JP6572860B2 - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
JP6572860B2
JP6572860B2 JP2016198025A JP2016198025A JP6572860B2 JP 6572860 B2 JP6572860 B2 JP 6572860B2 JP 2016198025 A JP2016198025 A JP 2016198025A JP 2016198025 A JP2016198025 A JP 2016198025A JP 6572860 B2 JP6572860 B2 JP 6572860B2
Authority
JP
Japan
Prior art keywords
magnet
groove
rotor
hole
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016198025A
Other languages
Japanese (ja)
Other versions
JP2018061368A (en
Inventor
宏 金原
宏 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016198025A priority Critical patent/JP6572860B2/en
Publication of JP2018061368A publication Critical patent/JP2018061368A/en
Application granted granted Critical
Publication of JP6572860B2 publication Critical patent/JP6572860B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、ロータに関する。   The present invention relates to a rotor.

電気自動車やハイブリッド自動車などに用いられる電動モータは、ロータと、ステータと、回転軸とを含む。ロータは、回転軸の外径側に固定されるロータコアと、ロータコアに固定される複数の永久磁石と、を有する。ロータコアとして、永久磁石を挿入するための磁石孔が設けられた磁性鋼板を軸方向に複数枚積層して形成されたものが知られている。また、ステータはコイルを有する。このコイルに電流が流れることにより回転磁界が発生し、この回転磁界とロータとの間に働く電磁的作用によりロータが回転する。   An electric motor used for an electric vehicle or a hybrid vehicle includes a rotor, a stator, and a rotating shaft. The rotor includes a rotor core that is fixed to the outer diameter side of the rotating shaft, and a plurality of permanent magnets that are fixed to the rotor core. As a rotor core, one formed by laminating a plurality of magnetic steel plates provided with magnet holes for inserting permanent magnets in the axial direction is known. The stator has a coil. When a current flows through this coil, a rotating magnetic field is generated, and the rotor is rotated by an electromagnetic action acting between this rotating magnetic field and the rotor.

電動モータは、回転時にステータのコイルを流れる電流によって発熱する。特に、電動モータを高速回転させた場合や電動モータが大型の場合には、回転時の電動モータの発熱量が著しく大きくなるので、これにより永久磁石の温度が著しく上昇する。永久磁石の温度が著しく上昇すると、電動モータのトルクを発生させる磁束が低下するので、電動モータの性能が悪化する。こういったことから、電動モータの回転時に永久磁石を冷却する必要がある。   The electric motor generates heat by the current flowing through the stator coil during rotation. In particular, when the electric motor is rotated at a high speed or when the electric motor is large, the amount of heat generated by the electric motor at the time of rotation is significantly increased, and thereby the temperature of the permanent magnet is remarkably increased. When the temperature of the permanent magnet rises significantly, the magnetic flux that generates the torque of the electric motor decreases, so the performance of the electric motor deteriorates. For these reasons, it is necessary to cool the permanent magnet when the electric motor rotates.

特許文献1には、磁性板(磁性鋼板)の表面に、冷媒流路用の溝として、磁石孔空隙部と磁性板の外周とを接続する外周側径方向流路溝と、軸方向流路孔と磁石孔空隙部とを接続する内周側径方向流路溝53bとが設けられた回転子(ロータ)が記載されている。電動モータの回転時に冷媒流路用の溝に気体冷媒を流すことで永久磁石を効果的に冷却できるとしている。   In Patent Document 1, an outer peripheral radial flow groove connecting the magnet hole gap and the outer periphery of the magnetic plate as a refrigerant flow groove on the surface of a magnetic plate (magnetic steel plate), and an axial flow channel A rotor (rotor) provided with an inner peripheral radial flow channel 53b that connects the hole and the magnet hole gap is described. It is said that the permanent magnet can be effectively cooled by flowing the gas refrigerant through the groove for the refrigerant flow path when the electric motor rotates.

特開2015−211573号公報JP 2015-2111573 A

しかしながら、特許文献1に記載のロータでは、磁性鋼板の表面に冷媒流路用の溝を設けたことで、磁性鋼板の溝部分の強度が低下する。このため、電動モータを高速回転させた場合に、ロータにおいて、回転時の遠心力に耐え得る十分な強度が得られないおそれがあった。   However, in the rotor described in Patent Document 1, the strength of the groove portion of the magnetic steel sheet is reduced by providing the coolant channel groove on the surface of the magnetic steel sheet. For this reason, when the electric motor is rotated at high speed, the rotor may not have sufficient strength to withstand the centrifugal force during rotation.

本発明は、以上の背景に鑑みなされたものであり、回転時の遠心力に対して十分な強度を確保しつつ、永久磁石を効果的に冷却することができるロータを提供することを目的とする。   The present invention has been made in view of the above background, and an object of the present invention is to provide a rotor capable of effectively cooling a permanent magnet while ensuring sufficient strength against centrifugal force during rotation. To do.

本発明は、永久磁石と、積層された複数の磁性鋼板により構成され回転軸が嵌挿される軸孔と前記永久磁石が挿入される複数の磁石孔を有するロータコアと、を含むロータであって、各磁性鋼板の表面には、前記複数の磁石孔のそれぞれの周囲における磁石孔周囲溝および前記磁石孔周囲溝と前記軸孔を接続する内周側接続溝が形成され、前記磁石孔周囲溝および前記内周側接続溝には、それぞれ非磁性体の熱伝導部材が埋め込まれ、前記内周側接続溝に埋め込まれた熱伝導部材の前記軸孔側の端部には冷熱源が接触されるものである。   The present invention is a rotor comprising a permanent magnet, a rotor core having a plurality of laminated magnetic steel plates and having a shaft hole into which a rotating shaft is inserted and a plurality of magnet holes into which the permanent magnet is inserted, On the surface of each magnetic steel plate, a magnet hole peripheral groove around each of the plurality of magnet holes and an inner peripheral side connection groove connecting the magnet hole peripheral groove and the shaft hole are formed, and the magnet hole peripheral groove and A non-magnetic heat conduction member is embedded in each of the inner peripheral side connection grooves, and a cold heat source is brought into contact with the end portion on the shaft hole side of the heat conduction member embedded in the inner peripheral side connection grooves. Is.

本発明によれば、回転時の遠心力に対して十分な強度を確保しつつ、永久磁石を効果的に冷却することができる。   According to the present invention, it is possible to effectively cool a permanent magnet while ensuring sufficient strength against centrifugal force during rotation.

本実施の形態にかかるロータの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the rotor concerning this Embodiment. 図1において一点鎖線の扇形で囲った領域を拡大した拡大図である。It is the enlarged view to which the area | region enclosed with the dashed-dotted line sector in FIG. 1 was expanded. 図2のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG.

以下、図面を参照して本発明の実施の形態について説明する。
まず、図1を参照して本実施の形態にかかるロータ10の概略構成について説明する。ロータ10は、電気自動車やハイブリッド自動車などに用いられる電動モータに使用される。電動モータは、ロータ10の周囲に所定のギャップを隔てて配置された筒状のステータを備えている。ステータは、電流が流れることにより回転磁界を発生させるコイルを有する。この回転磁界とロータ10との間に働く電磁的作用により、ロータ10が回転する。
Embodiments of the present invention will be described below with reference to the drawings.
First, a schematic configuration of the rotor 10 according to the present embodiment will be described with reference to FIG. The rotor 10 is used for an electric motor used in an electric vehicle, a hybrid vehicle, and the like. The electric motor includes a cylindrical stator that is disposed around the rotor 10 with a predetermined gap therebetween. The stator has a coil that generates a rotating magnetic field when a current flows. The rotor 10 is rotated by an electromagnetic action acting between the rotating magnetic field and the rotor 10.

図1は、ロータ10の概略構成を示す斜視図である。なお、図1において一点鎖線の扇形で囲った領域にのみ符号を付し、一点鎖線の扇形で囲った領域以外の領域については符号を省略する。図1に示すように、ロータ10は、ロータコア11と永久磁石14とを有する。   FIG. 1 is a perspective view showing a schematic configuration of the rotor 10. In FIG. 1, reference numerals are given only to the areas surrounded by the one-dot chain lines, and the reference numerals are omitted for the areas other than the areas surrounded by the one-dot chain lines. As shown in FIG. 1, the rotor 10 includes a rotor core 11 and a permanent magnet 14.

ロータコア11は、円環状に打ち抜き加工された磁性鋼板を軸方向Zに積層することで形成される。ロータコア11を構成する複数の磁性鋼板は、カシメ、接着、又は溶接などにより、一体的に連結されている。ロータコア11内で生じる渦電流によるエネルギー損失をできるだけ低減すべく、ロータコア11を構成する各磁性鋼板は、両側の表面に形成された絶縁皮膜によって互いに電気的に絶縁されている。   The rotor core 11 is formed by laminating magnetic steel plates punched into an annular shape in the axial direction Z. The plurality of magnetic steel plates constituting the rotor core 11 are integrally connected by caulking, bonding, welding, or the like. In order to reduce energy loss due to eddy currents generated in the rotor core 11 as much as possible, the magnetic steel plates constituting the rotor core 11 are electrically insulated from each other by insulating films formed on both surfaces.

ロータコア11は、回転軸を嵌合するための軸孔113と、永久磁石14を挿入するための磁石孔111,112a,112bが形成されている。軸孔113はロータコア11の中央の位置に形成されている。軸孔113は、ロータコア11を軸方向Zに貫通する貫通孔である。磁石孔111は、ロータコア11の外縁部付近において円周方向に延在するように形成されている。また、一対の磁石孔112a,112bは、それぞれ磁石孔111の両側において半径方向に延在するように形成されている。磁石孔111,112a,112bは、ロータコア11を軸方向Zに貫通する貫通孔である。   The rotor core 11 is formed with a shaft hole 113 for fitting the rotating shaft and magnet holes 111, 112a, 112b for inserting the permanent magnets 14. The shaft hole 113 is formed at the center position of the rotor core 11. The shaft hole 113 is a through hole that penetrates the rotor core 11 in the axial direction Z. The magnet hole 111 is formed so as to extend in the circumferential direction in the vicinity of the outer edge portion of the rotor core 11. The pair of magnet holes 112 a and 112 b are formed so as to extend in the radial direction on both sides of the magnet hole 111, respectively. The magnet holes 111, 112 a, 112 b are through holes that penetrate the rotor core 11 in the axial direction Z.

さらに、ロータコア11には、永久磁石14からの漏れ磁束を抑制するための磁束漏れ抑制孔114が形成されている。磁束漏れ抑制孔114は、磁石孔112aの半径方向内側(半径方向中心側)の端部と磁石孔112bの半径方向内側の端部との間に形成されている。磁束漏れ抑制孔114は、ロータコア11を軸方向Zに貫通する貫通孔である。   Further, the rotor core 11 is formed with a magnetic flux leakage suppression hole 114 for suppressing leakage magnetic flux from the permanent magnet 14. The magnetic flux leakage suppression hole 114 is formed between a radially inner end (radial center side) end of the magnet hole 112a and a radially inner end of the magnet hole 112b. The magnetic flux leakage suppression hole 114 is a through hole that penetrates the rotor core 11 in the axial direction Z.

ロータコア11は、図1中の一点鎖線の扇形で囲った領域に示されたパターンが、円周方向に沿って45°ピッチで8回繰り返されている。   In the rotor core 11, the pattern shown in the region surrounded by the one-dot chain line in FIG. 1 is repeated eight times at a 45 ° pitch along the circumferential direction.

図2は、図1において一点鎖線の扇形で囲った領域を拡大した拡大図である。図2に示すように、各磁性鋼板の表面には、磁石孔111,112a,112bのそれぞれの周囲における磁石孔周囲溝21および磁石孔周囲溝21と軸孔113を接続する内周側接続溝22が形成されている。   FIG. 2 is an enlarged view enlarging the region surrounded by the alternate long and short dash line in FIG. As shown in FIG. 2, on the surface of each magnetic steel plate, the magnet hole peripheral groove 21 around each of the magnet holes 111, 112 a, 112 b and the inner peripheral side connection groove connecting the magnet hole peripheral groove 21 and the shaft hole 113. 22 is formed.

図3は、図2のIII−III線に沿う断面図である。図3に示すように、各磁性鋼板の表面に形成された磁石孔周囲溝21には、非磁性体の熱伝導部材20が埋め込まれている。図2に示す、各磁性鋼板の表面に形成された内周側接続溝22についても、磁石孔周囲溝21と同様に、非磁性体の熱伝導部材20が埋め込まれている。内周側接続溝22に埋め込まれた熱伝導部材20の軸孔113側の端部22aにおいて、冷却油などの冷熱源と接触する。   3 is a cross-sectional view taken along line III-III in FIG. As shown in FIG. 3, a non-magnetic heat conducting member 20 is embedded in the magnet hole surrounding groove 21 formed on the surface of each magnetic steel plate. As with the magnet hole surrounding groove 21, the nonmagnetic heat conduction member 20 is embedded in the inner peripheral side connection groove 22 formed on the surface of each magnetic steel plate shown in FIG. The end 22a on the shaft hole 113 side of the heat conducting member 20 embedded in the inner peripheral side connection groove 22 is in contact with a cooling heat source such as cooling oil.

各磁性鋼板の表面には、磁石孔周囲溝21と磁性鋼板の外周115を接続する外周側接続溝23や隣り合う磁石孔周囲溝21を連結する連結溝24が形成されていてもよい。外周側接続溝23および連結溝24には、磁石孔周囲溝21と同様に、非磁性体の熱伝導部材20が埋め込まれる。冷却パスを増やすことで、永久磁石14をより効果的に冷却することができる。   On the surface of each magnetic steel plate, an outer peripheral side connection groove 23 that connects the magnet hole peripheral groove 21 and the outer periphery 115 of the magnetic steel plate or a connecting groove 24 that connects adjacent magnet hole peripheral grooves 21 may be formed. In the outer peripheral side connecting groove 23 and the connecting groove 24, similarly to the magnet hole surrounding groove 21, a non-magnetic heat conducting member 20 is embedded. By increasing the cooling path, the permanent magnet 14 can be cooled more effectively.

ロータコア11内で生じる渦電流によるエネルギー損失をできるだけ低減する必要があるため、熱伝導部材20の材質は非磁性体のものを選択する。熱伝導部材20の材質は、例えば、アルミニウム(熱伝導率:236W/m・K)、銀(熱伝導率:426W/m・K)、ステンレス鋼(熱伝導率:16.7〜20.9W/m・K)、カーボンナノチューブ(熱伝導率:3000〜5500W/m・K)などである。特に、カーボンナノチューブは、熱伝導率が極めて高く、微細な形状に加工することが可能なため、コストの問題が解決されれば非磁性体の熱伝導部材20の材質として非常に好ましい。   Since it is necessary to reduce energy loss due to the eddy current generated in the rotor core 11 as much as possible, the material of the heat conducting member 20 is selected from a non-magnetic material. The material of the heat conductive member 20 is, for example, aluminum (thermal conductivity: 236 W / m · K), silver (thermal conductivity: 426 W / m · K), stainless steel (thermal conductivity: 16.7 to 20.9 W). / M · K), carbon nanotubes (thermal conductivity: 3000 to 5500 W / m · K), and the like. In particular, carbon nanotubes have extremely high thermal conductivity and can be processed into a fine shape. Therefore, if the problem of cost is solved, the carbon nanotube is very preferable as a material for the non-magnetic heat conductive member 20.

内周側接続溝22に埋め込まれた熱伝導部材20の軸孔113側の端部22aにおいて冷熱源が接触すると、冷熱は、内周側接続溝22に埋め込まれた熱伝導部材20の軸孔113側の端部22aから磁石孔周囲溝21に接続された端部へと伝導する。さらに、冷熱は、磁石孔周囲溝21に埋め込まれた熱伝導部材20に伝導して磁石孔周囲溝21に埋め込まれた熱伝導部材20が冷却される。磁石孔周囲溝21に埋め込まれた熱伝導部材20が冷却されると、磁石孔112a,112bに嵌挿された永久磁石14が磁石孔周囲溝21に埋め込まれた熱伝導部材20を介して冷却される。これにより、永久磁石14を効果的に冷却することができる。   When the cold heat source comes into contact with the end portion 22a on the shaft hole 113 side of the heat conducting member 20 embedded in the inner peripheral side connecting groove 22, the cold heat is transferred to the shaft hole of the heat conducting member 20 embedded in the inner peripheral side connecting groove 22. Conduction is conducted from the end 22a on the 113 side to the end connected to the magnet hole peripheral groove 21. Further, the cold heat is conducted to the heat conducting member 20 embedded in the magnet hole surrounding groove 21, and the heat conducting member 20 embedded in the magnet hole surrounding groove 21 is cooled. When the heat conducting member 20 embedded in the magnet hole surrounding groove 21 is cooled, the permanent magnet 14 fitted in the magnet holes 112a and 112b is cooled through the heat conducting member 20 embedded in the magnet hole surrounding groove 21. Is done. Thereby, the permanent magnet 14 can be cooled effectively.

ロータコア11の各磁性鋼板の表面に、磁石孔周囲溝21や内周側接続溝22などの永久磁石14を冷却するための溝を形成すると、磁性鋼板の溝部分の強度が低下する。永久磁石14を冷却するための溝に固体である熱伝導部材20が埋め込まれることで、磁性鋼板の溝部分の強度が補強される。これにより、回転時の遠心力に対して十分な強度を確保することができる。   If grooves for cooling the permanent magnets 14 such as the magnet hole peripheral groove 21 and the inner peripheral side connection groove 22 are formed on the surface of each magnetic steel plate of the rotor core 11, the strength of the groove portion of the magnetic steel plate decreases. The strength of the groove portion of the magnetic steel sheet is reinforced by embedding the solid heat conduction member 20 in the groove for cooling the permanent magnet 14. Thereby, sufficient intensity | strength is securable with respect to the centrifugal force at the time of rotation.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。上記実施の形態では、ロータコアの各磁性鋼板の一方の側の表面にのみ非磁性体の熱伝導部材が埋め込まれる磁石孔周囲溝および内周側接続溝を形成したが、これに限るものではない。ロータコアの各磁性鋼板の両側の表面に非磁性体の熱伝導部材が埋め込まれる磁石孔周囲溝および内周側接続溝を形成してもよい。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention. In the above embodiment, the magnet hole peripheral groove and the inner peripheral side connection groove in which the non-magnetic heat conduction member is embedded only on the surface of one side of each magnetic steel plate of the rotor core are formed, but the present invention is not limited to this. . A magnet hole peripheral groove and an inner peripheral connection groove in which a non-magnetic heat conducting member is embedded may be formed on both surfaces of each magnetic steel plate of the rotor core.

10 ロータ
11 ロータコア
14 永久磁石
20 熱伝導部材
21 磁石孔周囲溝
22 内周側接続溝
22 内周側接続溝
22a 端部
23 外周側接続溝
24 連結溝
111,112a,112b 磁石孔
113 軸孔
114 磁束漏れ抑制孔
115 外周
DESCRIPTION OF SYMBOLS 10 Rotor 11 Rotor core 14 Permanent magnet 20 Heat conduction member 21 Magnet hole surrounding groove 22 Inner peripheral side connection groove 22 Inner peripheral side connection groove 22a End 23 Outer peripheral side connection groove 24 Connection groove 111, 112a, 112b Magnet hole 113 Shaft hole 114 Magnetic flux leakage suppression hole 115

Claims (1)

永久磁石と、積層された複数の磁性鋼板により構成され回転軸が嵌挿される軸孔と前記永久磁石が挿入される複数の磁石孔を有するロータコアと、を含むロータであって、
各磁性鋼板の表面には、前記複数の磁石孔のそれぞれの周囲における磁石孔周囲溝および前記磁石孔周囲溝と前記軸孔を接続する内周側接続溝が形成され、
前記磁石孔周囲溝および前記内周側接続溝には、それぞれ非磁性体の熱伝導部材が埋め込まれ、
前記内周側接続溝に埋め込まれた熱伝導部材の前記軸孔側の端部には冷熱源が接触される、ロータ。
A rotor including a permanent magnet, a shaft hole configured by a plurality of laminated magnetic steel plates and having a rotation shaft inserted therein, and a rotor core having a plurality of magnet holes into which the permanent magnet is inserted,
On the surface of each magnetic steel sheet, a magnet hole peripheral groove and a magnet hole peripheral groove and an inner peripheral side connection groove connecting the shaft hole are formed around each of the plurality of magnet holes,
A non-magnetic heat conduction member is embedded in each of the magnet hole peripheral groove and the inner peripheral connection groove,
A rotor in which a cold heat source is brought into contact with the end portion on the shaft hole side of the heat conducting member embedded in the inner peripheral side connection groove.
JP2016198025A 2016-10-06 2016-10-06 Rotor Expired - Fee Related JP6572860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016198025A JP6572860B2 (en) 2016-10-06 2016-10-06 Rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016198025A JP6572860B2 (en) 2016-10-06 2016-10-06 Rotor

Publications (2)

Publication Number Publication Date
JP2018061368A JP2018061368A (en) 2018-04-12
JP6572860B2 true JP6572860B2 (en) 2019-09-11

Family

ID=61910126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016198025A Expired - Fee Related JP6572860B2 (en) 2016-10-06 2016-10-06 Rotor

Country Status (1)

Country Link
JP (1) JP6572860B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664737B2 (en) * 2004-07-30 2011-04-06 本田技研工業株式会社 Cooling structure of rotating electric machine
JP2008228523A (en) * 2007-03-15 2008-09-25 Toyota Industries Corp Rotary electric machine and its rotor
JP2011182552A (en) * 2010-03-01 2011-09-15 Toyota Motor Corp Rotor core, and core for rotary electric machine
JP2013013182A (en) * 2011-06-28 2013-01-17 Aisin Seiki Co Ltd Cooling structure for motor
JP2013099221A (en) * 2011-11-07 2013-05-20 Toyota Motor Corp Rotor and rotary electric machine

Also Published As

Publication number Publication date
JP2018061368A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6331506B2 (en) Rotor structure of rotating electrical machine
JP5250692B2 (en) Permanent magnet rotating electric machine
JP2007104888A (en) Rotary electric machine
US20180138795A1 (en) Eddy current deceleration device
US20110278967A1 (en) Rotor for electric rotating machine
JP2016010176A (en) Motor
JP2010220402A (en) Permanent-magnet rotary electric machine
JP6852575B2 (en) An electric motor equipped with a rotor for an electric motor and a rotor for an electric motor
JP6425065B2 (en) Electric rotating machine
JPWO2016063980A1 (en) Magnetic fluid seal structure for high speed rotation
JP2006014399A (en) Cooling structure of axial gap rotary electric machine
JP2009136090A (en) Rotor plate
JP2020096410A (en) Rotor
JP5885846B2 (en) Electric motor
JP2010200510A (en) Permanent magnet type rotary electric machine
JP6572860B2 (en) Rotor
JP2006050752A (en) Stator cooling structure of disk rotary electric machine
CN115995894A (en) Rotary electric machine
US10608504B2 (en) Rotary electric machine
JP2015216715A (en) Axial gap type rotary electric machine
JP5943056B2 (en) Rotating machine
JP2011193627A (en) Rotor core and rotary electric machine
JP2010011621A (en) End plate for rotating electrical machine
JP2006014565A (en) Disc type rotary electric machine
US20200067397A1 (en) Eddy current retarder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R151 Written notification of patent or utility model registration

Ref document number: 6572860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees