JP6580301B2 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
JP6580301B2
JP6580301B2 JP2014048204A JP2014048204A JP6580301B2 JP 6580301 B2 JP6580301 B2 JP 6580301B2 JP 2014048204 A JP2014048204 A JP 2014048204A JP 2014048204 A JP2014048204 A JP 2014048204A JP 6580301 B2 JP6580301 B2 JP 6580301B2
Authority
JP
Japan
Prior art keywords
hydraulic
hydraulic oil
pump
pressure
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014048204A
Other languages
English (en)
Other versions
JP2015172393A5 (ja
JP2015172393A (ja
Inventor
英祐 松嵜
英祐 松嵜
石山 寛
寛 石山
塚根 浩一郎
浩一郎 塚根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014048204A priority Critical patent/JP6580301B2/ja
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to CN201580013358.0A priority patent/CN106104012B/zh
Priority to PCT/JP2015/056990 priority patent/WO2015137329A1/ja
Priority to KR1020167025353A priority patent/KR102284285B1/ko
Priority to EP15762319.0A priority patent/EP3118465B1/en
Publication of JP2015172393A publication Critical patent/JP2015172393A/ja
Priority to US15/259,233 priority patent/US10604916B2/en
Publication of JP2015172393A5 publication Critical patent/JP2015172393A5/ja
Application granted granted Critical
Publication of JP6580301B2 publication Critical patent/JP6580301B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

本発明は、複数の油圧ポンプと、油圧ポンプ及び油圧モータの少なくとも一方として機能する少なくとも1つの油圧装置とを含む油圧回路を搭載するショベルに関する。
3つの油圧ポンプのそれぞれから供給される作動油によって同時に駆動されるブームシリンダ、アームシリンダ、及びバケットシリンダを備えた建設機械用の油圧システムが知られている(例えば、特許文献1参照。)。
この油圧システムは、ブーム、アーム、及びバケットで構成される作業装置の駆動速度を増速させるために3つの油圧ポンプのそれぞれから供給される作動油を合流させてそれぞれに対応するシリンダに流入させている。
特開2010−48417号公報
しかしながら、上述の油圧システムは、ブームシリンダ、アームシリンダ、及びバケットシリンダを同時に駆動した場合のそれぞれの負荷圧の違いについては言及していない。そのため、負荷圧差によるエネルギ損失の発生を防止できず、3つの油圧ポンプを効率的に動作させているとは言い難い。
上述に鑑み、複数の油圧ポンプと、油圧ポンプ及び油圧モータの少なくとも一方として機能する少なくとも1つの油圧装置とをより効率的に動作させることができる油圧回路を搭載するショベルを提供することが望ましい。
本発明の実施例に係るショベルは、エンジンと、前記エンジンに接続され、第1作動油を吐出する第1ポンプと、前記エンジンに接続され、第2作動油を吐出する第2ポンプと、第3作動油を吐出する、油圧ポンプとして機能する油圧装置と、少なくとも前記第1作動油と前記第2作動油とが流入可能な第1油圧アクチュエータと、少なくとも前記第2作動油が流入可能な第2油圧アクチュエータと、をし、前記第1油圧アクチュエータと前記第2油圧アクチュエータとが同時に動作する場合、前記第1油圧アクチュエータは前記第1作動油前記第3作動油によって駆動され、且つ、前記第2油圧アクチュエータは前記第2作動油によって駆動される。

上述の手段により、複数の油圧ポンプと、油圧ポンプ及び油圧モータの少なくとも一方として機能する少なくとも1つの油圧装置とをより効率的に動作させることができる油圧回路を搭載するショベルを提供することができる。
ショベルの側面図である。 図1のショベルに搭載される油圧回路の構成例を示す概略図である。 図1のショベルに搭載される油圧回路の別の構成例を示す概略図である。 掘削動作が行われる場合における図2の油圧回路の状態を示す。 掘削動作が行われる場合における図2の油圧回路の状態を示す。 掘削動作が行われる場合における図2の油圧回路の状態を示す。 掘削動作が行われる場合における図3の油圧回路の状態を示す。 背圧回生によるエンジンのアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を示す。 背圧回生によるエンジンのアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を示す。 アキュムレータアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を示す。 アキュムレータアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を示す。 背圧回生による油圧アクチュエータのアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を示す。 背圧回生による油圧アクチュエータのアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を示す。 背圧回生によるエンジンのアシストを伴う排土動作が行われる場合における図2の油圧回路の状態を示す。 背圧回生によるエンジンのアシストを伴う排土動作が行われる場合における図3の油圧回路の状態を示す。 背圧回生による油圧アクチュエータのアシストを伴う排土動作が行われる場合における図2の油圧回路の状態を示す。 背圧回生による油圧アクチュエータのアシストを伴う排土動作が行われる場合における図3の油圧回路の状態を示す。 背圧回生によるアキュムレータの蓄圧を伴う排土動作が行われる場合における図2の油圧回路の状態を示す。 背圧回生によるアキュムレータの蓄圧を伴う排土動作が行われる場合における図3の油圧回路の状態を示す。 アキュムレータの蓄圧を伴うブーム下げ旋回減速動作が行われる場合における図2の油圧回路の状態を示す。 アキュムレータの蓄圧を伴うブーム下げ旋回減速動作が行われる場合における図3の油圧回路の状態を示す。
図1は、本発明が適用されるショベルを示す側面図である。ショベルの下部走行体1には、旋回機構2を介して上部旋回体3が搭載されている。上部旋回体3には、ブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはバケット6が取り付けられている。作業要素としてのブーム4、アーム5、及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。上部旋回体3には、キャビン10が設けられ、且つエンジン11等の動力源及びコントローラ30等が搭載される。
コントローラ30は、ショベルの駆動制御を行う主制御部としての制御装置である。本実施例では、コントローラ30は、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置で構成され、内部メモリに格納された駆動制御用のプログラムをCPUに実行させて各種機能を実現する。
図2は、図1のショベルに搭載される油圧回路の構成例を示す概略図である。本実施例では、油圧回路は、主に、第1ポンプ14L、第2ポンプ14R、ポンプ・モータ14A、コントロールバルブ17、及び油圧アクチュエータを含む。油圧アクチュエータは、主に、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、旋回用油圧モータ21、及びアキュムレータ80を含む。
ブームシリンダ7は、ブーム4を昇降させる油圧シリンダであり、ボトム側油室とロッド側油室との間には再生弁7aが接続され、ボトム側油室側には保持弁7bが設置される。また、アームシリンダ8は、アーム5を開閉させる油圧シリンダであり、ボトム側油室とロッド側油室との間には再生弁8aが接続され、ロッド側油室側には保持弁8bが設置される。また、バケットシリンダ9は、バケット6を開閉させる油圧シリンダであり、ボトム側油室とロッド側油室との間には再生弁9aが接続される。
旋回用油圧モータ21は、上部旋回体3を旋回させる油圧モータであり、ポート21L、21Rがそれぞれリリーフ弁22L、2Rを介して作動油タンクTに接続され、シャトル弁22Sを介して再生弁22Gに接続され、且つ、チェック弁23L、23Rを介して作動油タンクTに接続される。
リリーフ弁22Lは、ポート21L側の圧力が所定のリリーフ圧に達した場合に開き、ポート21L側の作動油を作動油タンクTに排出する。また、リリーフ弁22Rは、ポート21R側の圧力が所定のリリーフ圧に達した場合に開き、ポート21R側の作動油を作動油タンクTに排出する。
シャトル弁22Sは、ポート21L側及びポート21R側のうちの圧力が高い方の作動油を再生弁22Gに供給する。
再生弁22Gは、コントローラ30からの指令に応じて動作する弁であり、旋回用油圧モータ21(シャトル弁22S)とポンプ・モータ14A又はアキュムレータ80との間の連通・遮断を切り替える。
チェック弁23Lは、ポート21L側の圧力が負圧になった場合に開き、作動油タンクTからポート21L側に作動油を補給する。チェック弁23Rは、ポート21R側の圧力が負圧になった場合に開き、作動油タンクTからポート21R側に作動油を補給する。このように、チェック弁23L、23Rは、旋回用油圧モータ21の制動時に吸い込み側のポートに作動油を補給する補給機構を構成する。
第1ポンプ14Lは、作動油タンクTから作動油を吸い込んで吐出する油圧ポンプであり、本実施例では斜板式可変容量型油圧ポンプである。また、第1ポンプ14Lはレギュレータに接続される。レギュレータは、コントローラ30からの指令に応じて第1ポンプ14Lの斜板傾転角を変更して第1ポンプ14Lの吐出量を制御する。第2ポンプ14Rについても同様である。
また、第1ポンプ14Lの吐出側にはリリーフ弁14aLが設置されている。リリーフ弁14aLは、第1ポンプ14Lの吐出側の圧力が所定のリリーフ圧に達した場合に開き、吐出側の作動油を作動油タンクに排出する。第2ポンプ14Rの吐出側に設置されるリリーフ弁14aRについても同様である。
ポンプ・モータ14Aは、油圧ポンプ(第3ポンプ)としても油圧モータとしても機能する油圧装置であり、本実施例では斜板式可変容量型油圧ポンプ・モータである。また、ポンプ・モータ14Aは、第1ポンプ14L及び第2ポンプ14Rと同様にレギュレータに接続される。レギュレータは、コントローラ30からの指令に応じてポンプ・モータ14Aの斜板傾転角を変更してポンプ・モータ14Aの吐出量を制御する。
また、ポンプ・モータ14Aの吐出側にはリリーフ弁70aが設置されている。リリーフ弁70aは、ポンプ・モータ14Aの吐出側の圧力が所定のリリーフ圧に達した場合に開き、吐出側の作動油を作動油タンクに排出する。
また、本実施例では、第1ポンプ14L、第2ポンプ14R、及びポンプ・モータ14Aは、それぞれの駆動軸が機械的に連結される。具体的には、それぞれの駆動軸は、変速機13を介して所定の変速比でエンジン11の出力軸に連結される。そのため、エンジン回転数が一定であれば、それぞれの回転数も一定となる。但し、第1ポンプ14L、第2ポンプ14R、及びポンプ・モータ14Aは、エンジン回転数が一定であっても回転数を変更できるよう、無段変速機等を介してエンジン11に接続されてもよい。
コントロールバルブ17は、ショベルにおける油圧駆動系の制御を行う油圧制御装置である。また、コントロールバルブ17は、主に、可変ロードチェック弁51〜53、合流弁55、統一ブリードオフ弁56L、56R、切替弁60〜63、及び流量制御弁170〜173を含む。
流量制御弁170〜173は、油圧アクチュエータに流出入する作動油の向き及び流量を制御する弁である。本実施例では、流量制御弁170〜173のそれぞれは、対応する操作レバー等の操作装置(図示せず。)が生成するパイロット圧を左右何れかのパイロットポートで受けて動作する4ポート3位置のスプール弁である。操作装置は、操作量(操作角度)に応じた生成したパイロット圧を、操作方向に対応する側のパイロットポートに作用させる。
具体的には、流量制御弁170は、旋回用油圧モータ21に流出入する作動油の向き及び流量を制御するスプール弁であり、流量制御弁171は、アームシリンダ8に流出入する作動油の向き及び流量を制御するスプール弁である。
また、流量制御弁172は、ブームシリンダ7に流出入する作動油の向き及び流量を制御するスプール弁であり、流量制御弁173は、バケットシリンダ9に流出入する作動油の向き及び流量を制御するスプール弁である。
可変ロードチェック弁51〜53は、コントローラ30からの指令に応じて動作する弁である。本実施例では、可変ロードチェック弁51〜53は、流量制御弁171〜173のそれぞれと第1ポンプ14L及び第2ポンプ14Rのうちの少なくとも一方との間の連通・遮断を切り替え可能な2ポート2位置の電磁弁である。なお、可変ロードチェック弁51〜53は、第1位置において、ポンプ側に戻る作動油の流れを遮断するチェック弁を有する。具体的には、可変ロードチェック弁51は、第1位置にある場合に流量制御弁171と第1ポンプ14L及び第2ポンプ14Rのうちの少なくとも一方との間を連通させ、第2位置にある場合にその連通を遮断する。可変ロードチェック弁52及び可変ロードチェック弁53についても同様である。
合流弁55は、合流切替部の一例であり、コントローラ30からの指令に応じて動作する弁である。本実施例では、合流弁55は、第1ポンプ14Lが吐出する作動油(以下、「第1作動油」とする。)と第2ポンプ14Rが吐出する作動油(以下、「第2動油」とする。)とを合流させるか否かを切り替え可能な2ポート2位置の電磁弁である。具体的には、合流弁55は、第1位置にある場合に第1作動油と第2作動油とを合流させ、第2位置にある場合に第1作動油と第2作動油とを合流させないようにする。
統一ブリードオフ弁56L、56Rは、コントローラ30からの指令に応じて動作する弁である。本実施例では、統一ブリードオフ弁56Lは、第1作動油の作動油タンクTへの排出量を制御可能な2ポート2位置の電磁弁である。統一ブリードオフ弁56Rについても同様である。この構成により、統一ブリードオフ弁56L、56Rは、流量制御弁170〜173のうちの関連する流量制御弁の合成開口を再現できる。具体的には、合流弁55が第2位置にある場合に、統一ブリードオフ弁56Lは流量制御弁170及び流量制御弁171の合成開口を再現でき、統一ブリードオフ弁56Rは流量制御弁172及び流量制御弁173の合成開口を再現できる。
切替弁60〜63は、コントローラ30からの指令に応じて動作する弁である。本実施例では、切替弁60〜63は、油圧アクチュエータのそれぞれから排出される作動油をポンプ・モータ14Aの上流側(供給側)に流すか否かを切り替え可能な3ポート2位置の電磁弁である。具体的には、切替弁60は、第1位置にある場合に、再生弁22Gを通じて旋回用油圧モータ21から排出される作動油をポンプ・モータ14Aの供給側に流し、第2位置にある場合に、再生弁22Gを通じて旋回用油圧モータ21から排出される作動油をアキュムレータ80に流す。また、切替弁61は、第1位置にある場合に、アームシリンダ8から排出される作動油を作動油タンクTに流し、第2位置にある場合に、アームシリンダ8から排出される作動油をポンプ・モータ14Aの供給側に流す。切替弁62及び切替弁63についても同様である。
アキュムレータ80は、加圧された作動油を蓄積する油圧装置である。本実施例では、アキュムレータ80は、切替弁81及び切替弁82により作動油の蓄積・放出が制御される。
切替弁81は、コントローラ30からの指令に応じて動作する弁である。本実施例では、切替弁81は、加圧された作動油の供給源である第1ポンプ14Lとアキュムレータ80との間の連通・遮断を切り替え可能な2ポート2位置の電磁弁である。具体的には、切替弁81は、第1位置にある場合に第1ポンプ14Lとアキュムレータ80との間を連通させ、第2位置にある場合にその連通を遮断する。なお、切替弁81は、第1位置において、第1ポンプ14L側に戻る作動油の流れを遮断するチェック弁を有する。
切替弁82は、コントローラ30からの指令に応じて動作する弁である。本実施例では、切替弁82は、加圧された作動油の供給先であるポンプ・モータ14Aの供給側とアキュムレータ80との間の連通・遮断を切り替え可能な2ポート2位置の電磁弁である。具体的には、切替弁82は、第1位置にある場合にポンプ・モータ14Aとアキュムレータ80との間を連通させ、第2位置にある場合にその連通を遮断する。なお、切替弁82は、第1位置において、アキュムレータ80側に戻る作動油の流れを遮断するチェック弁を有する。
切替弁90は、コントローラ30からの指令に応じて動作する弁である。本実施例では、切替弁90は、ポンプ・モータ14Aが吐出する作動油(以下、「第3作動油」とする。)の供給先を切り替え可能な3ポート2位置の電磁弁である。具体的には、切替弁90は、第1位置にある場合に第3作動油を切替弁91に向けて流し、第2位置にある場合に第3作動油を作動油タンクTに向けて流す。
切替弁91は、コントローラ30からの指令に応じて動作する弁である。本実施例では、切替弁91は、第3作動油の供給先を切り替え可能な4ポート3位置の電磁弁である。具体的には、切替弁91は、第1位置にある場合に第3作動油をアームシリンダ8に向け、第2位置にある場合に第3作動油を旋回用油圧モータ21に向け、第3位置にある場合に第3作動油をアキュムレータ80に向ける。
次に、図3を参照し、油圧回路の別の構成例について説明する。図3は、図1のショベルに搭載される油圧回路の別の構成例を示す概略図である。図3の油圧回路は、主に、アームシリンダ8に流出入する作動油の向き及び流量が2つの流量制御弁171A、171Bによって制御される点、ブームシリンダ7のボトム側油室に流出入する作動油の流量が2つの流量制御弁172A、172Bによって制御される点、合流切替部が合流弁ではなく可変ロードチェック弁によって構成される点(合流弁が省略される点)、ブームシリンダ7からの戻り油をアキュムレータ80に蓄積可能な点で、図2の油圧回路と異なるがその他の点で共通する。そのため、共通点の説明を省略しながら、相違点を詳細に説明する。
流量制御弁171A、171Bは、アームシリンダ8に流出入する作動油の向き及び流量を制御する弁であり、図2の流量制御弁171に対応する。具体的には、流量制御弁171Aは、第1作動油をアームシリンダ8に供給し、流量制御弁171Bは、第2作動油をアームシリンダ8に供給する。したがって、アームシリンダ8には、第1作動油と第2作動油とが同時に流入し得る。
流量制御弁172Aは、ブームシリンダ7に流出入する作動油の向き及び流量を制御する弁であり、図2の流量制御弁172に対応する。
流量制御弁172Bは、ブーム上げ操作が行われた場合に、ブームシリンダ7のボトム側油室に第1作動油を流入させる弁であり、ブーム下げ操作が行われた場合には、ブームシリンダ7のボトム側油室から流出する作動油を第1作動油に合流させることができる。
流量制御弁173は、バケットシリンダ9に流出入する作動油の向き及び流量を制御する弁であり、図2の流量制御弁173に対応する。なお、図3の流量制御弁173は、バケットシリンダ9のロッド側油室から流出する作動油をボトム側油室に再生するためのチェック弁をその内部に含む。
可変ロードチェック弁50、51A、51B、52A、52B、53は、流量制御弁170、171A、171B、172A、172B、173のそれぞれと第1ポンプ14L及び第2ポンプ14Rのうちの少なくとも一方との間の連通・遮断を切り替え可能な2ポート2位置の弁である。これら6つの可変ロードチェック弁は、それぞれが連動して動作することで合流切替部としての機能を果たし、図2の合流弁55の機能を実現できる。そのため、図3の油圧回路では図2の合流弁55が省略される。また、同様の理由により、図2の切替弁91が省略される。
統一ブリードオフ弁56L、56Rは、第1作動油の作動油タンクTへの排出量を制御可能な2ポート2位置の弁であり、図2の統一ブリードオフ弁56L、56Rに対応する。
なお、図3の6つの流量制御弁は何れも6ポート3位置のスプール弁であり、図2の流量制御弁と違い、センターバイパスポートを有する。そのため、図3の統一ブリードオフ弁56Lは流量制御弁171Aの下流に配置され、統一ブリードオフ弁56Rは流量制御弁171Bの下流に配置される。
切替弁61Aは、アームシリンダ8のロッド側油室から排出される作動油をポンプ・モータ14Aの上流側(供給側)に流すか否かを切り替え可能な2ポート2位置の弁である。具体的には、切替弁61Aは、第1位置にある場合にアームシリンダ8のロッド側油室とポンプ・モータ14Aとの間を連通させ、第2位置にある場合にその連通を遮断する。
切替弁62Aは、ブームシリンダ7から排出される作動油をポンプ・モータ14Aの上流側(供給側)に流すか否かを切り替え可能な3ポート3位置の弁である。具体的には、切替弁62Aは、第1位置にある場合にブームシリンダ7のボトム側油室とポンプ・モータ14Aとの間を連通させ、第2位置にある場合にブームシリンダ7のロッド側油室とポンプ・モータ14Aとの間を連通させ、第3位置(中立位置)にある場合にそれらの間の連通を遮断する。
切替弁62Bは、ブームシリンダ7のロッド側油室から排出される作動油を作動油タンクTに排出するか否かを切り替え可能な2ポート2位置の可変リリーフ弁である。具体的には、切替弁62Bは、第1位置にある場合にブームシリンダ7のロッド側油室と作動油タンクTとの間を連通し、第2位置にある場合にその連通を遮断する。なお、切替弁62Bは、第1位置において、作動油タンクTからの作動油の流れを遮断するチェック弁を有する。
切替弁62Cは、ブームシリンダ7のボトム側油室から排出される作動油を作動油タンクTに排出するか否かを切り替え可能な2ポート2位置の可変リリーフ弁である。具体的には、切替弁62Cは、第1位置にある場合にブームシリンダ7のボトム側油室と作動油タンクTとの間を連通し、第2位置にある場合にその連通を遮断する。なお、切替弁62Cは、第1位置において、作動油タンクTからの作動油の流れを遮断するチェック弁を有する。
切替弁90は、ポンプ・モータ14Aが吐出する第3作動油の供給先を切り替え可能な3ポート2位置の電磁弁であり、図2の切替弁90に対応する。具体的には、切替弁90は、第1位置にある場合に第3作動油をコントロールバルブ17に向けて流し、第2位置にある場合に第3作動油を切替弁92に向けて流す。
切替弁92は、第3作動油の供給先を切り替え可能な4ポート3位置の電磁弁である。具体的には、切替弁92は、第1位置にある場合に第3作動油を旋回用油圧モータ21の補給機構に向け、第2位置にある場合に第3作動油をアキュムレータ80に向け、第3位置にある場合に第3作動油を作動油タンクTに向ける。

[掘削動作]
次に、図4〜図6を参照し、掘削動作が行われる場合における図2の油圧回路の状態を説明する。なお、図4〜図6は、掘削動作が行われる場合における図2の油圧回路の状態を示す。また、図4〜図6の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。
コントローラ30は、操作装置が生成するパイロット圧を検出する操作圧センサ(図示せず。)等の操作検出部の出力に基づいてショベルに対する操作者の操作内容を判断する。また、コントローラ30は、第1ポンプ14L、第2ポンプ14R、及びポンプ・モータ14Aのそれぞれの吐出圧を検出する吐出圧センサ(図示せず。)、油圧アクチュエータのそれぞれの圧力を検出する負荷圧センサ(図示せず。)等の負荷検出部の出力に基づいてショベルの動作状態を判断する。なお、本実施例では、負荷圧センサは、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9のそれぞれのボトム側油室及びロッド側油室のそれぞれの圧力を検出するシリンダ圧センサを含む。また、コントローラ30は、アキュムレータ圧センサ(図示せず。)の出力に基づいてアキュムレータ80に蓄積される作動油の圧力(以下、「アキュムレータ圧」とする。)を検出する。
そして、コントローラ30は、アーム5が操作されたと判断すると、図4に示すように、アーム操作レバーの操作量に応じて、第2位置にある合流弁55を第1位置の方向に移動させる。そして、第1作動油と第2作動油とを合流させ、第1作動油及び第2作動油を流量制御弁171に供給する。流量制御弁171は、アーム操作レバーの操作量に応じたパイロット圧を受けて図4の右位置に移動し、第1作動油及び第2作動油をアームシリンダ8に流入させる。
また、コントローラ30は、ブーム4及びバケット6が操作されたと判断した場合、負荷圧センサの出力に基づいて掘削動作であるか床堀動作であるかを判断する。床堀動作は、例えばバケット6で地面をならす動作であり、アームシリンダ8のボトム側油室の圧力が掘削動作のときに比べて低い。
掘削動作であると判断した場合、コントローラ30は、ネガティブコントロール制御、ポジティブコントロール制御、ロードセンシング制御、馬力制御等のポンプ吐出量制御に基づいて、ブーム操作レバー及びバケット操作レバーの操作量に対応する第2ポンプ14Rの吐出量指令値を決定する。そして、コントローラ30は、対応するレギュレータを制御して第2ポンプ14Rの吐出量が指令値通りとなるように制御する。
また、コントローラ30は、前述のポンプ吐出量制御を用いて、ブーム操作レバー及びバケット操作レバーの操作量に加えてアーム操作レバーの操作量を考慮した吐出量計算値と吐出量指令値との流量差を算出し、その流量差に相当する流量の作動油をポンプ・モータ14Aに吐出させる。この吐出量計算値は、掘削動作のようにアーム5がフルレバー(例えば、レバーの中立状態を0%とし、最大操作状態を100%とした場合の80%以上の操作量)で操作されている場合に第2ポンプ14Rの最大吐出量となる。具体的には、コントローラ30は、図5に示すように、ポンプ・モータ14Aを油圧ポンプとして作動させ、対応するレギュレータを制御してポンプ・モータ14Aの吐出量がその流量差に相当する流量となるように制御する。そして、コントローラ30は、切替弁90を第1位置にして第3作動油を切替弁91に向け、且つ、切替弁91を第1位置にして第3作動油をアームシリンダ8に向ける。
また、コントローラ30は、上述の流量差、第1ポンプ14Lの吐出圧、第2ポンプ14Rの吐出圧等に基づいて合流弁55の開口面積を制御する。図4〜図6の例では、コントローラ30は、予め登録した開口マップを参照して合流弁55の開口面積を決定し、その開口面積に対応する指令を合流弁55に対して出力する。なお、コントローラ30は、開口マップの代わりに所定の関数を用いて合流弁55の開口面積を決定してもよい。
例えば、コントローラ30は、ポンプ・モータ14Aが吐出する第3作動油の流量が上述の流量差に相当する流量に達した場合、図6に示すように、合流弁55を第2位置にして第1作動油と第2作動油の合流を遮断する。
また、床堀動作であると判断した場合にも、コントローラ30は、図6に示すように、ショベルの動きが不安定にならない限りにおいて、できるだけ速やかに合流弁55を閉じる。第2作動油のみをブームシリンダ7及びバケットシリンダ9に流入させるようにしてブーム4及びバケット6の操作性を向上させるためである。
なお、図4〜図6の例では、ポンプ・モータ14Aの最大吐出量は、第2ポンプ14Rの最大吐出量より小さい。そのため、上述の流量差がポンプ・モータ14Aの最大吐出量を上回る場合、コントローラ30は、油圧ポンプとして機能するポンプ・モータ14Aと第1ポンプ14Lとを最大吐出量で作動させた上で、第2ポンプ14Rの吐出量を増大させる。そして、第2ポンプ14Rの最大吐出量と実際の増大後の吐出量との差が、ポンプ・モータ14Aの最大吐出量以下となるようにする。アーム5の動作速度が、第1作動油及び第2作動油を用いる場合のアーム5の動作速度を下回らないようにするためである。
但し、ポンプ・モータ14Aの最大吐出量が第2ポンプ14Rの最大吐出量以上の場合には、コントローラ30は、図6に示すように、掘削動作中に合流弁55を閉じた状態(第2位置)に維持できる。第1作動油及び第3作動油を用いる場合のアーム5の動作速度が、第1作動油及び第2作動油を用いる場合のアーム5の動作速度を下回ることはないためである。この場合、コントローラ30は、掘削動作中は常に、第1作動油及び第3作動油のみをアームシリンダ8に流入させ、第2作動油のみをブームシリンダ7及びバケットシリンダ9に流入させる。そのため、アーム5を動かすための作動油とブーム4及びバケット6を動かすための作動油を完全に分離することができ、それぞれの操作性を高めることができる。
次に、図7を参照し、掘削動作が行われる場合における図3の油圧回路の状態を説明する。なお、図7は、掘削動作が行われる場合における図3の油圧回路の状態を示す。また、図7の黒色及び灰色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図7における灰色の太実線は、作動油の流れが減少或いは消失し得ることを追加的に表す。
コントローラ30は、図2の油圧回路の場合と同様、操作検出部の出力に基づいてショベルに対する操作者の操作内容を判断し、負荷検出部の出力に基づいてショベルの動作状態を判断する。
アーム5が操作されると、流量制御弁171Aはアーム操作レバーの操作量に応じたパイロット圧を受けて図7の左位置に移動し、流量制御弁171Bはアーム操作レバーの操作量に応じたパイロット圧を受けて図7の右位置に移動する。
そして、コントローラ30は、アーム5が操作されたと判断すると、可変ロードチェック弁51Aを第1位置にし、第1作動油が可変ロードチェック弁51Aを通じて流量制御弁171Aに至るようにする。また、可変ロードチェック弁51Bを第1位置にし、第2作動油が可変ロードチェック弁51Bを通じて流量制御弁171Bに至るようにする。流量制御弁171Aを通過した第1作動油は、流量制御弁171Bを通過した第2作動油と合流し、アームシリンダ8のボトム側油室に流入する。
その後、コントローラ30は、ブーム4及びバケット6が操作されたと判断すると、負荷圧センサの出力に基づいて掘削動作であるか床堀動作であるかを判断する。そして、掘削動作であると判断した場合、コントローラ30は、ブーム操作レバー及びバケット操作レバーの操作量に対応する第2ポンプ14Rの吐出量指令値を決定する。そして、コントローラ30は、対応するレギュレータを制御して第2ポンプ14Rの吐出量が指令値通りとなるように制御する。
このとき、流量制御弁172Aはブーム操作レバーの操作量に応じたパイロット圧を受けて図7の左位置に移動する。また、流量制御弁173はバケット操作レバーの操作量に応じたパイロット圧を受けて図7の右位置に移動する。そして、コントローラ30は、可変ロードチェック弁52Aを第1位置にし、第2作動油が可変ロードチェック弁52Aを通じて流量制御弁172Aに至るようにする。また、可変ロードチェック弁53を第1位置にし、第2作動油が可変ロードチェック弁53を通じて流量制御弁173に至るようにする。そして、流量制御弁172Aを通過した第2作動油は、ブームシリンダ7のボトム側油室に流入し、流量制御弁173を通過した第2作動油は、バケットシリンダ9のボトム側油室に流入する。
また、コントローラ30は、第2ポンプ14Rの最大吐出量と吐出量指令値との流量差を算出し、その流量差に相当する流量の作動油をポンプ・モータ14Aに吐出させる。具体的には、コントローラ30は、図7に示すように、ポンプ・モータ14Aを油圧ポンプとして作動させ、対応するレギュレータを制御してポンプ・モータ14Aの吐出量がその流量差に相当する流量となるように制御する。そして、コントローラ30は、切替弁90を第1位置にして第3作動油をコントロールバルブ17に向ける。
また、コントローラ30は、上述の流量差、第1ポンプ14Lの吐出圧、第2ポンプ14Rの吐出圧等に基づいて可変ロードチェック弁51Bの開口面積を制御する。図7の例では、コントローラ30は、予め登録した開口マップを参照して可変ロードチェック弁51Bの開口面積を決定し、その開口面積に対応する指令を可変ロードチェック弁51Bに対して出力する。これにより、アームシリンダ8のボトム側油室に流入する第2作動油が減少し或いは消失する。なお、図7における灰色の太実線は、ポンプ・モータ14Aが吐出する第3作動油の流量の増大に応じて、アームシリンダ8のボトム側油室に流入する第2作動油が減少し或いは消失することを表す。
上述のように、コントローラ30は、ブーム上げ、アーム閉じ、及びバケット閉じを含む掘削動作が行われた場合に、ポンプ・モータ14Aを油圧ポンプとして作動させる。そして、負荷圧が高い油圧アクチュエータ(アームシリンダ8)にポンプ・モータ14Aが吐出する第3作動油を流入させる。また、第1作動油と第3作動油を用いて負荷圧の高い油圧アクチュエータを所望の速度で動作させることができる場合には、合流弁55を閉じて第1作動油と第2作動油の合流を遮断する。そのため、本発明の実施例に係るショベルは、第1作動油で負荷圧の高い油圧アクチュエータ(アームシリンダ8)を動作させ、且つ、第1作動油より低い圧力の第2作動油で負荷圧の低い油圧アクチュエータ(ブームシリンダ7及びバケットシリンダ9)を動作させることができる。具体的には、第1作動油との合流のために第1作動油と同じ圧力まで加圧された第2作動油で負荷圧の低い油圧アクチュエータを動作させる必要がない。すなわち、その加圧された第2作動油を用いて負荷圧の低い油圧アクチュエータを所望の速度で動作させるために絞りでその第2作動油の流量を絞る必要がない。その結果、その絞りで圧力損失が発生するのを低減或いは防止でき、エネルギ損失を低減或いは防止できる。
なお、コントローラ30は、ポンプ・モータ14Aに第3作動油を吐出させる代わりに、個別流量制御によって第1ポンプ14Lの吐出量を増大させてもよい。具体的には、合流弁55を閉じて第1作動油と第2作動油の合流を遮断した上で、第2ポンプ14Rの吐出量を低減させた分、第1ポンプ14Lの最大吐出流量(最大斜板傾転角)を増大させてもよい。

[背圧回生によるエンジンのアシストを伴う掘削動作]
次に、図8を参照し、背圧回生によるエンジン11のアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を説明する。なお、図8は、背圧回生によるエンジン11のアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を示す。また、図8の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図8の黒色及び灰色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
背圧回生は、複数の油圧アクチュエータが同時に動作する場合であって、且つ、複数の油圧アクチュエータのそれぞれの負荷圧が異なる場合に実行される処理である。例えば、ブーム上げ操作及びアーム閉じ操作による複合掘削動作が行われる場合、アームシリンダ8の負荷圧(アームシリンダ8のボトム側油室の圧力)は、ブームシリンダ7の負荷圧(ブームシリンダ7のボトム側油室の圧力)に比べて高くなる。掘削中はバケット6が接地してブーム4、アーム5、及びバケット6のそれぞれの重量が地面に支えられるためであり、また、アーム5の掘削動作(閉じ動作)に対する掘削反力をブーム4が受けるためである。
そのため、複合掘削動作が行われる場合、コントローラ30は、アームシリンダ8の比較的高い負荷圧に対処するために、油圧回路のシステム圧(第1ポンプ14L及び第2ポンプ14Rの吐出圧)を増大させる。一方で、コントローラ30は、システム圧より低い負荷圧で動作するブームシリンダ7の動作速度を制御するために、ブームシリンダ7のボトム側油室に流入する作動油の流量を制御する。このとき、流量制御弁172の絞りによって流量を制御した場合には圧力損失(エネルギ損失)を生じさせる結果となる。そこで、コントローラ30は、ブームシリンダ7のロッド側油室の圧力(背圧)を高めることで、流量制御弁172での圧力損失の発生を回避しながら、ブームシリンダ7の動作速度の制御を実現する。また、コントローラ30は、ブームシリンダ7のロッド側油室の圧力(背圧)を高めるために、ロッド側油室から流出する作動油をポンプ・モータ14Aに供給し、ポンプ・モータ14Aを油圧(回生)モータとして機能させる。なお、コントローラ30は、この背圧回生を実行する場合、ブーム操作レバーの操作量にかかわらず、流量制御弁172を図8の右位置に大きく移動させる。流量制御弁172の開口面積を最大にして圧力損失を最小限に抑えるためである。例えば、コントローラ30は、減圧弁(図示せず。)を用いて流量制御弁172のパイロットポートに作用するパイロット圧を増大させて流量制御弁172の移動量をアシストする。
具体的には、コントローラ30は、操作検出部の出力に基づいてショベルに対する操作者の操作内容を判断し、負荷検出部の出力に基づいてショベルの動作状態を判断する。
そして、コントローラ30は、ブーム上げ操作、アーム閉じ操作、及びバケット閉じ操作による複合掘削動作が行われていると判断すると、何れの油圧アクチュエータの負荷圧が最小かを判断する。具体的には、コントローラ30は、仮に流量制御弁の絞りによって油圧アクチュエータのそれぞれに流入する作動油の流量を制御した場合、何れの油圧アクチュエータにおいてエネルギ損失(圧力損失)が最大となるかを判断する。
そして、コントローラ30は、ブームシリンダ7のボトム側油室の圧力(負荷圧)が最小と判断すると、切替弁62を第2位置にし、黒色の太点線で示すように、ブームシリンダ7のロッド側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172の右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172を最大開口とし、流量制御弁172での圧力損失を低減させる。また、コントローラ30は、切替弁63を第1位置にしてバケットシリンダ9のロッド側油室から流出する作動油を作動油タンクTに向ける。
その後、コントローラ30は、ブームシリンダ7の動作速度がブーム操作レバーの操作量に応じた速度となるよう、油圧モータとしてのポンプ・モータ14Aによる作動油の吸収量(押退容積)を制御する。具体的には、コントローラ30は、レギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。例えば、コントローラ30は、ポンプ・モータ14Aを一定速度で回転させる場合、押退容積を小さくするほどブームシリンダ7のロッド側油室から流出する作動油の流量を小さくでき、ブームシリンダ7のロッド側油室の圧力(背圧)を上昇させることができる。この関係を用いて、コントローラ30は、背圧がブームシリンダ7の所望の負荷圧(ボトム側油室の圧力)に見合う圧力となるようにその背圧を制御できる。
また、ブームシリンダ7のロッド側油室から流出する作動油は、ポンプ・モータ14Aを回転させることによって回転トルクを発生させる。この回転トルクは、変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得る。すなわち、ポンプ・モータ14Aが発生させた回転トルクは、エンジン11の回転をアシストするために利用され、エンジン11の負荷ひいては燃料噴射量を抑制する効果を奏する。なお、図8の黒色の一点鎖線矢印は、回転トルクが変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得ることを表す。また、エンジン11の出力制御には、望ましくは過渡負荷制御(トルクベース制御)を応用したものが利用され得る。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のロッド側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62を第1位置と第2位置との間の中間位置にし、或いは切替弁62を第1位置に完全に切り替えることで、ブームシリンダ7のロッド側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。流量制御弁172のCT開口が大きい場合(ブーム上げ操作の操作量が大きくブーム4を迅速に上昇させたい操作者の意思が推定される場合)、或いは、ブームシリンダ7に負荷が加わり背圧を発生させる必要が無くなった場合についても同様である。なお、図8における灰色の太点線は、切替弁62が第1位置の方向に移動させられた場合に、ブームシリンダ7のロッド側油室から流出する作動油が作動油タンクTに排出されることを表す。
なお、上述では、ブームシリンダ7のボトム側油室の圧力(負荷圧)が最小と判断される場合を説明するが、バケットシリンダ9のボトム側油室の圧力(負荷圧)が最小と判断される場合についても同様の説明が適用される。具体的には、コントローラ30は、バケットシリンダ9のボトム側油室の圧力(負荷圧)が最小と判断すると、切替弁63を第2位置にし、バケットシリンダ9のロッド側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、バケット操作レバーの操作量とは無関係に、減圧弁により流量制御弁173の右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁173を最大開口とし、流量制御弁173での圧力損失を低減させる。また、コントローラ30は、切替弁61及び切替弁62をそれぞれ第1位置にしてアームシリンダ8及びブームシリンダ7のそれぞれのロッド側油室から流出する作動油を作動油タンクTに向ける。また、バケットシリンダ9の動作速度も上述同様に制御される。
また、コントローラ30は、アームシリンダ8のボトム側油室の圧力(負荷圧)が最小と判断すると、切替弁61を第2位置にし、アームシリンダ8のロッド側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、アーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁171の右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁171を最大開口とし、流量制御弁171での圧力損失を低減させる。また、コントローラ30は、切替弁62及び切替弁63のそれぞれを第1位置にしてブームシリンダ7及びバケットシリンダ9のそれぞれのロッド側油室から流出する作動油を作動油タンクTに向ける。また、アームシリンダ8の動作速度も上述同様に制御される。
次に、図9を参照し、背圧回生によるエンジン11のアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を説明する。なお、図9は、背圧回生によるエンジン11のアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を示す。また、図9の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図9の黒色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
具体的には、コントローラ30は、ブーム上げ操作、アーム閉じ操作、及びバケット閉じ操作による複合掘削動作が行われていると判断すると、切替弁62Aを第2位置にし、黒色の太点線で示すように、ブームシリンダ7のロッド側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Aの左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172Aを最大開口とし、流量制御弁172Aでの圧力損失を低減させる。また、コントローラ30は、流量制御弁173を通じてバケットシリンダ9のロッド側油室から流出する作動油を作動油タンクTに排出させる。
その後、コントローラ30は、ブームシリンダ7の動作速度がブーム操作レバーの操作量に応じた速度となるよう、油圧モータとしてのポンプ・モータ14Aによる作動油の吸収量(押退容積)を制御する。
また、例えばポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のロッド側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。具体的には、コントローラ30は、切替弁62Bを第1位置と第2位置との間の中間位置にし、或いは切替弁62Bを第1位置に完全に切り替えることで、ブームシリンダ7のロッド側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。なお、コントローラ30は、必要に応じて、切替弁62Aを第3位置(中立位置)にしてブームシリンダ7のロッド側油室とポンプ・モータ14Aとの間の連通を遮断してもよい。なお、図9における灰色の太点線は、切替弁62Bが第1位置に切り替えられた場合に、ブームシリンダ7のロッド側油室から流出する作動油が作動油タンクTに排出されることを表す。
上述のように、コントローラ30は、[掘削動作]のところで説明した効果に加え、以下の効果を追加的に実現する。
具体的には、コントローラ30は、ブーム上げ操作が行われた場合に、ブームシリンダ7のロッド側油室から流出する作動油でポンプ・モータ14Aを回転させて背圧を生成する。そのため、本発明の実施例に係るショベルは、背圧を生成する際に得られる回転トルクをエンジン11のアシストのために利用できる。その結果、アシスト出力分だけエンジン出力を低減させることによる省エネルギ化、エンジン出力にアシスト出力を上乗せして油圧ポンプの出力を増大させることによる動作の高速化及びサイクルタイムの短縮等を実現できる。なお、図9の黒色の一点鎖線矢印は、回転トルクが変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得ることを表す。
また、コントローラ30は、ポンプ・モータ14Aを回転させることで背圧を生成するため、ブームシリンダ7のロッド側油室から流出する作動油の流れを絞りで絞る必要がなく、絞りで圧力損失を発生させることもない。そのため、ブームシリンダ7のロッド側油室から流出する作動油の油圧エネルギが熱エネルギとして消費されるのを抑制或いは防止し、エネルギ損失を抑制或いは防止できる。

[アキュムレータアシストを伴う掘削動作]
次に、図10を参照し、アキュムレータアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を説明する。なお、図10は、アキュムレータアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を示す。また、図10の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。
アキュムレータアシストは、アキュムレータ80に蓄積された作動油を利用して油圧アクチュエータの動きをアシストする処理であり、アキュムレータ80に蓄積された作動油のみを利用して油圧アクチュエータを動作させる場合を含む。
具体的には、コントローラ30は、アーム5が操作されたと判断すると、図10に示すように、アーム操作レバーの操作量に応じて、第2位置にある合流弁55を第1位置の方向に移動させる。そして、第1作動油と第2作動油とを合流させ、第1作動油及び第2作動油を流量制御弁171に供給する。流量制御弁171は、アーム操作レバーの操作量に応じたパイロット圧を受けて図10の右位置に移動し、第1作動油及び第2作動油をアームシリンダ8に流入させる。
その後、コントローラ30は、ブーム4及びバケット6が操作されたと判断した場合、負荷圧センサの出力に基づいて掘削動作であるか床堀動作であるかを判断する。
掘削動作であると判断した場合、コントローラ30は、ネガティブコントロール制御、ポジティブコントロール制御、ロードセンシング制御、馬力制御等のポンプ吐出量制御に基づいて、ブーム操作レバー及びバケット操作レバーの操作量に対応する第2ポンプ14Rの吐出量指令値を決定する。そして、コントローラ30は、対応するレギュレータを制御して第2ポンプ14Rの吐出量が指令値通りとなるように制御する。
また、コントローラ30は、第2ポンプ14Rの最大吐出量と吐出量指令値との流量差を算出し、その流量差に相当する流量の作動油をポンプ・モータ14Aに吐出させる。具体的には、コントローラ30は、切替弁82を第1位置にしてアキュムレータ80とポンプ・モータ14Aとの間を連通させ、アキュムレータ80に蓄積された作動油をポンプ・モータ14Aに向けて放出させる。
そして、コントローラ30は、アームシリンダ8の負荷圧(ボトム側油室の圧力)がアキュムレータ圧より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(アキュムレータ圧)を負荷圧まで増大させ、且つ、対応するレギュレータを制御してポンプ・モータ14Aの吐出量がその流量差に相当する流量となるように制御する。油圧ポンプとして作動するポンプ・モータ14Aは、作動油タンクTから作動油を吸い込む場合に比べ、小さいポンプ負荷で作動油を吐出できる。その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。
また、コントローラ30は、アームシリンダ8の負荷圧(ボトム側油室の圧力)がアキュムレータ圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(アキュムレータ圧)を負荷圧まで低減させ、且つ、対応するレギュレータを制御してポンプ・モータ14Aの吐出量がその流量差に相当する流量となるように制御する。油圧モータとして作動するポンプ・モータ14Aは、エンジン11をアシストし、第1ポンプ14Lを回転させるための駆動力の一部を負担できる。その結果、コントローラ30は、第1ポンプ14Lの吸収馬力を増大させることができ、或いは、吸収馬力を増大させない場合にはエンジン11の負荷ひいては燃料噴射量を抑制できる。
なお、図10の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aが発生させた回転トルクが変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得ることを表す。また、灰色の一点鎖線矢印は、油圧ポンプとして作動するポンプ・モータ14Aがエンジン11の出力の一部を利用することを表す。
そして、コントローラ30は、切替弁90を第1位置にして第3作動油を切替弁91に向け、且つ、切替弁91を第1位置にして第3作動油をアームシリンダ8に向ける。
また、コントローラ30は、上述の流量差、第1ポンプ14Lの吐出圧、第2ポンプ14Rの吐出圧等に基づいて合流弁55の開口面積を制御する。図10の例では、コントローラ30は、予め登録した開口マップを参照して合流弁55の開口面積を決定し、その開口面積に対応する指令を合流弁55に対して出力する。なお、コントローラ30は、開口マップの代わりに所定の関数を用いて合流弁55の開口面積を決定してもよい。
一方、床堀動作であると判断した場合、コントローラ30は、ショベルの動きが不安定にならない限りにおいて、できるだけ速やかに合流弁55を閉じる。第2作動油のみをブームシリンダ7及びバケットシリンダ9に流入させるようにしてブーム4及びバケット6の操作性を向上させるためである。
なお、図10の例では、ポンプ・モータ14Aの最大吐出量は、第2ポンプ14Rの最大吐出量より小さい。そのため、上述の流量差がポンプ・モータ14Aの最大吐出量を上回る場合、コントローラ30は、油圧ポンプとして機能するポンプ・モータ14Aと第1ポンプ14Lとを最大吐出量で作動させた上で、第2ポンプ14Rの吐出量を増大させる。第2ポンプ14Rの最大吐出量と実際の増大後の吐出量との差が、ポンプ・モータ14Aの最大吐出量以下となるようにし、アーム5の動作速度が、第1作動油及び第2作動油を用いる場合のアーム5の動作速度を下回らないようにするためである。
但し、ポンプ・モータ14Aの最大吐出量が第2ポンプ14Rの最大吐出量以上の場合には、コントローラ30は、掘削動作中に合流弁55を閉じた状態(第2位置)に維持できる。第1作動油及び第3作動油を用いる場合のアーム5の動作速度が、第1作動油及び第2作動油を用いる場合のアーム5の動作速度を下回ることはないためである。この場合、コントローラ30は、掘削動作中は常に、第1作動油及び第3作動油のみをアームシリンダ8に流入させ、第2作動油のみをブームシリンダ7及びバケットシリンダ9に流入させる。そのため、アーム5を動かすための作動油とブーム4及びバケット6を動かすための作動油を完全に分離することができ、それぞれの操作性を高めることができる。
次に、図11を参照し、アキュムレータアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を説明する。なお、図11は、アキュムレータアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を示す。また、図11の黒色及び灰色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図11における灰色の太実線は、作動油の流れが減少或いは消失し得ることを追加的に表す。
コントローラ30は、図10の油圧回路の場合と同様、操作検出部の出力に基づいてショベルに対する操作者の操作内容を判断し、負荷検出部の出力に基づいてショベルの動作状態を判断する。
アーム5が操作されると、流量制御弁171Aはアーム操作レバーの操作量に応じたパイロット圧を受けて図11の左位置に移動し、流量制御弁171Bはアーム操作レバーの操作量に応じたパイロット圧を受けて図11の右位置に移動する。
そして、コントローラ30は、アーム5が操作されたと判断すると、可変ロードチェック弁51Aを第1位置にし、第1作動油が可変ロードチェック弁51Aを通じて流量制御弁171Aに至るようにする。また、可変ロードチェック弁51Bを第1位置にし、第2作動油が可変ロードチェック弁51Bを通じて流量制御弁171Bに至るようにする。流量制御弁171Aを通過した第1作動油は、流量制御弁171Bを通過した第2作動油と合流し、アームシリンダ8のボトム側油室に流入する。
その後、コントローラ30は、ブーム4及びバケット6が操作されたと判断すると、負荷圧センサの出力に基づいて掘削動作であるか床堀動作であるかを判断する。そして、掘削動作であると判断した場合、コントローラ30は、ブーム操作レバー及びバケット操作レバーの操作量に対応する第2ポンプ14Rの吐出量指令値を決定する。そして、コントローラ30は、対応するレギュレータを制御して第2ポンプ14Rの吐出量が指令値通りとなるように制御する。
このとき、流量制御弁172Aはブーム操作レバーの操作量に応じたパイロット圧を受けて図11の左位置に移動する。また、流量制御弁173はバケット操作レバーの操作量に応じたパイロット圧を受けて図11の右位置に移動する。そして、コントローラ30は、可変ロードチェック弁52Aを第1位置にし、第2作動油が可変ロードチェック弁52Aを通じて流量制御弁172Aに至るようにする。また、可変ロードチェック弁53を第1位置にし、第2作動油が可変ロードチェック弁53を通じて流量制御弁173に至るようにする。そして、流量制御弁172Aを通過した第2作動油は、ブームシリンダ7のボトム側油室に流入し、流量制御弁173を通過した第2作動油は、バケットシリンダ9のボトム側油室に流入する。
また、コントローラ30は、第2ポンプ14Rの最大吐出量と吐出量指令値との流量差を算出し、その流量差に相当する流量の作動油をポンプ・モータ14Aに吐出させる。具体的には、コントローラ30は、切替弁82を第1位置にしてアキュムレータ80とポンプ・モータ14Aとの間を連通させ、アキュムレータ80に蓄積された作動油をポンプ・モータ14Aに向けて放出させる。
そして、コントローラ30は、アームシリンダ8の負荷圧(ボトム側油室の圧力)がアキュムレータ圧より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(アキュムレータ圧)を負荷圧まで増大させ、且つ、対応するレギュレータを制御してポンプ・モータ14Aの吐出量がその流量差に相当する流量となるように制御する。油圧ポンプとして作動するポンプ・モータ14Aは、作動油タンクTから作動油を吸い込む場合に比べ、小さいポンプ負荷で作動油を吐出できる。その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。
また、コントローラ30は、アームシリンダ8の負荷圧(ボトム側油室の圧力)がアキュムレータ圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(アキュムレータ圧)を負荷圧まで低減させ、且つ、対応するレギュレータを制御してポンプ・モータ14Aの吐出量がその流量差に相当する流量となるように制御する。油圧モータとして作動するポンプ・モータ14Aは、エンジン11をアシストし、第1ポンプ14Lを回転させるための駆動力の一部を負担できる。その結果、コントローラ30は、第1ポンプ14Lの吸収馬力を増大させることができ、或いは、吸収馬力を増大させない場合にはエンジン11の負荷ひいては燃料噴射量を抑制できる。
なお、図11の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aが発生させた回転トルクが変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得ることを表す。また、灰色の一点鎖線矢印は、油圧ポンプとして作動するポンプ・モータ14Aがエンジン11の出力の一部を利用することを表す。
また、コントローラ30は、上述の流量差、第1ポンプ14Lの吐出圧、第2ポンプ14Rの吐出圧等に基づいて可変ロードチェック弁51Bの開口面積を制御する。図11の例では、コントローラ30は、予め登録した開口マップを参照して可変ロードチェック弁51Bの開口面積を決定し、その開口面積に対応する指令を可変ロードチェック弁51Bに対して出力する。これにより、アームシリンダ8のボトム側油室に流入する第2作動油が減少し或いは消失する。なお、図11における灰色の太実線は、ポンプ・モータ14Aが吐出する第3作動油の流量の増大に応じて、アームシリンダ8のボトム側油室に流入する第2作動油が減少し或いは消失することを表す。
上述のように、コントローラ30は、[掘削動作]及び[背圧回生によるエンジンのアシストを伴う掘削動作]のところで説明した効果に加え、以下の効果を追加的に実現する。
具体的には、コントローラ30は、掘削動作が行われた場合に、アキュムレータ80に蓄積された作動油をポンプ・モータ14Aに供給する。そして、ポンプ・モータ14Aを油圧ポンプとして作動させるか油圧モータとして作動させるかを切り替え、且つ、ポンプ・モータ14Aの押退容積を制御することでポンプ・モータ14Aが吐出する第3作動油の吐出圧を変化させる。そのため、第3作動油の供給先である油圧アクチュエータの負荷圧とアキュムレータ圧との大小関係にかかわらず、第3作動油をその油圧アクチュエータに流入させることができる。その結果、第1作動油と第3作動油の流量バランスを柔軟に制御でき、また、アキュムレータ80に蓄積された油圧エネルギを効率的に再利用できるようにする。

[背圧回生による油圧アクチュエータのアシストを伴う掘削動作]
次に、図12を参照し、背圧回生による油圧アクチュエータのアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を説明する。なお、図12は、背圧回生によるアームシリンダ8のアシストを伴う掘削動作が行われる場合における図2の油圧回路の状態を示す。また、図12の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図12の黒色及び灰色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
具体的には、コントローラ30は、ブーム上げ操作、アーム閉じ操作、及びバケット閉じ操作による複合掘削動作が行われていると判断すると、何れの油圧アクチュエータの負荷圧が最小かを判断する。そして、コントローラ30は、ブームシリンダ7のボトム側油室の圧力(負荷圧)が最小と判断すると、切替弁62を第2位置にし、黒色の太点線で示すように、ブームシリンダ7のロッド側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172の右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172を最大開口とし、流量制御弁172での圧力損失を低減させる。また、コントローラ30は、切替弁63を第1位置にしてバケットシリンダ9のロッド側油室から流出する作動油を作動油タンクTに向ける。
その後、コントローラ30は、ブームシリンダ7の動作速度がブーム操作レバーの操作量に応じた速度となるよう、ポンプ・モータ14Aによる作動油の吸収量(押退容積)を制御する。具体的には、コントローラ30は、アームシリンダ8の負荷圧(ボトム側油室の圧力)がブームシリンダ7の所望の背圧(ロッド側油室の圧力)より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)をアームシリンダ8の負荷圧まで増大させる。また、コントローラ30は、アームシリンダ8の負荷圧(ボトム側油室の圧力)がブームシリンダ7の所望の背圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)を負荷圧まで低減させる。そして、コントローラ30は、レギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。例えば、コントローラ30は、ポンプ・モータ14Aを一定速度で回転させる場合、押退容積を小さくするほどブームシリンダ7のロッド側油室から流出する作動油の流量を小さくでき、ブームシリンダ7のロッド側油室の圧力(背圧)を上昇させることができる。この関係を用いて、コントローラ30は、背圧がブームシリンダ7の所望の負荷圧(ボトム側油室の圧力)に見合う圧力となるようにその背圧を制御できる。
また、ブームシリンダ7のロッド側油室から流出する作動油は、油圧モータとして機能するポンプ・モータ14Aを回転させることによって回転トルクを発生させる。この回転トルクは、変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得る。すなわち、ポンプ・モータ14Aが発生させた回転トルクは、エンジン11の回転をアシストするために利用され、エンジン11の負荷ひいては燃料噴射量を抑制する効果を奏する。なお、エンジン11の出力制御には、望ましくはトルクベース制御を応用したものが利用され得る。
また、油圧ポンプとして機能するポンプ・モータ14Aは、ブームシリンダ7のロッド側油室から流出する作動油を吸い込むことで、作動油タンクTから作動油を吸い込む場合に比べて小さいポンプ負荷で作動油を吐出できる。その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。
なお、図12の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aが発生させた回転トルクが変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得ることを表す。また、灰色の一点鎖線矢印は、油圧ポンプとして作動するポンプ・モータ14Aがエンジン11の出力の一部を利用することを表す。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のロッド側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62を第1位置と第2位置との間の中間位置にし、或いは切替弁62を第1位置に完全に切り替えることで、ブームシリンダ7のロッド側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。流量制御弁172のCT開口が大きい場合、或いは、ブームシリンダ7に負荷が加わり背圧を発生させる必要が無くなった場合についても同様である。なお、図12における灰色の太点線は、切替弁62が第1位置の方向に移動させられた場合に、ブームシリンダ7のロッド側油室から流出する作動油が作動油タンクTに排出されることを表す。
また、ポンプ・モータ14Aの押退容積を制御するだけではアームシリンダ8の動作速度をアーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、合流弁55を第1位置にして第2ポンプ14Rが吐出する第2作動油をアームシリンダ8に流入させる。
なお、上述では、ブームシリンダ7のボトム側油室の圧力(負荷圧)が最小と判断される場合を説明するが、バケットシリンダ9のボトム側油室の圧力(負荷圧)が最小と判断される場合についても同様の説明が適用される。具体的には、コントローラ30は、バケットシリンダ9のボトム側油室の圧力(負荷圧)が最小と判断すると、切替弁63を第2位置にし、バケットシリンダ9のロッド側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、バケット操作レバーの操作量とは無関係に、減圧弁により流量制御弁173の右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁173を最大開口とし、流量制御弁173での圧力損失を低減させる。また、コントローラ30は、切替弁61及び切替弁62をそれぞれ第1位置にしてアームシリンダ8及びブームシリンダ7のそれぞれのロッド側油室から流出する作動油を作動油タンクTに向ける。また、バケットシリンダ9の動作速度も上述同様に制御される。
また、コントローラ30は、アームシリンダ8のボトム側油室の圧力(負荷圧)が最小と判断すると、切替弁61を第2位置にし、アームシリンダ8のロッド側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、アーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁171の右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁171を最大開口とし、流量制御弁171での圧力損失を低減させる。また、コントローラ30は、切替弁62及び切替弁63のそれぞれを第1位置にしてブームシリンダ7及びバケットシリンダ9のそれぞれのロッド側油室から流出する作動油を作動油タンクTに向ける。また、アームシリンダ8の動作速度も上述同様に制御される。
次に、図13を参照し、背圧回生による油圧アクチュエータのアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を説明する。なお、図13は、背圧回生によるアームシリンダ8のアシストを伴う掘削動作が行われる場合における図3の油圧回路の状態を示す。また、図13の黒色及び灰色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図13の黒色及び灰色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。また、図13における灰色の太実線及び太点線は、作動油の流れが減少或いは消失し得ることを追加的に表す。
具体的には、コントローラ30は、ブーム上げ操作、アーム閉じ操作、及びバケット閉じ操作による複合掘削動作が行われていると判断すると、切替弁62Aを第2位置にし、黒色の太点線で示すように、ブームシリンダ7のロッド側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Aの左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172Aを最大開口とし、流量制御弁172Aでの圧力損失を低減させる。また、コントローラ30は、流量制御弁173を通じてバケットシリンダ9のロッド側油室から流出する作動油を作動油タンクTに排出させる。
その後、コントローラ30は、ブームシリンダ7の動作速度がブーム操作レバーの操作量に応じた速度となるよう、ポンプ・モータ14Aによる作動油の吸収量(押退容積)を制御する。具体的には、コントローラ30は、アームシリンダ8の負荷圧(ボトム側油室の圧力)がブームシリンダ7の所望の背圧(ロッド側油室の圧力)より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)をアームシリンダ8の負荷圧まで増大させる。また、コントローラ30は、アームシリンダ8の負荷圧(ボトム側油室の圧力)がブームシリンダ7の所望の背圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)を負荷圧まで低減させる。そして、コントローラ30は、レギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。
なお、図13の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aが発生させた回転トルクが変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得ることを表す。また、灰色の一点鎖線矢印は、油圧ポンプとして作動するポンプ・モータ14Aがエンジン11の出力の一部を利用することを表す。
また、例えばポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のロッド側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。具体的には、コントローラ30は、切替弁62Bを第1位置と第2位置との間の中間位置にし、或いは切替弁62Bを第1位置に完全に切り替えることで、ブームシリンダ7のロッド側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。なお、コントローラ30は、必要に応じて、切替弁62Aを第3位置(中立位置)にしてブームシリンダ7のロッド側油室とポンプ・モータ14Aとの間の連通を遮断してもよい。なお、図13における灰色の太点線は、切替弁62Bが第1位置に切り替えられた場合に、ブームシリンダ7のロッド側油室から流出する作動油が作動油タンクTに排出されることを表す。
また、ポンプ・モータ14Aの押退容積を制御することでアームシリンダ8の動作速度をアーム操作レバーの操作量に応じた速度に制御できる場合、コントローラ30は、可変ロードチェック弁51Bを第2位置にして第2作動油のアームシリンダ8への流入を遮断してもよい。なお、図13における灰色の太実線は、可変ロードチェック弁51Bが第2位置に切り替えられた場合に、第2作動油のアームシリンダ8への流入が遮断されることを表す。
上述のように、コントローラ30は、[掘削動作]及び[背圧回生によるエンジンのアシストを伴う掘削動作]のところで説明した効果に加え、以下の効果を追加的に実現する。
具体的には、コントローラ30は、掘削動作が行われた場合に、ブームシリンダ7のロッド側油室から流出する作動油をポンプ・モータ14Aに供給する。そして、ポンプ・モータ14Aを油圧ポンプとして作動させるか油圧モータとして作動させるかを切り替え、且つ、ポンプ・モータ14Aの押退容積を制御することでポンプ・モータ14Aが吐出する第3作動油の吐出圧を変化させる。そのため、第3作動油の供給先である油圧アクチュエータの負荷圧とブームシリンダ7のロッド側油室における所望の背圧との大小関係にかかわらず、第3作動油をその油圧アクチュエータに流入させることができる。その結果、第1作動油と第3作動油の流量バランスを柔軟に制御でき、また、回生したエネルギを効率的に再利用できるようにする。

[背圧回生によるエンジンのアシストを伴う排土動作]
次に、図14を参照し、背圧回生によるエンジン11のアシストを伴う排土動作が行われる場合における図2の油圧回路の状態を説明する。なお、図14は、背圧回生によるエンジン11のアシストを伴う排土動作が行われる場合における図2の油圧回路の状態を示す。また、図14の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図14の黒色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
排土動作は、ブーム下げ、アーム開き、及びバケット開きを含む動作である。また、ブーム4は自重で下降し、ブーム4の下降速度はブームシリンダ7のボトム側油室から流出する作動油の流量を調整することで制御される。具体的には、ボトム側油室から流出する作動油の流量が大きいほどブーム4の下降速度は大きくなる。
ブーム下げ操作が行われると、流量制御弁172はブーム操作レバーの操作量に応じたパイロット圧を受けて図14の左位置に移動する。また、アーム開き操作が行われると、流量制御弁171はアーム操作レバーの操作量に応じたパイロット圧を受けて図14の左位置に移動し、バケット開き操作が行われると、流量制御弁173はバケット操作レバーの操作量に応じたパイロット圧を受けて図14の左位置に移動する。
そして、コントローラ30は、ブーム下げ操作が行われたと判断すると、図14に示すように、再生弁7aの開口を最大にしてブームシリンダ7のボトム側油室から流出する作動油をブームシリンダ7のロッド側油室に流入させる。
なお、再生弁7aの開口が最大になると、ブームシリンダ7のボトム側油室の圧力がそのままロッド側油室にも掛かるため、ボトム側油室の圧力がさらに上昇してコントロールバルブ17内に設置されたリリーフ弁のリリーフ圧を超過する場合がある。そのため、コントローラ30は、ブームシリンダ7のボトム側油室の圧力がそのリリーフ圧に近づいた場合には、再生弁7aの開口を小さくしてボトム側油室の圧力がそのリリーフ圧を超えないようにする。
また、コントローラ30は、切替弁62を第2位置にし、黒色の太点線で示すように、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172を最大開口とし、流量制御弁172での圧力損失を低減させる。また、コントローラ30は、可変ロードチェック弁52を第2位置にし、第2ポンプ14Rと流量制御弁172との間の連通を遮断する。
また、コントローラ30は、ブーム操作レバーの操作量及び再生弁7aの開度に応じてポンプ・モータ14Aの吐出量を制御する。具体的には、コントローラ30は、ポンプ・モータ14Aを油圧モータとして作動させ、ブームシリンダ7のボトム側油室の圧力が急変しないよう、また、リリーフ圧を超過しないよう、対応するレギュレータを制御してポンプ・モータ14Aの押退容積を制御する。そして、コントローラ30は、切替弁90を第2位置にしてポンプ・モータ14Aが吐出する第3作動油を作動油タンクTに排出させる。
また、コントローラ30は、合流弁55を第2位置の状態に維持して第1作動油と第2作動油とを合流させないようにし、アームシリンダ8及びバケットシリンダ9のそれぞれの動きが別々の作動油で独立して制御されるようにする。この場合、アームシリンダ8のロッド側油室に流入する作動油の流量は、第1ポンプ14Lによる直接制御が可能なため、流量制御弁171における絞りで制限される必要はない。同様に、バケットシリンダ9のロッド側油室に流入する作動油の流量は、第2ポンプ14Rによる直接制御が可能なため、流量制御弁173における絞りで制限される必要はない。そのため、コントローラ30は、ブームシリンダ7に対応する流量制御弁172の場合と同様、減圧弁により流量制御弁171、173の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁171、173を最大開口とし、流量制御弁171、173での圧力損失を低減させてもよい。なお、アーム開き操作及びバケット開き操作を伴う排土動作が行われる場合、アーム操作レバー及びバケット操作レバーは、典型的には、フルレバー(例えば、レバーの中立状態を0%とし、最大操作状態を100%とした場合の80%以上の操作量)で操作される。そのため、流量制御弁171、173は何れも最大開口となる。
また、ブームシリンダ7のボトム側油室から流出する作動油は、ポンプ・モータ14Aを回転させることによって回転トルクを発生させる。この回転トルクは、図14の黒色の一点鎖線矢印で示すように、変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得る。すなわち、ポンプ・モータ14Aが発生させた回転トルクは、エンジン11の回転をアシストするために利用され、エンジン11の負荷ひいては燃料噴射量を抑制する効果を奏する。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62を第1位置と第2位置との間の中間位置にし、或いは切替弁62を第1位置に完全に切り替えることで、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。
次に、図15を参照し、背圧回生によるエンジン11のアシストを伴う排土動作が行われる場合における図3の油圧回路の状態を説明する。なお、図15は、背圧回生によるエンジン11のアシストを伴う排土動作が行われる場合における図3の油圧回路の状態を示す。また、図15の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図15の黒色及び灰色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
具体的には、コントローラ30は、ブーム下げ操作が行われたと判断すると、再生弁7aの開口を最大にしてブームシリンダ7のボトム側油室から流出する作動油をブームシリンダ7のロッド側油室に流入させる。
また、コントローラ30は、切替弁62Aを第1位置にし、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Aの右側のパイロットポートに作用するパイロット圧を低減させて流量制御弁172Aを中立位置とし、ブームシリンダ7のボトム側油室から流量制御弁172Aを通って作動油タンクTに向かう作動油の流れを遮断する。また、コントローラ30は、可変ロードチェック弁52Aを第2位置にし、第2ポンプ14Rと流量制御弁172Aとの間の連通を遮断する。
また、アーム開き操作が行われると、流量制御弁171Aはアーム操作レバーの操作量に応じたパイロット圧を受けて図15の右位置に移動する。また、バケット開き操作が行われると、流量制御弁173はバケット操作レバーの操作量に応じたパイロット圧を受けて図15の左位置に移動する。
また、コントローラ30は、アーム開き操作が行われたと判断すると、可変ロードチェック弁51Aを第1位置にし、第1ポンプ14Lと流量制御弁171Aとの間を連通させる。また、コントローラ30は、バケット開き操作が行われたと判断すると、可変ロードチェック弁53を第1位置にし、第2ポンプ14Rと流量制御弁173との間を連通させる。
また、コントローラ30は、ブーム操作レバーの操作量及び再生弁7aの開度に応じてポンプ・モータ14Aの吐出量を制御する。具体的には、コントローラ30は、ポンプ・モータ14Aを油圧モータとして作動させ、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータを制御してポンプ・モータ14Aの押退容積を制御する。そして、コントローラ30は、切替弁90を第2位置にし、且つ、切替弁92を第3位置にしてポンプ・モータ14Aが吐出する第3作動油を作動油タンクTに排出させる。
また、コントローラ30は、可変ロードチェック弁51Bを第2位置の状態に維持して第1作動油と第2作動油とを合流させないようにし、アームシリンダ8及びバケットシリンダ9のそれぞれの動きが別々の作動油で独立して制御されるようにする。この場合、アームシリンダ8のロッド側油室に流入する作動油の流量は、第1ポンプ14Lによる直接制御が可能なため、流量制御弁171Aにおける絞りで制限される必要はない。同様に、バケットシリンダ9のロッド側油室に流入する作動油の流量は、第2ポンプ14Rによる直接制御が可能なため、流量制御弁173における絞りで制限される必要はない。そのため、コントローラ30は、ブームシリンダ7に対応する流量制御弁172Aの場合と同様、減圧弁により流量制御弁171Aの右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁171Aを最大開口とし、且つ、減圧弁により流量制御弁173の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁173を最大開口とし、流量制御弁171A、173での圧力損失を低減させてもよい。
また、ブームシリンダ7のボトム側油室から流出する作動油は、ポンプ・モータ14Aを回転させることによって回転トルクを発生させる。この回転トルクは、図15の黒色の一点鎖線矢印で示すように、変速機13を介してエンジン11の回転軸に伝えられ、第1ポンプ14L及び第2ポンプ14Rの駆動力として利用され得る。すなわち、ポンプ・モータ14Aが発生させた回転トルクは、エンジン11の回転をアシストするために利用され、エンジン11の負荷ひいては燃料噴射量を抑制する効果を奏する。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62Cを第1位置と第2位置との間の中間位置にし、或いは切替弁62Cを第1位置に完全に切り替えることで、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。
また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Bの左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172Bを図15の左位置とし、ブームシリンダ7のボトム側油室から流出する作動油を第1作動油に合流させてもよい。
なお、図15における灰色の太点線は、切替弁62Cが第1位置の方向に移動させられた場合にブームシリンダ7のボトム側油室から流出する作動油が作動油タンクTに排出されること、及び、流量制御弁172Bが左位置に移動させられた場合にブームシリンダ7のボトム側油室から流出する作動油が流量制御弁172Bのところで第1作動油と合流することを表す。
上述のように、コントローラ30は、ブーム下げ操作が行われた場合に、ブームシリンダ7のボトム側油室から流出する作動油でポンプ・モータ14Aを回転させて背圧を生成する。そのため、本発明の実施例に係るショベルは、背圧を生成する際に得られる油圧エネルギをエンジン11のアシストのために利用できる。その結果、アシスト出力分だけエンジン出力を低減させることによる省エネルギ化、エンジン出力にアシスト出力を上乗せして油圧ポンプの出力を増大させることによる動作の高速化及びサイクルタイムの短縮等を実現できる。
また、コントローラ30は、ポンプ・モータ14Aを回転させることで背圧を生成するため、ブームシリンダ7のボトム側油室から流出する作動油の流れを絞りで絞る必要がなく、絞りで圧力損失を発生させることもない。そのため、ブーム4の位置エネルギが熱エネルギとして消費されるのを抑制或いは防止し、エネルギ損失を抑制或いは防止できる。
また、コントローラ30は、ブーム下げ操作、アーム開き操作、及びバケット開き操作が同時に行われた場合であっても、第1作動油と第2作動油とを合流させることなく、アームシリンダ8及びバケットシリンダ9のそれぞれの動きを別々の作動油で独立して制御する。そのため、アームシリンダ8を動かすために要求される第1作動油の流量、及び、バケットシリンダ9を動かすために要求される第2作動油の流量のうちの一方が他方の影響を受けることがない。そのため、油圧ポンプが必要以上に作動油を吐出するのを防止できる。

[背圧回生による油圧アクチュエータのアシストを伴う排土動作]
次に、図16を参照し、背圧回生による油圧アクチュエータのアシストを伴う排土動作が行われる場合における図2の油圧回路の状態を説明する。なお、図16は、背圧回生によるアームシリンダ8のアシストを伴う排土動作が行われる場合における図2の油圧回路の状態を示す。また、図16の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図16の黒色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
ブーム下げ操作が行われると、流量制御弁172はブーム操作レバーの操作量に応じたパイロット圧を受けて図16の左位置に移動する。また、アーム開き操作が行われると、流量制御弁171はアーム操作レバーの操作量に応じたパイロット圧を受けて図16の左位置に移動し、バケット開き操作が行われると、流量制御弁173はバケット操作レバーの操作量に応じたパイロット圧を受けて図16の左位置に移動する。
そして、コントローラ30は、ブーム下げ操作が行われたと判断すると、黒色の太点線で示すように、再生弁7aの開口を最大にしてブームシリンダ7のボトム側油室から流出する作動油をブームシリンダ7のロッド側油室に流入させる。
また、コントローラ30は、切替弁62を第2位置にし、黒色の太点線で示すように、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172を最大開口とし、流量制御弁172での圧力損失を低減させる。また、コントローラ30は、可変ロードチェック弁52を第2位置にし、第2ポンプ14Rと流量制御弁172との間の連通を遮断する。
また、コントローラ30は、ブーム操作レバーの操作量及び再生弁7aの開度に応じてポンプ・モータ14Aの吐出量を制御する。具体的には、コントローラ30は、アームシリンダ8の負荷圧(ロッド側油室の圧力)がブームシリンダ7の所望の背圧(ボトム側油室の圧力)より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(ブームシリンダ7のボトム側油室の圧力)をアームシリンダ8の負荷圧まで増大させる。また、コントローラ30は、アームシリンダ8の負荷圧(ロッド側油室の圧力)がブームシリンダ7の所望の背圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)を負荷圧まで低減させる。そして、コントローラ30は、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。例えば、コントローラ30は、ポンプ・モータ14Aを一定速度で回転させる場合、押退容積を小さくするほどブームシリンダ7のボトム側油室から流出する作動油の流量を小さくでき、ブームシリンダ7のボトム側油室の圧力(背圧)を上昇させることができる。この関係を用いて、コントローラ30は、ポンプ・モータ14Aの吐出側の作動油の圧力がアームシリンダ8の負荷圧となるように、且つ、ポンプ・モータ14Aの供給側の作動油の圧力が所望の背圧となるようにポンプ・モータ14Aを制御できる。なお、コントローラ30は、ポンプ・モータ14Aの斜板傾転角と回転速度を調整する代わりに、絞りを用いた分流制御によってポンプ・モータ14Aの吐出側の作動油の圧力がアームシリンダ8の負荷圧となるように、且つ、ポンプ・モータ14Aの供給側の作動油の圧力が所望の背圧となるようにポンプ・モータ14Aを制御してもよい。この場合、ポンプ・モータ14Aの斜板傾転角は固定であってもよい。
油圧ポンプとして作動するポンプ・モータ14Aは、作動油タンクTから作動油を吸い込む場合に比べ、小さいポンプ負荷で作動油を吐出できる。その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。また、コントローラ30は、ポンプ・モータ14Aが吐出する第3作動油の吐出量分だけ第1ポンプ14Lが吐出する第1作動油の吐出量を低減させる。その結果、アームシリンダ8のロッド側油室に流入する作動油の流量を変えずにエンジン11の負荷を低減させて省エネルギ化を実現できる。
また、油圧モータとして作動するポンプ・モータ14Aは、エンジン11をアシストし、第1ポンプ14Lを回転させるための駆動力の一部を負担できる。その結果、コントローラ30は、第1ポンプ14Lの吸収馬力を増大させることができ、或いは、吸収馬力を増大させない場合にはエンジン11の負荷ひいては燃料噴射量を抑制できる。なお、図16の灰色の一点鎖線矢印は、油圧ポンプとして作動するポンプ・モータ14Aがエンジン11の出力の一部を利用することを表す。また、図16の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aがエンジン11をアシストして第1ポンプ14Lの駆動力の一部を負担することを表す。
そして、コントローラ30は、切替弁90を第1位置にしてポンプ・モータ14Aが吐出する第3作動油を切替弁91に向け、且つ、切替弁91を第1位置にして第3作動油をアームシリンダ8に向ける。
また、コントローラ30は、合流弁55を第2位置の状態に維持して第1作動油と第2作動油とを合流させないようにし、アームシリンダ8及びバケットシリンダ9のそれぞれの動きが別々の作動油で独立して制御されるようにする。この場合、アームシリンダ8のロッド側油室に流入する作動油の流量は、第1ポンプ14Lによる直接制御が可能なため、流量制御弁171における絞りで制限される必要はない。同様に、バケットシリンダ9のロッド側油室に流入する作動油の流量は、第2ポンプ14Rによる直接制御が可能なため、流量制御弁173における絞りで制限される必要はない。そのため、コントローラ30は、ブームシリンダ7に対応する流量制御弁172の場合と同様、減圧弁により流量制御弁171、173の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁171、173を最大開口とし、流量制御弁171、173での圧力損失を低減させてもよい。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62を第1位置と第2位置との間の中間位置にし、或いは切替弁62を第1位置に完全に切り替えることで、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。
次に、図17を参照し、背圧回生による油圧アクチュエータのアシストを伴う排土動作が行われる場合における図3の油圧回路の状態を説明する。なお、図17は、背圧回生によるアームシリンダ8のアシストを伴う排土動作が行われる場合における図3の油圧回路の状態を示す。また、図17の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図17の黒色及び灰色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
具体的には、コントローラ30は、ブーム下げ操作が行われたと判断すると、再生弁7aの開口を最大にしてブームシリンダ7のボトム側油室から流出する作動油をブームシリンダ7のロッド側油室に流入させる。
また、コントローラ30は、切替弁62Aを第1位置にし、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Aの右側のパイロットポートに作用するパイロット圧を低減させて流量制御弁172Aを中立位置とし、ブームシリンダ7のボトム側油室から流量制御弁172Aを通って作動油タンクTに向かう作動油の流れを遮断する。また、コントローラ30は、可変ロードチェック弁52Aを第2位置にし、第2ポンプ14Rと流量制御弁172Aとの間の連通を遮断する。
また、アーム開き操作が行われると、流量制御弁171Aはアーム操作レバーの操作量に応じたパイロット圧を受けて図17の右位置に移動する。また、バケット開き操作が行われると、流量制御弁173はバケット操作レバーの操作量に応じたパイロット圧を受けて図17の左位置に移動する。
また、コントローラ30は、アーム開き操作が行われたと判断すると、可変ロードチェック弁51Aを第1位置にし、第1ポンプ14Lと流量制御弁171Aとの間を連通させる。また、コントローラ30は、バケット開き操作が行われたと判断すると、可変ロードチェック弁53を第1位置にし、第2ポンプ14Rと流量制御弁173との間を連通させる。
また、コントローラ30は、ブーム操作レバーの操作量及び再生弁7aの開度に応じてポンプ・モータ14Aの吐出量を制御する。具体的には、コントローラ30は、アームシリンダ8の負荷圧(ロッド側油室の圧力)がブームシリンダ7の所望の背圧(ボトム側油室の圧力)より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(ブームシリンダ7のボトム側油室の圧力)をアームシリンダ8の負荷圧まで増大させる。また、コントローラ30は、アームシリンダ8の負荷圧(ロッド側油室の圧力)がブームシリンダ7の所望の背圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)を負荷圧まで低減させる。そして、コントローラ30は、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。例えば、コントローラ30は、ポンプ・モータ14Aを一定速度で回転させる場合、押退容積を小さくするほどブームシリンダ7のボトム側油室から流出する作動油の流量を小さくでき、ブームシリンダ7のボトム側油室の圧力(背圧)を上昇させることができる。この関係を用いて、コントローラ30は、ポンプ・モータ14Aの吐出側の作動油の圧力がアームシリンダ8の負荷圧となるように、且つ、ポンプ・モータ14Aの供給側の作動油の圧力が所望の背圧となるようポンプ・モータ14Aを制御できる。
油圧ポンプとして作動するポンプ・モータ14Aは、作動油タンクTから作動油を吸い込む場合に比べ、小さいポンプ負荷で作動油を吐出できる。その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。また、コントローラ30は、ポンプ・モータ14Aが吐出する第3作動油の吐出量だけ第1ポンプ14Lが吐出する第1作動油の吐出量を低減させる。その結果、アームシリンダ8のロッド側油室に流入する作動油の流量を変えずにエンジン11の負荷を低減させて省エネルギ化を実現できる。
また、油圧モータとして作動するポンプ・モータ14Aは、エンジン11をアシストし、第1ポンプ14Lを回転させるための駆動力の一部を負担できる。その結果、コントローラ30は、第1ポンプ14Lの吸収馬力を増大させることができ、或いは、吸収馬力を増大させない場合にはエンジン11の負荷ひいては燃料噴射量を抑制できる。なお、図17の灰色の一点鎖線矢印は、油圧ポンプとして作動するポンプ・モータ14Aがエンジン11の出力の一部を利用することを表す。また、図17の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aがエンジン11をアシストして第1ポンプ14Lの駆動力の一部を負担することを表す。
また、コントローラ30は、可変ロードチェック弁51Bを第2位置の状態に維持して第1作動油と第2作動油とを合流させないようにし、アームシリンダ8及びバケットシリンダ9のそれぞれの動きが別々の作動油で独立して制御されるようにする。この場合、アームシリンダ8のロッド側油室に流入する作動油の流量は、第1ポンプ14Lによる直接制御が可能なため、流量制御弁171Aにおける絞りで制限される必要はない。同様に、バケットシリンダ9のロッド側油室に流入する作動油の流量は、第2ポンプ14Rによる直接制御が可能なため、流量制御弁173における絞りで制限される必要はない。そのため、コントローラ30は、ブームシリンダ7に対応する流量制御弁172Aの場合と同様、減圧弁により流量制御弁171Aの右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁171Aを最大開口とし、且つ、減圧弁により流量制御弁173の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁173を最大開口とし、流量制御弁171A、173での圧力損失を低減させてもよい。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62Cを第1位置と第2位置との間の中間位置にし、或いは切替弁62Cを第1位置に完全に切り替えることで、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。
また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Bの左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172Bを図17の左位置とし、ブームシリンダ7のボトム側油室から流出する作動油を第1作動油に合流させてもよい。
なお、図17における灰色の太点線は、切替弁62Cが第1位置の方向に移動させられた場合にブームシリンダ7のボトム側油室から流出する作動油が作動油タンクTに排出されること、及び、流量制御弁172Bが左位置に移動させられた場合にブームシリンダ7のボトム側油室から流出する作動油が流量制御弁172Bのところで第1作動油と合流することを表す。
上述のように、コントローラ30は、[背圧回生によるエンジンのアシストを伴う排土動作]のところで説明した効果に加え、以下の効果を追加的に実現する。
具体的には、コントローラ30は、ポンプ・モータ14Aを油圧ポンプとして作動させるか油圧モータとして作動させるかを切り替え、且つ、ポンプ・モータ14Aの押退容積を制御することでポンプ・モータ14Aが吐出する第3作動油の吐出圧を変化させる。そのため、第3作動油の供給先である油圧アクチュエータの負荷圧とブームシリンダ7の所望の背圧との大小関係にかかわらず、第3作動油をその油圧アクチュエータに流入させることができる。その結果、第1作動油と第3作動油の流量バランスを柔軟に制御でき、また、回生したエネルギを効率的に再利用できるようにする。

[背圧回生によるアキュムレータの蓄圧を伴う排土動作]
次に、図18を参照し、背圧回生によるアキュムレータ80の蓄圧を伴う排土動作が行われる場合における図2の油圧回路の状態を説明する。なお、図18は、背圧回生によるアキュムレータ80の蓄圧を伴う排土動作が行われる場合における図2の油圧回路の状態を示す。また、図18の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図18の黒色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
ブーム下げ操作が行われると、流量制御弁172はブーム操作レバーの操作量に応じたパイロット圧を受けて図18の左位置に移動する。また、アーム開き操作が行われると、流量制御弁171はアーム操作レバーの操作量に応じたパイロット圧を受けて図18の左位置に移動し、バケット開き操作が行われると、流量制御弁173はバケット操作レバーの操作量に応じたパイロット圧を受けて図18の左位置に移動する。
そして、コントローラ30は、ブーム下げ操作が行われたと判断すると、黒色の太点線で示すように、再生弁7aの開口を最大にしてブームシリンダ7のボトム側油室から流出する作動油をブームシリンダ7のロッド側油室に流入させる。
また、コントローラ30は、切替弁62を第2位置にし、黒色の太点線で示すように、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172を最大開口とし、流量制御弁172での圧力損失を低減させる。また、コントローラ30は、可変ロードチェック弁52を第2位置にし、第2ポンプ14Rと流量制御弁172との間の連通を遮断する。
また、コントローラ30は、ブーム操作レバーの操作量及び再生弁7aの開度に応じてポンプ・モータ14Aの吐出量を制御する。具体的には、コントローラ30は、アキュムレータ圧がブームシリンダ7の所望の背圧(ボトム側油室の圧力)より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(ブームシリンダ7のボトム側油室の圧力)をアキュムレータ圧まで増大させる。また、コントローラ30は、アキュムレータ圧がブームシリンダ7の所望の背圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)をアキュムレータ圧まで低減させる。そして、コントローラ30は、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。例えば、コントローラ30は、ポンプ・モータ14Aを一定速度で回転させる場合、押退容積を小さくするほどブームシリンダ7のボトム側油室から流出する作動油の流量を小さくでき、ブームシリンダ7のボトム側油室の圧力(背圧)を上昇させることができる。この関係を用いて、コントローラ30は、ポンプ・モータ14Aの吐出側の作動油の圧力がアキュムレータ圧となるように、且つ、ポンプ・モータ14Aの供給側の作動油の圧力が所望の背圧となるようにその作動油の圧力を制御できる。
油圧ポンプとして作動するポンプ・モータ14Aは、作動油タンクTから作動油を吸い込んでアキュムレータ80を蓄圧する場合に比べ、小さいポンプ負荷でアキュムレータ80を蓄圧できる。その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。また、油圧モータとして作動するポンプ・モータ14Aは、エンジン11をアシストし、第1ポンプ14Lを回転させるための駆動力の一部を負担できる。その結果、コントローラ30は、第1ポンプ14Lの吸収馬力を増大させることができ、或いは、吸収馬力を増大させない場合にはエンジン11の負荷ひいては燃料噴射量を抑制できる。なお、図18の灰色の一点鎖線矢印は、油圧ポンプとして作動するポンプ・モータ14Aがエンジン11の出力の一部を利用することを表す。また、図18の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aがエンジン11をアシストして第1ポンプ14Lの駆動力の一部を負担することを表す。
そして、コントローラ30は、切替弁90を第1位置にしてポンプ・モータ14Aが吐出する第3作動油を切替弁91に向け、且つ、切替弁91を第3位置にして第3作動油をアキュムレータ80に向ける。また、コントローラ30は、切替弁81を第1位置にして第1ポンプ14Lとアキュムレータ80との間を連通させる。
また、コントローラ30は、合流弁55を第2位置の状態に維持して第1作動油と第2作動油とを合流させないようにし、アームシリンダ8及びバケットシリンダ9のそれぞれの動きが別々の作動油で独立して制御されるようにする。この場合、アームシリンダ8のロッド側油室に流入する作動油の流量は、第1ポンプ14Lによる直接制御が可能なため、流量制御弁171における絞りで制限される必要はない。同様に、バケットシリンダ9のロッド側油室に流入する作動油の流量は、第2ポンプ14Rによる直接制御が可能なため、流量制御弁173における絞りで制限される必要はない。そのため、コントローラ30は、ブームシリンダ7に対応する流量制御弁172の場合と同様、減圧弁により流量制御弁171、173の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁171、173を最大開口とし、流量制御弁171、173での圧力損失を低減させてもよい。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62を第1位置と第2位置との間の中間位置に設定し、或いは切替弁62を第1位置に完全に切り替えることで、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。
次に、図19を参照し、背圧回生によるアキュムレータ80の蓄圧を伴う排土動作が行われる場合における図3の油圧回路の状態を説明する。なお、図19は、背圧回生によるアームシリンダ8のアシストを伴う排土動作が行われる場合における図3の油圧回路の状態を示す。また、図19の黒色の太実線は、油圧アクチュエータに流入する作動油の流れを表し、実線の太さが太いほど流量が大きいことを表す。また、図19の黒色及び灰色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
具体的には、コントローラ30は、ブーム下げ操作が行われたと判断すると、再生弁7aの開口を最大にしてブームシリンダ7のボトム側油室から流出する作動油をブームシリンダ7のロッド側油室に流入させる。
また、コントローラ30は、切替弁62Aを第1位置にし、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Aの右側のパイロットポートに作用するパイロット圧を低減させて流量制御弁172Aを中立位置とし、ブームシリンダ7のボトム側油室から流量制御弁172Aを通って作動油タンクTに向かう作動油の流れを遮断する。また、コントローラ30は、可変ロードチェック弁52Aを第2位置にし、第2ポンプ14Rと流量制御弁172Aとの間の連通を遮断する。
また、アーム開き操作が行われると、流量制御弁171Aはアーム操作レバーの操作量に応じたパイロット圧を受けて図19の右位置に移動する。また、バケット開き操作が行われると、流量制御弁173はバケット操作レバーの操作量に応じたパイロット圧を受けて図19の左位置に移動する。
また、コントローラ30は、アーム開き操作が行われたと判断すると、可変ロードチェック弁51Aを第1位置にし、第1ポンプ14Lと流量制御弁171Aとの間を連通させる。また、コントローラ30は、バケット開き操作が行われたと判断すると、可変ロードチェック弁53を第1位置にし、第2ポンプ14Rと流量制御弁173との間を連通させる。
また、コントローラ30は、ブーム操作レバーの操作量及び再生弁7aの開度に応じてポンプ・モータ14Aの吐出量を制御する。具体的には、コントローラ30は、アキュムレータ圧がブームシリンダ7の所望の背圧(ボトム側油室の圧力)より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(ブームシリンダ7のボトム側油室の圧力)をアキュムレータ圧まで増大させる。また、コントローラ30は、アキュムレータ圧がブームシリンダ7の所望の背圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)をアキュムレータ圧まで低減させる。そして、コントローラ30は、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。例えば、コントローラ30は、ポンプ・モータ14Aを一定速度で回転させる場合、押退容積を小さくするほどブームシリンダ7のボトム側油室から流出する作動油の流量を小さくでき、ブームシリンダ7のボトム側油室の圧力(背圧)を上昇させることができる。この関係を用いて、コントローラ30は、ポンプ・モータ14Aの吐出側の作動油の圧力がアキュムレータ圧となるように、且つ、ポンプ・モータ14Aの供給側の作動油の圧力が所望の背圧となるようにポンプ・モータ14Aを制御できる。
油圧ポンプとして作動するポンプ・モータ14Aは、作動油タンクTから作動油を吸い込でアキュムレータ80を蓄圧する場合に比べ、小さいポンプ負荷でアキュムレータ80を蓄圧できる。
その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。また、油圧モータとして作動するポンプ・モータ14Aは、エンジン11をアシストし、第1ポンプ14Lを回転させるための駆動力の一部を負担できる。その結果、コントローラ30は、第1ポンプ14Lの吸収馬力を増大させることができ、或いは、吸収馬力を増大させない場合にはエンジン11の負荷ひいては燃料噴射量を抑制できる。なお、図19の灰色の一点鎖線矢印は、油圧ポンプとして作動するポンプ・モータ14Aがエンジン11の出力の一部を利用することを表す。また、図19の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aがエンジン11をアシストして第1ポンプ14Lの駆動力の一部を負担することを表す。
また、コントローラ30は、可変ロードチェック弁51Bを第2位置の状態に維持して第1作動油と第2作動油とを合流させないようにし、アームシリンダ8及びバケットシリンダ9のそれぞれの動きが別々の作動油で独立して制御されるようにする。この場合、アームシリンダ8のロッド側油室に流入する作動油の流量は、第1ポンプ14Lによる直接制御が可能なため、流量制御弁171Aにおける絞りで制限される必要はない。同様に、バケットシリンダ9のロッド側油室に流入する作動油の流量は、第2ポンプ14Rによる直接制御が可能なため、流量制御弁173における絞りで制限される必要はない。そのため、コントローラ30は、ブームシリンダ7に対応する流量制御弁172Aの場合と同様、減圧弁により流量制御弁171Aの右側のパイロットポートに作用するパイロット圧を増大させて流量制御弁171Aを最大開口とし、且つ、減圧弁により流量制御弁173の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁173を最大開口とし、流量制御弁171A、173での圧力損失を低減させてもよい。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62Cを第1位置と第2位置との間の中間位置にし、或いは切替弁62Cを第1位置に完全に切り替えることで、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。
また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Bの左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172Bを図19の左位置とし、ブームシリンダ7のボトム側油室から流出する作動油を第1作動油に合流させてもよい。

なお、図19における灰色の太点線は、切替弁62Cが第1位置の方向に移動させられた場合にブームシリンダ7のボトム側油室から流出する作動油が作動油タンクTに排出されること、及び、流量制御弁172Bが左位置に移動させられた場合にブームシリンダ7のボトム側油室から流出する作動油が流量制御弁172Bのところで第1作動油と合流することを表す。
上述のように、コントローラ30は、[背圧回生によるエンジンのアシストを伴う排土動作]及び[背圧回生による油圧アクチュエータのアシストを伴う排土動作]のところで説明した効果に加え、以下の効果を追加的に実現する。
具体的には、コントローラ30は、ポンプ・モータ14Aを油圧ポンプとして作動させるか油圧モータとして作動させるかを切り替え、且つ、ポンプ・モータ14Aの押退容積を制御することでポンプ・モータ14Aが吐出する第3作動油の吐出圧を変化させる。そのため、第3作動油の供給先であるアキュムレータ80の圧力とブームシリンダ7の所望の背圧との大小関係にかかわらず、第3作動油をアキュムレータ80に流入させることができる。その結果、ブーム4の位置エネルギを油圧エネルギとして柔軟にアキュムレータ80に蓄えることができ、蓄えた油圧エネルギを効率的に再利用できるようにする。また、ブーム下げ操作が行われた場合であって、エンジン11をアシストする必要が無いとき、或いは、アームシリンダ8の動作速度を増大させる必要が無いときに、ブーム4の位置エネルギを油圧エネルギとしてアキュムレータ80に蓄えることができる。また、ブーム4の位置エネルギが小さい場合であっても油圧エネルギとしてアキュムレータ80に蓄えることができる。

[アキュムレータの蓄圧を伴うブーム下げ旋回減速動作]
次に、図20を参照し、アキュムレータ80の蓄圧を伴うブーム下げ旋回減速動作が行われる場合における図2の油圧回路の状態を説明する。なお、図20は、アキュムレータ80の蓄圧を伴うブーム下げ旋回減速動作が行われる場合における図2の油圧回路の状態を示す。また、図20の灰色の太実線は、アキュムレータ80に流入する作動油の流れを表し、図20の黒色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
ブーム下げ旋回減速動作は、ブーム下げ及び旋回減速を含む動作である。また、上部旋回体3は慣性によって回転を継続し、上部旋回体3の減速度は旋回用油圧モータ21の吐出ポート側の作動油の圧力を調整することによって制御される。具体的には、吐出ポート側の作動油の圧力が高いほど上部旋回体3の減速度は大きくなる。
ブーム下げ操作が行われると、流量制御弁172はブーム操作レバーの操作量に応じたパイロット圧を受けて図20の左位置に移動する。
そして、コントローラ30は、ブーム下げ操作が行われたと判断すると、黒色の太点線で示すように、再生弁7aの開口を最大にしてブームシリンダ7のボトム側油室から流出する作動油をブームシリンダ7のロッド側油室に流入させる。
また、コントローラ30は、切替弁62を第2位置にし、黒色の太点線で示すように、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172の左側のパイロットポートに作用するパイロット圧を増大させて流量制御弁172を最大開口とし、流量制御弁172での圧力損失を低減させる。また、コントローラ30は、可変ロードチェック弁52を第2位置にし、第2ポンプ14Rと流量制御弁172との間の連通を遮断する。
また、コントローラ30は、ブーム操作レバーの操作量及び再生弁7aの開度に応じてポンプ・モータ14Aの吐出量を制御する。具体的には、コントローラ30は、ポンプ・モータ14Aを油圧モータとして作動させ、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータを制御してポンプ・モータ14Aの押退容積を制御する。そして、コントローラ30は、切替弁90を第2位置にしてポンプ・モータ14Aが吐出する第3作動油を作動油タンクTに排出させる。
なお、コントローラ30は、ポンプ・モータ14Aが吐出する第3作動油をアキュムレータ80又は動作中の油圧アクチュエータに向けてもよい。具体的には、コントローラ30は、アキュムレータ圧がブームシリンダ7の所望の背圧(ボトム側油室の圧力)より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(ブームシリンダ7のボトム側油室の圧力)をアキュムレータ圧まで増大させる。また、コントローラ30は、アキュムレータ圧がブームシリンダ7の所望の背圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)をアキュムレータ圧まで低減させる。そして、コントローラ30は、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。また、コントローラ30は、切替弁90を第1位置にしてポンプ・モータ14Aが吐出する第3作動油を切替弁91に向け、且つ、切替弁91を第3位置にして第3作動油をアキュムレータ80に向ける。このようにして、コントローラ30は、ポンプ・モータ14Aの吐出側の作動油の圧力がアキュムレータ圧となるように、且つ、ポンプ・モータ14Aの供給側の作動油の圧力が所望の背圧となるようポンプ・モータ14Aを制御する。第3作動油を動作中の油圧アクチュエータに向ける場合も同様である。
油圧ポンプとして作動するポンプ・モータ14Aは、作動油タンクTから作動油を吸い込む場合に比べ、小さいポンプ負荷で作動油を吐出できる。その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。また、油圧モータとして作動するポンプ・モータ14Aは、回転トルクを発生させてエンジン11をアシストし、第1ポンプ14Lを回転させるための駆動力の一部を負担できる。その結果、コントローラ30は、第1ポンプ14Lの吸収馬力を増大させることができ、或いは、吸収馬力を増大させない場合にはエンジン11の負荷ひいては燃料噴射量を抑制できる。
図20の例では、ポンプ・モータ14Aを油圧モータとして作動させて第3作動油を作動油タンクTに排出させる場合、コントローラ30は、ポンプ・モータ14Aの回転トルクによって駆動される第1ポンプ14Lが吐出する第1作動油をアキュムレータ80に流入させる。この場合、コントローラ30は、第1ポンプ14Lの吐出圧がアキュムレータ圧となるよう、対応するレギュレータにより第1ポンプ14Lの押退容積を制御する。また、コントローラ30は、切替弁81を第1位置にして第1ポンプ14Lとアキュムレータ80との間を連通させる。なお、図20の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aの回転トルクが第1ポンプ14Lを駆動することを表し、図20の灰色の太実線は、ポンプ・モータ14Aによって駆動される第1ポンプ14Lの第1作動油がアキュムレータ80に流入することを表す。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62を第1位置と第2位置との間の中間位置にし、或いは切替弁62を第1位置に完全に切り替えることで、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。
また、旋回減速操作が行われると、流量制御弁170は、旋回操作レバーの操作量が減少してパイロット圧が減少するため、図20の中立位置に移動する。
そして、コントローラ30は、旋回減速操作が行われたと判断すると、黒色の太点線で示すように、再生弁22Gを開いて旋回用油圧モータ21の吐出ポート21L側の作動油を切替弁60に向けて流出させる。また、コントローラ30は、切替弁60を第2位置にし、黒色の太点線で示すように、旋回用油圧モータ21から流出する作動油をアキュムレータ80に流入させる。
また、コントローラ30は、旋回用油圧モータ21の吐出ポート21L側の作動油の圧力とアキュムレータ圧とに応じて、再生弁22Gの開度又は切替弁60の第2位置での開度を調整する。そして、上部旋回体3の旋回を停止させるための所望の減速トルクを発生できるように、吐出ポート21L側の作動油の圧力を制御する。なお、コントローラ30は、旋回圧センサ(図示せず。)の出力に基づいて旋回用油圧モータ21の2つのポート21L、21Rのそれぞれの側の作動油の圧力を検出する。
また、コントローラ30は、旋回減速操作が行われたと判断すると、切替弁60を第1位置にし、旋回用油圧モータ21から流出する作動油をポンプ・モータ14Aの供給側に流入させてもよい。この場合、コントローラ30は、ポンプ・モータ14Aを回転させることで制動圧を生成するため、旋回用油圧モータ21から流出する作動油の流れを絞りで絞る必要がなく、絞りで圧力損失を発生させることもない。そのため、上部旋回体3の慣性エネルギが熱エネルギとして消費されるのを抑制或いは防止し、エネルギ損失を抑制或いは防止できる。
次に、図21を参照し、アキュムレータ80の蓄圧を伴うブーム下げ旋回減速動作が行われる場合における図3の油圧回路の状態を説明する。なお、図21は、アキュムレータ80の蓄圧を伴うブーム下げ旋回減速動作が行われる場合における図3の油圧回路の状態を示す。また、図21の灰色の太実線は、アキュムレータ80に流入する作動油の流れを表し、図21の黒色の太点線は、油圧アクチュエータから流出する作動油の流れを表す。
具体的には、コントローラ30は、ブーム下げ操作が行われたと判断すると、再生弁7aの開口を最大にしてブームシリンダ7のボトム側油室から流出する作動油をブームシリンダ7のロッド側油室に流入させる。
また、コントローラ30は、切替弁62Aを第1位置にし、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に向ける。また、コントローラ30は、ブーム操作レバーの操作量とは無関係に、減圧弁により流量制御弁172Aの右側のパイロットポートに作用するパイロット圧を低減させて流量制御弁172Aを中立位置とし、ブームシリンダ7のボトム側油室から流量制御弁172Aを通って作動油タンクTに向かう作動油の流れを遮断する。また、コントローラ30は、可変ロードチェック弁52Aを第2位置にし、第2ポンプ14Rと流量制御弁172Aとの間の連通を遮断する。
また、コントローラ30は、ブーム操作レバーの操作量及び再生弁7aの開度に応じてポンプ・モータ14Aの吐出量を制御する。具体的には、コントローラ30は、ポンプ・モータ14Aを油圧モータとして作動させ、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータを制御してポンプ・モータ14Aの押退容積を制御する。そして、コントローラ30は、切替弁90を第2位置にし、且つ、切替弁92を第1位置にしてポンプ・モータ14Aが吐出する第3作動油を旋回用油圧モータ21の補給機構に向ける。
なお、コントローラ30は、ポンプ・モータ14Aが吐出する第3作動油をアキュムレータ80又は動作中の油圧アクチュエータに向けてもよい。具体的には、コントローラ30は、アキュムレータ圧がブームシリンダ7の所望の背圧(ボトム側油室の圧力)より高い場合、ポンプ・モータ14Aを油圧ポンプとして作動させて供給側の作動油の圧力(ブームシリンダ7のボトム側油室の圧力)をアキュムレータ圧まで増大させる。また、コントローラ30は、アキュムレータ圧がブームシリンダ7の所望の背圧以下の場合、ポンプ・モータ14Aを油圧モータとして作動させて供給側の作動油の圧力(ブームシリンダ7のロッド側油室の圧力)をアキュムレータ圧まで低減させる。そして、コントローラ30は、ブームシリンダ7のボトム側油室の圧力が急変しないよう、対応するレギュレータによりポンプ・モータ14Aの斜板傾転角を調整して押退容積を制御する。また、コントローラ30は、切替弁90を第1位置にし、且つ、切替弁92を第2位置にしてポンプ・モータ14Aが吐出する第3作動油をアキュムレータ80に流入させる。このようにして、コントローラ30は、ポンプ・モータ14Aの吐出側の作動油の圧力がアキュムレータ圧となるように、且つ、ポンプ・モータ14Aの供給側の作動油の圧力が所望の背圧となるようポンプ・モータ14Aを制御する。第3作動油を動作中の油圧アクチュエータに向ける場合も同様である。
油圧ポンプとして作動するポンプ・モータ14Aは、作動油タンクTから作動油を吸い込む場合に比べ、小さいポンプ負荷で作動油を吐出できる。その結果、エンジン11の負荷を低減させて省エネルギ化を実現できる。また、油圧モータとして作動するポンプ・モータ14Aは、回転トルクを発生させてエンジン11をアシストし、第1ポンプ14Lを回転させるための駆動力の一部を負担できる。その結果、コントローラ30は、第1ポンプ14Lの吸収馬力を増大させることができ、或いは、吸収馬力を増大させない場合にはエンジン11の負荷ひいては燃料噴射量を抑制できる。
図21の例では、ポンプ・モータ14Aを油圧モータとして作動させて第3作動油を作動油タンクTに排出させる場合、コントローラ30は、ポンプ・モータ14Aの回転トルクによって駆動される第1ポンプ14Lが吐出する第1作動油をアキュムレータ80に流入させる。この場合、コントローラ30は、第1ポンプ14Lの吐出圧がアキュムレータ圧となるよう、対応するレギュレータにより第1ポンプ14Lの押退容積を制御する。また、コントローラ30は、切替弁81を第1位置にして第1ポンプ14Lとアキュムレータ80との間を連通させる。なお、図21の黒色の一点鎖線矢印は、油圧モータとして作動するポンプ・モータ14Aの回転トルクが第1ポンプ14Lを駆動することを表し、図21の灰色の太実線は、ポンプ・モータ14Aによって駆動される第1ポンプ14Lの第1作動油がアキュムレータ80に流入することを表す。
また、ポンプ・モータ14Aの押退容積を制御するだけではブームシリンダ7の動作速度をブーム操作レバーの操作量に応じた速度に制御できない場合、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに向ける。具体的には、コントローラ30は、切替弁62Cを第1位置と第2位置との間の中間位置にし、或いは切替弁62Cを第1位置に完全に切り替えることで、ブームシリンダ7のボトム側油室から流出する作動油の少なくとも一部を作動油タンクTに排出させる。
また、旋回減速操作が行われると、流量制御弁170は、旋回操作レバーの操作量が減少してパイロット圧が減少するため、図21の中立位置に移動する。
そして、コントローラ30は、旋回減速操作が行われたと判断すると、黒色の太点線で示すように、再生弁22Gを開いて旋回用油圧モータ21の吐出ポート21L側の作動油をアキュムレータ80に流入させる。
また、コントローラ30は、旋回用油圧モータ21の吐出ポート21L側の作動油の圧力とアキュムレータ圧とに応じて再生弁22Gの開度を調整する。そして、上部旋回体3の旋回を停止させるための所望の減速トルクを発生できるように、吐出ポート21L側の作動油の圧力を制御する。
なお、図21の例では、旋回減速操作が行われると、吸入ポート21R側の作動油の圧力が負圧となり、補給機構におけるチェック弁23Rは、吸入ポート21R側に作動油を補給する。このとき、コントローラ30は、切替弁90を第2位置にし、且つ、切替弁92を第1位置にしてポンプ・モータ14Aが吐出する第3作動油を旋回用油圧モータ21の補給機構に向けている。そのため、チェック弁23Rは、灰色の太点線で示すように、ポンプ・モータ14Aが吐出する第3作動油を吸入ポート21R側に補給することができる。その結果、補給機構は、作動油タンクT内の作動油の量が減少して作動油タンクTから作動油を吸入しにくくなった場合であっても、キャビテーションを発生させることなく、旋回用油圧モータ21に作動油を補給できる。なお、作動油タンクT内の作動油の量は、アキュムレータ80に蓄圧される作動油の量が多くほど少なくなる。
上述のように、コントローラ30は、[背圧回生によるエンジンのアシストを伴う排土動作]、[背圧回生による油圧アクチュエータのアシストを伴う排土動作]、及び[背圧回生によるアキュムレータの蓄圧を伴う排土動作]のところで説明した効果に加え、以下の効果を追加的に実現する。
具体的には、コントローラ30は、ブーム下げ旋回減速動作が行われる場合、旋回用油圧モータ21から流出する作動油をアキュムレータ80に流入させ、且つ、ブームシリンダ7のボトム側油室から流出する作動油をポンプ・モータ14Aの供給側に流入させる。そのため、本実施例に係るショベルは、旋回減速の際に発生する油圧エネルギをアキュムレータ80に蓄えることができ、ブーム下げの際に発生する油圧エネルギをエンジン11のアシストのために利用できる。また、ブーム下げの際に発生する油圧エネルギを利用してエンジン11をアシストすることで第1ポンプ14Lを駆動し、その第1ポンプ14Lが吐出する第1作動油をアキュムレータ80に流入させることで、ブーム下げの際に発生する油圧エネルギをアキュムレータ80に蓄えることができる。そのため、ブーム下げの際に発生する油圧エネルギが大きい場合であっても、第1ポンプ14Lの吐出量を増大させて第1ポンプ14Lの吸収馬力を増大させることで、その油圧エネルギの全てを回生できる。

なお、上述では、図2及び図3の油圧回路におけるそれぞれ8つの状態(掘削動作のときの4状態、排土動作のときの3状態、及びブーム下げ旋回減速動作のときの1状態)が説明されたが、コントローラ30は、各油圧アクチュエータに対応する操作レバーの操作量、各油圧アクチュエータの負荷圧、アキュムレータ80の蓄圧状態等に基づいて何れの状態を実現するかを決定する。
例えば、コントローラ30は、掘削動作中にブームシリンダ7のロッド側油室で背圧を生成する必要がなく、且つ、アキュムレータ80に十分な作動油が蓄圧されていると判断した場合に、アキュムレータアシストを伴う掘削動作が行われるようにしてもよい。
また、コントローラ30は、掘削動作中にブームシリンダ7のロッド側油室で背圧を生成する必要があり、且つ、アームシリンダ8を迅速に動作させる必要があると判断した場合に、背圧回生による油圧アクチュエータのアシストを伴う掘削動作が行われるようにしてもよい。
また、コントローラ30は、掘削動作中にブームシリンダ7のロッド側油室で背圧を生成する必要があり、且つ、アームシリンダ8を迅速に動作させる必要がないと判断した場合に、背圧回生によるエンジンのアシストを伴う掘削動作が行われるようにしてもよい。
また、コントローラ30は、排土動作中にブームシリンダ7のボトム側油室で背圧を生成する必要があり、且つ、アームシリンダ8を迅速に動作させる必要があると判断した場合に、背圧回生による油圧アクチュエータのアシストを伴う排土動作が行われるようにしてもよい。
また、コントローラ30は、排土動作中にブームシリンダ7のボトム側油室で背圧を生成する必要があり、アームシリンダ8を迅速に動作させる必要がなく、且つ、アキュムレータ80に十分な作動油が蓄圧されていると判断した場合に、背圧回生によるエンジンのアシストを伴う排土動作が行われるようにしてもよい。
また、コントローラ30は、排土動作中にブームシリンダ7のボトム側油室で背圧を生成する必要があり、アームシリンダ8を迅速に動作させる必要がなく、且つ、アキュムレータ80に十分な作動油が蓄圧されていないと判断した場合に、背圧回生によるアキュムレータの蓄圧を伴う排土動作が行われるようにしてもよい。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。
例えば、上述の実施例において、油圧アクチュエータは、左側走行用油圧モータ(図示せず。)及び右側走行用油圧モータ(図示せず。)を含んでいてもよい。この場合、コントローラ30は、走行減速時の油圧エネルギをアキュムレータ80に蓄圧してもよい。また、旋回用油圧モータ21は電動モータであってもよい。
また、上述の実施例に係るショベルは、エンジン11をアシストする電動発電機(図示せず。)、電動発電機が発電した電力を蓄積し且つ電動発電機に電力を供給する蓄電器(図示せず。)、電動発電機の動きを制御するインバータ等を搭載していてもよい。
また、ポンプ・モータ14Aは、エンジン11で駆動される代わりに、電動発電機で駆動されてもよい。この場合、ポンプ・モータ14Aは、油圧モータとして作動する場合、発生させた回転トルクで電動発電機を発電機として作動させ、発電電力を蓄電器に充電させてもよい。また、電動発電機は、蓄電器に充電された電力を利用して電動機として作動し、ポンプ・モータ14Aを油圧ポンプとして作動させてもよい。
1・・・下部走行体 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 7a、8a、9a・・・再生弁 7b、8b・・・保持弁 10・・・キャビン 11・・・エンジン 13・・・変速機 14A・・・ポンプ・モータ 14L・・・第1ポンプ 14R・・・第2ポンプ 14aL、14aR・・・リリーフ弁 17・・・コントロールバルブ 21・・・旋回用油圧モータ 21L、21R・・・ポート 22L、22R・・・リリーフ弁 22S・・・シャトル弁 22G・・・再生弁 23L、23R・・・チェック弁 30・・・コントローラ 50、51、51A、51B、52、52A、52B、53・・・可変ロードチェック弁 55・・・合流弁 56L、56R・・・統一ブリードオフ弁 60、61、61A、62、62A、62B、62C、63、81、82、90、91、92・・・切替弁 70a・・・リリーフ弁 80・・・アキュムレータ 170、171、171A、171B、172、172A、172B、173・・・流量制御弁 T・・・作動油タンク

Claims (15)

  1. エンジンと、
    前記エンジンに接続され、第1作動油を吐出する第1ポンプと、
    前記エンジンに接続され、第2作動油を吐出する第2ポンプと、
    第3作動油を吐出する、油圧ポンプとして機能する油圧装置と、
    少なくとも前記第1作動油と前記第2作動油とが流入可能な第1油圧アクチュエータと、
    少なくとも前記第2作動油が流入可能な第2油圧アクチュエータと、を有し、
    前記第1油圧アクチュエータと前記第2油圧アクチュエータとが同時に動作する場合、前記第1油圧アクチュエータは前記第1作動油前記第3作動油によって駆動され、且つ、前記第2油圧アクチュエータは前記第2作動油によって駆動される、
    ショベル。
  2. エンジンと、
    前記エンジンに接続され、第1作動油を吐出する第1ポンプと、
    前記エンジンに接続され、第2作動油を吐出する第2ポンプと、
    第3作動油により油圧モータとして機能する油圧装置と、
    少なくとも前記第1作動油と前記第2作動油とが流入可能な第1油圧アクチュエータと、
    少なくとも前記第2作動油が流入可能な第2油圧アクチュエータと、
    少なくとも前記第2作動油が流入可能な第3油圧アクチュエータと、
    を有し、
    前記第1油圧アクチュエータと前記第2油圧アクチュエータとが同時に動作する場合、前記第1油圧アクチュエータは前記第1作動油によって駆動され、且つ、前記第2油圧アクチュエータは前記第2作動油によって駆動され、
    前記油圧装置は、前記第2油圧アクチュエータ、若しくは、前記第3油圧アクチュエータが吐出する前記第3作動油により油圧モータとして駆動され、更に、前記第2油圧アクチュエータから流出する作動油を受けて前記第2油圧アクチュエータの背圧を生成し、且つ、回転トルクを発生させるとともに、該回転トルクによって前記第1ポンプの吐出量を増大させ或いは前記エンジンをアシストする、
    ショベル。
  3. 前記油圧装置は、前記第2油圧アクチュエータから流出する作動油を受けて前記第2油圧アクチュエータの背圧を生成し、且つ、回転トルクを発生させる
    請求項1に記載のショベル。
  4. 前記第1作動油と前記第2作動油との合流・遮断を切り替える合流切替部を備え、
    前記第1油圧アクチュエータと前記第2油圧アクチュエータとが同時に動作する場合、前記合流切替部は前記第1作動油と前記第2作動油との合流を遮断する、
    請求項1乃至3の何れかに記載のショベル。
  5. 前記第1油圧アクチュエータと前記第2油圧アクチュエータとが同時に動作する場合、前記第1油圧アクチュエータは少なくとも前記第1作動油によって駆動され、前記第2油圧アクチュエータは少なくとも前記第2作動油によって駆動され、前記油圧装置は、前記第2油圧アクチュエータの背圧を生成して前記第2油圧アクチュエータの動作速度を制御する、
    請求項1乃至3の何れかに記載のショベル。
  6. 前記第1ポンプが吐出する前記第1作動油を受け入れるアキュムレータを備える、
    請求項1乃至3の何れかに記載のショベル。
  7. 前記油圧装置は、前記第3作動油を吐出してアキュムレータを蓄圧する、
    請求項1乃至3の何れかに記載のショベル。
  8. 前記第1油圧アクチュエータと前記第2油圧アクチュエータとが同時に動作する場合、前記第2ポンプの吐出量と前記油圧装置の吐出量の合計は前記第2ポンプの最大吐出量に等しい、
    請求項1乃至3の何れかに記載のショベル。
  9. 前記油圧装置は、油圧モータとして作動して回転トルクを発生させ、該回転トルクによって前記第1ポンプの吐出量を増大させ或いは前記エンジンをアシストする、
    請求項1に記載のショベル。
  10. 前記油圧装置は、油圧ポンプとして作動して前記アキュムレータから流出する作動油の圧力を増大させて前記第3作動油として吐出する、
    請求項6又は7に記載のショベル。
  11. 前記油圧装置は、油圧ポンプとして作動して前記第2油圧アクチュエータから流出する作動油の圧力を増大させて前記第3作動油として吐出する、
    請求項1乃至3の何れかに記載のショベル。
  12. 前記第1作動油と前記第2作動油との合流・遮断を切り替える合流切替部を備え、
    前記第1油圧アクチュエータは旋回用油圧モータであり、
    旋回減速動作が行われる場合、前記合流切替部は前記第1作動油と前記第2作動油との合流を遮断し、前記アキュムレータは、前記旋回用油圧モータから流出する作動油を受け入れる、
    請求項6又は7に記載のショベル。
  13. 前記第2ポンプと前記第2油圧アクチュエータとの間の連通・遮断を切り替える第1弁を有し、
    前記第1弁は、前記第1油圧アクチュエータの動作と作業要素の自重による前記第2油圧アクチュエータの動作とが同時に行われる場合、前記第2ポンプと前記第2油圧アクチュエータとの間の連通を遮断する、
    請求項1乃至3の何れかに記載のショベル。
  14. 前記第2油圧アクチュエータから流出する作動油を前記第1作動油に合流させるか否かを切り替える第2弁を有し、
    前記第2弁は、前記第1油圧アクチュエータの動作と作業要素の自重による前記第2油圧アクチュエータの動作とが同時に行われる場合、前記第2油圧アクチュエータから流出する作動油を前記第1作動油に合流させる、
    請求項1乃至3の何れかに記載のショベル。
  15. 前記油圧装置は、斜板式可変容量型油圧ポンプ・モータであり、押退容積が小さいほど前記第2油圧アクチュエータの背圧を上昇させる、
    請求項1乃至3の何れかに記載のショベル。
JP2014048204A 2014-03-11 2014-03-11 ショベル Active JP6580301B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014048204A JP6580301B2 (ja) 2014-03-11 2014-03-11 ショベル
PCT/JP2015/056990 WO2015137329A1 (ja) 2014-03-11 2015-03-10 ショベル
KR1020167025353A KR102284285B1 (ko) 2014-03-11 2015-03-10 쇼벨
EP15762319.0A EP3118465B1 (en) 2014-03-11 2015-03-10 Shovel
CN201580013358.0A CN106104012B (zh) 2014-03-11 2015-03-10 挖土机
US15/259,233 US10604916B2 (en) 2014-03-11 2016-09-08 Shovel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048204A JP6580301B2 (ja) 2014-03-11 2014-03-11 ショベル

Publications (3)

Publication Number Publication Date
JP2015172393A JP2015172393A (ja) 2015-10-01
JP2015172393A5 JP2015172393A5 (ja) 2016-12-01
JP6580301B2 true JP6580301B2 (ja) 2019-09-25

Family

ID=54259837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048204A Active JP6580301B2 (ja) 2014-03-11 2014-03-11 ショベル

Country Status (1)

Country Link
JP (1) JP6580301B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763326B2 (ja) * 2017-03-14 2020-09-30 コベルコ建機株式会社 油圧回路
EP3951086B1 (en) 2019-03-28 2024-04-10 Sumitomo Heavy Industries, Ltd. Excavator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980508A (ja) * 1983-09-14 1984-05-10 Yutani Juko Kk 複数の流体圧アクチユエ−タの作動回路
JP2002322682A (ja) * 2001-04-27 2002-11-08 Kobelco Contstruction Machinery Ltd ショベル
JP5412077B2 (ja) * 2008-10-01 2014-02-12 キャタピラー エス エー アール エル 油圧式作業機械の動力回生機構
JP2010121726A (ja) * 2008-11-20 2010-06-03 Caterpillar Japan Ltd 作業機械における油圧制御システム
JP5296570B2 (ja) * 2009-02-16 2013-09-25 株式会社神戸製鋼所 作業機械の油圧制御装置及びこれを備えた作業機械
JP5572586B2 (ja) * 2011-05-19 2014-08-13 日立建機株式会社 作業機械の油圧駆動装置
JP5356477B2 (ja) * 2011-09-06 2013-12-04 住友建機株式会社 建設機械
KR101643366B1 (ko) * 2011-09-09 2016-07-27 스미도모쥬기가이고교 가부시키가이샤 쇼벨 및 쇼벨의 제어방법
US8978374B2 (en) * 2011-10-21 2015-03-17 Caterpillar Inc. Meterless hydraulic system having flow sharing and combining functionality
JP2013091953A (ja) * 2011-10-25 2013-05-16 Nobuyuki Sugimura 建設機械のエンジン始動補助機構
KR101893611B1 (ko) * 2011-12-28 2018-08-31 두산인프라코어 주식회사 굴삭기 주행 연비 절감 시스템
JP6090781B2 (ja) * 2013-01-28 2017-03-08 キャタピラー エス エー アール エル エンジンアシスト装置および作業機械
JP6235917B2 (ja) * 2014-01-23 2017-11-22 川崎重工業株式会社 液圧駆動システム

Also Published As

Publication number Publication date
JP2015172393A (ja) 2015-10-01

Similar Documents

Publication Publication Date Title
JP6740132B2 (ja) ショベル
WO2015137329A1 (ja) ショベル
JP5687150B2 (ja) 建設機械
KR101932304B1 (ko) 작업 기계의 유압 구동 장치
JP6506146B2 (ja) 作業機械の油圧駆動装置
JP6317656B2 (ja) 作業機械の油圧駆動システム
JP2015172400A (ja) ショベル
JP6013503B2 (ja) 建設機械
JP6675871B2 (ja) ショベル
JP2019052703A (ja) 建設機械の油圧駆動システム
JP2015229880A (ja) ハイブリッド式建設機械
JP6580301B2 (ja) ショベル
JP2015172396A (ja) ショベル
JP6675870B2 (ja) ショベル
JP2015172397A (ja) ショベル
JP2015172398A (ja) ショベル
JP6522386B2 (ja) ショベル
JP2015172394A (ja) ショベル
JP2015172395A (ja) ショベル
JP2015172399A (ja) ショベル
JP2015214826A (ja) 作業機械
JP2019094609A (ja) ショベル
JP7268504B2 (ja) 油圧制御装置
JP2014105541A (ja) 作業機械

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190709

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190828

R150 Certificate of patent or registration of utility model

Ref document number: 6580301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150