with a thermal conductivity detector. The carbon dioxide reduction effect was calculated from the ratio of the difference between the amount of carbon dioxide generated from the nonwoven fabric containing no carbon dioxide generation inhibitor and the amount of carbon dioxide generated from the nonwoven fabric obtained in each example.

〔実施例1〕
ポリエチレンテレフタレート樹脂(融点254℃、密度1.38g/cm)に平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.03重量%になる様に添加した。この二酸化炭素発生量抑制剤を添加したナイロン6樹脂をスパンボンド法により、単孔吐出量0.90g/min・Hole、紡糸温度295℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して牽引し、移動捕集面に向けて押し出し、平均単糸繊度2.00dtexの不織布ウェブを得た。
[Example 1]
A carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was added to polyethylene terephthalate resin (melting point: 254 ° C., density: 1.38 g / cm 3 ) so that the pure content was 0.03% by weight. Nylon 6 resin added with carbon dioxide generation rate inhibitor is extruded by spunbond method at a single hole discharge rate of 0.90 g / min · Hole, spinning temperature of 295 ° C. Used tow and extruded toward the moving collection surface to obtain a nonwoven web having an average single yarn fineness of 2.00 dtex.

次いで、得られたウェブを、フラットロールとエンボスロール(パターン仕様:菱形、直行配列、縦横ピッチ2.0mm、圧着面積率14.7%)の間に通して温度240℃と線圧35kgf/cmで繊維同士を接着し、目付20g/mのスパンボンド不織布を得た。 Next, the obtained web was passed between a flat roll and an embossing roll (pattern specification: rhombus, orthogonal arrangement, vertical and horizontal pitch 2.0 mm, crimping area ratio 14.7%), temperature 240 ° C. and linear pressure 35 kgf / cm. The fibers were bonded together to obtain a spunbonded nonwoven fabric having a basis weight of 20 g / m 2 .

〔実施例2〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例1と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。
[Example 2]
In the same manner as in Example 1, the average single yarn fineness was 2.45 dtex, and the basis weight was 20 g / m 2 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.09% by weight. Spunbond nonwoven fabric was obtained.

〔実施例3〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例1と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 3
An average single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was carried out in the same manner as in Example 1 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例4〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.30重量%となる様に、実施例1と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。
Example 4
In the same manner as in Example 1, the average single yarn fineness was 2.45 dtex, and the basis weight was 20 g / m 2 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.30% by weight. Spunbond nonwoven fabric was obtained.

〔実施例5〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例1と同様にして平均単糸繊度3.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 5
The average single yarn fineness is 3.00 dtex and the basis weight is 20 g / m 2 in the same manner as in Example 1 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm is 0.15% by weight. Spunbond nonwoven fabric was obtained.

〔実施例6〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例1と同様にして平均単糸繊度1.40dtex、目付30g/mのスパンボンド不織布を得た。
Example 6
In the same manner as in Example 1, the average single yarn fineness was 1.40 dtex and the basis weight was 30 g / m 2 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例7〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例1と同様にして平均単糸繊度0.07dtex、目付20g/mのスパンボンド不織布を得た。
Example 7
In the same manner as in Example 1, the average single yarn fineness was 0.07 dtex, and the basis weight was 20 g / m 2 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15% by weight. Spunbond nonwoven fabric was obtained.

〔実施例8〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例1と同様にして平均単糸繊度2.45dtex、目付8g/mのスパンボンド不織布を得た。
Example 8
In the same manner as in Example 1, the average single yarn fineness was 2.45 dtex, and the basis weight was 8 g / m 2 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15% by weight. Spunbond nonwoven fabric was obtained.

〔実施例9〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例1と同様にして平均単糸繊度2.45dtex、目付60g/mのスパンボンド不織布を得た。
Example 9
In the same manner as in Example 1, the average single yarn fineness was 2.45 dtex, and the basis weight was 60 g / m 2 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15% by weight. Spunbond nonwoven fabric was obtained.

〔実施例10〕
平均粒子径200nmの酸化マグネシウムからなる二酸化炭素発生量抑制剤を純分で0.10重量%となる様に、実施例1と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 10
In the same manner as in Example 1, an average single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 is used so that the carbon dioxide generation amount inhibitor composed of magnesium oxide having an average particle diameter of 200 nm is 0.10 wt% in a pure content. A spunbond nonwoven fabric was obtained.

〔実施例11〕
平均粒子径200nmのチタン酸バリウムからなる二酸化炭素発生量抑制剤を純分で0.10重量%となる様に、実施例1と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 11
In the same manner as in Example 1, the average single yarn fineness of 2.00 dtex and the basis weight of 20 g / m 2 is set so that the carbon dioxide generation amount inhibitor composed of barium titanate having an average particle diameter of 200 nm is 0.10 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例12〕
ポリブチレンテレフタレート樹脂(融点225℃、密度1.38g/cm)に平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.10重量%となる様に添加し、実施例1と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 12
To a polybutylene terephthalate resin (melting point: 225 ° C., density: 1.38 g / cm 3 ), a carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle size of 200 nm is added to a pure content of 0.10% by weight, In the same manner as in Example 1, a spunbonded nonwoven fabric having an average single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was obtained.

〔実施例13〕
平均粒子径が150nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例1と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。
Example 13
An average single yarn fineness of 2.45 dtex and a weight per unit area of 20 g / m were obtained in the same manner as in Example 1 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 150 nm was 0.09 wt% in a pure content. 2 spunbond nonwoven fabric was obtained.

〔実施例14〕
平均粒子径が250nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例1と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。
Example 14
In the same manner as in Example 1, the average single yarn fineness was 2.45 dtex and the basis weight was 20 g / m so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle size of 250 nm was 0.09 wt% in a pure content. 2 spunbond nonwoven fabric was obtained.

〔実施例15〕
ナイロン6樹脂(融点223℃、密度1.14g/cm)に平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.03重量%になる様に添加した。この二酸化炭素発生量抑制剤を添加したナイロン6樹脂をスパンボンド法により、単孔吐出量0.90g/min・Hole、紡糸温度265℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して牽引し、移動捕集面に向けて押し出し、平均単糸繊度2.00dtexの不織布ウェブを得た。
Example 15
A carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was added to nylon 6 resin (melting point: 223 ° C., density: 1.14 g / cm 3 ) so as to be 0.03% by weight. Nylon 6 resin added with carbon dioxide generation rate inhibitor is extruded by spunbonding at a single hole discharge rate of 0.90 g / min · Hole and a spinning temperature of 265 ° C. Used tow and extruded toward the moving collection surface to obtain a nonwoven web having an average single yarn fineness of 2.00 dtex.

次いで、得られたウェブを、フラットロールとエンボスロール(パターン仕様:直径0.425mm円形、千鳥配列、横ピッチ2.1mm、縦ピッチ1.1mm、圧着面積率6.3%)の間に通して温度190℃と線圧35kgf/cmで繊維同士を接着し、目付20g/mのスパンボンド不織布を得た。 Next, the obtained web was passed between a flat roll and an embossing roll (pattern specification: circular with a diameter of 0.425 mm, staggered arrangement, horizontal pitch 2.1 mm, vertical pitch 1.1 mm, crimping area ratio 6.3%). The fibers were bonded at a temperature of 190 ° C. and a linear pressure of 35 kgf / cm to obtain a spunbonded nonwoven fabric having a basis weight of 20 g / m 2 .

〔実施例16〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例13と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。
Example 16
An average single yarn fineness of 2.45 dtex and a basis weight of 20 g / m 2 was carried out in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.09 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例17〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例13と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 17
An average single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was carried out in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例18〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.30重量%となる様に、実施例13と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。
Example 18
An average single yarn fineness of 2.45 dtex and a basis weight of 20 g / m 2 was carried out in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.30% by weight. Spunbond nonwoven fabric was obtained.

〔実施例19〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例13と同様にして平均単糸繊度3.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 19
The average single yarn fineness is 3.00 dtex, and the basis weight is 20 g / m 2 in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm is 0.15 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例20〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例13と同様にして平均単糸繊度1.40dtex、目付30g/mのスパンボンド不織布を得た。
Example 20
An average single yarn fineness of 1.40 dtex and a basis weight of 30 g / m 2 were obtained in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例21〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例13と同様にして平均単糸繊度0.07dtex、目付20g/mのスパンボンド不織布を得た。
Example 21
The average single yarn fineness was 0.07 dtex and the basis weight was 20 g / m 2 in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例22〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例13と同様にして平均単糸繊度2.45dtex、目付8g/mのスパンボンド不織布を得た。
[Example 22]
An average single yarn fineness of 2.45 dtex and a basis weight of 8 g / m 2 were obtained in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例23〕
平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.15重量%となる様に、実施例13と同様にして平均単糸繊度2.45dtex、目付60g/mのスパンボンド不織布を得た。
Example 23
An average single yarn fineness of 2.45 dtex and a basis weight of 60 g / m 2 was carried out in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 200 nm was 0.15 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例24〕
平均粒子径200nmの酸化マグネシウムからなる二酸化炭素発生量抑制剤を純分で0.10重量%となる様に、実施例13と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 24
An average single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was applied in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of magnesium oxide having an average particle diameter of 200 nm was 0.10 wt% in a pure content. A spunbond nonwoven fabric was obtained.

〔実施例25〕
平均粒子径200nmのチタン酸バリウムからなる二酸化炭素発生量抑制剤を純分で0.10重量%となる様に、実施例13と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 25
An average single yarn fineness of 2.00 dtex and a weight per unit area of 20 g / m 2 was obtained in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of barium titanate having an average particle diameter of 200 nm was 0.10 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例26〕
ナイロン66樹脂(融点265℃、密度1.14g/cm)に平均粒子径200nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.10重量%となる様に添加し、実施例13と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。
Example 26
Nylon 66 resin (melting point: 265 ° C., density: 1.14 g / cm 3 ) was added with a carbon dioxide generation amount inhibitor consisting of sodium aluminosilicate having an average particle diameter of 200 nm so that the pure content would be 0.10 wt%. In the same manner as in Example 13, a spunbonded nonwoven fabric having an average single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was obtained.

〔実施例27〕
平均粒子径150nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例13と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。
Example 27
An average single yarn fineness of 2.45 dtex and a weight per unit area of 20 g / m 2 was carried out in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 150 nm was 0.09 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔実施例28〕
平均粒子径250nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例13と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。
Example 28
An average single yarn fineness of 2.45 dtex and a weight per unit area of 20 g / m 2 was obtained in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 250 nm was 0.09 wt% in a pure content. Spunbond nonwoven fabric was obtained.

〔比較例1〕
ポリエチレンテレフタレート樹脂(融点254℃、密度1.38g/cm)にアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.02重量%となる様に、実施例1と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。比較例1の二酸化炭素発生量抑制剤添加量では、二酸化炭素発生量削減効果が22%と低い値であった。
[Comparative Example 1]
In the same manner as in Example 1, a polyethylene terephthalate resin (melting point: 254 ° C., density: 1.38 g / cm 3 ) was averaged in the same manner as in Example 1 so that the carbon dioxide generation amount inhibitor consisting of sodium aluminosilicate was 0.02% by weight. A spunbonded nonwoven fabric having a single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was obtained. In the carbon dioxide generation amount inhibitor addition amount of Comparative Example 1, the carbon dioxide generation amount reduction effect was a low value of 22%.

〔比較例2〕
ポリエチレンテレフタレート樹脂(融点254℃、密度1.38g/cm)を使用し実施例1と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。比較例2では二酸化炭素発生量抑制剤を添加していないため、抑制効果が発現しなかった。
[Comparative Example 2]
Using a polyethylene terephthalate resin (melting point 254 ° C., density 1.38 g / cm 3 ), a spunbonded nonwoven fabric having an average single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was obtained in the same manner as in Example 1. In Comparative Example 2, since the carbon dioxide generation amount inhibitor was not added, the suppression effect was not exhibited.

〔比較例3〕
ポリエチレンテレフタレート樹脂(融点254℃、密度1.38g/cm)にアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.35重量%となる様に、実施例1と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得たが、紡糸時の糸切れが多く、品位の悪い不織布となった。
[Comparative Example 3]
In the same manner as in Example 1, an average amount of a carbon dioxide generation inhibitor composed of sodium aluminosilicate was added to a polyethylene terephthalate resin (melting point: 254 ° C., density: 1.38 g / cm 3 ) in the same manner as in Example 1. A spunbonded nonwoven fabric having a single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was obtained, but there were many yarn breaks during spinning, and the nonwoven fabric was poor in quality.

〔比較例4〕
平均粒子径100nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例1と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。比較例4では二酸化炭素発生量抑制剤の平均粒子径が150nm未満であったため、二酸化炭素発生量削減効果が25%と低い値となった。
[Comparative Example 4]
In the same manner as in Example 1, the average single yarn fineness was 2.45 dtex, and the weight per unit area was 20 g / m 2 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 100 nm was 0.09% by weight. Spunbond nonwoven fabric was obtained. In Comparative Example 4, since the average particle diameter of the carbon dioxide generation amount inhibitor was less than 150 nm, the carbon dioxide generation amount reduction effect was a low value of 25%.

〔比較例5〕
平均粒子径400nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例1と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た 。比較例5では二酸化炭素発生量抑制剤の平均粒子径250nmを超えていたため、紡糸時の糸切れが多く、品位の悪い不織布となった。
[Comparative Example 5]
In the same manner as in Example 1, the average single yarn fineness was 2.45 dtex, and the basis weight was 20 g / m 2 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 400 nm was 0.09% by weight. Spunbond nonwoven fabric was obtained. In Comparative Example 5, since the average particle diameter of the carbon dioxide generation amount inhibitor exceeded 250 nm, there was a lot of yarn breakage during spinning, and the nonwoven fabric was poor in quality.

〔比較例6〕
ナイロン6樹脂(融点223℃、密度1.14g/cm)にアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.02重量%となる様に、実施例13と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。比較例1の二酸化炭素発生量抑制剤添加量では、二酸化炭素発生量削減効果が25%と低い値であった。
[Comparative Example 6]
In the same manner as in Example 13, the nylon 6 resin (melting point: 223 ° C., density: 1.14 g / cm 3 ) and the carbon dioxide generation amount inhibitor consisting of sodium aluminosilicate were 0.02% by weight in pure content. A spunbonded nonwoven fabric having a single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was obtained. In the carbon dioxide generation amount inhibitor addition amount of Comparative Example 1, the carbon dioxide generation amount reduction effect was a low value of 25%.

〔比較例7〕
ナイロン6樹脂(融点223℃、密度1.14g/cm)を使用し実施例13と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得た。比較例2では二酸化炭素発生量抑制剤を添加していないため、抑制効果が発現しなかった。
[Comparative Example 7]
Using a nylon 6 resin (melting point 223 ° C., density 1.14 g / cm 3 ), a spunbonded nonwoven fabric having an average single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was obtained in the same manner as in Example 13. In Comparative Example 2, since the carbon dioxide generation amount inhibitor was not added, the suppression effect was not exhibited.

〔比較例8〕
ナイロン6樹脂(融点223℃、密度1.14g/cm)にアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.35重量%となる様に、実施例13と同様にして平均単糸繊度2.00dtex、目付20g/mのスパンボンド不織布を得たが、紡糸時の糸切れが多く、品位の悪い不織布となった。
[Comparative Example 8]
In the same manner as in Example 13, an average amount of carbon dioxide generation inhibitor composed of sodium aluminosilicate was added to nylon 6 resin (melting point: 223 ° C., density: 1.14 g / cm 3 ) in the same manner as in Example 13. A spunbonded nonwoven fabric having a single yarn fineness of 2.00 dtex and a basis weight of 20 g / m 2 was obtained, but there were many yarn breaks during spinning, and the nonwoven fabric was poor in quality.

〔比較例9〕
平均粒子径100nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例13と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。比較例9では二酸化炭素発生量抑制剤の平均粒子径が150nm未満であったため、二酸化炭素発生量削減効果が25%と低い値であった。
[Comparative Example 9]
An average single yarn fineness of 2.45 dtex and a weight per unit area of 20 g / m 2 was carried out in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 100 nm was 0.09% by weight in a pure content. Spunbond nonwoven fabric was obtained. In Comparative Example 9, since the average particle size of the carbon dioxide generation amount inhibitor was less than 150 nm, the carbon dioxide generation amount reduction effect was a low value of 25%.

〔比較例10〕
平均粒子径400nmのアルミノケイ酸ナトリウムからなる二酸化炭素発生量抑制剤を純分で0.09重量%となる様に、実施例13と同様にして平均単糸繊度2.45dtex、目付20g/mのスパンボンド不織布を得た。比較例10では二酸化炭素発生量抑制剤の平均粒子径250nmを超えていたため、紡糸時の糸切れが多く、品位の悪い不織布となった。
[Comparative Example 10]
An average single yarn fineness of 2.45 dtex and a weight per unit area of 20 g / m 2 was carried out in the same manner as in Example 13 so that the carbon dioxide generation amount inhibitor composed of sodium aluminosilicate having an average particle diameter of 400 nm was 0.09% by weight. Spunbond nonwoven fabric was obtained. In Comparative Example 10, since the average particle diameter of the carbon dioxide generation amount inhibitor exceeded 250 nm, there were many yarn breaks during spinning, and the nonwoven fabric was poor in quality.

Figure 0006584908
Figure 0006584908

Figure 0006584908
Figure 0006584908

本発明のスパンボンド不織布は、燃焼時二酸化炭素発生量を抑制することができ、且つ、強伸度を有し、生産上の工程安定性や着用時の破断を抑制する効果を奏するため、土木、建築、農業、産業、生活資材用途に好適に利用可能である。   The spunbonded nonwoven fabric of the present invention can suppress the amount of carbon dioxide generated during combustion, has high elongation, and exhibits the effects of suppressing process stability during production and breaking during wearing. It can be suitably used for construction, agriculture, industry and daily life materials.

Claims (8)

ポリエステル系樹脂又はポリアミド系樹脂から構成されるポリエステル系又はポリアミド系スパンボンド不織布であって、該ポリエステル系樹脂又はポリアミド系樹脂に、粒子径150nm〜250nmの二酸化炭素発生量抑制剤が分散され、0.03〜0.30重量%で含有されており、かつ、該二酸化炭素発生量抑制剤が、酸化マグネシウム、アルミノケイ酸塩、及びチタン酸化合物からなる群から選ばれる少なくとも1種であることを特徴とする前記不織布。 A polyester-based or polyamide-based spunbonded nonwoven fabric composed of a polyester-based resin or a polyamide-based resin, wherein a carbon dioxide generation amount inhibitor having a particle diameter of 150 nm to 250 nm is dispersed in the polyester-based resin or polyamide-based resin, and 0 0.03 to 0.30% by weight , and the carbon dioxide generation amount inhibitor is at least one selected from the group consisting of magnesium oxide, aluminosilicates, and titanic acid compounds. Said non-woven fabric. 前記不織布の引張強度が20〜400N/50mmであり、引張伸度が10〜70%であり、かつ、タフネス指数が40〜300である、請求項1に記載のスパンボンド不織布。   The spunbonded nonwoven fabric according to claim 1, wherein the nonwoven fabric has a tensile strength of 20 to 400 N / 50 mm, a tensile elongation of 10 to 70%, and a toughness index of 40 to 300. 前記不織布を構成する繊維の平均単糸繊度が0.7〜3.0dtexであり、かつ、前記不織布の目付が8〜100g/mである、請求項1又は2に記載のスパンボンド不織布。 The average fineness of the fibers constituting the nonwoven fabric is 0.7~3.0Dtex, and basis weight of the nonwoven fabric is 8~100g / m 2, spunbonded nonwoven fabric according to claim 1 or 2. 前記ポリエステル系樹脂又はポリアミド系樹脂に分散助剤がさらに含有されている、請求項1〜3のいずれか1項に記載のスパンボンド不織布。   The spunbonded nonwoven fabric according to any one of claims 1 to 3, wherein a dispersion aid is further contained in the polyester resin or polyamide resin. 前記分散助剤が、脂肪酸金属塩、高分子界面活性剤、及び両親媒性脂質から成る群から選ばれる少なくとも1種である、請求項に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 4 , wherein the dispersion aid is at least one selected from the group consisting of a fatty acid metal salt, a polymer surfactant, and an amphiphilic lipid. 前記ポリエステル系樹脂又はポリアミド系樹脂が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ナイロン6、及びナイロン66からなる群から選ばれる少なくとも1種である、請求項1〜いずれか1項に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to any one of claims 1 to 5 , wherein the polyester resin or polyamide resin is at least one selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, nylon 6, and nylon 66. . 土木、建築、農業、産業又は生活資材用の、請求項1〜いずれか1項に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to any one of claims 1 to 6, which is used for civil engineering, construction, agriculture, industry, or daily life materials. 請求項1〜いずれか1項に記載のスパンボンド不織布を含む包装材料。 A packaging material comprising the spunbonded nonwoven fabric according to any one of claims 1 to 6 .
JP2015203921A 2015-10-15 2015-10-15 Spunbond nonwoven fabric with flexibility Active JP6584908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203921A JP6584908B2 (en) 2015-10-15 2015-10-15 Spunbond nonwoven fabric with flexibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203921A JP6584908B2 (en) 2015-10-15 2015-10-15 Spunbond nonwoven fabric with flexibility

Publications (2)

Publication Number Publication Date
JP2017075427A JP2017075427A (en) 2017-04-20
JP6584908B2 true JP6584908B2 (en) 2019-10-02

Family

ID=58550139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203921A Active JP6584908B2 (en) 2015-10-15 2015-10-15 Spunbond nonwoven fabric with flexibility

Country Status (1)

Country Link
JP (1) JP6584908B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885394B2 (en) * 1998-12-10 2007-02-21 東レ株式会社 Polyester composition
JP2001026635A (en) * 1999-07-13 2001-01-30 Toray Ind Inc Polyester composition, preparation thereof and fiber made of the composition the composition
JP4355945B2 (en) * 2004-11-08 2009-11-04 住友金属鉱山株式会社 Near-infrared absorbing fiber and fiber product using the same
FR2886949B1 (en) * 2005-06-10 2007-08-03 Rhodia Chimie Sa POLYAMIDE THREADS, FILAMENTS AND POLYAMIDE FIBERS WITH IMPROVED PROPERTIES
JP5076375B2 (en) * 2006-06-29 2012-11-21 東レ株式会社 Agricultural nonwoven fabric
JP6170652B2 (en) * 2009-09-27 2017-07-26 アクテイブ株式会社 Carbon dioxide emission-reducing resin composition, method for producing the same, and use thereof

Also Published As

Publication number Publication date
JP2017075427A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP2022141779A (en) CaCO3 IN POLYESTER FOR NONWOVEN FABRICS AND FIBERS
JP5475650B2 (en) Spunlaid fiber containing coated calcium carbonate, method for producing the same, and nonwoven product
JP2019167667A (en) Composite structure
JP2013520583A (en) Dimensionally stable nonwoven fibrous webs and methods for their manufacture and use
KR102243796B1 (en) Antimicrobial fiber and method for producing antimicrobial fiber
JP5486332B2 (en) Biodegradable non-woven fabric
Saeed et al. Effect of nanoclay on the thermal, mechanical, and crystallization behavior of nanofiber webs of nylon‐6
JP6584908B2 (en) Spunbond nonwoven fabric with flexibility
JP6584907B2 (en) Polyolefin-based spunbond nonwoven fabric
KR102207065B1 (en) Method for manufacturing mask filter by Melt Blowing mode, for Melt Blowing apparatus the same, mask filter manufactured by the same
KR102243795B1 (en) Antimicrobial fiber and method for producing antimicrobial fiber
JP4773902B2 (en) Nanofiber nonwoven fabric and method for producing the same
JP2016098458A (en) Semi-aromatic polyamide nonwoven fabric
JP2007303012A (en) Ground fabric for tufted carpet and tufted carpet using the ground fabric
JP4178997B2 (en) Functional fiber assembly and molded body using the same
JP2007107122A (en) Polylactic acid fiber
JP2011246853A (en) Short-cut conjugate fiber comprising polylactic acid
JP2013011033A (en) Polylactic acid fiber
JP2011117109A (en) Biodegradable nonwoven fabric
JP6172902B2 (en) Nonwoven sheet with high deodorizing function
JP6172786B2 (en) Nonwoven fabric sheet with deodorizing function
JP2008248418A5 (en)
JP2008248418A (en) Polylactic acid staple fiber
Dong et al. Functionally electrospun PLA/tubular clay nanocomposites for the potential application of drug delivery
JP2012167399A (en) Polylactic acid-based nonwoven fabric

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6584908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150