JP6577803B2 - Membrane treatment apparatus, drinking water production apparatus, membrane treatment method, and drinking water production method - Google Patents

Membrane treatment apparatus, drinking water production apparatus, membrane treatment method, and drinking water production method Download PDF

Info

Publication number
JP6577803B2
JP6577803B2 JP2015189419A JP2015189419A JP6577803B2 JP 6577803 B2 JP6577803 B2 JP 6577803B2 JP 2015189419 A JP2015189419 A JP 2015189419A JP 2015189419 A JP2015189419 A JP 2015189419A JP 6577803 B2 JP6577803 B2 JP 6577803B2
Authority
JP
Japan
Prior art keywords
water
permeate
membrane
line
permeated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015189419A
Other languages
Japanese (ja)
Other versions
JP2017064570A (en
Inventor
正一 筒井
正一 筒井
将志 高宮
将志 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2015189419A priority Critical patent/JP6577803B2/en
Publication of JP2017064570A publication Critical patent/JP2017064570A/en
Application granted granted Critical
Publication of JP6577803B2 publication Critical patent/JP6577803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜を使用した膜処理装置、飲料用水製造装置、膜処理方法、及び飲料用水製造方法の技術に関する。   The present invention relates to a membrane treatment apparatus using a reverse osmosis membrane, a drinking water production apparatus, a membrane treatment method, and a drinking water production method.

逆浸透膜(以下、RO膜と称する場合がある)を備える膜分離装置(以下RO装置と称する場合がある)は、原水を不純物含量が低下した透過水と、不純物含量が増大した濃縮水とに分離するものであるが、濃縮水中のシリカ、アルミニウム、硬度成分等のスケール成分が高くなると、これらが逆浸透膜に析出してろ過速度を低下させるという問題がある。   A membrane separation device (hereinafter also referred to as an RO device) including a reverse osmosis membrane (hereinafter also referred to as an RO membrane) includes raw water having permeated water having a reduced impurity content, concentrated water having an increased impurity content, and However, when scale components such as silica, aluminum, and hardness components in the concentrated water are increased, there is a problem that these precipitate on the reverse osmosis membrane and reduce the filtration rate.

従来、RO装置においては、シリカ等の析出を防止するために、回収率(透過水/原水)を下げた状態で運転することが一般的に行われている。或いは、原水にスケール分散剤やスライム防止剤を添加して、シリカ等の析出を防止することが行われている。   Conventionally, in an RO apparatus, in order to prevent precipitation of silica or the like, it is generally performed to operate with a recovery rate (permeated water / raw water) lowered. Alternatively, a scale dispersant or a slime inhibitor is added to raw water to prevent precipitation of silica or the like.

例えば、特許文献1には、シリカ及び硬度成分を含む原水に、ポリカルボン酸とホスホン酸とを含むスケール分散を添加し、その原水をRO装置に供給して、透過水と濃縮水とに分離する方法であって、原水のpHを調整して、濃縮水のランゲリア指数を0.3以下に制御し、透過水の回収率を調整して濃縮水のシリカ濃度を150mgSiO/L以下に維持する方法が開示されている。特許文献1の方法によれば、透過水の水質低下を抑えながら透過水の流量の減少を抑制することが可能となる。 For example, in Patent Document 1, a scale dispersion containing polycarboxylic acid and phosphonic acid is added to raw water containing silica and a hardness component, and the raw water is supplied to an RO device to be separated into permeated water and concentrated water. The pH of the raw water is adjusted, the Langeria index of the concentrated water is controlled to 0.3 or lower, the recovery rate of the permeated water is adjusted, and the silica concentration of the concentrated water is maintained at 150 mgSiO 2 / L or lower. A method is disclosed. According to the method of patent document 1, it becomes possible to suppress the reduction | decrease of the flow volume of permeated water, suppressing the water quality fall of permeated water.

特開2012−183472号公報JP 2012-183472 A

しかし、特許文献1のように原水にスケール分散剤を添加したり、スライム防止剤等を添加したりすると、それらが透過水側に流出する場合があり、飲料水や純水製造等においては、支障が生じるおそれがある。   However, if a scale dispersant is added to raw water as in Patent Document 1 or a slime inhibitor is added, they may flow out to the permeate side. In drinking water or pure water production, May cause trouble.

本発明の目的は、逆浸透膜を備える膜分離装置で原水をろ過する処理において、原水にスケール防止剤やスライム防止剤等を添加しなくても、シリカや硬度成分等のスケール成分が逆浸透膜に析出することを抑制する、すなわち逆浸透膜のスケール発生を抑制することが可能な膜処理装置、膜処理方法を提供することにある。   The object of the present invention is to reverse the reverse osmosis of scale components such as silica and hardness components without adding a scale inhibitor or anti-slime agent to the raw water in the process of filtering raw water with a membrane separation apparatus equipped with a reverse osmosis membrane. An object of the present invention is to provide a membrane processing apparatus and a membrane processing method capable of suppressing the deposition on the membrane, that is, suppressing the generation of scale in the reverse osmosis membrane.

本発明の膜処理装置は、原水を透過水と濃縮水とに分離する逆浸透膜を備えた膜分離装置と、前記膜分離装置に前記原水を供給するための原水供給ラインと、前記膜分離装置から前記透過水を排出するための第1透過水ラインと、前記第1透過水ラインを流れる前記透過水を貯留する透過水槽と、前記膜分離装置から前記濃縮水を排出するための濃縮水ラインと、前記透過水槽内の前記透過水を処理水として、前記膜分離装置に原水供給側から供給するための処理水供給ラインと、前記膜分離装置への原水の供給を停止させた状態で、前記処理水供給ラインを介した前記膜分離装置への前記処理水の供給を開始する第1制御手段と、前記第1透過水ラインから分岐して、前記透過水を前記透過水槽以外の場所へ排出するための第2透過水ラインと、前記処理水を前記膜分離装置に供給した際に、前記膜分離装置から排出される透過水を前記第2透過水ラインに所定量送液する第2制御手段と、前記所定量送液後に、前記膜分離装置から排出される透過水を前記第1透過水ラインへ送液する第3制御手段と、を備える。 The membrane treatment apparatus of the present invention includes a membrane separation device having a reverse osmosis membrane for separating raw water into permeate and concentrated water, a raw water supply line for supplying the raw water to the membrane separation device, and the membrane separation A first permeate line for discharging the permeate from a device; a permeate tank for storing the permeate flowing through the first permeate line; and a concentrated water for discharging the concentrate from the membrane separator. A line, a treated water supply line for supplying the permeated water in the permeated water tank as treated water to the membrane separator from the raw water supply side, and a state in which the supply of raw water to the membrane separator is stopped a first control means for starting the supply of the treated water into the membrane separation device through the treated water feed line, prior SL branched from the first permeate line, the permeate other than the transmission aquarium Second permeated water rye for discharge to location And a second control means for supplying a predetermined amount of permeate discharged from the membrane separator to the second permeate line when the treated water is supplied to the membrane separator, and the predetermined amount of liquid later, a third control means for feeding the permeate discharged from the membrane separation unit to the first permeate line, Ru comprising a.

また、本発明の飲料用水製造装置は、原水を透過水と濃縮水とに分離する逆浸透膜を備えた膜分離装置と、前記膜分離装置に前記原水を供給するための原水供給ラインと、前記膜分離装置から前記透過水を排出するための第1透過水ラインと、前記第1透過水ラインを流れる前記透過水を貯留する透過水槽と、前記膜分離装置から前記濃縮水を排出するための濃縮水ラインと、前記透過水槽内の前記透過水を処理水として、前記膜分離装置に原水供給側から供給するための処理水供給ラインと、前記膜分離装置への原水の供給を停止させた状態で、前記処理水供給ラインを介した前記膜分離装置への前記処理水の供給を開始する第1制御手段と、を備える膜処理装置と、前記第1透過水ラインから前記透過水槽へ流れる前記透過水に塩素を添加する塩素添加手段と、前記処理水供給ラインを流れる前記処理水中の塩素を除去する塩素除去手段と、を備える。 In addition, the drinking water production apparatus of the present invention includes a membrane separation device including a reverse osmosis membrane that separates raw water into permeated water and concentrated water, a raw water supply line for supplying the raw water to the membrane separation device, A first permeate line for discharging the permeate from the membrane separator; a permeate tank for storing the permeate flowing through the first permeate line; and for discharging the concentrated water from the membrane separator. And the treated water supply line for supplying the permeated water in the permeated water tank as treated water to the membrane separator from the raw water supply side, and the supply of the raw water to the membrane separator is stopped. And a first control means for starting supply of the treated water to the membrane separation device via the treated water supply line, and from the first permeate line to the permeate tank Chlorine is added to the flowing permeate. Comprising a chlorination unit for, and a chlorine removing means for removing chlorine in the treated water flowing through the treated water supply line.

本発明の膜処理方法は、逆浸透膜を備えた膜分離装置に原水を供給して、透過水と濃縮水とに分離し、前記透過水を透過水槽に供給するろ過工程と、前記膜分離装置への原水の供給を停止させた状態で、前記透過水槽内の前記透過水を処理水として、前記膜分離装置に原水供給側から供給する処理水供給工程と、前記処理水供給工程の際に、前記膜分離装置から排出される透過水を前記透過水槽以外の場所に所定量送液する工程と、前記所定量送液後に、前記膜分離装置から排出される透過水を前記透過水槽へ送液する工程と、を備える。 The membrane treatment method of the present invention includes a filtration step of supplying raw water to a membrane separation apparatus equipped with a reverse osmosis membrane, separating it into permeated water and concentrated water, and supplying the permeated water to a permeated water tank, and the membrane separation In the state where the supply of raw water to the apparatus is stopped, the permeated water in the permeate tank is treated as treated water, and the treated water supply process supplies the membrane separation device from the raw water supply side. And a step of feeding a predetermined amount of permeated water discharged from the membrane separation device to a place other than the permeated water tank, and after the predetermined amount of liquid is fed, the permeated water discharged from the membrane separation device to the permeated water tank. a step of feeding, Ru comprising a.

また、本発明の飲料用水製造方法は、逆浸透膜を備えた膜分離装置に原水を供給して、透過水と濃縮水とに分離し、前記透過水を透過水槽に供給するろ過工程と、前記透過水槽に供給される前記透過水に塩素を添加する塩素添加工程と、前記膜分離装置への原水の供給を停止させた状態で、前記透過水槽内の前記透過水を処理水として、前記膜分離装置に原水供給側から供給する処理水供給工程と、前記処理水供給工程において、前記処理水を前記膜分離装置に供給する際に、前記処理水中の塩素を除去する塩素除去工程と、を備える。   Moreover, the drinking water production method of the present invention supplies raw water to a membrane separation device equipped with a reverse osmosis membrane, separates it into permeated water and concentrated water, and a filtration step of supplying the permeated water to a permeated water tank, A chlorine addition step of adding chlorine to the permeate supplied to the permeate tank, and a state where the supply of raw water to the membrane separator is stopped, the permeate in the permeate tank as treated water, A treated water supply step for supplying the membrane separation device from the raw water supply side; and a chlorine removal step for removing chlorine in the treated water when the treated water is supplied to the membrane separation device in the treated water supply step; Is provided.

本発明によれば、逆浸透膜を備える膜分離装置で原水をろ過する処理において、原水にスケール防止剤やスライム防止剤等を添加しなくても、シリカや硬度成分等のスケール成分が逆浸透膜に析出することを抑制する、すなわち逆浸透膜のスケール発生を抑制することが可能となる。   According to the present invention, in the process of filtering raw water with a membrane separation apparatus equipped with a reverse osmosis membrane, scale components such as silica and hardness components are reverse osmosis without adding a scale inhibitor or an antislime agent to the raw water. It is possible to suppress the precipitation on the membrane, that is, to suppress the generation of scale in the reverse osmosis membrane.

本実施形態に係る膜処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the film processing apparatus which concerns on this embodiment. 本実施形態に係る膜処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the film | membrane processing apparatus which concerns on this embodiment. 本実施形態に係る飲料用水製造装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the drinking water manufacturing apparatus which concerns on this embodiment. 飲料用水製造装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the water manufacturing apparatus for drinks.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る膜処理装置の構成の一例を示す模式図である。図1に示す膜処理装置1は、原水槽10、逆浸透膜を備える膜分離装置12、透過水槽14を備えている。また膜処理装置1は、原水供給ライン16、透過水ライン(第1透過水ライン)18、濃縮水ライン20、処理水供給ライン22、処理水移送ライン24を備えている。   FIG. 1 is a schematic diagram illustrating an example of the configuration of the film processing apparatus according to the present embodiment. A membrane treatment apparatus 1 shown in FIG. 1 includes a raw water tank 10, a membrane separation apparatus 12 including a reverse osmosis membrane, and a permeate tank 14. The membrane treatment apparatus 1 includes a raw water supply line 16, a permeate water line (first permeate water line) 18, a concentrated water line 20, a treated water supply line 22, and a treated water transfer line 24.

原水供給ライン16の一端は原水槽10に接続され、他端は膜分離装置12の原水入口(一次側入口)に接続されている。また、透過水ライン18の一端は膜分離装置12の透過水出口(二次側出口)に接続されており、他端は透過水槽14に接続されている。また、濃縮水ライン20の一端は、膜分離装置12の濃縮水出口(一次側出口)に接続されており、他端は、例えば系外のタンク等(不図示)に接続されている。処理水供給ライン22の一端は透過水槽14に接続され、他端は原水供給ライン16に接続されている。処理水移送ライン24の一端は透過水槽14に接続され、他端は、例えば系外の貯水タンク等(不図示)に接続されている。   One end of the raw water supply line 16 is connected to the raw water tank 10, and the other end is connected to the raw water inlet (primary side inlet) of the membrane separator 12. One end of the permeate line 18 is connected to the permeate outlet (secondary side outlet) of the membrane separation device 12, and the other end is connected to the permeate tank 14. Further, one end of the concentrated water line 20 is connected to a concentrated water outlet (primary side outlet) of the membrane separation device 12, and the other end is connected to, for example, a tank outside the system (not shown). One end of the treated water supply line 22 is connected to the permeated water tank 14, and the other end is connected to the raw water supply line 16. One end of the treated water transfer line 24 is connected to the permeate tank 14 and the other end is connected to, for example, a water storage tank (not shown) outside the system.

図1に示す膜処理装置1は、原水ポンプ26、処理水供給ポンプ28、処理水移送ポンプ30、第1バルブ〜第5バルブ(V1,V2,V3,V4,V5)を備えている。第1バルブV1及び原水ポンプ26は、原水供給ライン16に設置され、第2バルブV2は透過水ライン18に設置され、第3バルブV3及び処理水供給ポンプ28は処理水供給ライン22に設置され、第4バルブV4は濃縮水ライン20に設置され、第5バルブV5及び処理水移送ポンプ30は処理水移送ライン24に設置されている。   The membrane treatment apparatus 1 shown in FIG. 1 includes a raw water pump 26, a treated water supply pump 28, a treated water transfer pump 30, and first to fifth valves (V1, V2, V3, V4, V5). The first valve V1 and the raw water pump 26 are installed in the raw water supply line 16, the second valve V2 is installed in the permeated water line 18, and the third valve V3 and the treated water supply pump 28 are installed in the treated water supply line 22. The fourth valve V4 is installed in the concentrated water line 20, and the fifth valve V5 and the treated water transfer pump 30 are installed in the treated water transfer line 24.

図1に示す膜処理装置1は、制御装置32を備えている。制御装置32は、各ポンプ及び各バルブと電気的に接続されており、各ポンプの作動・停止、各バルブの開閉等を制御し、流体(原水、透過水(処理水)、濃縮水)の供給・停止を制御する機能を有する。制御装置32は、複数の制御部から構成された制御ユニットでもよく、各制御部に対応したポンプやバルブの制御を行うものでもよい。   The film processing apparatus 1 shown in FIG. 1 includes a control device 32. The control device 32 is electrically connected to each pump and each valve, and controls operation / stop of each pump, opening / closing of each valve, etc., and controls fluid (raw water, permeated water (treated water), concentrated water). It has a function to control supply / stop. The control device 32 may be a control unit configured by a plurality of control units, or may control a pump or a valve corresponding to each control unit.

膜分離装置12は、逆浸透膜を介して原水を濃縮水と透過水とに分離する装置である。膜分離装置12は、逆浸透膜を備えた単一のモジュールから構成されていてもよいし、逆浸透膜を備えたモジュールを並列、直列、又はそれらを組み合わせた複数のモジュールから構成されていてもよい。膜分離装置12の形態としては、特に限定されないが、スパイラル型、内圧中空糸型、平膜型、チューブラー型などが挙げられる。   The membrane separation device 12 is a device that separates raw water into concentrated water and permeated water through a reverse osmosis membrane. The membrane separation device 12 may be composed of a single module having a reverse osmosis membrane, or may be composed of a plurality of modules in which modules having a reverse osmosis membrane are arranged in parallel, in series, or a combination thereof. Also good. Although it does not specifically limit as a form of the membrane separator 12, A spiral type, an internal pressure hollow fiber type, a flat membrane type, a tubular type etc. are mentioned.

逆浸透膜の素材としては、特に制限されるものではなく、例えば、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ピニルポリマー、ポリビニルアルコール、ポリスルホンなどの高分子材料等が挙げられる。逆浸透膜の膜厚は、例えば、150μm以上〜170μm以下である。逆浸透膜の細孔径は、例えば、0.5nm以上〜0.7nm以下である。   The material of the reverse osmosis membrane is not particularly limited, and examples thereof include polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, pinyl polymer, polyvinyl alcohol, and polysulfone. The film thickness of the reverse osmosis membrane is, for example, 150 μm to 170 μm. The pore diameter of the reverse osmosis membrane is, for example, 0.5 nm to 0.7 nm.

原水槽10に流入する原水は、例えばシリカ、硬度成分(カルシウム、マグネシウム等)等のスケール成分を含む原水、具体的には、工業用水、水道水、地下水(井戸水、湧水、伏流水等)、地表水(河川水、湖沼水等)等である。本実施形態の膜処理装置1は、特に高濃度のシリカ含有水、例えば50mgSiO/L以上のシリカ含有水に対しても、逆浸透膜のスケール発生を抑制しながら適切な処理が可能である。 The raw water flowing into the raw water tank 10 is raw water containing scale components such as silica and hardness components (calcium, magnesium, etc.), specifically industrial water, tap water, ground water (well water, spring water, underground water, etc.) Surface water (river water, lake water, etc.). The membrane treatment apparatus 1 of the present embodiment is capable of appropriate treatment while suppressing the generation of scale of the reverse osmosis membrane, even for high concentration silica-containing water, for example, silica-containing water of 50 mg SiO 2 / L or more. .

本実施形態に係る膜処理装置1の動作について説明する。   The operation of the film processing apparatus 1 according to this embodiment will be described.

膜処理装置1では、膜分離装置12により原水を透過水と濃縮水とに分離するろ過工程、得られた透過水を処理水として、膜分離装置12に原水供給側から供給する処理水供給工程(以下、置換工程と称する)等を組み合わせた処理が行われる。例えば、ろ過工程→置換工程→ろ過工程→置換工程・・・等の処理が行われる。また、膜処理装置1の稼働を停止する待機工程を設けても良く、例えば、ろ過工程→置換工程→待機工程→ろ過工程・・・の処理が行われても良い。ろ過工程、置換工程、待機工程の組み合わせは上記に制限されるものではない。以下、ろ過工程、待機工程、置換工程について説明する。 In the membrane treatment apparatus 1, a filtration step for separating raw water into permeate and concentrated water by the membrane separation device 12, and a treated water supply step for supplying the obtained permeate as treated water to the membrane separator 12 from the raw water supply side. (Hereinafter, referred to as a replacement step) and the like are performed. For example, processing such as a filtration step → a substitution step → a filtration step → a substitution step... Is performed. Moreover, you may provide the standby process which stops operation | movement of the membrane processing apparatus 1, for example, the process of filtration process-> replacement process-> standby process-> filtration process ... may be performed. The combination of the filtration step, the replacement step, and the standby step is not limited to the above. Hereinafter, the filtration step, the standby step, and the replacement step will be described.

<ろ過工程>
ろ過工程は原水槽10の水位及び透過水槽14の水位に基づいて行われることが望ましい。例えば、原水が導入される原水槽10の水位が所定水位を越え、透過水が導入される透過水槽14の水位が所定水位未満である場合に、制御装置32により、原水ポンプ26が稼働され、第1バルブV1、第2バルブV2、第4バルブV4が開放される。そして、原水が原水槽10から原水供給ライン16を介して膜分離装置12に所定の操作圧力で供給され、逆浸透膜によって、シリカ等のスケール成分が分離される。これにより、原水は逆浸透膜を透過してシリカ等のスケール成分等が低減した透過水と、逆浸透膜を透過せず、シリカ等のスケール成分等が増加した濃縮水とに分離される。透過水は透過水ライン18を通り、透過水槽14に貯留され、濃縮水は濃縮水ライン20から系外へ排出される。ろ過工程を継続することで、透過水槽14の水位が所定水位を越えた場合には、制御装置32により、処理水移送ポンプ30が稼働され、第5バルブV5が開放されて、透過水槽14内の透過水が処理水として系外へ排出されることが望ましい。また、原水槽10の水位が所定水位未満となり、或いは透過水槽14の水位が所定未満となった場合には、制御装置32により、稼働していたポンプが停止され、開放されていたバルブが閉じられ、ろ過工程が終了されることが望ましい。ろ過工程終了後、後述する待機工程や置換工程に移行される。ろ過工程におけるポンプの稼働・停止、バルブの開閉は、原水槽10及び透過水槽14の水位に基づいて行われる場合に制限されるものではなく、例えば時間に基づいて行われても良い。
<Filtration process>
The filtration step is preferably performed based on the water level of the raw water tank 10 and the water level of the permeated water tank 14. For example, when the water level of the raw water tank 10 into which raw water is introduced exceeds a predetermined water level and the water level of the permeated water tank 14 into which permeated water is introduced is lower than a predetermined water level, the raw water pump 26 is operated by the control device 32, The first valve V1, the second valve V2, and the fourth valve V4 are opened. Then, raw water is supplied from the raw water tank 10 through the raw water supply line 16 to the membrane separation device 12 at a predetermined operating pressure, and scale components such as silica are separated by the reverse osmosis membrane. Thereby, raw | natural water permeate | transmits a reverse osmosis membrane, and is isolate | separated into the permeated water which the scale components, such as a silica, reduced, and the concentrated water which did not permeate | transmit a reverse osmosis membrane and the scale components, such as a silica increased. The permeated water passes through the permeated water line 18 and is stored in the permeated water tank 14, and the concentrated water is discharged from the concentrated water line 20 to the outside of the system. If the water level in the permeated water tank 14 exceeds a predetermined water level by continuing the filtration step, the treated water transfer pump 30 is operated by the control device 32, the fifth valve V5 is opened, and the inside of the permeated water tank 14 It is desirable that the permeated water is discharged out of the system as treated water. When the water level in the raw water tank 10 is lower than the predetermined water level or the water level in the permeated water tank 14 is lower than the predetermined level, the operating pump is stopped by the control device 32 and the opened valve is closed. It is desirable that the filtration process is completed. After the filtration process is completed, the process proceeds to a standby process and a replacement process described later. The operation / stop of the pump and the opening / closing of the valve in the filtration step are not limited to being performed based on the water levels of the raw water tank 10 and the permeated water tank 14, and may be performed based on time, for example.

膜分離装置12は、市販の逆浸透膜モジュールを使用することができる。これらの逆浸透膜モジュールは、膜の素材や用途等により、超定圧タイプ、低圧タイプ、高圧タイプなど、RO膜の適正圧力条件が定められている。したがって、膜分離装置12に供給する原水の操作圧力は、通常定められている操作圧力で運転すればよい。   The membrane separator 12 can use a commercially available reverse osmosis membrane module. In these reverse osmosis membrane modules, appropriate pressure conditions for RO membranes such as a super-constant pressure type, a low pressure type, and a high pressure type are determined depending on the material and use of the membrane. Therefore, the operation pressure of the raw water supplied to the membrane separation device 12 may be operated at a normally determined operation pressure.

<待機工程>
制御装置32により、各ポンプの稼働が停止された状態、及び各バルブが閉じられた状態が維持され、膜処理装置1の稼働が停止される。具体的には、原水槽10の水位が低状態のとき、透過水槽14の水位が高状態のとき、原水ポンプ26の異常時、膜処理装置10の圧力異常時に行われる。また、これらの状態の他、ろ過工程を一定時間行った後、待機工程を行うようにしてもよい。
<Standby process>
The state where the operation of each pump is stopped and the state where each valve is closed are maintained by the control device 32, and the operation of the film processing apparatus 1 is stopped. Specifically, it is performed when the water level of the raw water tank 10 is low, when the water level of the permeated water tank 14 is high, when the raw water pump 26 is abnormal, or when the pressure of the membrane treatment apparatus 10 is abnormal. In addition to these states, the standby process may be performed after the filtration process has been performed for a certain period of time.

<置換工程(処理水供給工程)>
ろ過工程後、制御装置32により、処理水供給ポンプ28が稼働され(その他のポンプは停止)、第2バルブV2、第3バルブV3、第4バルブV4が開放される(その他のバルブは閉じられる)。これにより、膜分離装置への原水の供給が停止された状態で、処理槽内の透過水(処理水)が処理水供給ライン22、原水供給ライン16を介して膜分離装置12に所定の操作圧力で供給される。
<Replacement process (process water supply process)>
After the filtration step, the treated water supply pump 28 is operated by the control device 32 (the other pumps are stopped), and the second valve V2, the third valve V3, and the fourth valve V4 are opened (the other valves are closed). ). Thereby, in a state where the supply of raw water to the membrane separation device is stopped, the permeated water (treated water) in the treatment tank is subjected to a predetermined operation on the membrane separation device 12 via the treated water supply line 22 and the raw water supply line 16. Supplied with pressure.

膜分離装置12内の透過水(処理水)の一部は、逆浸透膜を透過して透過水ライン18側へ、残りは濃縮水ライン20側へ流れる。これにより、膜分離装置12内の濃縮水が、シリカ等のスケール成分をほとんど含まない透過水(処理水)で置換されるため、逆浸透膜のスケール発生が抑制される。また、濃縮水ライン20内の濃縮水も透過水(処理水)で置換されるため、濃縮水ライン20のスケール発生が抑制される。   Part of the permeated water (treated water) in the membrane separation device 12 permeates the reverse osmosis membrane and flows to the permeated water line 18 side, and the rest flows to the concentrated water line 20 side. Thereby, since the concentrated water in the membrane separator 12 is replaced with permeated water (treated water) containing almost no scale component such as silica, scale generation of the reverse osmosis membrane is suppressed. In addition, since the concentrated water in the concentrated water line 20 is also replaced with permeated water (treated water), generation of scale in the concentrated water line 20 is suppressed.

置換工程により、膜分離装置12内や濃縮水ライン20内のシリカ等のスケール成分を処理水(透過水)で置換することが望ましい。置換工程は、例えば、処理水の供給量に基づいて行われることが望ましい。処理水供給量は、例えば、ろ過工程における原水供給量の2〜10%の範囲で設定されることが好ましい。例えば、置換工程開始後、膜分離装置12への処理水供給量が2〜10%の範囲で設定した閾値に達した段階で、制御装置32により第2バルブV2、第3バルブV3、第4バルブV4が閉じられ、処理水供給ポンプ28が停止され、置換工程が終了される。処理水供給量が原水供給量の2%未満では、膜分離装置12内や濃縮水ライン20内のシリカ等のスケール成分を処理水で十分に置換しきれない場合があり、10%を超えると、処理水の使用量が増加して、最終的に得られる処理水(透過水)の回収率が低下する場合がある。処理水の供給は、透過水槽14の水位に基づき上記範囲内の水量だけ供給してもよいし、処理水供給ポンプ28の流量に基づき上記範囲内の水量になるようポンプ28の稼働時間を定めて処理水を供給してもよい。また、膜分離装置12内や濃縮水ライン20内のシリカ等のスケール成分の濃度を測定し、測定値が予め設定した閾値以下となるまで、置換工程を行っても良い。   It is desirable to replace scale components such as silica in the membrane separator 12 and the concentrated water line 20 with treated water (permeated water) in the replacement step. The replacement step is desirably performed based on the supply amount of the treated water, for example. The treated water supply amount is preferably set in a range of 2 to 10% of the raw water supply amount in the filtration step, for example. For example, after the replacement step is started, when the supply amount of treated water to the membrane separation device 12 reaches a threshold value set in a range of 2 to 10%, the control device 32 causes the second valve V2, the third valve V3, and the fourth valve to be set. The valve V4 is closed, the treated water supply pump 28 is stopped, and the replacement process is completed. When the treated water supply amount is less than 2% of the raw water supply amount, the scale components such as silica in the membrane separation device 12 and the concentrated water line 20 may not be sufficiently replaced with the treated water. In some cases, the amount of treated water used increases and the recovery rate of the finally obtained treated water (permeated water) decreases. The treated water may be supplied in an amount within the above range based on the water level of the permeate tank 14, or the operation time of the pump 28 may be determined based on the flow rate of the treated water supply pump 28 so that the amount of water is within the above range. Treated water may be supplied. Moreover, you may measure the density | concentration of scale components, such as a silica in the membrane separator 12 or the concentrated water line 20, and may perform a substitution process until a measured value becomes below a preset threshold value.

膜分離装置12の原水供給側に供給する処理水の操作圧力は、ろ過工程においては、逆浸透膜の物性等により適宜設定されるものであるが、置換工程においては、透過水を得ることが目的ではなく、膜分離装置12や濃縮水ライン20内のスケール成分を含有する水を処理水に置き換えることができればよいので、通常の操作圧力で運転する必要はない。例えば、RO膜の標準操作圧力である0.5〜1.5MPa等より低い圧力(例えば、0.1MPaなど)で運転することも可能である。   The operating pressure of the treated water supplied to the raw water supply side of the membrane separation device 12 is appropriately set according to the physical properties of the reverse osmosis membrane in the filtration step, but permeate can be obtained in the replacement step. Since it is only necessary to replace the water containing the scale components in the membrane separator 12 and the concentrated water line 20 with treated water, it is not necessary to operate at normal operating pressure. For example, it is possible to operate at a pressure (for example, 0.1 MPa) lower than 0.5 to 1.5 MPa, which is the standard operating pressure of the RO membrane.

図2は、本実施形態に係る膜処理装置の構成の他の一例を示す模式図である。図2に示す膜処理装置2において、図1に示す膜処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図2に示す膜処理装置2は、透過水ライン(第1透過水ライン)18に接続された透過水排出ライン(第2透過水ライン)34を備える。透過水排出ライン34には第6バルブV6が設けられている。透過水排出ライン34は、透過水を透過水槽14以外の場所に排出するためのものである。図2に示す膜処理装置2では、透過水排出ライン34は、透過水ライン18から分岐して、系外へ延びる経路となっているが、透過水槽14(及び処理水移送ライン24)に流れる経路以外であれば特に制限されるものではなく、例えば、透過水ライン18から分岐して、原水槽10、処理水供給ライン22、或いは濃縮水ライン20等に接続される経路であってもよい。   FIG. 2 is a schematic diagram illustrating another example of the configuration of the film processing apparatus according to the present embodiment. In the film processing apparatus 2 shown in FIG. 2, the same components as those in the film processing apparatus 1 shown in FIG. The membrane treatment device 2 shown in FIG. 2 includes a permeate discharge line (second permeate line) 34 connected to a permeate line (first permeate line) 18. The permeated water discharge line 34 is provided with a sixth valve V6. The permeate discharge line 34 is for discharging permeate to a place other than the permeate tank 14. In the membrane treatment apparatus 2 shown in FIG. 2, the permeate discharge line 34 is branched from the permeate line 18 and extends to the outside of the system, but flows to the permeate tank 14 (and the treated water transfer line 24). The route is not particularly limited as long as it is not a route, and may be a route branched from the permeate line 18 and connected to the raw water tank 10, the treated water supply line 22, the concentrated water line 20, or the like. .

図2に示す膜処理装置2によるろ過工程及び待機工程は前述した通りである。   The filtration process and standby process by the membrane treatment apparatus 2 shown in FIG. 2 are as described above.

<置換工程(処理水供給工程)>
ろ過工程後、制御装置32により、処理水供給ポンプ28が稼働され(その他のポンプは停止)、第3バルブV3、第4バルブV4、第6バルブV6が開放される(その他のバルブは閉じられる)。これにより、処理槽内の透過水(処理水)が処理水供給ライン22、原水供給ライン16を介して膜分離装置12に所定の操作圧力で所定量供給され、処理水の一部は、逆浸透膜を透過して透過水ライン18から透過水排出ライン34に送液される。置換工程の初期段階では、給水圧力が低い状態での運転により、膜分離装置12内に導入された処理水が脱塩されないまま逆浸透膜を透過するため、透過水槽14内の水質が悪化する場合がある。しかし、前述したように、所定の量、逆浸透膜を透過した処理水を透過水排出ライン34に送液することで、透過水槽14内の水質悪化を抑制することが可能となる。
<Replacement process (process water supply process)>
After the filtration process, the treated water supply pump 28 is operated by the control device 32 (the other pumps are stopped), and the third valve V3, the fourth valve V4, and the sixth valve V6 are opened (the other valves are closed). ). As a result, a predetermined amount of permeated water (treated water) in the treatment tank is supplied to the membrane separation device 12 through the treated water supply line 22 and the raw water supply line 16 at a predetermined operating pressure, and a part of the treated water is reversed. The liquid passes through the osmosis membrane and is sent from the permeate line 18 to the permeate discharge line 34. In the initial stage of the replacement process, the treated water introduced into the membrane separation device 12 permeates through the reverse osmosis membrane without being desalted due to the operation at a low feed water pressure, so that the water quality in the permeate tank 14 is deteriorated. There is a case. However, as described above, it is possible to suppress deterioration of water quality in the permeated water tank 14 by sending the treated water that has permeated the reverse osmosis membrane to the permeated water discharge line 34 in a predetermined amount.

透過水排出ライン34から排出される処理水量は、処理水の脱塩率、水回収率を向上させる観点等から、例えば、膜分離装置12への処理水通水量の0.1〜20%の範囲が好ましく、5〜10%の範囲がより好ましい。   The amount of treated water discharged from the permeate discharge line 34 is, for example, 0.1 to 20% of the treated water flow rate to the membrane separation device 12 from the viewpoint of improving the desalination rate and water recovery rate of the treated water. The range is preferable, and the range of 5 to 10% is more preferable.

所定時間経過後、制御装置32により、第3バルブV3及び第4バルブV4が開放されたまま、第6バルブV6が閉じられ、また第2バルブV2が開放される。これにより、逆浸透膜を透過した処理水(透過水)、すなわち脱塩された処理水が、透過水ライン18を通り、透過水槽14内に供給される。   After a predetermined time has elapsed, the control device 32 closes the sixth valve V6 and opens the second valve V2 while the third valve V3 and the fourth valve V4 are opened. As a result, treated water (permeated water) that has permeated through the reverse osmosis membrane, that is, desalted treated water, is supplied into the permeated water tank 14 through the permeated water line 18.

図3は、本実施形態に係る飲料用水製造装置の構成の他の一例を示す模式図である。図3に示す飲料用水製造装置3は、膜処理装置2、塩素供給装置36、アルカリ剤供給装置38、塩素除去装置の一例としての活性炭塔40を備える。図3に示す膜処理装置2は、図2に示す膜処理装置2と同様の構成である。   Drawing 3 is a mimetic diagram showing other examples of the composition of the drinking water manufacturing device concerning this embodiment. 3 includes a membrane treatment device 2, a chlorine supply device 36, an alkaline agent supply device 38, and an activated carbon tower 40 as an example of a chlorine removal device. The film processing apparatus 2 shown in FIG. 3 has the same configuration as the film processing apparatus 2 shown in FIG.

塩素供給装置36は、塩素貯槽42、塩素供給ライン44、塩素供給ポンプ46を備えている。塩素供給ライン44の一端は、塩素貯槽42に接続され、他端は透過水ライン18に接続されている。塩素供給ポンプ46は塩素供給ライン44に設置されている。塩素貯槽42には、次亜塩素酸ナトリウム等の塩素系化合物が貯留されている。   The chlorine supply device 36 includes a chlorine storage tank 42, a chlorine supply line 44, and a chlorine supply pump 46. One end of the chlorine supply line 44 is connected to the chlorine storage tank 42, and the other end is connected to the permeated water line 18. The chlorine supply pump 46 is installed in the chlorine supply line 44. Chlorine compounds such as sodium hypochlorite are stored in the chlorine storage tank 42.

アルカリ剤供給装置38は、アルカリ剤貯槽48、アルカリ剤供給ライン50、アルカリ剤供給ポンプ52を備えている。アルカリ剤供給ライン50の一端は、アルカリ剤貯槽48に接続され、他端は透過水ライン18に接続されている。アルカリ剤供給ポンプ52はアルカリ剤供給ライン50に設置されている。アルカリ剤貯槽48には、水酸化ナトリウム等のアルカリ剤が貯留されている。   The alkaline agent supply device 38 includes an alkaline agent storage tank 48, an alkaline agent supply line 50, and an alkaline agent supply pump 52. One end of the alkaline agent supply line 50 is connected to the alkaline agent storage tank 48, and the other end is connected to the permeated water line 18. The alkaline agent supply pump 52 is installed in the alkaline agent supply line 50. The alkaline agent storage tank 48 stores an alkaline agent such as sodium hydroxide.

活性炭塔40は処理水供給ライン22に設けられている。活性炭塔40内には、例えば活性炭が充填されていたり、活性炭フィルターが設置されていたりする。塩素除去装置として、活性炭塔40を例示するが、処理水中の塩素を除去することができるものであれば、活性炭塔40に制限されるものではない。   The activated carbon tower 40 is provided in the treated water supply line 22. In the activated carbon tower 40, for example, activated carbon is filled or an activated carbon filter is installed. Although the activated carbon tower 40 is illustrated as a chlorine removal apparatus, if it can remove the chlorine in process water, it will not be restrict | limited to the activated carbon tower 40. FIG.

図3に示す飲料用水製造装置3では、井戸54内にポンプ56を設置し、ポンプ56により、井戸54内の井戸水を汲み上げ、その井戸水を原水として原水槽10に供給している。井戸水にはシリカを多く含む場合が多いため、逆浸透膜等にスケールが発生しやすいが、図3に示す飲料用水製造装置3でも、上記同様の置換工程を行うことで、逆浸透膜等のスケール発生を抑制することが可能となる。   In the drinking water production apparatus 3 shown in FIG. 3, a pump 56 is installed in the well 54, the well water in the well 54 is pumped up by the pump 56, and the well water is supplied to the raw water tank 10 as raw water. Since well water often contains a lot of silica, scale is likely to occur in the reverse osmosis membrane or the like, but the drinking water production apparatus 3 shown in FIG. Scale generation can be suppressed.

図3に示す飲料用水製造装置3では、上記同様のろ過工程(及び待機工程)が行われる。しかし、透過水槽14内に貯留される透過水(処理水)は、飲料用水として使用されるため、例えば、ろ過工程中において、塩素供給装置36が稼働され、透過水に塩素が供給される。また、逆浸透膜を通過した透過水はpHが低下する場合があるため、アルカリ剤供給装置38が稼働され、透過水にアルカリ剤が添加されて、透過水のpH調整が行われることが望ましい。   In the drinking water production apparatus 3 shown in FIG. 3, the same filtration step (and standby step) as described above is performed. However, since the permeated water (treated water) stored in the permeated water tank 14 is used as drinking water, for example, during the filtration step, the chlorine supply device 36 is operated and chlorine is supplied to the permeated water. Further, since the pH of the permeated water that has passed through the reverse osmosis membrane may decrease, it is desirable that the alkaline agent supply device 38 is operated and the alkaline agent is added to the permeated water to adjust the pH of the permeated water. .

添加する塩素は、飲料用水の場合、送水末端(水道水の蛇口等)で0.1mg/Lの残留塩素が存在するように、例えば、透過水槽14内の処理水の残留塩素を0.1〜1.2mg/Lの範囲とするのが好ましく、また、透過水槽14内での滞留による消費を考慮して、0.5〜1.2mg/Lの範囲とするのがより好ましい。また、透過水槽14内の処理水のpHは5.8〜8.6とするのが好ましい。   In the case of drinking water, for example, the chlorine added is 0.1% residual chlorine in the permeate tank 14 so that 0.1 mg / L of residual chlorine is present at the end of the water supply (such as a tap for tap water). It is preferable to set it as the range of -1.2 mg / L, and considering the consumption by the residence in the permeated water tank 14, it is more preferable to set it as the range of 0.5-1.2 mg / L. The pH of the treated water in the permeate tank 14 is preferably 5.8 to 8.6.

図3に示す飲料用水製造装置3では、上記同様の置換工程が行われる。この置換工程で使用される処理水(透過水)中には、塩素が存在している。塩素は逆浸透膜の劣化の要因となるが、図3に示す飲料用水製造装置3では、活性炭塔40を備えているため、処理水中の塩素が活性炭塔40により除去された後、膜分離装置12の原水供給側に供給される。その結果、逆浸透膜の劣化を抑制することが可能となる。   In the drinking water production apparatus 3 shown in FIG. 3, the same replacement process as described above is performed. Chlorine is present in the treated water (permeated water) used in this replacement step. Chlorine causes deterioration of the reverse osmosis membrane, but since the drinking water production apparatus 3 shown in FIG. 3 includes the activated carbon tower 40, after the chlorine in the treated water is removed by the activated carbon tower 40, the membrane separation apparatus. 12 raw water supply side. As a result, it is possible to suppress the deterioration of the reverse osmosis membrane.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
図4に示す飲料用水製造装置4を用いて試験を行った。図4に示す飲料用水製造装置4の基本構成は、図3に示す飲料用水製造装置3と同様である。図4に示す飲料用水製造装置4では、膜分離装置12の原水入口近傍の原水供給ライン16に圧力計PI及び電気伝導率計CIを設置し、膜分離装置12の透過水排出側近傍の透過水ライン18に圧力計PIを設置し、濃縮水ライン20に圧力計PI、電気伝導率計CI及び流量計FIを設置し、アルカリ剤供給ライン50及び塩素供給ライン44の接続位置より上流の透過水ライン18に流量計FI及び電気伝導率系CIを設置した。
Example 1
The test was performed using the drinking water production apparatus 4 shown in FIG. The basic configuration of the drinking water production apparatus 4 shown in FIG. 4 is the same as that of the drinking water production apparatus 3 shown in FIG. In the drinking water production apparatus 4 shown in FIG. 4, a pressure gauge PI 1 and an electric conductivity meter CI 1 are installed in the raw water supply line 16 near the raw water inlet of the membrane separation apparatus 12, and the vicinity of the permeate discharge side of the membrane separation apparatus 12. The pressure gauge PI 2 is installed in the permeate water line 18, the pressure gauge PI 3 , the electrical conductivity meter CI 3 and the flow meter FI 2 are installed in the concentrated water line 20, and the alkaline agent supply line 50 and the chlorine supply line 44 are installed. A flow meter FI 1 and an electrical conductivity system CI 2 were installed in the permeate line 18 upstream from the connection position.

<実施例1で使用した原水の性状>
原水:井戸水をろ過器、活性炭、安全フィルターに通水したもの
原水導電率:211μS/cm
水温:15℃
<Properties of raw water used in Example 1>
Raw water: Well water passed through a filter, activated carbon, safety filter Raw water conductivity: 211 μS / cm
Water temperature: 15 ° C

<実施例1の試験条件>
透過水回収率(透過水量/原水供給水量×100):70%
運転条件:ろ過工程45分→置換工程13分
ろ過工程時の膜分離装置通水流量:11.5m/h
(ろ過工程時の膜分離装置通水量:11.5×45/60=8.625m
置換工程時の膜分離装置通水流量:1.5m/h
(置換工程時の膜分離装置通水量:1.5×13/60=0.325m
<Test conditions of Example 1>
Permeated water recovery rate (permeated water amount / raw water supply water amount × 100): 70%
Operating conditions: filtration process 45 minutes → replacement process 13 minutes Membrane separator flow rate during filtration process: 11.5 m 3 / h
(Water flow rate of the membrane separation device during the filtration step: 11.5 × 45/60 = 8.625 m 3 )
Membrane separation device water flow rate during the replacement process: 1.5 m 3 / h
(Water flow rate of the membrane separation device during the replacement step: 1.5 × 13/60 = 0.325 m 3 )

実施例1での置換工程の経過時間(0分〜13分)における濃縮水ライン内の水質(電気伝導率)を電気伝導率計CIにより測定した。その結果を表1にまとめた。 It was measured by an electric conductivity meter CI 3 water quality (electrical conductivity) in the concentrated water line in the elapsed time of the replacement process (0 min to 13 min) in Example 1. The results are summarized in Table 1.

(実施例2)
実施例2では、ろ過工程47分→置換工程15分の運転条件とし、その他の条件を以下のようにして、実施例1と同様の試験を行った。
(Example 2)
In Example 2, the same test as in Example 1 was performed under the conditions of 47 minutes from the filtration step to 15 minutes from the replacement step and the other conditions as follows.

<実施例2で使用した原水の性状>
原水:井戸水をろ過器、活性炭、安全フィルターに通水したもの
原水導電率:298μS/cm
水温:15℃
<Properties of raw water used in Example 2>
Raw water: Well water passed through a filter, activated carbon, and safety filter Raw water conductivity: 298 μS / cm
Water temperature: 15 ° C

<実施例2の試験条件>
透過水回収率(透過水量/原水供給水量×100):70%
運転条件:ろ過工程47分→置換工程15分
ろ過工程時の膜分離装置通水流量:11.5m/h
(ろ過工程時の膜分離装置通水量:11.5×47/60=9.008m
置換工程時の膜分離装置通水流量:1.3m/h
(置換工程時の膜分離装置通水量:1.3×15/60=0.325m
<Test conditions of Example 2>
Permeated water recovery rate (permeated water amount / raw water supply water amount × 100): 70%
Operating conditions: 47 minutes in the filtration process → 15 minutes in the replacement process Water flow rate of the membrane separator during the filtration process: 11.5 m 3 / h
(Water flow rate of the membrane separation device during the filtration step: 11.5 × 47/60 = 9.008 m 3 )
Membrane separation device flow rate during the replacement process: 1.3 m 3 / h
(Water flow rate of membrane separation device during the replacement step: 1.3 × 15/60 = 0.325 m 3 )

実施例2での置換工程の経過時間(0分〜15分)における濃縮水ライン内の水質(電気伝導率)を電気伝導率計CIにより測定した。その結果を表1にまとめた。 It was measured by an electric conductivity meter CI 3 water quality (electrical conductivity) in the concentrated water line in the elapsed time of the replacement process (0 to 15 minutes) in Example 2. The results are summarized in Table 1.

Figure 0006577803
Figure 0006577803

実施例1及び実施例2の結果から分かるように、置換工程における膜分離装置通水量(処理水供給量)を、ろ過工程における膜分離装置通水量(原水供給量)の2〜4%程度にすれば、置換工程後の濃縮水ライン内の水の電気伝導率の値を半分程度まで下げることができる。   As can be seen from the results of Example 1 and Example 2, the water flow rate of the membrane separator (treated water supply amount) in the replacement step is about 2 to 4% of the water flow rate of the membrane separator (raw water supply amount) in the filtration step. If it does so, the value of the electrical conductivity of the water in the concentrated water line after a substitution process can be lowered to about half.

(実施例3)
実施例3では、実施例2の条件で、ろ過工程→置換工程を繰り返し、285日間運転を行った。
(Example 3)
In Example 3, the filtration step → replacement step was repeated under the conditions of Example 2, and the operation was performed for 285 days.

表2に、ろ過工程における圧力計PIにより測定した膜分離装置の入口圧力、圧力計PIにより測定した透過水圧力、圧力計PIにより測定した濃縮水圧力、電気伝導率計CIにより測定した膜分離装置入口付近の水質、電気伝導率計CIにより測定した透過水の水質(電気伝導率)、流量計FIにより測定した透過水流量、流量計FIにより測定した濃縮水流量を示す。 Table 2 shows the inlet pressure of the membrane separation device measured by the pressure gauge PI 1 in the filtration process, the permeate pressure measured by the pressure gauge PI 2, the concentrated water pressure measured by the pressure gauge PI 3 , and the conductivity meter CI 1. Measured water quality near the inlet of the membrane separator, permeated water quality (electric conductivity) measured by the electric conductivity meter CI 2 , permeated water flow rate measured by the flow meter FI 1 , concentrated water flow rate measured by the flow meter FI 2 Indicates.

Figure 0006577803
Figure 0006577803

膜分離装置の入口圧力と濃縮水圧力の差圧は、運転日数が経過してもほとんど変わらず、また、透過水流量も11.5〜12.0m/hの間で安定していた。これにより、逆浸透膜にスケールは発生していないといえる。また、透過水の電気伝導率も8.84〜10.0μS/cmの間で安定していた。 The pressure difference between the inlet pressure of the membrane separator and the concentrated water pressure hardly changed even after the operating days had passed, and the permeate flow rate was stable between 11.5 and 12.0 m 3 / h. Thus, it can be said that no scale is generated in the reverse osmosis membrane. Further, the electric conductivity of the permeated water was stable between 8.84 and 10.0 μS / cm.

表3に、井戸水、ろ過工程における原水、透過水及び濃縮水の水質の結果を示す。   Table 3 shows the results of the quality of well water, raw water, permeated water, and concentrated water in the filtration process.

Figure 0006577803
Figure 0006577803

ろ過工程中の濃縮水の電気伝導率は651μS/cm、シリカ濃度は189mgCaCO/L(227mgSiO/L)であった。このように、実施例3では、シリカを高濃度で濃縮しているにも関わらず、前述したように、逆浸透膜にスケールは発生していない。 The electric conductivity of the concentrated water during the filtration step was 651 μS / cm, and the silica concentration was 189 mg CaCO 3 / L (227 mg SiO 2 / L). Thus, in Example 3, although the silica is concentrated at a high concentration, no scale is generated in the reverse osmosis membrane as described above.

1,2 膜処理装置、3,4 飲料用水製造装置、10 原水槽、12 膜分離装置、14 透過水槽、16 原水供給ライン、18 透過水ライン、20 濃縮水ライン、22 処理水供給ライン、24 処理水移送ライン、26 原水ポンプ、28 処理水供給ポンプ、30 処理水移送ポンプ、32 制御装置、34 透過水排出ライン、36 塩素供給装置、38 アルカリ剤供給装置、40 活性炭塔、42 塩素貯槽、44 塩素供給ライン、46 塩素供給ポンプ、48 アルカリ剤貯槽、50 アルカリ剤供給ライン、52 アルカリ剤供給ポンプ,54 井戸、56 ポンプ、CI,CI,CI 電気伝導率計、FI,FI 流量計、PI,PI,PI 圧力計、V1,V2,V3,V4,V5,V6 バルブ。 1, 2 Membrane treatment device, 3, 4 Beverage water production device, 10 Raw water tank, 12 Membrane separation device, 14 Permeate water tank, 16 Raw water supply line, 18 Permeate water line, 20 Concentrated water line, 22 Treated water supply line, 24 Process water transfer line, 26 Raw water pump, 28 Process water supply pump, 30 Process water transfer pump, 32 Control device, 34 Permeate discharge line, 36 Chlorine supply device, 38 Alkaline agent supply device, 40 Activated carbon tower, 42 Chlorine storage tank, 44 Chlorine supply line, 46 Chlorine supply pump, 48 Alkaline agent storage tank, 50 Alkaline agent supply line, 52 Alkaline agent supply pump, 54 well, 56 pump, CI 1 , CI 2 , CI 3 conductivity meter, FI 1 , FI 2 flow meters, PI 1 , PI 2 , PI 3 pressure gauges, V1, V2, V3, V4, V5, V6 valves.

Claims (4)

原水を透過水と濃縮水とに分離する逆浸透膜を備えた膜分離装置と、
前記膜分離装置に前記原水を供給するための原水供給ラインと、
前記膜分離装置から前記透過水を排出するための第1透過水ラインと、
前記第1透過水ラインを流れる前記透過水を貯留する透過水槽と、
前記膜分離装置から前記濃縮水を排出するための濃縮水ラインと、
前記透過水槽内の前記透過水を処理水として、前記膜分離装置に原水供給側から供給するための処理水供給ラインと、
前記膜分離装置への原水の供給を停止させた状態で、前記処理水供給ラインを介した前記膜分離装置への前記処理水の供給を開始する第1制御手段と、
前記第1透過水ラインから分岐して、前記透過水を前記透過水槽以外の場所へ排出するための第2透過水ラインと、
前記処理水を前記膜分離装置に供給した際に、前記膜分離装置から排出される透過水を前記第2透過水ラインに所定量送液する第2制御手段と、
前記所定量送液後に、前記膜分離装置から排出される透過水を前記第1透過水ラインへ送液する第3制御手段と、を備えることを特徴とする膜処理装置。
A membrane separation device comprising a reverse osmosis membrane for separating raw water into permeate and concentrated water;
A raw water supply line for supplying the raw water to the membrane separator;
A first permeate line for discharging the permeate from the membrane separator;
A permeate tank for storing the permeate flowing through the first permeate line;
A concentrated water line for discharging the concentrated water from the membrane separator;
Treated water supply line for supplying the permeated water in the permeated water tank as treated water to the membrane separation device from the raw water supply side;
A first control means for starting supply of the treated water to the membrane separation device via the treated water supply line in a state where supply of raw water to the membrane separation device is stopped;
A second permeate line for branching from the first permeate line and discharging the permeate to a place other than the permeate tank;
Second control means for feeding a predetermined amount of permeate discharged from the membrane separator to the second permeate line when the treated water is supplied to the membrane separator;
The predetermined amount liquid feed later film processing apparatus you, comprising a third control means for feeding the permeate to be discharged to the first permeate line from the membrane separator.
原水を透過水と濃縮水とに分離する逆浸透膜を備えた膜分離装置と、
前記膜分離装置に前記原水を供給するための原水供給ラインと、
前記膜分離装置から前記透過水を排出するための第1透過水ラインと、
前記第1透過水ラインを流れる前記透過水を貯留する透過水槽と、
前記膜分離装置から前記濃縮水を排出するための濃縮水ラインと、
前記透過水槽内の前記透過水を処理水として、前記膜分離装置に原水供給側から供給するための処理水供給ラインと、
前記膜分離装置への原水の供給を停止させた状態で、前記処理水供給ラインを介した前記膜分離装置への前記処理水の供給を開始する第1制御手段と、を備える膜処理装置と、
前記第1透過水ラインから前記透過水槽へ流れる前記透過水に塩素を添加する塩素添加手段と、
前記処理水供給ラインを流れる前記処理水中の塩素を除去する塩素除去手段と、を備えることを特徴とする飲料用水製造装置。
A membrane separation device comprising a reverse osmosis membrane for separating raw water into permeate and concentrated water;
A raw water supply line for supplying the raw water to the membrane separator;
A first permeate line for discharging the permeate from the membrane separator;
A permeate tank for storing the permeate flowing through the first permeate line;
A concentrated water line for discharging the concentrated water from the membrane separator;
Treated water supply line for supplying the permeated water in the permeated water tank as treated water to the membrane separation device from the raw water supply side;
A first control means for starting supply of the treated water to the membrane separation device via the treated water supply line in a state where supply of raw water to the membrane separation device is stopped; and a membrane treatment device comprising: ,
Chlorine addition means for adding chlorine to the permeate flowing from the first permeate line to the permeate tank;
A drinking water production apparatus comprising: chlorine removing means for removing chlorine in the treated water flowing through the treated water supply line.
逆浸透膜を備えた膜分離装置に原水を供給して、透過水と濃縮水とに分離し、前記透過水を透過水槽に供給するろ過工程と、
前記膜分離装置への原水の供給を停止させた状態で、前記透過水槽内の前記透過水を処理水として、前記膜分離装置に原水供給側から供給する処理水供給工程と、
前記処理水供給工程の際に、前記膜分離装置から排出される透過水を前記透過水槽以外の場所に所定量送液する工程と、
前記所定量送液後に、前記膜分離装置から排出される透過水を前記透過水槽へ送液する工程と、を備えることを特徴とする膜処理方法。
Supplying raw water to a membrane separation device equipped with a reverse osmosis membrane, separating the permeated water and concentrated water, and supplying the permeated water to the permeated water tank;
With the supply of raw water to the membrane separator stopped, the treated water supply step of supplying the permeated water in the permeate tank as treated water to the membrane separator from the raw water supply side;
A step of feeding a predetermined amount of permeated water discharged from the membrane separation device to a place other than the permeated water tank during the treated water supply step;
And a step of feeding permeated water discharged from the membrane separation device to the permeated water tank after feeding the predetermined amount.
逆浸透膜を備えた膜分離装置に原水を供給して、透過水と濃縮水とに分離し、前記透過水を透過水槽に供給するろ過工程と、
前記透過水槽に供給される前記透過水に塩素を添加する塩素添加工程と、
前記膜分離装置への原水の供給を停止させた状態で、前記透過水槽内の前記透過水を処理水として、前記膜分離装置に原水供給側から供給する処理水供給工程と、
前記処理水供給工程において、前記処理水を前記膜分離装置に供給する際に、前記処理水中の塩素を除去する塩素除去工程と、を備えることを特徴とする飲料用水製造方法。
Supplying raw water to a membrane separation device equipped with a reverse osmosis membrane, separating the permeated water and concentrated water, and supplying the permeated water to the permeated water tank;
A chlorine addition step of adding chlorine to the permeate supplied to the permeate tank;
With the supply of raw water to the membrane separator stopped, the treated water supply step of supplying the permeated water in the permeate tank as treated water to the membrane separator from the raw water supply side;
A drinking water production method comprising: a chlorine removal step of removing chlorine in the treated water when the treated water is supplied to the membrane separation device in the treated water supply step.
JP2015189419A 2015-09-28 2015-09-28 Membrane treatment apparatus, drinking water production apparatus, membrane treatment method, and drinking water production method Active JP6577803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015189419A JP6577803B2 (en) 2015-09-28 2015-09-28 Membrane treatment apparatus, drinking water production apparatus, membrane treatment method, and drinking water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015189419A JP6577803B2 (en) 2015-09-28 2015-09-28 Membrane treatment apparatus, drinking water production apparatus, membrane treatment method, and drinking water production method

Publications (2)

Publication Number Publication Date
JP2017064570A JP2017064570A (en) 2017-04-06
JP6577803B2 true JP6577803B2 (en) 2019-09-18

Family

ID=58491013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015189419A Active JP6577803B2 (en) 2015-09-28 2015-09-28 Membrane treatment apparatus, drinking water production apparatus, membrane treatment method, and drinking water production method

Country Status (1)

Country Link
JP (1) JP6577803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173220B1 (en) 2021-06-03 2022-11-16 栗田工業株式会社 Method of operating a reverse osmosis membrane device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254804A (en) * 1986-04-28 1987-11-06 Kyocera Corp Flushing system for reverse-osmosis desalination device
JP3430598B2 (en) * 1993-12-22 2003-07-28 栗田工業株式会社 Membrane separation device
JPH08229553A (en) * 1995-02-23 1996-09-10 Nishihara Eisei Kogyosho:Kk Purifying device for drinking water
JP4918512B2 (en) * 2008-02-26 2012-04-18 三菱重工業株式会社 Method and apparatus for cleaning reverse osmosis membrane module
KR20110007180A (en) * 2008-04-14 2011-01-21 쿠리타 고교 가부시키가이샤 Method of operating reverse osmosis membrane module
JP2013086049A (en) * 2011-10-20 2013-05-13 Miura Co Ltd Water treatment system
WO2014061695A1 (en) * 2012-10-18 2014-04-24 東レ株式会社 Fresh water generation method

Also Published As

Publication number Publication date
JP2017064570A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US20230182080A1 (en) High recovery integrated uf/ro system
KR101916557B1 (en) Ultrapure water production apparatus and ultrapure water production method
JP2008307487A (en) Desalting device
JP5998929B2 (en) Membrane separation method
JP5834492B2 (en) Ultrapure water production equipment
CN105540746A (en) water purification system
WO2015151899A1 (en) Method for treating water containing low molecular weight organic substance
US20160023166A1 (en) System for cleaning a membrane
JP5953726B2 (en) Ultrapure water production method and apparatus
JP5757110B2 (en) Water treatment method and water treatment system
JP6577803B2 (en) Membrane treatment apparatus, drinking water production apparatus, membrane treatment method, and drinking water production method
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
EP3268317B1 (en) A subsea installation and method for treatment of seawater
JP4351559B2 (en) Seawater desalination method
JP5966639B2 (en) Salt water desalination apparatus and fresh water generation method
JP4825932B2 (en) Water treatment method
JP2011120996A (en) Method and apparatus for desalination
WO2021161569A1 (en) Ultrapure water production device and ultrapure water production method
WO2013146784A1 (en) Method of desalination
JP2014034005A (en) Salt water desalination apparatus and fresh water production method
US9682871B2 (en) Apparatus for killing and preventing growth of algae and bacteria in the piping, filtering and pumping components of watermaker systems during periods of non-use
JP6860648B1 (en) Water treatment system and water treatment method
CN216513257U (en) Efficient energy-saving environment-friendly water treatment equipment and boiler water supply system
JP6981331B2 (en) Ultrapure water supply device
KR20130066430A (en) Water treatment system using the balance tank of pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190823

R150 Certificate of patent or registration of utility model

Ref document number: 6577803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250