JP6570066B2 - Robot controller - Google Patents

Robot controller Download PDF

Info

Publication number
JP6570066B2
JP6570066B2 JP2015234149A JP2015234149A JP6570066B2 JP 6570066 B2 JP6570066 B2 JP 6570066B2 JP 2015234149 A JP2015234149 A JP 2015234149A JP 2015234149 A JP2015234149 A JP 2015234149A JP 6570066 B2 JP6570066 B2 JP 6570066B2
Authority
JP
Japan
Prior art keywords
muscle
information
uplift
robot
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015234149A
Other languages
Japanese (ja)
Other versions
JP2017099545A (en
Inventor
正克 藤江
正克 藤江
洋 小林
洋 小林
陽 加藤
陽 加藤
侑也 松本
侑也 松本
まり子 築根
まり子 築根
武岡 真司
真司 武岡
俊宣 藤枝
俊宣 藤枝
健人 山岸
健人 山岸
祐磨 鉄
祐磨 鉄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2015234149A priority Critical patent/JP6570066B2/en
Publication of JP2017099545A publication Critical patent/JP2017099545A/en
Application granted granted Critical
Publication of JP6570066B2 publication Critical patent/JP6570066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Prostheses (AREA)

Description

本発明は、ロボット制御装置に係り、更に詳しくは、ロボットを操作する使用者の筋活動に基づく動作意図を推定し、当該動作意図に対応したロボットの動作制御を行うためのロボット制御装置に関する。   The present invention relates to a robot control apparatus, and more particularly to a robot control apparatus for estimating a motion intention based on a muscle activity of a user who operates a robot and performing motion control of the robot corresponding to the motion intention.

近年の高齢化社会においては、人間の機能を支援するため、使用者の動作意図に対応した生体信号に基づいて動作する装着型ロボットへの期待が高まっている。この装着型ロボットとしては、人間の筋力をモータ等のアクチュエータの動力で補うパワーアシストロボットの他に、上肢切断者の日常生活を補助するために、前記アクチュエータの動力を用いて手に相当する動作を行う動力義手などが挙げられる。これら既存の装着型ロボットは、その使用者の動作意図に基づく筋活動により得られた生体信号の変化から、前記アクチュエータの駆動を制御しており、当該生体信号としては、筋活動量に伴い振幅が変化する表面筋電位が多く用いられている。ところが、この表面筋電位は、電気的なノイズを多く含み、しかも、個人差が大きいことから、不安定な信号であり、使用者の動作意図をロボットに細かく反映することが難しい。そのため、例えば、このような表面筋電位を用いた動力義手(筋電義手)にあっては、筋電位の特徴量を用いた動作種類の判別に留まり、閾値設定によるオン・オフ制御が行われるのが一般的で、非切断者の腕に比べて明らかな機能差がある。例えば、使用者の食事の際に義手でお椀を保持しようとする動作を実現するためには、義手の関節角度の精密な制御が必要であるが、表面筋電位は極めて微弱であることから、このような精密な制御は困難である。ここで、非特許文献1には、表面筋電位を用いた動力学計算により関節角度の推定を行った研究が開示されているが、当該動力学計算により算出可能である筋発揮張力や関節回りのモーメントは、関節角度に対して一意性がない。また、関節角速度から時間積分により関節角度を算出する際に、誤差を蓄積してしまうという問題もある。従って、表面筋電位を用いて関節角度を細かく制御するためには、煩雑な計算が必要となる。   In an aging society in recent years, in order to support human functions, there is an increasing expectation for a wearable robot that operates based on a biological signal corresponding to a user's motion intention. As this wearable robot, in addition to a power assist robot that supplements human muscular strength with the power of an actuator such as a motor, an operation equivalent to a hand using the power of the actuator to assist the daily life of an upper limb amputee A power prosthesis that performs These existing wearable robots control the drive of the actuator based on changes in the biological signal obtained by the muscle activity based on the user's motion intention, and the biological signal has an amplitude according to the amount of muscle activity. Many surface myoelectric potentials are used. However, this surface myoelectric potential contains a lot of electrical noise and has a large individual difference. Therefore, it is an unstable signal, and it is difficult to precisely reflect the user's motion intention to the robot. Therefore, for example, in a power prosthetic hand (myoelectric prosthetic hand) using such surface myoelectric potential, the determination is limited to the operation type using the feature value of myoelectric potential, and on / off control is performed by setting a threshold value. There is a clear functional difference compared to the arm of a non-cut person. For example, in order to realize an operation to hold a bowl with a prosthetic hand during a user's meal, precise control of the joint angle of the prosthetic hand is necessary, but the surface myoelectric potential is extremely weak, Such precise control is difficult. Here, Non-Patent Document 1 discloses a study in which a joint angle is estimated by dynamic calculation using surface myoelectric potential. However, muscle exertion tension and joint rotation that can be calculated by the dynamic calculation are disclosed. The moment of is not unique to the joint angle. Another problem is that errors are accumulated when the joint angle is calculated from the joint angular velocity by time integration. Therefore, in order to finely control the joint angle using the surface myoelectric potential, complicated calculation is required.

ところで、特許文献1には、使用者の前腕の周囲の複数位置で筋電位及び筋***量を検出し、これらの検出結果に基づいて使用者の意図する動作を識別し、当該意図する動作に従って義手を操作する義手操作装置が開示されている。   By the way, in Patent Document 1, myoelectric potential and muscle bulge amount are detected at a plurality of positions around the user's forearm, the user's intended action is identified based on these detection results, and according to the intended action. A prosthetic hand operating device for operating a prosthetic hand is disclosed.

特開2014−50590号公報JP 2014-50590 A

片山敦史,幸徳,小池康晴,「筋電信号を用いた指関節角度推定」,電子情報通信学会技術研究報告,vol.106.pp7−12,2007Katayama, Atsushi, Kotoku, Koike, Yasuharu, “Finger joint angle estimation using myoelectric signals”, IEICE technical report, vol. 106. pp7-12, 2007

しかしながら、前記特許文献1の義手操作装置にあっては、検出された筋電位及び筋***量から、使用者による手の各種動作(掌屈、背屈、握る、開く、前腕の回内や回外)の種類を判別推定するものであり、煩雑な計算処理が必要となるばかりか、手の背屈量等、各動作の動作量までは推定することができない。   However, in the prosthetic hand operating device of Patent Document 1, various user hand movements (palm flexion, dorsiflexion, grasping, opening, forearm pronation and rotation based on the detected myoelectric potential and muscle bulge amount. The amount of movement of each movement such as the amount of dorsiflexion of the hand cannot be estimated.

そこで、本発明者らは、動力義手の動作量を推定できる新たな生体信号を探索するための研究を行った。その結果、筋活動の運動学による手首の関節角度変化時の筋肉の挙動から、筋活動時の筋収縮に伴い皮膚表面で筋肉が***する位置(筋***位置)が移動する現象に着目し、筋活動に伴う関節角度変位と筋***位置との間に一意性があることを知見した。また、使用者が手首を回転させた際の筋活動に伴い、使用者の皮膚表面が微視的に伸縮変形するが、前記動作量が同一であっても、当該手首の回転方向によって前記皮膚表面の伸縮変形状態が異なる。このことから、使用者の手の各種動作を正確に判別して前記動作量を推定するには、前記皮膚表面のひずみ情報を考慮する必要があることも知見した。   Therefore, the present inventors conducted research to search for a new biological signal that can estimate the amount of motion of the power prosthesis. As a result, we focused on the phenomenon that the position of muscle bulge on the skin surface (muscle bulge position) moves due to muscle contraction during muscle activity from the muscle behavior when the wrist joint angle changes due to kinematics of muscle activity, It was found that there is a uniqueness between the joint angular displacement and muscle bulge position associated with muscle activity. In addition, the user's skin surface microscopically expands and contracts with the muscle activity when the user rotates his wrist, but even if the amount of movement is the same, the skin depends on the rotation direction of the wrist. The surface stretch and deformation state is different. From this, it was also found that it is necessary to consider the strain information on the skin surface in order to accurately discriminate various movements of the user's hand and estimate the movement amount.

本発明は、このような本発明者らの知見に基づいて案出されたものであり、その目的は、簡単な構成及び演算により、ロボットを操作する使用者の筋活動に対応する生体組織の変形情報に基づいて、当該使用者の意図する動作の種類毎にその動作量を推定することができるロボット制御装置を提供することにある。   The present invention has been devised based on such knowledge of the present inventors. The purpose of the present invention is to determine the biological tissue corresponding to the muscle activity of the user who operates the robot with a simple configuration and calculation. An object of the present invention is to provide a robot control apparatus capable of estimating the amount of motion for each type of motion intended by the user based on deformation information.

前記目的を達成するため、本発明は、主として、ロボットを操作する使用者の筋活動に基づく動作意図を推定し、当該動作意図に対応したロボットの動作制御を行うためのロボット制御装置において、前記筋活動に基づく前記使用者の皮膚表面における所定領域の変形情報を計測する変形情報計測手段と、当該変形情報計測手段で計測された前記変形情報に基づいて、前記動作意図を推定する動作推定手段とを備え、前記変形情報計測手段では、前記変形情報として、前記皮膚表面の変形量が前記所定領域内の所定位置毎に計測され、前記動作推定手段では、前記動作意図に対応する前記ロボットの動作量と前記変形量との相関関係が予め設定され、当該相関関係に基づいて前記変形量から前記動作量を求める、という構成を採っている。   In order to achieve the above object, the present invention mainly relates to a robot control apparatus for estimating a motion intention based on a muscle activity of a user who operates a robot and performing a motion control of the robot corresponding to the motion intention. Deformation information measuring means for measuring deformation information of a predetermined region on the skin surface of the user based on muscle activity, and motion estimation means for estimating the action intention based on the deformation information measured by the deformation information measuring means The deformation information measuring means measures the amount of deformation of the skin surface for each predetermined position in the predetermined area as the deformation information, and the motion estimating means measures the robot corresponding to the motion intention. A correlation between an operation amount and the deformation amount is set in advance, and the operation amount is obtained from the deformation amount based on the correlation.

本発明によれば、従来の表面筋電位の変化に基づくロボットの動作制御よりも簡単な構成及び演算により、使用者が意図する身体の動作の種類毎に動作量を推定することができ、当該動作量をロボットの動作制御に用いることで、使用者の動作意図を細かく反映したロボットの動作制御が可能になる。   According to the present invention, the amount of movement can be estimated for each type of body movement intended by the user by a simpler configuration and calculation than the movement control of the robot based on the change of the conventional surface myoelectric potential, By using the motion amount for the robot motion control, it is possible to control the motion of the robot reflecting the user's motion intention in detail.

本実施形態に係るロボット制御装置の構成を表すブロック図。The block diagram showing the structure of the robot control apparatus which concerns on this embodiment. ひずみセンサとして機能するナノシートの貼付例を示す上腕部の写真。A photograph of the upper arm portion showing an example of attaching a nanosheet functioning as a strain sensor.

以下、本発明の一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1には、本実施形態に係るロボット制御装置の構成を概略して表したブロック図が示されている。この図において、前記ロボット制御装置10は、ロボットとしての動力義手50の可動部51を動作させるアクチュエータ52の駆動を制御するための装置であって、動力義手50の操作者となる使用者の筋活動に伴う生体組織の変形情報から、使用者が意図する動作の種類毎に動作量を推定して、アクチュエータ52の動作制御を行うようになっている。   FIG. 1 is a block diagram schematically showing the configuration of the robot control apparatus according to this embodiment. In this figure, the robot control device 10 is a device for controlling the driving of an actuator 52 that operates a movable portion 51 of a power prosthesis 50 as a robot, and is a muscle of a user who is an operator of the power prosthesis 50. The operation amount of the actuator 52 is controlled by estimating the operation amount for each type of operation intended by the user from the deformation information of the living tissue accompanying the activity.

すなわち、ロボット制御装置10では、動力義手50を装着した使用者の筋活動時の筋収縮により、皮膚表面で筋肉が***する位置(以下、「筋***位置」と称する。)の移動現象と、前記筋活動による皮膚表面形状が伸縮変形する現象とに基づいて、使用者が所望とする可動部51の動作が得られるように、アクチュエータ52を制御するようになっている。本実施形態では、可動部51として、人体に模して手首の関節角度を直交3軸方向に変化させる機構を備え、使用者が手首を変化させる際になされる前腕部の筋活動に対応して、可動部51の動作制御がなされる。つまり、可動部51は、前腕部における筋収縮による皮膚表面の筋***情報とひずみ情報とを組み合わせた生体組織の変形情報に基づく制御により、直交3軸回りの回転動作について、前記変形情報に対応した動作量すなわち回転角度で動作するようになっている。ここでの3軸回りの回転動作としては、手を上下に動かす掌屈背屈方向(以下、単に「掌背屈方向」と称する)に対応した回転動作と、手を左右に動かす撓屈尺屈方向(以下、単に「撓尺屈方向」と称する)に対応した回転動作と、手を内外に回転する回内回外方向(以下、単に「回内外方向」と称する)に対応した回転動作とがある。   That is, in the robot control apparatus 10, a movement phenomenon of a position where the muscle is raised on the skin surface (hereinafter, referred to as “muscle raising position”) due to muscle contraction during the muscle activity of the user wearing the power prosthesis 50. Based on the phenomenon that the skin surface shape due to the muscle activity expands and contracts, the actuator 52 is controlled so that the operation of the movable portion 51 desired by the user can be obtained. In the present embodiment, the movable portion 51 is provided with a mechanism that changes the wrist joint angle in three orthogonal directions in the shape of a human body, and corresponds to the forearm muscle activity that is performed when the user changes the wrist. Thus, the operation of the movable part 51 is controlled. That is, the movable part 51 responds to the deformation information with respect to the rotation operation about three orthogonal axes by control based on the deformation information of the biological tissue combining the muscle uplift information and the strain information on the skin surface due to the muscle contraction in the forearm. The operation amount, that is, the rotation angle is set. Here, the rotation operation around the three axes includes a rotation operation corresponding to a palm flexion / dorsiflexion direction (hereinafter simply referred to as “pallusdorflexion direction”) that moves the hand up and down, and a flexure scale that moves the hand left and right. Rotation operation corresponding to the bending direction (hereinafter simply referred to as “flexion bending direction”) and rotation operation corresponding to the pronation / extraction direction (hereinafter simply referred to as “pronation / extraction direction”) in which the hand rotates inward and outward. There is.

本発明者らは、前腕部の筋肉運動により手首の関節を動かす際、当該手関節角度が変化する際に、前腕部の皮膚表面の筋***位置が前腕部の長手方向に移動する現象に着目し、筋***位置から手関節角度が一意に定まることを知見した。また、手首の関節の動作種類に応じて主動筋の動作方向が変化することから、主動筋上の皮膚表面のひずみ情報を計測することで、手の動作方向を判別できることを知見した。これら知見に基づき構成されたロボット制御装置10では、動力義手50が装着される前腕部の位置毎の筋***状態の変化と、皮膚表面のひずみ情報とに基づき、実際の手(非切断側の手)を動作させる感覚で可動部51を動作させることができる。   When the wrist joint is moved by muscle movement of the forearm, the inventors pay attention to a phenomenon in which the muscle bulge position on the skin surface of the forearm moves in the longitudinal direction of the forearm when the wrist joint angle changes. Then, it was found that the wrist joint angle is uniquely determined from the muscle bulge position. In addition, since the movement direction of the main muscle changes according to the movement type of the wrist joint, it was found that the movement direction of the hand can be determined by measuring strain information on the skin surface on the main muscle. In the robot control apparatus 10 configured based on these findings, the actual hand (on the non-cutting side) is determined based on the change in the bulge state for each position of the forearm where the power prosthesis 50 is worn and the strain information on the skin surface. The movable part 51 can be operated with the sensation of operating the hand.

具体的に、前記ロボット制御装置10は、筋活動に基づく使用者の皮膚表面における所定領域の変形情報を計測する変形情報計測手段11と、所定の初期設定に関する処理を行う初期設定用処理手段12と、初期設定後に、変形情報計測手段11で計測された変形情報に基づいて使用者の動作意図を推定する動作推定手段13と、動作推定手段13での推定結果に応じて、アクチュエータ52への動作指令を行う動作指令手段14とを備えている。   Specifically, the robot control apparatus 10 includes a deformation information measuring unit 11 that measures deformation information of a predetermined region on the user's skin surface based on muscle activity, and an initial setting processing unit 12 that performs processing related to a predetermined initial setting. Then, after the initial setting, the motion estimation unit 13 that estimates the user's motion intention based on the deformation information measured by the deformation information measurement unit 11, and the actuator 52 according to the estimation result of the motion estimation unit 13 And an operation command means 14 for issuing an operation command.

前記変形情報計測手段11は、使用者の前腕部の皮膚表面に接触して装着され、当該皮膚表面の直交3軸方向の変形量を検出可能なセンサユニットからなり、当該センサユニットは、筋活動に基づく筋肉の***状態に関する筋***情報を計測する筋***情報計測部18と、筋活動に基づく前記皮膚表面のひずみ情報を計測するひずみ情報計測部19とを備えている。   The deformation information measuring means 11 comprises a sensor unit that is mounted in contact with the skin surface of the user's forearm and is capable of detecting the deformation amount in the three orthogonal directions of the skin surface. A muscle uplift information measuring unit 18 that measures muscle uplift information related to the state of muscle uplift based on the above, and a strain information measuring unit 19 that measures strain information on the skin surface based on muscle activity.

前記筋***情報計測部18は、前腕部の所定領域の複数位置において、皮膚表面に対して直交する***方向の変位量である筋***量を計測可能な公知の接触センサからなる。ここで、図示省略するが、本実施形態の接触センサとしては、例えば、複数の反射型フォトリフレクタをウレタン素材のスポンジで被覆した構造のものが用いられる。当該構造の接触センサは、スポンジの変形状態によって当該スポンジ内で反射された光量が変化することを利用し、当該光量の変化に基づいてスポンジの変形量を求めるようになっており、各フォトリフレクタそれぞれについて、その対応部位のスポンジの変形量を検出可能になっている。   The muscle ridge information measuring unit 18 includes a known contact sensor capable of measuring the amount of muscular ridge that is the amount of displacement in the ridge direction perpendicular to the skin surface at a plurality of positions in a predetermined region of the forearm. Here, although not shown in the drawings, for example, a contact sensor having a structure in which a plurality of reflective photo reflectors are covered with a sponge of urethane material is used as the contact sensor of the present embodiment. The contact sensor of the structure utilizes the fact that the amount of light reflected in the sponge changes depending on the deformation state of the sponge, and obtains the amount of deformation of the sponge based on the change of the amount of light. For each, it is possible to detect the amount of deformation of the sponge at the corresponding part.

この筋***情報計測部18では、図示しないアームバンド等によって前記スポンジが皮膚表面に接触するように固定されることにより、前記筋***量が計測される。すなわち、手を動作させるための筋肉が存在する前腕部の所定領域における筋活動の結果、筋***に基づく皮膚表面の上方への変位に伴う前記スポンジの変形による前記各フォトリフレクタの検出値から、前記筋***量が求められることになる。本実施形態では、特に限定されるものではないが、上腕部の長手方向16箇所×短手方向3箇所の合計48箇所における筋***量が計測されるようになっている。   The muscle elevation information measuring unit 18 measures the amount of muscle elevation by fixing the sponge so as to contact the skin surface with an arm band (not shown). That is, as a result of muscle activity in a predetermined region of the forearm where the muscle for moving the hand is present, from the detection value of each of the photo reflectors due to the deformation of the sponge accompanying the upward displacement of the skin surface based on the muscle bulge, The amount of bulging muscles will be determined. In the present embodiment, although not particularly limited, the amount of muscle protrusion is measured at a total of 48 locations of 16 locations in the longitudinal direction of the upper arm portion × 3 locations in the lateral direction.

なお、本発明において、前記筋***情報計測部18としては、前述の構造の接触センサの利用が必須ではなく、前述と同様の計測が可能である限り、他の構造のセンサに代替することも可能である。   In the present invention, it is not essential to use the contact sensor having the above-described structure as the muscle uplift information measuring unit 18, and a sensor having another structure may be used as long as the same measurement as described above is possible. Is possible.

前記ひずみ情報計測部19としては、手首の関節動作に対応する前腕部の主動筋の動作に基づく皮膚表面の伸縮変形量を表すひずみを検出可能な限りにおいて、様々な公知のひずみセンサを用いることができる。本実施形態のひずみ計測部19としては、PEDOT−PSS等の導電性高分子を含ませた超薄膜(導電性ナノシート)を利用したひずみセンサが用いられており、皮膚表面に貼付された前記ナノシートの伸縮変形による抵抗値の変化に基づき、皮膚表面のひずみを求める構造となっている。前記ナノシートは、手首の動作に対応する前腕部の主動筋の筋腹上となる皮膚表面の複数位置(例えば、5〜10箇所程度、図2参照)に貼付されるようになっている。   As the strain information measuring unit 19, various known strain sensors may be used as long as the strain representing the amount of deformation of the skin surface based on the motion of the main muscle of the forearm corresponding to the wrist joint motion can be detected. Can do. As the strain measurement unit 19 of the present embodiment, a strain sensor using an ultrathin film (conductive nanosheet) containing a conductive polymer such as PEDOT-PSS is used, and the nanosheet attached to the skin surface. Based on the change in resistance value due to the stretching deformation of the skin, the skin surface strain is obtained. The nanosheet is affixed to a plurality of positions (for example, about 5 to 10 locations, see FIG. 2) on the skin surface on the muscle abdomen of the main arm of the forearm corresponding to the wrist movement.

前記初期設定用処理手段12では、動力義手50を最初に使用する際等において、使用者等による図示しないスイッチの操作により、次の初期設定処理が行われる。すなわち、使用者毎に異なる筋活動特性に対応した動作推定手段13での後述の動作推定を可能にするように、皮膚表面における計測位置毎の筋***情報である筋***量及びひずみ情報であるひずみと、掌背屈方向、撓尺屈方向及び回内外方向の各動作量(回転角度)との関係を表す関係式が初期設定される。ここでは、使用者が、予め指定された各種の手首の回転動作をそれぞれ複数回行い、それら各回転動作時における変形情報計測手段11での計測値から、線形重回帰分析等の多変量解析により次の関係式が導出され、記憶される。   In the initial setting processing means 12, when the power prosthesis 50 is used for the first time, the following initial setting processing is performed by the operation of a switch (not shown) by the user or the like. That is, the muscle bulge amount and strain information, which are muscle bulge information for each measurement position on the skin surface, to enable later-described motion estimation by the motion estimation means 13 corresponding to different muscle activity characteristics for each user. A relational expression representing the relationship between the strain and each movement amount (rotation angle) in the palm dorsal flexion direction, the flexion flexion direction, and the pronation / extraction direction is initially set. Here, the user performs various wrist rotation operations specified in advance a plurality of times, and multivariate analysis such as linear multiple regression analysis is performed from the measurement values obtained by the deformation information measuring means 11 during each rotation operation. The following relational expression is derived and stored.

ここで、上式において、θは、掌背屈方向の回転角度であり、θは、撓尺屈方向の回転角度であり、θは、回内外方向の回転角度である。また、Si(i=1,2,・・・,n−1,n)は、筋***情報計測部18で計測された前腕部の各位置の筋***量であり、Zi(i=1,2,・・・,m−1,m)は、ひずみ情報計測部19で計測された前腕部の各位置のひずみである。更に、Ai(i=1,2,・・・,(n+m)−1,n+m)、Bi(i=1,2,・・・,(n+m)−1,n+m)、Ci(i=1,2,・・・,(n+m)−1,n+m)は、線形重回帰分析の過程で特定された定数である。 Here, in the above equation, θ 1 is a rotation angle in the palm dorsal flexion direction, θ 2 is a rotation angle in the flexure bending direction, and θ 3 is a rotation angle in the pronation-outward direction. Si (i = 1, 2,..., N−1, n) is the amount of muscle uplift at each position of the forearm measured by the muscle uplift information measuring unit 18, and Zi (i = 1, 1). 2,..., M−1, m) are strains at the respective positions of the forearm portion measured by the strain information measuring unit 19. Further, Ai (i = 1, 2,..., (N + m) -1, n + m), Bi (i = 1, 2,..., (N + m) -1, n + m), Ci (i = 1, 2,..., (N + m) -1, n + m) are constants specified in the process of linear multiple regression analysis.

前記動作推定手段13は、使用者が動力義手50を実際に使用する際に、変形情報計測手段11によって計測された皮膚表面の3次元の変形量である筋***量、ひずみが、初期設定用処理手段12で初期設定された前述の関係式に代入されることで、前述の3方向における手首の回転角度が演算によって求められる。ここで求められた各回転角度は、使用者の筋活動に基づき意図する手首の動作量であると推定される。   When the user actually uses the power prosthesis 50, the motion estimation unit 13 is configured so that the amount of muscle uplift and strain, which are three-dimensional deformation amounts of the skin surface measured by the deformation information measuring unit 11, are for initial setting. By substituting into the above-described relational expression initially set by the processing means 12, the wrist rotation angle in the above-described three directions is obtained by calculation. Each rotation angle obtained here is estimated to be an intended amount of wrist movement based on the user's muscle activity.

前記動作指令手段14では、動作推定手段13で求められた各方向別の動作量で可動部51が動作するように、アクチュエータ52への駆動指令がなされる。   The motion command means 14 issues a drive command to the actuator 52 so that the movable portion 51 operates with the motion amount for each direction obtained by the motion estimation means 13.

従って、このような実施形態によれば、使用者の前腕部の筋活動に伴う巨視的な筋***情報と微視的なひずみ情報から、使用者の手の動作意図に沿った可動部51の前記3軸方向の動作量を求めることができる。つまり、使用者が、実際の手を動かすように前腕部に力を入れると、その程度により、実際の手と同様に動力義手50の手関節角度を制御することができ、従来の表面筋電位による制御では難しかった動力義手50の手関節角度の動作制御を簡単な構成や演算にて細かく行うことができる。   Therefore, according to such an embodiment, from the macroscopic muscle uplift information and the microscopic strain information associated with the muscle activity of the user's forearm, the movable portion 51 according to the user's hand movement intention is obtained. The operation amount in the three axis directions can be obtained. That is, when the user applies a force to the forearm so as to move the actual hand, the wrist joint angle of the power prosthesis 50 can be controlled in the same manner as the actual hand, and the conventional surface myoelectric potential can be controlled. It is possible to finely control the operation of the wrist joint angle of the power prosthesis 50, which has been difficult with the control by the above, with a simple configuration and calculation.

なお、前記実施形態では、本発明が適用されるロボットとして動力義手50について図示説明したが、本発明はこれに限らず、他の義肢やパワーアシストロボット等の装着型ロボットやロボットアーム等、各種ロボットの動作を使用者の筋活動に基づいて制御するロボット制御装置として適用することもできる。換言すると、本発明においては、使用者の筋活動による身体部位の動作に対応する動作をロボットに行わせる際に、前記実施形態と同様に、当該筋活動による使用者の所定位置における皮膚表面の変形量に基づく動作制御が可能である。   In the above-described embodiment, the power prosthesis 50 is illustrated and described as a robot to which the present invention is applied. However, the present invention is not limited to this, and various other devices such as other artificial limbs, wearable robots such as power assist robots, robot arms, and the like. The present invention can also be applied as a robot control device that controls the operation of the robot based on the user's muscle activity. In other words, in the present invention, when the robot performs an action corresponding to the action of the body part due to the user's muscle activity, the skin surface at the predetermined position of the user caused by the muscle activity is similar to the embodiment. Operation control based on the amount of deformation is possible.

また、本発明では、初期設定用処理手段12を省略することができる。この場合、動作推定手段13では、複数パターンの前記関係式を予め記憶させておき、使用者等が適切な関係式を任意に選択し、当該選択された関係式で前述のように動作推定を行っても良いし、予め記憶した1の関係式、或いは、皮膚表面の変形量とロボットの動作量との関係を表す変換表等のデータを用いる等、種々の相関関係に基づいて前記動作推定を行っても良い。   In the present invention, the initial setting processing means 12 can be omitted. In this case, the motion estimation means 13 stores a plurality of relational expressions in advance, the user or the like arbitrarily selects an appropriate relational expression, and performs the motion estimation as described above using the selected relational expression. The motion estimation may be performed based on various correlations, such as using a relational expression stored in advance or data such as a conversion table representing the relationship between the deformation amount of the skin surface and the motion amount of the robot. May be performed.

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the configuration of each part of the apparatus in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.

10 動作制御装置
11 変形情報計測手段
12 初期設定用処理手段
13 動作推定手段
18 筋***情報計測部
19 ひずみ情報計測部
50 動力義手(ロボット)
DESCRIPTION OF SYMBOLS 10 Motion control apparatus 11 Deformation information measurement means 12 Initial setting processing means 13 Motion estimation means 18 Muscle elevation information measurement part 19 Strain information measurement part 50 Power prosthesis (robot)

Claims (3)

ロボットを操作する使用者の筋活動に基づく動作意図を推定し、当該動作意図に対応したロボットの動作制御を行うためのロボット制御装置において、
前記筋活動に基づく前記使用者の皮膚表面における所定領域の変形情報を計測する変形情報計測手段と、当該変形情報計測手段で計測された変形情報に基づいて、前記動作意図を推定する動作推定手段とを備え、
前記変形情報計測手段は、筋活動に基づく筋肉の***状態に関する筋***情報を計測する筋***情報計測部と、前記筋活動に基づく前記皮膚表面のひずみ情報を計測するひずみ情報計測部とを備え、
前記動作推定手段では、予め設定された関係式により、前記変形情報計測手段で計測された前記筋***情報と前記ひずみ情報とを組み合わせた前記変形情報から、前記動作意図に対応する前記ロボットの直交3軸回りの回転動作量をそれぞれ求めることを特徴とするロボット制御装置。
In the robot control device for estimating the motion intention based on the muscle activity of the user who operates the robot and performing the motion control of the robot corresponding to the motion intention,
Deformation information measuring means for measuring deformation information of a predetermined region on the skin surface of the user based on the muscle activity, and motion estimation means for estimating the action intention based on deformation information measured by the deformation information measuring means And
The deformation information measuring means includes a muscle uplift information measuring unit that measures muscle uplift information related to a muscle uplift state based on muscle activity, and a strain information measuring unit that measures strain information on the skin surface based on the muscle activity. ,
In the motion estimation means, an orthogonality of the robot corresponding to the motion intention is obtained from the deformation information obtained by combining the muscle uplift information and the strain information measured by the deformation information measurement means according to a preset relational expression. robot controller and obtaining three axes of rotation amounts, respectively.
前記筋***情報計測部では、前記皮膚表面の複数位置での***方向の変位量である筋***量が計測され、
前記ひずみ情報計測部では、前記使用者が意図する動作に対応する主動筋付近の前記皮膚表面の複数位置におけるひずみが計測され、
前記動作推定手段では、前記各位置で計測された前記筋***量及び前記ひずみが前記関係式に代入されて前記動作量が求められることを特徴とする請求項記載のロボット制御装置。
The muscle uplift information measuring unit measures the amount of muscle uplift, which is the amount of displacement in the uplift direction at a plurality of positions on the skin surface,
In the strain information measuring unit, strains at a plurality of positions on the skin surface near the main muscle corresponding to the motion intended by the user are measured,
The operation in estimating means, the robot control apparatus according to claim 1, wherein the said been the muscle uplift and the strain measurement at each position is the operation amount is substituted into the relational expression is obtained.
前記関係式の初期設定に関する処理を行う初期設定用処理手段を更に備え、
前記初期設定用処理手段では、前記使用者が予め決められた動作を行ったときの前記変形情報を複数回取得し、当該各変形情報から多変量解析により前記関係式を導出することを特徴とする請求項記載のロボット制御装置。
An initial setting processing means for performing processing related to the initial setting of the relational expression;
The initial setting processing means obtains the deformation information when the user performs a predetermined action a plurality of times, and derives the relational expression from the deformation information by multivariate analysis. The robot control device according to claim 1 .
JP2015234149A 2015-11-30 2015-11-30 Robot controller Expired - Fee Related JP6570066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015234149A JP6570066B2 (en) 2015-11-30 2015-11-30 Robot controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015234149A JP6570066B2 (en) 2015-11-30 2015-11-30 Robot controller

Publications (2)

Publication Number Publication Date
JP2017099545A JP2017099545A (en) 2017-06-08
JP6570066B2 true JP6570066B2 (en) 2019-09-04

Family

ID=59017812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015234149A Expired - Fee Related JP6570066B2 (en) 2015-11-30 2015-11-30 Robot controller

Country Status (1)

Country Link
JP (1) JP6570066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018186348A1 (en) * 2017-04-04 2020-05-28 学校法人 中央大学 Muscle contraction detection sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110203B2 (en) * 2005-10-11 2008-07-02 松下電器産業株式会社 Operation support device
JP5882145B2 (en) * 2012-06-22 2016-03-09 独立行政法人国立高等専門学校機構 Electric prosthesis
JP6065441B2 (en) * 2012-07-27 2017-01-25 大日本印刷株式会社 Information generating apparatus, information generating method, information generating program, and information recording medium
JP2014050590A (en) * 2012-09-07 2014-03-20 National Institute Of Advanced Industrial & Technology Action recognition device for hand, artificial hand operation device, and composite sensor
JP6172651B2 (en) * 2013-01-21 2017-08-02 国立研究開発法人産業技術総合研究所 Electric gripping device
AU2014367277B2 (en) * 2013-12-20 2019-09-26 Integrum Ab System and method for neuromuscular rehabilitation comprising predicting aggregated motions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018186348A1 (en) * 2017-04-04 2020-05-28 学校法人 中央大学 Muscle contraction detection sensor

Also Published As

Publication number Publication date
JP2017099545A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
EP3558209B1 (en) A power assistive device for hand rehabilitation
KR102184869B1 (en) Prosthetic hand system
Heo et al. Current hand exoskeleton technologies for rehabilitation and assistive engineering
Zhou et al. Soft robotic glove with integrated sensing for intuitive grasping assistance post spinal cord injury
JP6142146B2 (en) Exoskeleton type robot and rehabilitation device
Martinez-Hernandez et al. Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor
Xiao et al. Control an exoskeleton for forearm rotation using FMG
Kim et al. A voice activated bi-articular exosuit for upper limb assistance during lifting tasks
Lee et al. Intelligent object grasping with sensor fusion for rehabilitation and assistive applications
JP2008023276A (en) All-fingers movable type artificial hand
Hartopanu et al. New issues on FES and robotic glove device to improve the hand rehabilitation in stroke patients
JP7450621B2 (en) Active wear device, control device, control method and computer readable medium
Stephens-Fripp et al. Applying mechanical pressure and skin stretch simultaneously for sensory feedback in prosthetic hands
Battaglia et al. ThimbleSense: an individual-digit wearable tactile sensor for experimental grasp studies
JP6570066B2 (en) Robot controller
Moeinnia et al. Novel Grasping Mechanisms of 3D‐Printed Prosthetic Hands
Ullah et al. A soft robotic glove for assistance and rehabilitation of stroke affected patients
JP7432430B2 (en) Movement support device and movement support method
Tran et al. FLEXotendon glove-III: soft robotic hand rehabilitation exoskeleton for spinal cord injury
JP2016086996A (en) Operation command device of robot
Stefanou et al. Upper limb motion intent recognition using tactile sensing
JP2007534425A5 (en)
Chen et al. Visually-guided grip selection for soft-hand exoskeleton
Lee Development of Intelligent Exoskeleton Grasping Through Sensor Fusion and Slip Detection
Yan et al. Controlling a powered exoskeleton system via electromyographic signals

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20151203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190801

R150 Certificate of patent or registration of utility model

Ref document number: 6570066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees