JP6579886B2 - Printed wiring board and semiconductor device - Google Patents

Printed wiring board and semiconductor device Download PDF

Info

Publication number
JP6579886B2
JP6579886B2 JP2015188938A JP2015188938A JP6579886B2 JP 6579886 B2 JP6579886 B2 JP 6579886B2 JP 2015188938 A JP2015188938 A JP 2015188938A JP 2015188938 A JP2015188938 A JP 2015188938A JP 6579886 B2 JP6579886 B2 JP 6579886B2
Authority
JP
Japan
Prior art keywords
insulating layer
printed wiring
wiring board
thermal conductivity
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015188938A
Other languages
Japanese (ja)
Other versions
JP2017063161A (en
Inventor
寛史 高杉
寛史 高杉
慎 寺木
慎 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2015188938A priority Critical patent/JP6579886B2/en
Publication of JP2017063161A publication Critical patent/JP2017063161A/en
Application granted granted Critical
Publication of JP6579886B2 publication Critical patent/JP6579886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、プリント配線基板、および半導体装置に関し、特に、放熱性に優れ、信頼性の高い半導体装置を形成可能なプリント配線基板、およびこのプリント配線基板により製造される半導体装置に関する。   The present invention relates to a printed wiring board and a semiconductor device, and more particularly to a printed wiring board capable of forming a highly reliable semiconductor device with excellent heat dissipation and a semiconductor device manufactured using the printed wiring board.

近年、モジュールや電子部品の高機能化、高密度化に伴い、モジュールや電子部品などの発熱体から発生する熱量が大きくなってきており、放熱性の高い高熱伝導の放熱基板が求められている。この放熱性の高い高熱伝導の放熱基板として、金属板をベースとする基板が検討されている。   In recent years, with the increase in functionality and density of modules and electronic components, the amount of heat generated from heating elements such as modules and electronic components has increased, and there is a need for heat dissipation boards with high heat dissipation and high thermal conductivity. . A substrate based on a metal plate has been studied as a heat dissipation substrate with high heat dissipation and high thermal conductivity.

例えば、金属板をベースとする基板として、銅箔、絶縁接着層および金属板からなる金属ベース基板において、絶縁接着層の貯蔵弾性率が、−40〜75℃の範囲で10MPa〜5000MPaであり、75℃〜125℃の範囲において10MPa〜1000MPaであり、かつ熱伝導率が0.6W/m・K以上である金属ベース基板が、報告されている(特許文献1)。   For example, as a substrate based on a metal plate, in a metal base substrate composed of a copper foil, an insulating adhesive layer and a metal plate, the storage elastic modulus of the insulating adhesive layer is 10 MPa to 5000 MPa in the range of −40 to 75 ° C., A metal base substrate having a thermal conductivity of 0.6 W / m · K or more in the range of 75 ° C. to 125 ° C. and 10 MPa to 1000 MPa has been reported (Patent Document 1).

ここで、近年、半導体装置は、例えば、−55〜125℃のような、より厳しい環境での使用に耐えることが要求される場合がある。しかしながら、上記の金属ベース基板は、−55℃程度の低温を含む温度サイクルでの使用は、考慮されていない。また、近年の半導体装置には、より信頼性が要求され、信頼性試験における温度サイクル数が増加しているが、上記の金属ベース基板では、この点は考慮されていない。このため、上記の金属ベース基板は、近年の信頼性試験の基準に照らすと、耐久性に支障が生じるおそれがある。   Here, in recent years, a semiconductor device may be required to withstand use in a more severe environment such as −55 to 125 ° C., for example. However, use of the metal base substrate in a temperature cycle including a low temperature of about −55 ° C. is not considered. Further, more recent semiconductor devices are required to be more reliable, and the number of temperature cycles in the reliability test is increasing. However, this point is not taken into consideration in the metal base substrate. For this reason, the above-mentioned metal base substrate may cause a problem in durability in light of recent reliability test standards.

特開平10−242606号公報JP-A-10-242606

本発明は、上記事情に鑑みなされたものであり、本発明の目的は、高放熱性であり、温度サイクル特性に優れるプリント配線基板、およびこのプリント配線基板を使用した半導体装置を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a printed wiring board having high heat dissipation and excellent temperature cycle characteristics, and a semiconductor device using the printed wiring board. is there.

本発明は、以下の構成を有することによって上記問題を解決したプリント配線基板、半導体装置に関する。
〔1〕熱伝導率200W/m・K以上の金属板と、絶縁層と、銅箔パターンとを、この順に有し、絶縁層の絶縁破壊電圧値が、50kV/mm以上であることを特徴とする、プリント配線基板。
〔2〕絶縁層の25〜125℃での弾性率が、10GPa未満であり、絶縁層の〔(−55℃での弾性率)/(125℃での弾性率)〕が、50未満である、上記〔1〕記載のプリント配線基板。
〔3〕絶縁層が、ガラス転移温度が0〜50℃の熱可塑性樹脂を含む樹脂組成物の硬化物である、上記〔1〕または〔2〕記載のプリント配線基板。
〔4〕〔(絶縁層の厚さ)/(金属板の厚さ)〕が、0.04〜0.20である、上記〔1〕〜〔3〕のいずれか記載のプリント配線基板。
〔5〕上記〔4〕記載のプリント配線基板を使用する、半導体装置。
The present invention relates to a printed wiring board and a semiconductor device that have solved the above problems by having the following configuration.
[1] A metal plate having a thermal conductivity of 200 W / m · K or more, an insulating layer, and a copper foil pattern are provided in this order, and a dielectric breakdown voltage value of the insulating layer is 50 kV / mm or more. A printed wiring board.
[2] The elastic modulus at 25 to 125 ° C. of the insulating layer is less than 10 GPa, and the [(elastic modulus at −55 ° C.) / (Elastic modulus at 125 ° C.)] of the insulating layer is less than 50. The printed wiring board according to [1] above.
[3] The printed wiring board according to the above [1] or [2], wherein the insulating layer is a cured product of a resin composition containing a thermoplastic resin having a glass transition temperature of 0 to 50 ° C.
[4] The printed wiring board according to any one of [1] to [3], wherein [(thickness of insulating layer) / (thickness of metal plate)] is 0.04 to 0.20.
[5] A semiconductor device using the printed wiring board according to the above [4].

本発明〔1〕によれば、高放熱性であり、温度サイクル特性に優れるプリント配線基板を提供することができる。   According to the present invention [1], it is possible to provide a printed wiring board having high heat dissipation and excellent temperature cycle characteristics.

本発明〔5〕によれば、高放熱性であり、温度サイクル特性に優れるプリント配線基板により、高信頼性の半導体装置を提供することができる。   According to the present invention [5], a highly reliable semiconductor device can be provided by a printed wiring board having high heat dissipation and excellent temperature cycle characteristics.

本発明のプリント配線基板の断面の模式図の一例である。It is an example of the schematic diagram of the cross section of the printed wiring board of this invention. 本発明のプリント配線基板を使用する半導体装置の断面の模式図の一例である。It is an example of the schematic diagram of the cross section of the semiconductor device which uses the printed wiring board of this invention. 掻き取り塗布の方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of scraping application | coating.

本発明のプリント配線基板(以下、プリント配線基板という)は、熱伝導率200W/m・K以上の金属板と、絶縁層と、銅箔パターンとを、この順に有し、絶縁層の絶縁破壊電圧値が、50kV/mm以上である。   The printed wiring board of the present invention (hereinafter referred to as a printed wiring board) has a metal plate having a thermal conductivity of 200 W / m · K or more, an insulating layer, and a copper foil pattern in this order. The voltage value is 50 kV / mm or more.

図1に、本発明のプリント配線基板の断面の模式図の一例を示す。図1では、プリント配線基板0は、熱伝導率200W/m・K以上の金属板1と、絶縁層2と、銅箔パターン3とを、この順に有し、絶縁層2の絶縁破壊電圧値が、50kV/mm以上である。   In FIG. 1, an example of the schematic diagram of the cross section of the printed wiring board of this invention is shown. In FIG. 1, the printed wiring board 0 has a metal plate 1 having a thermal conductivity of 200 W / m · K or more, an insulating layer 2, and a copper foil pattern 3 in this order, and the dielectric breakdown voltage value of the insulating layer 2. However, it is 50 kV / mm or more.

〔金属板〕
金属板は、熱伝導率200W/m・K以上であり、熱伝導率、比重の観点から、アルミニウムまたはアルミニウム合金が好ましい。絶縁層の絶縁性の保持、引張強度の観点から、アルミニウム合金がより好ましく、熱伝導率の観点から、アルミニウムの純度の高いアルミニウム合金が、さらに好ましい。アルミニウム合金としては、JIS 5052(Al−Mg系合金)、昭和電工製Al合金(品名:ST60−T3、ST60−T8)が挙げられ、熱伝導率、引張強度、切削性(伸び率が低い)の観点から、アルミニウムの純度の高い昭和電工製Al合金(品名:ST60−T3)が、好ましい。なお、昭和電工製Al合金(品名:ST60−T3)の特性の一例は、熱伝導率:218W/m・K、引張強度:200N/mm以上、伸び率:15%以下である。従来、よく使用されているJIS 5052の熱伝導率の一例は、137W/m・Kである。
[Metal plate]
The metal plate has a thermal conductivity of 200 W / m · K or more, and aluminum or an aluminum alloy is preferable from the viewpoint of thermal conductivity and specific gravity. From the viewpoint of maintaining the insulating properties of the insulating layer and the tensile strength, an aluminum alloy is more preferable, and from the viewpoint of thermal conductivity, an aluminum alloy having a high aluminum purity is more preferable. Examples of the aluminum alloy include JIS 5052 (Al-Mg based alloy), Showa Denko Al alloy (product names: ST60-T3, ST60-T8), thermal conductivity, tensile strength, machinability (low elongation). In view of the above, an Al alloy (product name: ST60-T3) manufactured by Showa Denko with high aluminum purity is preferable. In addition, an example of the characteristic of Showa Denko Al alloy (product name: ST60-T3) is thermal conductivity: 218 W / m · K, tensile strength: 200 N / mm 2 or more, and elongation: 15% or less. Conventionally, an example of the thermal conductivity of JIS 5052 that is often used is 137 W / m · K.

金属板の厚さは、プリント配線基板の小型化の観点から、1〜3mmであると、好ましい。   The thickness of the metal plate is preferably 1 to 3 mm from the viewpoint of miniaturization of the printed wiring board.

〔絶縁層〕
絶縁層は、(A)エポキシ樹脂、(B)ガラス転移温度(Tg)が0〜50℃の熱可塑性樹脂、および(C)高熱伝導性無機フィラーを含み、(A)成分1質量部に対して、(B)成分が0.5〜5質量部である樹脂組成物の硬化物や、この樹脂組成物から得られる接着フィルムの硬化物であると、弾性率の観点から、好ましい。ここで、(C)高熱伝導性無機フィラーとは、5W/m・K以上の無機フィラーをいう。
以下、絶縁層を形成する樹脂組成物の、各成分を説明する。
[Insulating layer]
The insulating layer includes (A) an epoxy resin, (B) a thermoplastic resin having a glass transition temperature (Tg) of 0 to 50 ° C., and (C) a highly thermally conductive inorganic filler, and (A) 1 part by mass of component And it is preferable from a viewpoint of an elasticity modulus that it is the hardened | cured material of the resin composition whose (B) component is 0.5-5 mass parts, and the hardened | cured material of the adhesive film obtained from this resin composition. Here, (C) high thermal conductive inorganic filler means an inorganic filler of 5 W / m · K or more.
Hereinafter, each component of the resin composition which forms an insulating layer is demonstrated.

(A)成分は、硬化後の樹脂組成物(絶縁層)に、接着力や高熱伝導性を付与する。接着力向上の観点からは、ナフタレン型エポキシ樹脂が好ましい。高熱伝導率の観点からは、アミノフェノール型エポキシ樹脂が好ましい。   The component (A) imparts adhesive strength and high thermal conductivity to the cured resin composition (insulating layer). From the viewpoint of improving adhesive strength, naphthalene type epoxy resin is preferable. From the viewpoint of high thermal conductivity, aminophenol type epoxy resins are preferred.

ナフタレン型エポキシ樹脂とは、1分子内に少なくとも1個以上のナフタレン環を含んだ骨格を有するエポキシ樹脂であり、ナフトール系、ナフタレンジオール系等が挙げられる。ナフタレン型エポキシ樹脂としては、例えば、
1,3−ジグリシジルエーテルナフタレン、1,4−ジグリシジルエーテルナフタレン、1,5−ジグリシジルエーテルナフタレン、1,6−ジグリシジルエーテルナフタレン、2,6−ジグリシジルエーテルナフタレン、2,7−ジグリシジルエーテルナフタレン、1,3−ジグリシジルエステルナフタレン、1,4−ジグリシジルエステルナフタレン、1,5−ジグリシジルエステルナフタレン、1,6−ジグリシジルエステルナフタレン、2,6−ジグリシジルエステルナフタレン、2,7−ジグリシジルエステルナフタレン、1,3−テトラグリシジルアミンナフタレン、1,4−テトラグリシジルアミンナフタレン、1,5−テトラグリシジルアミンナフタレン、1,6−テトラグリシジルアミンナフタレン、1,8−テトラグリシジルアミンナフタレン、2,6−テトラグリシジルアミンナフタレン、2,7−テトラグリシジルアミンナフタレンなどのナフタレン型エポキシ樹脂が挙げられる。特に、液状の2官能ナフタレン型エポキシ樹脂が低粘度である点から好ましい。ナフタレン型エポキシ樹脂を用いることで、接着強度(ピール強度)が向上し、フィラーの充填量を増加することもできる。ナフタレン型エポキシ樹脂の市販品としては、DIC製ナフタレン型エポキシ樹脂(品名:HP4032D)が挙げられる。
The naphthalene type epoxy resin is an epoxy resin having a skeleton containing at least one naphthalene ring in one molecule, and examples thereof include a naphthol type and a naphthalene diol type. As naphthalene type epoxy resin, for example,
1,3-diglycidyl ether naphthalene, 1,4-diglycidyl ether naphthalene, 1,5-diglycidyl ether naphthalene, 1,6-diglycidyl ether naphthalene, 2,6-diglycidyl ether naphthalene, 2,7-di Glycidyl ether naphthalene, 1,3-diglycidyl ester naphthalene, 1,4-diglycidyl ester naphthalene, 1,5-diglycidyl naphthalene, 1,6-diglycidyl naphthalene, 2,6-diglycidyl naphthalene, 2 , 7-diglycidyl ester naphthalene, 1,3-tetraglycidylamine naphthalene, 1,4-tetraglycidylamine naphthalene, 1,5-tetraglycidylamine naphthalene, 1,6-tetraglycidylamine naphthalene, 1,8-tetraglyce Jill amine naphthalene, 2,6-tetraglycidyl amine naphthalene, naphthalene type epoxy resins such as 2,7-tetraglycidyl amine naphthalene. In particular, a liquid bifunctional naphthalene type epoxy resin is preferred because of its low viscosity. By using a naphthalene type epoxy resin, the adhesive strength (peel strength) can be improved and the filling amount of the filler can be increased. As a commercial item of a naphthalene type epoxy resin, a naphthalene type epoxy resin (product name: HP4032D) manufactured by DIC can be given.

アミノフェノール型エポキシ樹脂とは、各種のアミノフェノール類を公知の方法でエポキシ化したものである。アミノフェノール類の例としては、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、2−アミノ−m−クレゾール、2−アミノ−p−クレゾール、3−アミノ−o−クレゾール、4−アミノ−m−クレゾール、6−アミノ−m−クレゾールなどのアミノフェノール、アミノクレゾール類などが挙げられるが、これらに限定されるものではない。   The aminophenol type epoxy resin is obtained by epoxidizing various aminophenols by a known method. Examples of aminophenols include 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-amino-m-cresol, 2-amino-p-cresol, 3-amino-o-cresol, 4-amino Examples include aminophenols such as -m-cresol and 6-amino-m-cresol, and aminocresols, but are not limited thereto.

アミノフェノール型エポキシ樹脂としては、下記化学式(1):   As an aminophenol type epoxy resin, the following chemical formula (1):

で示される、アミノフェノール型エポキシ樹脂が、硬化後の樹脂組成物(絶縁層)を高熱伝導性にするため、好ましい。アミノフェノール型エポキシ樹脂の市販品としては、三菱化学製アミノフェノール型エポキシ樹脂(品名:630)が挙げられる。(A)成分は、単独でも2種以上を併用してもよい。 An aminophenol type epoxy resin represented by the formula (1) is preferable because the cured resin composition (insulating layer) has high thermal conductivity. As a commercial product of aminophenol type epoxy resin, an aminophenol type epoxy resin (product name: 630) manufactured by Mitsubishi Chemical Corporation may be mentioned. (A) A component may be individual or may use 2 or more types together.

(B)成分は、硬化後の樹脂組成物(絶縁層)を適度に低弾性化する。(B)成分は、特に限定されるものではないが、熱伝導率向上の観点からフェノキシ樹脂であることが好ましい。フェノキシ樹脂は、特に限定されるものではなく、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、トリメチルシクロヘキサン骨格から選択される1種以上の骨格を有するものが、挙げられる。(B)成分のフェノキシ樹脂の市販品としては、三菱化学製可とう性フェノキシ樹脂(品名:YL7178、ガラス転移温度:15℃)が挙げられる。ここで、ガラス転移温度は、動的粘弾性測定(DMA)で測定する。具体的には、支持体上に、幅:40mm、長さ:70mm、厚さ:2mmに塗布した樹脂組成物を、180℃で120分間、加熱硬化させ、支持体から剥離した後、接着フィルムから試験片(10±0.5mm×50±1mm)を切り出し、試験片の幅、厚みを測定する。その後、SII製動的粘弾性測定装置(型番:DMS6100)で測定を行う(3℃/min 25−300℃)。tanDのピーク温度を読み取り、Tgとする。   The component (B) moderately lowers the elasticity of the cured resin composition (insulating layer). The component (B) is not particularly limited, but is preferably a phenoxy resin from the viewpoint of improving thermal conductivity. The phenoxy resin is not particularly limited, and bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton , One having at least one skeleton selected from an adamantane skeleton, a terpene skeleton, and a trimethylcyclohexane skeleton. (B) As a commercial item of the phenoxy resin of a component, Mitsubishi Chemical made flexible phenoxy resin (Product name: YL7178, glass transition temperature: 15 degreeC) is mentioned. Here, the glass transition temperature is measured by dynamic viscoelasticity measurement (DMA). Specifically, a resin composition coated on a support with a width of 40 mm, a length of 70 mm, and a thickness of 2 mm is heat-cured at 180 ° C. for 120 minutes, peeled off from the support, and then an adhesive film. From this, a test piece (10 ± 0.5 mm × 50 ± 1 mm) is cut out, and the width and thickness of the test piece are measured. Then, it measures with the dynamic viscoelasticity measuring apparatus made from SII (model number: DMS6100) (3 degreeC / min 25-300 degreeC). Read the peak temperature of tanD and use it as Tg.

また、(B)成分として、熱可塑性エラストマーを使用することもできる。熱可塑性エラストマーとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ビニルアルキルエーテルゴム、ポリビニルアルコールゴム、ポリビニルピロリドンゴム、ポリアクリルアミドゴム、セルロースゴム、天然ゴム、ブタジエンゴム、クロロプレンゴム、スチレン・ブタジエンゴム(SBR)、アクリロニトリル・ブタジエンゴム(NBR)、スチレン・エチレン・ブタジエン・スチレンゴム、スチレン・イソプレン・スチレンゴム、スチレン・イソブチレンゴム、イソプレンゴム、ポリイソブチレンゴム、ブチルゴム、(メタ)アクリル酸アルキルエステルを含むモノマーの重合により得られる合成アクリルゴム、スチレン−ブタジエンブロック共重合体(SBS)、スチレン−エチレン/ブチレン−スチレンブロック共重合体(SEBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、ポリブタジエン(PB)、スチレン−(エチレン−エチレン/プロピレン)−スチレンブロック共重合体(SEEPS)、エチレン−不飽和カルボン酸共重合体(例えば、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体など)、エチレン−不飽和カルボン酸エステル共重合体(例えば、エチレン−エチルアクリレート共重合体、エチレン−エチルメタクリレート共重合体など)、並びにこれらの無水カルボン酸変性物(例えば無水マレイン酸変性物)からなる群から選ばれる少なくとも1種が挙げられる。(B)成分は、単独でも2種以上を併用してもよい。   Moreover, a thermoplastic elastomer can also be used as (B) component. Thermoplastic elastomers include urethane rubber, acrylic rubber, silicone rubber, vinyl alkyl ether rubber, polyvinyl alcohol rubber, polyvinyl pyrrolidone rubber, polyacrylamide rubber, cellulose rubber, natural rubber, butadiene rubber, chloroprene rubber, and styrene / butadiene rubber (SBR). ), Acrylonitrile-butadiene rubber (NBR), styrene-ethylene-butadiene-styrene rubber, styrene-isoprene-styrene rubber, styrene-isobutylene rubber, isoprene rubber, polyisobutylene rubber, butyl rubber, monomers containing (meth) acrylic acid alkyl ester Acrylic rubber, styrene-butadiene block copolymer (SBS), styrene-ethylene / butylene-styrene block copolymer obtained by polymerization of SEBS), styrene-isoprene-styrene block copolymer (SIS), polybutadiene (PB), styrene- (ethylene-ethylene / propylene) -styrene block copolymer (SEEPS), ethylene-unsaturated carboxylic acid copolymer ( For example, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, etc.), ethylene-unsaturated carboxylic acid ester copolymer (for example, ethylene-ethyl acrylate copolymer, ethylene-ethyl methacrylate copolymer, etc.) And at least one selected from the group consisting of these carboxylic anhydride-modified products (for example, maleic anhydride-modified products). (B) A component may be individual or may use 2 or more types together.

(C)成分としては、熱伝導率が、5W/m・K以上であれば、絶縁性を保持する観点から、一般的な無機フィラーを使用することができる。(C)成分は、熱伝導率、絶縁性および熱膨張係数の点から、MgO、Al、AlN、BN、ダイヤモンドフィラー、ZnO、およびSiCからなる群より選択される少なくとも1種以上の無機フィラーであると、好ましい。なお、ZnOおよびSiCには、必要に応じて絶縁処理をしてもよい。各材料の熱伝導率測定結果の一例としては(単位は、W/m・K)、MgOは37、Alは30、AlNは200、BNは30、ダイヤモンドは2000、ZnOは54、SiCは90である。(C)成分の市販品としては、堺化学工業製酸化マグネシウム粉末(品名:SMO−5、SMO−1、SMO−02、SMO−2)、昭和電工製アルミナ(Al)粉末(品名:CBA09S)、電気化学工業製アルミナ(Al)粉末(品名:DAW−03、ASFP−20)、住友化学製アルミナ(Al)粉末(品名:AA−18、AA−3、AA−04)、マイクロン製アルミナ(Al)粉末(品名:TA389)が挙げられる。 (C) As a component, if a heat conductivity is 5 W / m * K or more, a general inorganic filler can be used from a viewpoint of maintaining insulation. Component (C), the thermal conductivity from the viewpoint of insulating properties and thermal expansion coefficient, MgO, Al 2 O 3, AlN, BN, diamond filler, ZnO, and at least one or more selected from the group consisting of SiC Inorganic fillers are preferred. In addition, you may carry out an insulation process to ZnO and SiC as needed. As an example of the thermal conductivity measurement result of each material (unit is W / m · K), MgO is 37, Al 2 O 3 is 30, AlN is 200, BN is 30, diamond is 2000, ZnO is 54, SiC is 90. As commercially available products of component (C), magnesium oxide powder (product names: SMO-5, SMO-1, SMO-02, SMO-2) manufactured by Sakai Chemical Industry, alumina (Al 2 O 3 ) powder manufactured by Showa Denko (product name) : CBA09S), Denki Kagaku Kogyo Alumina (Al 2 O 3 ) powder (Product Name: DAW-03, ASFP-20), Sumitomo Chemical Alumina (Al 2 O 3 ) Powder (Product Name: AA-18, AA-3, AA-04), Micron alumina (Al 2 O 3 ) powder (product name: TA389).

(C)成分の平均粒径(粒状でない場合は、その平均最大径)は、特に限定されないが、0.05〜50μmであることが、樹脂組成物中に(C)成分を均一に分散させるうえで好ましい。0.05μm未満だと、樹脂組成物の粘度が上昇して、成形性が悪化するおそれがある。50μm超だと、樹脂組成物中に(C)成分を均一に分散させることが困難になるおそれがある。ここで、(C)成分の平均粒径は、動的光散乱式ナノトラック粒度分析計により測定する。(C)成分は、単独でも2種以上を併用してもよい。   The average particle diameter of component (C) (if it is not granular, the average maximum diameter) is not particularly limited, but it is 0.05 to 50 μm so that component (C) is uniformly dispersed in the resin composition. In addition, it is preferable. If it is less than 0.05 μm, the viscosity of the resin composition increases and the moldability may deteriorate. If it exceeds 50 μm, it may be difficult to uniformly disperse the component (C) in the resin composition. Here, the average particle diameter of the component (C) is measured by a dynamic light scattering nanotrack particle size analyzer. (C) A component may be individual or may use 2 or more types together.

(A)成分は、樹脂組成物(溶剤を除く):100質量部に対して、1.5〜15質量部であると好ましく、2〜10質量部であると、より好ましい。   The component (A) is preferably 1.5 to 15 parts by mass and more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the resin composition (excluding the solvent).

(B)成分は、硬化後の樹脂組成物(絶縁層)の低弾性化、絶縁層の熱伝導率、耐熱性の観点から、(A)成分1質量部に対して、0.5〜5質量部であることが好ましい。(B)成分が、(A)成分1質量部に対して、0.5質量部未満では、絶縁層を低弾性化できなくなってしまい、5質量部を超えると、絶縁層の熱伝導率が低くなってしまう。また、(A)と(B)の合計は、絶縁層の低弾性化、熱伝導率、樹脂組成物の接着性の観点から樹脂組成物(溶剤を除く):100質量部に対して、4〜20質量部であると好ましい。   (B) component is 0.5-5 with respect to 1 mass part of (A) component from the viewpoint of the low elasticity of the resin composition (insulating layer) after hardening, the thermal conductivity of an insulating layer, and heat resistance. It is preferable that it is a mass part. If the component (B) is less than 0.5 parts by mass relative to 1 part by mass of the component (A), the insulating layer cannot be made less elastic, and if it exceeds 5 parts by mass, the thermal conductivity of the insulating layer is increased. It will be lower. The total of (A) and (B) is 4 for 100 parts by mass of the resin composition (excluding the solvent) from the viewpoint of low elasticity of the insulating layer, thermal conductivity, and adhesiveness of the resin composition. It is preferable in it being -20 mass parts.

(C)成分は、樹脂組成物の接着性、硬化後の樹脂組成物の絶縁性、および熱膨張係数の観点から、樹脂組成物(溶剤を除く):100質量部に対して、40〜95質量部であると好ましい。(C)成分が、95質量部を超えると、樹脂組成物の接着力が低下し易い。一方、(C)成分が、40質量部未満であると、高熱伝導性無機フィラーの熱伝導率が高くても、硬化後の樹脂組成物の熱伝導が不十分であるおそれがある。   (C) A component is 40-95 with respect to 100 mass parts of resin compositions (except a solvent) from a viewpoint of the adhesiveness of a resin composition, the insulation of the resin composition after hardening, and a thermal expansion coefficient. It is preferable that it is a mass part. (C) When a component exceeds 95 mass parts, the adhesive force of a resin composition will fall easily. On the other hand, when the component (C) is less than 40 parts by mass, the heat conductivity of the cured resin composition may be insufficient even if the thermal conductivity of the highly thermally conductive inorganic filler is high.

樹脂組成物は、さらに、(D)硬化剤を含む、と好ましい。(D)成分としては、フェノール系硬化剤、酸無水物系硬化剤、アミン系硬化剤、イミダゾール系硬化剤、カルボン酸ジヒドラジド硬化剤等が挙げられ、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤およびイミダゾール系硬化剤からなる群より選択される少なくとも1種であると好ましい。また、樹脂組成物の接着性の観点から、フェノール系硬化剤がより好ましく、また、樹脂組成物の接着性の観点から、酸無水物系硬化剤がより好ましい。樹脂組成物の硬化物の耐湿性の観点からは、イミダゾール系硬化剤がより好ましい。   It is preferable that the resin composition further includes (D) a curing agent. Examples of the component (D) include phenolic curing agents, acid anhydride curing agents, amine curing agents, imidazole curing agents, carboxylic acid dihydrazide curing agents, phenolic curing agents, amine curing agents, and acids. It is preferable that it is at least one selected from the group consisting of an anhydride-based curing agent and an imidazole-based curing agent. Moreover, a phenol type hardening | curing agent is more preferable from the adhesive viewpoint of a resin composition, and an acid anhydride type hardening | curing agent is more preferable from the adhesive viewpoint of a resin composition. From the viewpoint of the moisture resistance of the cured product of the resin composition, an imidazole curing agent is more preferable.

フェノール系硬化剤としては、フェノールノボラック、クレゾールノボラック等が挙げられ、フェノールノボラックが好ましい。   Examples of the phenolic curing agent include phenol novolak and cresol novolak, and phenol novolak is preferable.

酸無水物としては、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート、グリセリンビス(アンヒドロトリメリテート)モノアセテート、ドデセニル無水コハク酸、脂肪族二塩基酸ポリ無水物、クロレンド酸無水物、メチルブテニルテトラヒドロフタル酸無水物、アルキル化テトラヒドロフタル酸無水物、メチルハイミック酸無水物、アルケニル基で置換されたコハク酸無水物、グルタル酸無水物等が挙げられる。   Acid anhydrides include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, hydrogenated methylnadic acid anhydride, trialkyltetrahydrophthalic anhydride, Methylcyclohexene tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, ethylene glycol bisanhydro trimellitate, glycerin bis (anhydro trimellitate) mono Substituted with acetate, dodecenyl succinic anhydride, aliphatic dibasic polyanhydride, chlorendic anhydride, methylbutenyl tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, methyl hymic anhydride, alkenyl group Succinic anhydride was, like glutaric anhydride and the like.

アミン系硬化剤としては、鎖状脂肪族アミン、環状脂肪族アミン、脂肪芳香族アミン、芳香族アミン等が挙げられ、芳香族アミンが好ましい。カルボン酸ジヒドラジド硬化剤としては、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジド、セバチン酸ジヒドラジド、ドデカン酸ジヒドラジド等が挙げられ、アジピン酸ジヒドラジドが好ましい。   Examples of amine-based curing agents include chain aliphatic amines, cycloaliphatic amines, aliphatic aromatic amines, aromatic amines, and the like, and aromatic amines are preferred. Examples of the carboxylic acid dihydrazide curing agent include adipic acid dihydrazide, isophthalic acid dihydrazide, sebacic acid dihydrazide, dodecanoic acid dihydrazide, and adipic acid dihydrazide is preferable.

イミダゾール系硬化剤としては、マイクロカプセル化されたイミダゾール化合物硬化剤、アミンアダクト型硬化剤が、樹脂組成物の保存安定性の観点から好ましく、液状ビスフェノールA型等の液状エポキシ樹脂中に分散された、マイクロカプセル化イミダゾール化合物硬化剤が、樹脂組成物の作業性、硬化速度、保存安定性の点からより好ましい。イミダゾール硬化剤としては、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]エチル−s−トリアジン、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール等を挙げることができ、2−エチル−4−メチルイミダゾールが、樹脂組成物の硬化速度、作業性、耐湿性の観点から好ましい。   As the imidazole curing agent, a microencapsulated imidazole compound curing agent and an amine adduct type curing agent are preferable from the viewpoint of storage stability of the resin composition, and are dispersed in a liquid epoxy resin such as liquid bisphenol A type. A microencapsulated imidazole compound curing agent is more preferable from the viewpoints of workability, curing speed, and storage stability of the resin composition. Examples of imidazole curing agents include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2,4- Diamino-6- [2′-methylimidazolyl- (1 ′)] ethyl-s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2, Examples include 3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, and 2-ethyl-4-methylimidazole is preferable from the viewpoints of the curing speed, workability, and moisture resistance of the resin composition.

(D)成分の市販品としては、明和化成製フェノール硬化剤(品名:MEH8000、MEH8005)、三菱化学製酸無水物(グレード:YH306、YH307)、日立化成工業製3 or 4−メチル−ヘキサヒドロ無水フタル酸(品名:HN−5500)、日本化薬製アミン硬化剤(品名:カヤハードA−A)、日本ファインケム製アジピン酸ジヒドラジド(品名:ADH)、旭化成イーマテリアルズ製マイクロカプセル化イミダゾール化合物硬化剤(品名:HX3722、HX3742、HX3932HP、HX3941HP)、味の素ファインテクノ製アミンアダクト型硬化剤(品名:PN−40J)、四国化成工業製2−エチル−4−メチルイミダゾール(品名:2E4MZ)等が挙げられるが、(D)成分は、これら品名に限定されるものではない。(D)成分は、単独でも2種以上を併用してもよい。   Commercially available products of component (D) include Meiwa Kasei phenol curing agents (product names: MEH8000, MEH8005), Mitsubishi Chemical acid anhydrides (grade: YH306, YH307), Hitachi Chemical 3 or 4-methyl-hexahydro anhydride. Phthalic acid (Product name: HN-5500), Nippon Kayaku amine curing agent (Product name: Kayahard A-A), Nihon Finechem adipic acid dihydrazide (Product name: ADH), Asahi Kasei E-materials microencapsulated imidazole compound curing agent (Product names: HX3722, HX3742, HX3932HP, HX3941HP), Ajinomoto Fine Techno's amine adduct type curing agent (Product name: PN-40J), Shikoku Kasei Kogyo 2-ethyl-4-methylimidazole (Product name: 2E4MZ), and the like. However, component (D) is limited to these product names. It is not specified. (D) A component may be individual or may use 2 or more types together.

(D)成分は、樹脂組成物の保存安定性、硬化性の観点から、樹脂組成物(溶剤を除く):100質量部に対して、0.1〜5質量部であると好ましい。   The component (D) is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin composition (excluding the solvent) from the viewpoints of storage stability and curability of the resin composition.

なお、樹脂組成物は、本発明の効果を損なわない範囲で、カップリング剤、粘着性付与剤、消泡剤、流動調整剤、成膜補助剤、分散剤等の添加剤や、有機溶剤を含むことができる。   The resin composition contains additives such as coupling agents, tackifiers, antifoaming agents, flow regulators, film-forming aids, dispersants, and organic solvents as long as the effects of the present invention are not impaired. Can be included.

上述の樹脂組成物は、接着フィルムの形成に、適している。(A)〜(D)成分等を含む原料を、有機溶剤に溶解又は分散等させることにより、樹脂組成物を得ることができる。   The above resin composition is suitable for forming an adhesive film. A resin composition can be obtained by dissolving or dispersing a raw material containing the components (A) to (D) in an organic solvent.

樹脂組成物や樹脂組成物から形成された接着フィルムは、例えば、130〜200℃で、30〜180分間、熱硬化させて、被接着物である金属板と銅箔パターンとを接着する絶縁層にすることができる。絶縁層は、発熱体(例えば、半導体チップ)からの熱を受けた銅箔パターンからの熱を、受熱体である金属板側へ逃がし、受熱体である金属板へ放熱させる伝熱の役割を果たす。さらに、絶縁層は、銅箔パターンと金属板との間の熱膨張率の差に起因する応力を緩和する役割を果たす。   For example, the resin film or the adhesive film formed from the resin composition is thermally cured at 130 to 200 ° C. for 30 to 180 minutes to bond the metal plate as the adherend and the copper foil pattern. Can be. The insulating layer has a role of heat transfer that releases heat from the copper foil pattern that has received heat from the heating element (for example, a semiconductor chip) to the metal plate that is the heat receiving body and dissipates the heat to the metal plate that is the heat receiving body. Fulfill. Furthermore, an insulating layer plays the role which relieve | moderates the stress resulting from the difference in the thermal expansion coefficient between a copper foil pattern and a metal plate.

絶縁層の厚さは、絶縁破壊電圧、プリント配線基板の小型化の観点から、好ましくは50μm以上300μm以下、より好ましくは50μm以上200μm以下である。50μm未満では所望する絶縁性を得られなくなるおそれがある。300μmを超えると、銅箔パターンからの熱を、十分に伝導できなくなるおそれがある。絶縁層の厚さが薄くなるに従って、銅箔パターンと金属板との距離が短くなるので、効率的な熱伝導の観点から、絶縁層の厚さは薄い方が好ましい。   The thickness of the insulating layer is preferably 50 μm or more and 300 μm or less, more preferably 50 μm or more and 200 μm or less, from the viewpoint of dielectric breakdown voltage and downsizing of the printed wiring board. If it is less than 50 μm, the desired insulating property may not be obtained. If it exceeds 300 μm, heat from the copper foil pattern may not be sufficiently conducted. Since the distance between the copper foil pattern and the metal plate becomes shorter as the thickness of the insulating layer becomes thinner, the thinner insulating layer is preferable from the viewpoint of efficient heat conduction.

絶縁層の絶縁破壊電圧値は、50kV/mm以上であり、絶縁性に、非常に優れる。したがって、上述のように、絶縁層の厚さを薄くすることができる。   The dielectric breakdown voltage value of the insulating layer is 50 kV / mm or more, which is very excellent in insulation. Therefore, as described above, the thickness of the insulating layer can be reduced.

絶縁層の25〜125℃での弾性率は、絶縁層に係る応力緩和の観点から、0.1〜10GPa未満であると好ましく、0.5〜10GPa未満であるとより好ましい。絶縁層の25〜125℃での弾性率が、10GPaを超えると、半導体装置のはんだにかかる応力が大きくなりすぎ、信頼性を損ない易くなる。   The elastic modulus at 25 to 125 ° C. of the insulating layer is preferably less than 0.1 to 10 GPa and more preferably less than 0.5 to 10 GPa from the viewpoint of stress relaxation related to the insulating layer. When the elastic modulus at 25 to 125 ° C. of the insulating layer exceeds 10 GPa, the stress applied to the solder of the semiconductor device becomes too large, and the reliability is likely to be impaired.

絶縁層の〔(−55℃での弾性率)/(125℃での弾性率)〕は、50未満であると、好ましい。後述する比較例1のように、〔(−55℃での弾性率)/(125℃での弾性率)〕が、50を超えると、絶縁層に係る応力が大きくなり過ぎたため、信頼性試験の結果が悪くなり易い傾向がある。絶縁層の〔(−55℃での弾性率)/(125℃での弾性率)〕の下限値は、1であると、好ましい。   [(Elastic modulus at −55 ° C.) / (Elastic modulus at 125 ° C.)] of the insulating layer is preferably less than 50. As in Comparative Example 1 to be described later, when [(elastic modulus at −55 ° C.) / (Elastic modulus at 125 ° C.)] exceeds 50, the stress applied to the insulating layer becomes too large, so the reliability test The results tend to be worse. The lower limit of [(elastic modulus at −55 ° C.) / (Elastic modulus at 125 ° C.)] of the insulating layer is preferably 1.

また、絶縁層は、熱伝導率が2W/m・K以上であるとより好ましい。また、絶縁層の熱伝導率が2W/m・K未満の場合には、銅箔パターンからの金属板への伝熱が不十分となるおそれがある。絶縁層の体積抵抗率と熱伝導率は、(C)成分の種類と含有量によって、制御することができる。   The insulating layer preferably has a thermal conductivity of 2 W / m · K or more. In addition, when the thermal conductivity of the insulating layer is less than 2 W / m · K, heat transfer from the copper foil pattern to the metal plate may be insufficient. The volume resistivity and thermal conductivity of the insulating layer can be controlled by the type and content of the component (C).

〔銅箔パターン〕
銅箔パターンのパターンは、銅箔への被着物のパターンに応じて、エッチング等で形成することができる。銅箔は、特に、限定されないが、圧延銅箔、電解銅箔、めっき銅膜等を使用することができる。
[Copper foil pattern]
The pattern of the copper foil pattern can be formed by etching or the like according to the pattern of the adherend to the copper foil. Although copper foil is not specifically limited, Rolled copper foil, electrolytic copper foil, a plated copper film, etc. can be used.

銅箔パターンの厚さは、通常、15〜35μmである。銅箔パターンを通過する電流値に応じて70μm、105μm、と、適宜厚くしてもよい。   The thickness of the copper foil pattern is usually 15 to 35 μm. Depending on the current value passing through the copper foil pattern, the thickness may be appropriately increased to 70 μm or 105 μm.

〔プリント配線基板〕
上述のとおり、プリント配線基板は、金属板と、絶縁層と、銅箔パターンとを、この順に有する。
[Printed wiring board]
As described above, the printed wiring board has a metal plate, an insulating layer, and a copper foil pattern in this order.

〔(絶縁層の厚さ)/(金属板の厚さ)〕は、0.04〜0.20であると、好ましい。0.04未満では、絶縁性を保てなくなるおそれがある。相対的に、金属板の熱伝導率は高く、絶縁層の熱伝導率は低いため、〔(絶縁層の厚さ)/(金属板の厚さ)〕は、低いほど、プリント配線基板の熱伝導率は、低くなる。しかし、例えば、発熱量が多いチップやモジュールの場合には、要求される放熱量が大きいことに加え、高い絶縁性が求められるため、絶縁層を厚くする必要がある。この要求を満たすために、〔(絶縁層の厚さ)/(金属板の厚さ)〕は、0.04以上が、好ましい。発熱が多い0.20超では、プリント配線基板の熱伝導率が低くなるおそれがある。   [(Insulation layer thickness) / (Metal plate thickness)] is preferably 0.04 to 0.20. If it is less than 0.04, insulation may not be maintained. Since the thermal conductivity of the metal plate is relatively high and the thermal conductivity of the insulating layer is relatively low, the lower the [(thickness of the insulating layer) / (thickness of the metal plate)], The conductivity is low. However, for example, in the case of a chip or module that generates a large amount of heat, in addition to requiring a large amount of heat dissipation, high insulation is required, so the insulating layer needs to be thick. In order to satisfy this requirement, [(thickness of insulating layer) / (thickness of metal plate)] is preferably 0.04 or more. If it exceeds 0.20, which generates a lot of heat, the thermal conductivity of the printed wiring board may be lowered.

また、本発明のプリント配線基板では、熱伝導率200W/m・K以上の金属板を用いているため、〔(絶縁層の厚さ)/(金属板の厚さ)〕が0.04以上のとき、特にメリットがある。上述のとおり、昭和電工製Al合金(品名:ST60−T3)の熱伝導率の一例は、218W/m・Kであり、JIS 5052の熱伝導率の一例は、137W/m・Kであるので、金属板の熱伝導率は、1.59倍である。例えば、金属板が2mm、絶縁層(2.7W/m・K)が80μmの場合、〔(絶縁層の厚さ)/(金属板の厚さ)〕は、0.04である。このとき、金属板として、218W/m・KのAl合金(使用するプリント配線基板の熱伝導率は、128W/m・K)を用いると、137W/m・KのAl合金(使用するプリント配線基板の熱伝導率は、103W/m・K)を用いた場合に比べ、プリント配線基板の熱伝導率は1.24倍となる。これと同条件で、金属板を1mmとした場合には、〔(絶縁層の厚さ)/(金属板の厚さ)〕は0.08である。このときのプリント配線基板の熱伝導率は1.53倍(218W/m・KのAl合金を使用したプリント配線基板の熱伝導率が、72W/m・Kであるのに対して、137W/m・KのAl合金をプリント配線基板の熱伝導率は、47W/m・K)となる。これらのことから、プリント配線板中の金属板が薄いほど、絶縁層が厚いほど、熱伝導率200W/m・K以上の金属板を使用したときの熱伝導率向上の効果が大きいといえる。   Further, since the printed wiring board of the present invention uses a metal plate having a thermal conductivity of 200 W / m · K or more, [(thickness of insulating layer) / (thickness of metal plate)] is 0.04 or more. Is particularly beneficial. As described above, an example of the thermal conductivity of Showa Denko Al alloy (product name: ST60-T3) is 218 W / m · K, and an example of the thermal conductivity of JIS 5052 is 137 W / m · K. The thermal conductivity of the metal plate is 1.59 times. For example, when the metal plate is 2 mm and the insulating layer (2.7 W / m · K) is 80 μm, [(thickness of insulating layer) / (thickness of metal plate)] is 0.04. At this time, when a 218 W / m · K Al alloy (the thermal conductivity of the printed wiring board used is 128 W / m · K) is used as the metal plate, an Al alloy of 137 W / m · K (printed wiring used) The thermal conductivity of the printed wiring board is 1.24 times that of the case where the thermal conductivity of the board is 103 W / m · K). When the metal plate is 1 mm under the same conditions, [(thickness of insulating layer) / (thickness of metal plate)] is 0.08. The thermal conductivity of the printed wiring board at this time is 1.53 times (the thermal conductivity of the printed wiring board using an Al alloy of 218 W / m · K is 72 W / m · K, whereas it is 137 W / The thermal conductivity of the printed wiring board made of m · K Al alloy is 47 W / m · K). From these facts, it can be said that the thinner the metal plate in the printed wiring board and the thicker the insulating layer, the greater the effect of improving the thermal conductivity when using a metal plate having a thermal conductivity of 200 W / m · K or higher.

〔半導体装置〕
本発明の半導体装置は、上述のプリント配線基板を使用する。図2に、本発明のプリント配線基板を使用する半導体装置の断面の模式図の一例を示す。図2では、半導体装置10は、金属板1と、絶縁層2と、銅箔パターン3とを、この順に有するプリント配線基板上に、はんだ4、電極5、半導体チップ6を、この順に有する。図2の半導体装置10では、半導体チップ6の発熱が、電極5、はんだ4を介して、銅箔パターン3に伝わり、銅箔パターン3から、絶縁層2を介して、金属板1から放熱される。
[Semiconductor device]
The semiconductor device of the present invention uses the above-described printed wiring board. FIG. 2 shows an example of a schematic cross-sectional view of a semiconductor device using the printed wiring board of the present invention. In FIG. 2, the semiconductor device 10 has a solder 4, an electrode 5, and a semiconductor chip 6 in this order on a printed wiring board having a metal plate 1, an insulating layer 2, and a copper foil pattern 3 in this order. In the semiconductor device 10 of FIG. 2, the heat generated by the semiconductor chip 6 is transmitted to the copper foil pattern 3 through the electrode 5 and the solder 4, and is radiated from the metal plate 1 from the copper foil pattern 3 through the insulating layer 2. The

本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。   The present invention will be described with reference to examples, but the present invention is not limited thereto. In the following examples, parts and% indicate parts by mass and mass% unless otherwise specified.

〔実施例1〜5、比較例1〜2、参考例1〕
表1、表2に示す配合で、各成分を、回転数50〜150rpmで回転させながら、常圧混合を2〜5時間、プラネタリーミキサーにより分散し、その後、必要に応じてビーズミル分散を行い、接着フィルム用樹脂組成物を作製した。
[Examples 1-5, Comparative Examples 1-2, Reference Example 1]
In the composition shown in Table 1 and Table 2, while rotating each component at a rotational speed of 50 to 150 rpm, normal pressure mixing is dispersed for 2 to 5 hours with a planetary mixer, and then bead mill dispersion is performed as necessary. A resin composition for an adhesive film was prepared.

得られた接着フィルム用樹脂組成物を、離型剤を施した50μm厚のPETフィルム上に、乾燥後の膜厚が80〜180μmになるように掻き取り塗布した。図3に、掻き取り塗布の方法を説明するための模式図を示す。まず、離型剤付きPETフィルム上に、適切な厚さとなるように、2列にスペーサーを重ねた後、粘着テープで貼付する(図3(A))。離型剤付きPETフィルム上に、接着フィルム用組成物を適量注ぐ(図3(B))。スライドガラスをスペーサー上に置き、接着フィルム用組成物を掻き取って塗布する(図3(C)〜(E))。次に、塗布した接着フィルム用組成物を、十分乾燥し、接着フィルムを得た。   The obtained resin composition for an adhesive film was scraped and applied on a 50 μm-thick PET film to which a release agent was applied so that the film thickness after drying was 80 to 180 μm. FIG. 3 is a schematic diagram for explaining the scraping application method. First, on a PET film with a release agent, spacers are stacked in two rows so as to have an appropriate thickness, and then attached with an adhesive tape (FIG. 3A). An appropriate amount of the composition for an adhesive film is poured onto a PET film with a release agent (FIG. 3B). A slide glass is placed on a spacer, and the adhesive film composition is scraped and applied (FIGS. 3C to 3E). Next, the applied composition for an adhesive film was sufficiently dried to obtain an adhesive film.

次に、長さ:40mm、幅:40mmに切断した、金属板と、接着フィルムと、厚さ:35μmの銅箔を積層し、真空プレス機を用いて、180℃×120分、0.1MPaの条件で硬化させた。その後、銅箔をエッチングして回路を形成し、プリント配線基板を得た。銅箔の面積は、7.5mmであった。ここで、実施例1〜5、比較例1〜2の金属板には、昭和電工製Al合金(品名:ST60−T3)を、参考例1の金属板には、JIS 5052のアルミ合金板を、使用した。絶縁層、金属板の厚さは、マイクロメーターにより、測定した。 Next, a metal plate cut into a length: 40 mm and a width: 40 mm, an adhesive film, and a copper foil with a thickness of 35 μm are laminated, and 180 ° C. × 120 minutes, 0.1 MPa using a vacuum press machine. It was cured under the conditions of Thereafter, the copper foil was etched to form a circuit, and a printed wiring board was obtained. The area of the copper foil was 7.5 mm 2 . Here, for the metal plates of Examples 1 to 5 and Comparative Examples 1 and 2, Showa Denko Al alloy (product name: ST60-T3) was used, and for the metal plate of Reference Example 1, a JIS 5052 aluminum alloy plate was used. ,used. The thickness of the insulating layer and the metal plate was measured with a micrometer.

〔評価方法〕 〔Evaluation methods〕

1.熱伝導率の測定
180℃×120分、0.1MPaの条件で硬化させた絶縁層(接着フィルム硬化物)、使用した金属板と、得られたプリント配線基板の銅箔のない箇所を、それぞれ10×10mmに裁断し、熱伝導率測定用試験片を作製した。作製した熱伝導率測定用試験片の熱伝導率を、NETZSCH社製熱伝導率計(Xeフラッシュアナライザー、型番:LFA447Nanoflash)で測定した。表1、表2に、熱伝導率の測定結果を示す。プリント配線基板の熱伝導率は、50W/m・K以上が、好ましい。
1. Measurement of thermal conductivity 180 ° C. × 120 minutes, insulation layer (adhesive film cured product) cured under the conditions of 0.1 MPa, used metal plate, and location of the obtained printed wiring board without copper foil, It cut | judged to 10x10 mm and produced the test piece for thermal conductivity measurement. The thermal conductivity of the prepared test piece for measuring thermal conductivity was measured with a thermal conductivity meter (Xe flash analyzer, model number: LFA447 Nanoflash) manufactured by NETZSCH. Tables 1 and 2 show the measurement results of thermal conductivity. The thermal conductivity of the printed wiring board is preferably 50 W / m · K or more.

2.絶縁層の絶縁破壊電圧の測定
180℃×120分、0.1MPaの条件で硬化させた硬化体を40mm×40mmに切り出し、試験片とした。この試験片を絶縁油中に浸漬し、室温で交流電圧を印加し、総研電気社製DAC−6041耐電圧試験システムにて、絶縁破壊電圧を測定した。なお、耐電圧の単位はkVである。表1、表2に、結果を示す。
2. Measurement of Dielectric Breakdown Voltage of Insulating Layer A cured body cured at 180 ° C. for 120 minutes and 0.1 MPa was cut into 40 mm × 40 mm, and used as a test piece. This test piece was immersed in insulating oil, an AC voltage was applied at room temperature, and a dielectric breakdown voltage was measured with a DAC-6041 withstand voltage test system manufactured by Soken Denki. The unit of withstand voltage is kV. Tables 1 and 2 show the results.

3.絶縁層の弾性率の測定
上述の方法で、膜厚が約150μmになるように、接着フィルム用組成物を塗布し、180℃×120分でシート状に硬化させた。40mm×10mmの短冊状に切り出し、エスアイアイ・ナノテクノロジー社製のDMS6100を用いて、−55℃〜125℃の貯蔵弾性率を求めた。表1、表2に、測定結果を示す。
3. Measurement of Elastic Modulus of Insulating Layer By the method described above, the adhesive film composition was applied so that the film thickness was about 150 μm, and cured in a sheet form at 180 ° C. for 120 minutes. A 40 mm × 10 mm strip was cut out and a storage elastic modulus of −55 ° C. to 125 ° C. was determined using DMS6100 manufactured by SII Nanotechnology. Tables 1 and 2 show the measurement results.

4.信頼性試験
銅箔をエッチングして回路を形成し、これにチップ抵抗素子(幅:3.0mm、長さ:2.5mm)をはんだ接続した半導体装置を、−55℃で30分間、125℃で30分間放置を1サイクルとし、3000サイクル経過後のはんだ接続部の表面及び断面を観察し、はんだクラック発生の有無を調査した。また、併せてプリント配線基板の割れやクラックの有無を調査した。はんだクラックの発生があるものや、プリント配線基板に割れやクラックの発生があるものを不良(×)と判定し、これらの発生がないものを良好(○)と判定した。なお、銅箔の面積は、7.5mmであった。表1、表2に、結果を示す。
4). Reliability Test A semiconductor device in which a copper foil is etched to form a circuit and a chip resistor element (width: 3.0 mm, length: 2.5 mm) is solder-connected to this at −55 ° C. for 30 minutes at 125 ° C. Then, leaving for 30 minutes was set as one cycle, and the surface and cross section of the solder joint after 3000 cycles were observed, and the presence or absence of solder cracks was investigated. In addition, the presence or absence of cracks or cracks in the printed wiring board was also investigated. Those having solder cracks or those having cracks or cracks in the printed wiring board were judged as defective (x), and those without these were judged as good (◯). The area of the copper foil was 7.5 mm 2 . Tables 1 and 2 show the results.

表1、表2からわかるように、実施例1〜5のすべてにおいて、プリント配線基板の熱伝導率、信頼性試験の結果が良好であった。これに対して、絶縁層の絶縁破壊電圧が50kV/mm未満の比較例1と比較例2は、熱伝導率200W/m・K以上の金属板を使用しても、信頼性試験の結果が悪かった。なお、比較例1は、絶縁層の〔(−55℃での弾性率)/(125℃での弾性率)〕が125と、弾性率の差が大きかったため、絶縁層に係る応力が大きくなり過ぎ、信頼性試験の結果が悪かったと、考えられる。一方、比較例2は、絶縁層の25℃〜125℃における弾性率が10GPa未満でなく、絶縁層が高弾性率であるため、はんだ部への応力が大きくなり過ぎ、信頼性試験の結果が悪かったと、考えられる。参考例1は、金属基板の熱伝導率が、低すぎるため、プリント配線基板の熱伝導率も低かった。   As can be seen from Tables 1 and 2, in all of Examples 1 to 5, the results of the thermal conductivity and reliability tests of the printed wiring boards were good. On the other hand, in Comparative Example 1 and Comparative Example 2 in which the dielectric breakdown voltage of the insulating layer is less than 50 kV / mm, even if a metal plate having a thermal conductivity of 200 W / m · K or more is used, the result of the reliability test is It was bad. In Comparative Example 1, since the [(elastic modulus at −55 ° C.) / (Elastic modulus at 125 ° C.)] of the insulating layer was 125 and the difference in elastic modulus was large, the stress on the insulating layer increased. It is thought that the reliability test result was bad. On the other hand, in Comparative Example 2, since the elastic modulus at 25 ° C. to 125 ° C. of the insulating layer is not less than 10 GPa and the insulating layer has a high elastic modulus, the stress on the solder portion becomes too large, and the result of the reliability test is I think it was bad. In Reference Example 1, the thermal conductivity of the printed wiring board was low because the thermal conductivity of the metal substrate was too low.

上記のように、本発明のプリント配線基板は、高放熱性であり、温度サイクル特性に優れるため、高信頼性の半導体装置を提供することができる。   As described above, since the printed wiring board of the present invention has high heat dissipation and excellent temperature cycle characteristics, a highly reliable semiconductor device can be provided.

0 プリント配線基板
1 金属板
2 絶縁層
3 銅箔パターン
4 はんだ
5 電極
6 半導体チップ
0 Printed wiring board 1 Metal plate 2 Insulating layer 3 Copper foil pattern 4 Solder 5 Electrode 6 Semiconductor chip

Claims (4)

熱伝導率200W/m・K以上の金属板と、(A)エポキシ樹脂と、(B)ガラス転移温度が0〜50℃の可とう性フェノキシ樹脂とを含み、(B)成分を、(A)成分1質量部に対して、0.5〜5質量部含む絶縁層と、銅箔パターンとを、この順に有し、絶縁層の絶縁破壊電圧値が、50kV/mm以上であることを特徴とする、プリント配線基板。 A metal plate having a thermal conductivity of 200 W / m · K or more, (A) an epoxy resin, and (B) a flexible phenoxy resin having a glass transition temperature of 0 to 50 ° C. ) An insulating layer containing 0.5 to 5 parts by mass with respect to 1 part by mass of the component, and a copper foil pattern in this order, and a dielectric breakdown voltage value of the insulating layer is 50 kV / mm or more A printed wiring board. 絶縁層の25〜125℃での弾性率が、10GPa未満であり、絶縁層の〔(−55℃での弾性率)/(125℃での弾性率)〕が、50未満である、請求項1記載のプリント配線基板。   The elastic modulus at 25 to 125 ° C of the insulating layer is less than 10 GPa, and the [(elastic modulus at -55 ° C) / (elastic modulus at 125 ° C)] of the insulating layer is less than 50. The printed wiring board according to 1. 〔(絶縁層の厚さ)/(金属板の厚さ)〕が、0.04〜0.20である、請求項1または2記載のプリント配線基板。 The printed wiring board according to claim 1 or 2 , wherein [(thickness of insulating layer) / (thickness of metal plate)] is 0.04 to 0.20. 請求項記載のプリント配線基板を使用する、半導体装置。 A semiconductor device using the printed wiring board according to claim 3 .
JP2015188938A 2015-09-25 2015-09-25 Printed wiring board and semiconductor device Active JP6579886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015188938A JP6579886B2 (en) 2015-09-25 2015-09-25 Printed wiring board and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015188938A JP6579886B2 (en) 2015-09-25 2015-09-25 Printed wiring board and semiconductor device

Publications (2)

Publication Number Publication Date
JP2017063161A JP2017063161A (en) 2017-03-30
JP6579886B2 true JP6579886B2 (en) 2019-09-25

Family

ID=58429145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015188938A Active JP6579886B2 (en) 2015-09-25 2015-09-25 Printed wiring board and semiconductor device

Country Status (1)

Country Link
JP (1) JP6579886B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573336A (en) * 2017-04-20 2019-12-13 住友电木株式会社 Aluminum-based copper-clad laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822322B2 (en) * 2003-12-04 2011-11-24 旭化成イーマテリアルズ株式会社 Method for producing anisotropic conductive adhesive sheet
JP2005281509A (en) * 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk Curable resin composition and metal-based circuit substrate by using the same
JP2013008886A (en) * 2011-06-27 2013-01-10 Hitachi Automotive Systems Ltd Circuit board and automotive generator using the same
JP5821355B2 (en) * 2011-07-15 2015-11-24 住友ベークライト株式会社 Metal base circuit board, laminated board, inverter device and power semiconductor device
JP5640121B2 (en) * 2013-08-05 2014-12-10 日本発條株式会社 Circuit board laminate and metal base circuit board
JP6259665B2 (en) * 2014-01-08 2018-01-10 日東電工株式会社 Film adhesive and dicing tape with film adhesive

Also Published As

Publication number Publication date
JP2017063161A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
TWI526311B (en) Multilayer resin sheet and method of producing the same, method of producing cured multilayer resin sheet, and high heat conducting resin sheet laminate and method of producing the same
WO2016158828A1 (en) Resin composition, electroconductive resin composition, adhesive, electroconductive adhesive, paste for forming electrodes, and semiconductor device
JP5534682B2 (en) Thermosetting adhesive for electronic components and method for manufacturing electronic component-embedded substrate using this adhesive
TWI694126B (en) Resin composition, adhesive film and semiconductor device
JPWO2018173945A1 (en) Resin composition for circuit board and metal-based circuit board using the same
WO2012165265A1 (en) Substrate, method for producing same, heat-releasing substrate, and heat-releasing module
JP2008297429A (en) Adhesive composition, adhesive sheet and copper foil with adhesive agent
JPWO2015056523A1 (en) Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
JP2013216038A (en) Multi-layer resin sheet, multi-layer resin sheet cured material using the same, resin sheet laminate, semiconductor device
JP6106405B2 (en) Semiconductor device
WO2014136484A1 (en) Apparatus, composition for adhesive, and adhesive sheet
JP2004217861A (en) Heat-resistant adhesive, laminate using this adhesive, heat sink with adhesive, and metal foil with adhesive
JP5760702B2 (en) Adhesive composition for electronic device and adhesive sheet for electronic device
JP2004217862A (en) Heat-resistant adhesive, laminate using this adhesive, heat sink with adhesive, and metal foil with adhesive
JP2009224109A (en) Insulation sheet and laminated structural body
KR20180094130A (en) Multilayer resin sheet and resin-sheet laminate
KR20140037552A (en) A epoxy resin composition, adhesive sheet and circuit board including the composition and the manufacturing method for the circuit board
JP6579886B2 (en) Printed wiring board and semiconductor device
WO2015053074A1 (en) Resin composition for film, insulating film, and semiconductor device
JP2001240838A (en) Adhesive composition for semiconductor device, and adhesive sheet
JP2009246026A (en) Paste-like adhesive, and method of manufacturing substrate incorporating electronic components using the same
JP2010239106A (en) Adhesive for bonding semiconductor chip
JP6912030B2 (en) Resin compositions, adhesive films, and semiconductor devices
KR20150025319A (en) A composition of epoxy resin, method for manufacturing the composition, adhesion sheet, circuit board and method for manufacturing the circuit board
JP2003193016A (en) Highly thermo resistant adhesive film with high heat dissipation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190827

R150 Certificate of patent or registration of utility model

Ref document number: 6579886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250