JP6563486B2 - 顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラム - Google Patents

顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラム Download PDF

Info

Publication number
JP6563486B2
JP6563486B2 JP2017512154A JP2017512154A JP6563486B2 JP 6563486 B2 JP6563486 B2 JP 6563486B2 JP 2017512154 A JP2017512154 A JP 2017512154A JP 2017512154 A JP2017512154 A JP 2017512154A JP 6563486 B2 JP6563486 B2 JP 6563486B2
Authority
JP
Japan
Prior art keywords
image
observation
omnifocal
imaging
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017512154A
Other languages
English (en)
Other versions
JPWO2016166871A1 (ja
Inventor
洋子 阿部
洋子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JPWO2016166871A1 publication Critical patent/JPWO2016166871A1/ja
Application granted granted Critical
Publication of JP6563486B2 publication Critical patent/JP6563486B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/088Condensers for both incident illumination and transillumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/368Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements details of associated display arrangements, e.g. mounting of LCD monitor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10148Varying focus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Microscoopes, Condenser (AREA)
  • Image Processing (AREA)

Description

本発明は、顕微鏡装置において取得された画像を介して被写体を観察する顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラムに関する。
生物学や医学等の分野においては、焦点深度が数十μmレベルの生物顕微鏡を用いて細胞核や幹細胞等の厚みのある被写体を観察する際、観察光学系の光軸に沿った奥行き方向(Z方向)に存在する注目部位を速やかに特定したいというユーザのニーズがある。このようなニーズに対し、観察光学系の焦点面を光軸に沿ってずらしながら順次撮像を行うことにより焦点面が異なる複数の画像を取得し、これらの複数の画像をもとに、Z方向の各位置に合焦された全焦点画像を生成する技術が知られている。このように取得された焦点面が異なる複数の画像をまとめて、Zスタック画像ともいう。
全焦点画像を生成する方法としては、Zスタック画像を重畳して生成した多重焦点画像を、ボケ関数を用いて復元する方法や、焦点面が異なる複数の画像の各々から合焦領域を抽出して合成する方法等がある。
例えば特許文献1には、被写体の近端側及び遠端側にそれぞれ合焦した2つの画像と、被写体の近端側から遠端側にイメージセンサをスイープしながら撮像して生成した全焦点画像とを取得し、近端側及び遠端側にそれぞれ合焦した画像を、全焦点画像を用いて復元することにより、画像内の部分領域におけるボケ量を算出し、それにより光学系から被写体までの距離を取得して距離マップを作成する技術が開示されている。
国際公開第2011/158498号
生体等に見られる透明被写体を全焦点画像により観察する場合において、構造がZ方向に複数存在するとき、これらの構造の各々に合焦していると、各構造のZ方向における位置を把握することは難しい。また、Z方向において複数の構造が重なっている場合には、それらの構造同士の前後関係、即ちZ方向における位置関係を把握することも困難である。さらに、Zスタック画像は撮像に時間がかかる上に、記憶すべきデータ量や画像処理における演算量が膨大になるという問題もある。
このような問題に関し、上記特許文献1においては、距離マップを生成することにより、画像に写った構造のZ位置を視覚的に把握することはできる。しかしながら、距離マップではZ方向における構造同士の前後関係を視覚的に再現することができず、ユーザが直感的に把握することは困難である。
本発明は上記に鑑みてなされたものであり、画像に写った構造のZ方向における位置や構造同士の前後関係をユーザが視覚的且つ直感的に把握することができる画像を、従来よりも短時間に生成することができ、且つ、データ量や画像処理における演算量を従来よりも抑制することができる顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る顕微鏡観察システムは、顕微鏡の観察光学系により生成される被写体像を撮像して画像を取得する撮像部と、前記観察光学系の焦点面及び視野の位置をシフトさせるシフト手段と、前記撮像部の1露光期間中に、前記焦点面及び前記視野の位置をシフトさせることにより、前記観察光学系の光軸方向の複数の面における画像情報を含む多重焦点重畳画像を前記撮像部に取得させる撮像制御部と、前記視野の位置をシフトさせるシフト量を取得するシフト量取得処理部と、前記シフト量が異なる複数の条件の下でそれぞれ取得された複数の多重焦点重畳画像をもとに、複数の全焦点画像をそれぞれ生成する全焦点画像生成部と、前記複数の全焦点画像を表示する表示部と、を備えることを特徴とする。
上記顕微鏡観察システムにおいて、前記撮像制御部は、前記シフト量取得処理部が取得した前記シフト量に基づいて、前記複数の多重焦点重畳画像の各々を取得する際の撮像開始位置を決定する、ことを特徴とする。
上記顕微鏡観察システムは、外部からなされる操作に応じて前記複数の全焦点画像のうちのいずれかの全焦点画像から選択された領域を観察領域として決定する観察領域決定処理部と、前記観察領域を選択された全焦点画像以外の全焦点画像から前記観察領域に対応する領域を抽出すると共に、前記観察領域を選択された全焦点画像における前記観察領域の位置と、前記領域を抽出された全焦点画像における前記領域の位置との間のシフト量に基づいて、前記観察領域に対応する被写体内の構造が含まれるスライスの位置を取得する注目スライス取得部と、をさらに備えることを特徴とする。
上記顕微鏡観察システムにおいて、前記全焦点画像生成部は、前記観察領域を選択された全焦点画像における前記観察領域の位置に基づき、前記撮像部の1露光期間中に前記観察光学系の視野の位置をシフトさせて多重焦点重畳画像を取得する際の撮像位置を決定する撮像位置決定処理部を有する、ことを特徴とする。
上記顕微鏡観察システムにおいて、前記撮像位置決定処理部は、前記複数の全焦点画像の間で各全焦点画像における前記観察領域の位置が変化しないように、前記撮像位置を決定する、ことを特徴とする。
本発明に係る顕微鏡観察方法は、顕微鏡の観察光学系により生成される被写体像を撮像部により撮像して画像を取得する顕微鏡観察方法において、前記撮像部の1露光期間中に、前記観察光学系の焦点面及び視野の位置をシフトさせることにより、前記観察光学系の光軸方向の複数の面における画像情報を含む多重焦点重畳画像を取得する撮像ステップと、前記視野の位置をシフトさせるシフト量が異なる複数の条件の下でそれぞれ取得された複数の多重焦点重畳画像をもとに、複数の全焦点画像をそれぞれ生成する全焦点画像生成ステップと、前記複数の全焦点画像を表示部に表示させる表示ステップと、を含むことを特徴とする。
本発明に係る顕微鏡観察プログラムは、顕微鏡の観察光学系により生成される被写体像を撮像部により撮像して画像を取得する顕微鏡観察プログラムにおいて、前記撮像部の1露光期間中に、前記観察光学系の焦点面及び視野の位置をシフトさせることにより、前記観察光学系の光軸方向の複数の面における画像情報を含む多重焦点重畳画像を取得する制御を行う撮像制御ステップと、前記視野の位置をシフトさせるシフト量が異なる複数の条件の下でそれぞれ取得された複数の多重焦点重畳画像をもとに、複数の全焦点画像をそれぞれ生成する全焦点画像生成ステップと、前記複数の全焦点画像を表示部に表示させる表示ステップと、をコンピュータに実行させることを特徴とする。
本発明によれば、撮像部の1露光期間中に焦点面及び視野の位置をシフトさせることにより多重焦点重畳画像を取得するので、Zスタック画像を取得して画像処理により多重焦点画像を生成する場合と比較して、撮像時間を大幅に短縮することができると共に、データ量及び演算量を大幅に抑制することが可能となる。また、本発明によれば、視野の位置のシフト量が異なる複数の条件の下で生成された複数の全焦点画像を画面に表示するので、ユーザは、これらの全焦点画像を対比することにより、画像に写った構造のZ方向における位置や構造同士の前後関係を視覚的且つ直感的に把握することが可能となる。
図1は、本発明の実施の形態1に係る顕微鏡観察システムの構成例を示すブロック図である。 図2は、図1に示す顕微鏡装置の構成例を示す模式図である。 図3は、図1に示す顕微鏡観察システムの動作を示すフローチャートである。 図4は、複数の多重焦点重畳画像の取得処理を説明するための模式図である。 図5は、複数の多重焦点重畳画像の取得処理の詳細を示すフローチャートである。 図6は、複数の全焦点画像の生成処理の詳細を示すフローチャートである。 図7は、図1に示す表示装置に2つの全焦点画像を並べて表示した例を示す模式図である。 図8は、本発明の実施の形態1の変形例1における多重焦点重畳画像の取得方法を説明するための模式図である。 図9は、本発明の実施の形態1の変形例1における多重焦点重畳画像の取得方法を説明するための模式図である。 図10は、本発明の実施の形態1の変形例3における複数の多重焦点重畳画像の取得処理の詳細を示すフローチャートである。 図11は、本発明の実施の形態1の変形例3における複数の多重焦点重畳画像の取得処理を説明するための模式図である。 図12は、本発明の実施の形態1の変形例4における多重焦点重畳画像の取得処理を説明するための模式図である。 図13は、本発明の実施の形態2に係る顕微鏡観察システムの構成例を示すブロック図である。 図14は、図13に示す顕微鏡観察システムの動作を示すフローチャートである。 図15は、複数の多重焦点重畳画像を示す模式図である。 図16は、観察領域の選択方法の一例を示す模式図である。 図17は、観察領域のZ位置情報の取得処理の詳細を示すフローチャートである。 図18は、本発明の実施の形態3に係る顕微鏡観察システムの構成例を示すブロック図である。 図19は、図18に示す顕微鏡観察システムの動作を示すフローチャートである。 図20は、図19に示す顕微鏡観察システムの動作を説明するための模式図である。 図21は、実施の形態3の変形例における視野の位置のシフト方法を示す模式図である。 図22は、実施の形態3の変形例における視野の位置の別のシフト方法を示す模式図である。
以下、本発明に係る顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラムの実施の形態について、図面を参照しながら詳細に説明する。なお、これらの実施の形態により本発明が限定されるものではない。また、各図面の記載において、同一部分には同一の符号を付して示している。
(実施の形態1)
図1は、本発明の実施の形態1に係る顕微鏡観察システムの構成例を示すブロック図である。図1に示すように、実施の形態1に係る顕微鏡観察システム1は、被写体像を生成する顕微鏡装置10と、該顕微鏡装置10が生成した拡大像の画像を取得して処理する撮像装置20と、撮像装置20が処理した画像を表示する表示装置30とを備える。
図2は、顕微鏡装置10の構成例を示す模式図である。図2に示すように、顕微鏡装置10は、略C字形のアーム100と、該アーム100上に三眼鏡筒ユニット101を介して支持された鏡筒102及び接眼レンズユニット103と、アーム100に設けられた落射照明ユニット110及び透過照明ユニット120と、被写体Sが載置されるステージ131を含む電動ステージユニット130と、鏡筒102の一端側に三眼鏡筒ユニット101を介してステージ131と対向するように設けられ、被写体Sからの観察光を結像する対物レンズ140とを備える。この対物レンズ140と、三眼鏡筒ユニット101を介して接続された鏡筒102と、該鏡筒102の他端側に設けられた撮像部211(後述)とが、観察光学系(撮像光学系)104を構成する。
三眼鏡筒ユニット101は、対物レンズ140から入射した観察光を、ユーザが被写体Sを直接観察するための接眼レンズユニット103と、後述する撮像部211との方向に分岐する。
落射照明ユニット110は、落射照明用光源111及び落射照明光学系112を備え、被写体Sに対して落射照明光を照射する。落射照明光学系112は、落射照明用光源111から出射した照明光を集光して、観察光学系104の光軸Lの方向に導く種々の光学部材、具体的にはフィルタユニット、シャッタ、視野絞り、開口絞り等を含む。
透過照明ユニット120は、透過照明用光源121及び透過照明光学系122を備え、被写体Sに対して透過照明光を照射する。透過照明光学系122は、透過照明用光源121から出射した照明光を集光して光軸Lの方向に導く種々の光学部材、具体的にはフィルタユニット、シャッタ、視野絞り、開口絞り等を含む。
これらの落射照明ユニット110及び透過照明ユニット120は、検鏡法に応じていずれかが選択されて使用される。なお、顕微鏡装置10に、落射照明ユニット110と透過照明ユニット120とのいずれか一方のみを設けることとしても良い。
電動ステージユニット130は、ステージ131と、該ステージ131を移動させるステージ駆動部132と、位置検出部133とを備える。ステージ駆動部132は、例えばモータによって構成される。ステージ131の被写体載置面131aは、対物レンズ140の光軸と直交するように設けられている。以下においては、被写体載置面131aをXY平面とし、該XY平面の法線方向、即ち光軸と平行な方向をZ方向とする。Z方向においては、図の下方向、即ち対物レンズ140から離れる方向をプラス方向とする。
ステージ131をXY平面内で移動させることにより、対物レンズ140の視野の位置をシフトさせることができる。また、ステージ131をZ方向に移動させることにより、対物レンズ140の焦点面を光軸Lに沿ってシフトさせることができる。即ち、電動ステージユニット130は、後述する撮像制御部22の制御の下でステージ131を移動させることにより焦点面及び視野の位置をシフトさせるシフト手段である。
なお、図2においては、焦点面及び視野の位置をシフトさせる際、鏡筒102〜対物レンズ140を含む観察光学系104の位置を固定し、ステージ131側を移動させる構成としているが、ステージ131の位置を固定し、観察光学系104側を移動させても良い。或いは、ステージ131と観察光学系104との双方を互いに反対方向に移動させても良い。つまり、観察光学系104と被写体Sとが相対的に移動可能な構成であれば、どのような構成であっても構わない。また、焦点面のシフトは観察光学系104のZ方向における移動により行い、視野Vの位置のシフトはステージ131のXY平面における移動により行うこととしても良い。
位置検出部133は、例えばモータからなるステージ駆動部132の回転量を検出するエンコーダによって構成され、ステージ131の位置を検出して検出信号を出力する。なお、ステージ駆動部132及び位置検出部133の代わりに、後述する撮像制御部22の制御に従ってパルスを発生するパルス発生部及びステッピングモータを設けても良い。
対物レンズ140は、倍率が互いに異なる複数の対物レンズ(例えば、対物レンズ140、141)を保持可能なレボルバ142に取り付けられている。レボルバ142を回転させ、ステージ131と対向する対物レンズ140、141を変更することにより、撮像倍率を変化させることができる。なお、図2は、対物レンズ140がステージ131と対向している状態を示している。
再び図1を参照すると、撮像装置20は、顕微鏡装置10の観察光学系104により生成された被写体像を撮像することにより画像を取得する画像取得部21と、該画像取得部21の撮像動作を制御する撮像制御部22と、当該撮像装置20における各種動作を制御すると共に、画像取得部21が取得した画像を処理する制御部23と、画像取得部21が取得した画像の画像データや制御プログラム等の各種情報を記憶する記憶部24と、当該撮像装置20に対する指示や情報を入力するための入力部25と、記憶部24に記憶された画像データに基づく画像やその他各種情報を外部機器に出力する出力部26とを備える。
画像取得部21は、撮像部211及びメモリ212を備える。撮像部211は、例えばCCDやCMOS等からなる撮像素子(イメージャ)211aを備え、撮像素子211aが備える各画素においてR(赤)、G(緑)、B(青)の各バンドにおける画素レベル(画素値)を持つカラー画像を撮像可能なカメラを用いて構成される。或いは、各画素における画素レベル(画素値)として輝度値Yを出力するモノクロ画像を撮像可能なカメラを用いて撮像部211を構成しても良い。
図2に示すように、撮像部211は、光軸Lが撮像素子211aの受光面の中心を通るように、鏡筒102の一端に設けられ、対物レンズ140〜鏡筒102を含む観察光学系104を介して受光面に入射した観察光を光電変換することにより、対物レンズ140の視野に入った被写体像の画像データを生成する。
メモリ212は、例えば更新記録可能なフラッシュメモリ、RAM、ROMといった半導体メモリ等の記録装置からなり、撮像部211が生成した画像データを一時的に記憶する。
撮像制御部22は、撮像部211の1露光期間中に、顕微鏡装置10に制御信号を出力してステージ131を移動させることにより、対物レンズ140の焦点面や視野の位置をシフトさせ、それにより観察光学系104の光軸L方向の複数の面における画像情報を含む多重焦点重畳画像を取得させる制御を行う。
制御部23は、例えばCPU等のハードウェアによって構成され、記憶部24に記憶されたプログラムを読み込むことにより、記憶部24に記憶された各種パラメータや入力部25から入力される情報等に基づき、撮像装置20及び顕微鏡観察システム1全体の動作を統括的に制御する。また、制御部23は、画像取得部21から入力された画像データに所定の画像処理を施すことにより全焦点画像を生成する処理を実行する。
詳細には、制御部23は、多重焦点重畳画像を取得する際に観察光学系104の視野の位置をシフトさせるシフト量を取得するシフト量取得処理部231と、画像のボケを表す点拡がり関数(Point Spread Function)を用いて多重焦点重畳画像を復元することにより全焦点画像を生成する全焦点画像生成部232とを備える。
記憶部24は、更新記録可能なフラッシュメモリ、RAM、ROMといった半導体メモリ等の記録装置や、内蔵若しくはデータ通信端子で接続されたハードディスク、MO、CD−R、DVD−R等の記録媒体と該記録媒体に対して情報を書き込むと共に該記録媒体に記録された情報を読み取る書込読取装置とによって構成される。記憶部24は、制御部23における演算に使用されるパラメータを記憶するパラメータ記憶部241と、各種プログラムを記憶するプログラム記憶部242とを備える。このうち、パラメータ記憶部241は、多重焦点重畳画像を取得する際に視野の位置をシフトさせるシフト量等のパラメータを記憶する。また、プログラム記憶部242は、当該撮像装置20に所定の動作を実行させるための制御プログラムや、画像処理プログラム等を記憶する。
入力部25は、キーボード、各種ボタン、各種スイッチ等の入力デバイスや、マウスやタッチパネル等のポインティングデバイス等により構成され、これらのデバイスに対してなされる操作に応じた信号を制御部23に入力する。
出力部26は、画像取得部21により取得された画像データに基づく画像や、制御部23において生成された全焦点画像や、その他各種情報を表示装置30等の外部機器に出力し、所定の形式で表示させる外部インタフェースである。
このような撮像装置20は、例えば、パーソナルコンピュータやワークステーション等の汎用の装置に、外部インタフェースを介して汎用のデジタルカメラを組み合わせることにより構成することができる。
表示装置30は、例えばLCD、ELディスプレイ又はCRTディスプレイ等によって構成され、出力部26から出力された画像や関連情報を表示する。なお、実施の形態1においては、表示装置30を撮像装置20の外部に設けているが、撮像装置20の内部に設けても良い。
次に、顕微鏡観察システム1の動作について説明する。図3は、顕微鏡観察システム1の動作を示すフローチャートである。
まず、ステップS10において、画像取得部21は、複数の多重焦点重畳画像を取得する。図4は、複数の多重焦点重畳画像の取得処理を説明するための模式図である。以下においては、図4に示すように、被写体S内の厚さD(μm)の範囲を重畳撮像する場合を説明する。この厚さDの範囲を重畳撮像範囲と呼ぶ。図4においては、重畳撮像範囲を複数のスライスFj=0〜Nに分割して示している。実施の形態1において、各スライスFjの厚さΔzは、観察光学系104の被写界深度に相当する。また、各スライスFjにおいて太線で囲む領域が、撮像対象となる観察光学系104の視野Vであり、視野Vに重ねて示す矢印は、焦点面及び視野の位置をシフトさせる方向を示している。
ステップS10の処理開始時においては、図4の(a)に示すように、観察光学系104の焦点面がユーザ所望のZ位置であるスライスFj=0に合わせられ、視野Vがユーザ所望のXY位置に合わせられているものとする。この位置合わせは、ユーザが手動で行っても良いし、自動制御で行われるものとしても良い。
図5は、複数の多重焦点重畳画像の取得処理の詳細を示すフローチャートである。まず、ステップS101において、画像取得部21は、シフト量ゼロの多重焦点重畳画像を取得する。詳細には、図4の(a)に示すように、撮像制御部22の制御の下で撮像部211における露光を開始し、1露光期間中に観察光学系104の焦点面を+Z方向に厚さDの分だけ移動させる。それにより、スライスFj=0〜Fj=NにおいてX位置が同じ視野Vの像が重畳された多重焦点重畳画像SI0が取得される。
続くステップS102において、シフト量取得処理部231は、多重焦点重畳画像を取得する際に視野Vの位置をシフトさせるシフト量を取得する。このシフト量は、予め設定された量であっても良く、ユーザ操作に応じて入力部25から入力された情報に基づいて取得しても良い。
図4の(b)に示すように、隣り合うスライスFj、Fj+1間における視野Vの位置のシフト量をσとする場合、最上面のスライスFj=0における視野Vの位置に対する各スライスFjにおける視野Vの位置のシフト量sjは、次式(1)によって与えられる。
j=σ×j …(1)
また、ユーザ操作に応じてシフト量σを決定する場合には、図4の(b)に示すように、被写体Sの真上の方向に対してユーザの目線を傾けたときの角度θを入力させると良い。この場合、撮像部211の画素ピッチをp(μm/ピクセル)とすると、シフト量σ(ピクセル)は、次式(2)によって与えられる。
σ=(Z/tanθ)/p …(2)
式(2)において距離Zは、対物レンズ140から被写体S内の各深度までの距離によって近似することができる。
続くステップS103において、撮像制御部22は、ステップS102において取得されたシフト量σに基づいて撮像パラメータを設定する。具体的には、撮像制御部22はまず、次の撮像開始位置まで視野を移動させる移動距離t=σ×Nを算出する。この移動距離は、顕微鏡装置10においては、撮像部211の画素ピッチp、観察倍率M倍を用いて、距離σ×N×p/Mだけステージ131をX方向に沿って移動させることに相当する。
また、撮像制御部22は、撮像パラメータとして、1露光期間中に視野VをX方向に沿ってシフトさせるシフト速度v1を算出する。シフト速度v1は、1回の露光期間T1、撮像部211の画素ピッチp、重畳撮像範囲の厚さDに含まれる被写界深度Δzの数N、及び観察倍率M倍を用いて、次式(3)によって与えられる。
1=(p×σ/M)/(T1/N) …(3)
続くステップS104において、画像取得部21は、ステップS103において設定された撮像パラメータに基づく撮像制御部22の制御の下で、撮像部211の1露光期間中に観察光学系104の焦点面及び視野Vの位置をシフトさせながら被写体Sを撮像することにより、シフト量σの多重焦点重畳画像を取得する。
詳細には、図4の(b)に示すように、まず、視野VをX方向に距離tだけシフトさせる。この位置が次の多重焦点重畳画像の撮像開始位置である。そして、撮像部211において露光を開始し、1露光期間中に視野Vを−X方向に速度v1でシフトさせると共に、焦点面を−Z方向に速度D/T1でシフトさせる。それにより、各スライスFj=0〜Fj=Nにおける視野Vの像が重畳された多重焦点重畳画像SI1が取得される。その後、顕微鏡観察システム1の動作はメインルーチンに戻る。
ここで、焦点面及び視野Vの位置をシフトさせる方向は、図4に示す矢印の方向に限定されない。例えば、図4の(a)に示す多重焦点重畳画像SI0を取得する際、焦点面を−Z方向(スライスFj=N→Fj=0)にシフトさせても良いし、図4の(b)に示す多重焦点重畳画像SI1を取得する際、焦点面を+Z方向にシフトさせつつ視野Vを+X方向にシフトさせても良い。好ましくは、ステージ131の移動回数や移動量ができるだけ少なくなるように、複数の多重焦点重畳画像SI0、SI1を取得する順序や焦点面及び視野Vの位置のシフト方向を設定すると良い。
ステップS10に続くステップS11において、全焦点画像生成部232は、ステップS10において取得された複数の多重焦点重畳画像をもとに、全焦点画像を生成する。
図6は、全焦点画像の生成処理の詳細を示すフローチャートである。ステップS111において、全焦点画像生成部232は、各スライスFjの像における画像ボケを表す点拡がり関数(Point Spread Function:PSF)情報を取得し、このPSF情報に基づくPSF画像を生成する。点拡がり関数は、顕微鏡装置10における対物レンズ140の倍率等の撮像条件やスライスFjと関連づけられて、予めパラメータ記憶部241に記憶されている。全焦点画像生成部232は、対物レンズ140の倍率等の撮像条件に基づき、スライスFjに応じた点拡がり関数をパラメータ記憶部241から読み出し、点拡がり関数をもとに視野Vの画像内の各画素位置に対応する画素値を算出することで、スライスFjごとのPSF画像を生成する。
続くステップS112において、全焦点画像生成部232は、多重焦点重畳画像SI0に対応するシフト量ゼロの多重焦点重畳PSF画像PI0を生成する。詳細には、ステップS111において生成したスライスFj=0〜Nにそれぞれ対応する複数のPSF画像の間で位置が対応する画素同士の画素値を加算平均することにより、多重焦点重畳PSF画像PI0の各画素の画素値を算出する。
続くステップS113において、全焦点画像生成部232は、多重焦点重畳画像SI1を生成する際に使用されたシフト量σを取得し、このシフト量σに基づいて各スライスFjに対応するPSF画像をシフトさせる。即ち、多重焦点重畳画像SI1を生成する際と同様に、最上面のスライスFj=0に対応するPSF画像に対し、他のスライスFjに対応するPSF画像をシフト量sj=σ×jだけシフトさせる。
続くステップS114において、全焦点画像生成部232は、ステップS113におけるシフト処理後の複数のPSF画像を用いて、シフト量σの多重焦点重畳PSF画像PI1を生成する。詳細には、シフト処理後の複数のPSF画像の間で位置が対応する画素同士の画素値を加算平均することにより、多重焦点重畳PSF画像PI1の各画素の画素値を算出する。
ステップS115において、全焦点画像生成部232は、多重焦点重畳PSF画像PI0、PI1を用いて、ステップS10において生成した複数の多重焦点重畳画像SI0、SI1をそれぞれ復元する。それにより、多重焦点重畳画像SI0から全焦点画像AI0が生成sれ、多重焦点重畳画像SI1から全焦点画像AI1が生成される。その後、制御部23の動作はメインルーチンに戻る。
ステップS11に続くステップS12において、撮像装置20は、ステップS11において生成した複数の全焦点画像AI0、AI1の画像データを表示装置30に出力し、これらの全焦点画像AI0、AI1を表示させる。全焦点画像AI0、AI1の表示方法は特に限定されない。例えば、全焦点画像AI0、AI1を並べて表示しても良いし、同じ領域に全焦点画像AI0、AI1を交互に表示しても良い。同じ領域に全焦点画像AI0、AI1を交互に表示する場合には、所定の周期で全焦点画像AI0、AI1を自動で切り替えても良いし、入力部25を用いてユーザに手動で切り替えさせることとしても良い。
図7は、表示装置30における全焦点画像の表示例を示す模式図である。図7に示す画面m1には、2つの全焦点画像AI0、AI1が並べて表示されている。その後、顕微鏡観察システム1の動作は終了する。
以上説明したように、本発明の実施の形態1においては、1露光期間中に焦点面及び視野の位置をシフトさせて撮像を行うことにより多重焦点重畳画像を取得し、この多重焦点重畳画像を復元することにより全焦点画像を生成する。この際、視野の位置のシフト量が異なる複数の条件の下で全焦点画像を生成して表示することにより、仮想的に複数の視点から被写体Sを見た状態を再現することができる。例えば図4の場合、シフト量をゼロとすることにより被写体Sを真上から見た状態を再現することができ、シフト量をσとすることにより被写体Sを左上から見た状態を再現することができる。従って、ユーザは、これらの全焦点画像を参照することにより、被写体S内の構造のZ方向における位置や構造同士の前後関係、構造の重なり具合等を、視覚的且つ直感的に把握することが可能となる。
また、上記実施の形態1によれば、1露光期間中に焦点面を移動させて撮像を行うことにより多重焦点重畳画像を取得するので、複数回の撮像によりZスタック画像を取得し、このZスタック画像を加算平均して多重焦点重畳画像を取得する場合と比較して、撮像を短時間で行うことができると共に、データ量や画像処理における演算量を大幅に抑制することが可能となる。
なお、上記実施の形態1においては、理解を促進するため、観察光学系104の視野VをX方向においてのみシフトさせる場合を説明したが、Y方向についても同様の処理を行うことができる。この場合、被写体Sに対する仮想的な視点をY方向に沿って移動させた場合に相当する全焦点画像を生成することができる。また、観察光学系104の視野VをX方向及びY方向の2方向にシフトさせることにより、被写体Sに対する仮想的な視点を水平面内において移動させた場合に相当する全焦点画像を生成することも可能である。
(変形例1)
次に、本発明の実施の形態1の変形例1について説明する。図8及び図9は、変形例1における多重焦点重畳画像の取得方法を説明するための模式図である。
上記実施の形態1においては、ステージ131に対して観察光学系104の光軸を直交させ、シフト量σの多重焦点重畳画像SI1を取得する際には、ステージ131をZ方向及びX方向に移動させながら撮像を行った。しかしながら、ステージ131に対して観察光学系104の光軸を予め傾斜させて撮像を行っても良い。
例えば図8に示すように、ステージ131の被写体載置面131aを水平に設置し、この被写体載置面131aの法線に対して観察光学系104の光軸Lを角度αだけ傾斜させる。それにより、撮像部211の焦点面Pfは、被写体載置面131aに対して角度αで傾斜することになる。この場合、観察光学系104を光軸Lに沿って被写体載置面131aに近づく方向に移動させることにより、被写体Sに対して焦点面Pfが+Z方向に移動すると共に、視野が+X方向にシフトする。即ち、観察光学系104を2次元的に移動させる制御が不要となり、観察光学系104に対する駆動制御を簡素化させることができる。
或いは、図9に示すように、ステージ131の被写体載置面131aを水平に設置すると共に、この被写体載置面131aに対して観察光学系104の光軸Lを直交させて設置する。そして、底面に対して角度αの斜面を有する台座106をステージ131に設置する。この台座106の斜面161a上に被写体Sを載置させることにより、撮像部211の焦点面Pfは、斜面161aに対して角度αで傾斜することになる。この場合、ステージ131を−Z方向に移動させる、又は観察光学系104を+Z方向に移動させることにより、被写体Sに対する焦点面Pfが+Z方向に移動すると共に、視野が+X方向にシフトする。この場合には、ステージ131又は観察光学系104を2次元的に移動させる制御が不要となり、ステージ131又は観察光学系104に対する駆動制御を簡素化させることができる。
このように、被写体Sに対して焦点面Pfを傾斜させる場合、各種撮像パラメータの設定は次のようにして行う。多重焦点重畳画像SI1における隣り合うスライス間のシフト量をσ(ピクセル)、撮像部211の画素ピッチをp(μm/ピクセル)、厚さDの重畳撮像範囲に含まれる被写界深度Δzの数をN(N=D/Δz)、観察倍率をM倍とすると、角度αは次式(4)によって与えられる。
α=tan-1{(p×σ×N/M)/D} …(4)
シフト量取得処理部231は、シフト量σに基づいて角度αを算出して出力する。撮像制御部22は、この角度αに基づき、図8に示すように、被写体載置面131aに対する観察光学系104の焦点面Pfを角度αだけ傾斜させる制御を行う。
或いは、図9に示すように台座161を設置する場合には、ユーザが入力部25を用いて、被写体載置面131aに対する斜面161aの角度αを入力する。この場合、シフト量取得処理部231は、式(4)から角度αに対応するシフト量σを算出し、撮像制御部22は、このシフト量σに基づいて各種制御パラメータを算出する。
(変形例2)
次に、本発明の実施の形態1の変形例2について説明する。上記実施の形態1においては、撮像部211の1露光期間中にシャッタを開放させたまま焦点面及び視野Vの位置を連続的にシフトさせることにより、多重焦点重畳画像を取得した。しかし、1露光期間中に、撮像部211への光の入射を遮るシャッタを所定の周期で開閉し、シャッタが閉じている間に焦点面や視野Vの位置を段階的にシフトさせることとしても良い。
1露光期間中にシャッタを開閉する回数、即ち、撮像部211に対して被写体Sを露出する回数、或いは焦点面及び視野の位置をシフトさせる回数や、1回当たりの焦点面及び視野Vの位置シフト量は、撮像部211における1回の露光期間及びシャッタ速度等に応じて適宜設定される。
例えば、図4の(a)に示すシフト量ゼロの多重焦点重畳画像SI0を取得する際には、シャッタが開いている間に焦点面を所定の重畳撮像範囲、具体的には被写界深度の複数倍(k×Δz、kは自然数)移動させる。また、図4の(b)に示すシフト量σの多重焦点重畳画像SI1を取得する際には、シャッタが開いている間に焦点面を所定の重畳撮像範囲、具体的には被写界深度の複数倍(k×Δz)移動させながら、視野Vの位置をシフト量σの複数倍(k×σ)シフトさせる。
この場合、図6のステップS111においては、シャッタが開いてから閉じるまでの複数スライスに対応するPSF画像を生成する。また、図6のステップS113においては、シャッタの開閉周期に応じた視野Vの位置のシフト量に合わせて、PSF画像をシフトさせる。S112、S114、S115における処理は、上記実施の形態1と同様である。
(変形例3)
次に、本発明の実施の形態1の変形例3について説明する。上記実施の形態1においては、シフト量がゼロ及びσの2つの多重焦点重畳画像を取得したが、シフト量が異なる多重焦点重畳画像をさらに取得しても良い。
図10は、本変形例3における複数の多重焦点重畳画像の取得処理の詳細を示すフローチャートである。また、図11は、本変形例3における複数の多重焦点重畳画像の取得処理を説明するための模式図である。本変形例3においては、シフト量の符号が正である場合、焦点面を+Z方向にシフトさせるときに、視野Vを+X方向にシフトさせるものとする。
まず、ステップS121において、シフト量取得処理部231は、複数の多重焦点重畳画像を取得する際に用いるシフト量σi(i=11、12、…、n)を取得する。ここで、添え字iは、多重焦点重畳画像の取得順序を示す変数である。図11の(a)〜(c)は、σ11=+k、σ12=0、σ13=−kの3つのシフト量σiを取得する場合を示している。
これらのシフト量σiは、予め設定された量であっても良く、ユーザ操作に応じて入力部25から入力された情報に基づいて取得しても良い。後者の場合、被写体Sの真上の方向に対してユーザの目線を傾けたときの角度θiをユーザに入力させると良い。これらの角度θiとシフト量σiとの関係は、撮像部211の画素ピッチp、対物レンズ140から被写体S内の各深度までの距離Z(近似値)を用いて、次式(5)によって与えられる。
σi=(Z/tanθi)/p …(5)
続くステップS122において、撮像制御部22は、シフト量σiに基づいて撮像パラメータを設定する。具体的には、まず、撮像制御部22は、撮像パラメータとして、撮像開始位置及びその撮像開始位置まで視野Vを移動させる移動距離を算出する。なお、初回の撮像時(i=11)には、視野Vの移動距離を算出する必要はなく、観察光学系104の現在の視野Vの位置から撮像を開始すれば良い。
また、撮像制御部22は、撮像パラメータとして、撮像部211の1露光期間中に視野VをX方向に沿ってシフトさせるシフト速度を算出する。シフト速度の算出方法は、実施の形態1と同様である(図5のステップS103参照)。
続くステップS123において、画像取得部21は、ステップS122において設定された撮像パラメータに基づく撮像制御部22の制御の下で、撮像部211の1露光期間中に観察光学系104の焦点面及び視野Vの位置をシフトさせながら被写体Sを撮像することにより、シフト量σiの多重焦点重畳画像SIiを取得する。多重焦点重畳画像SIiの取得方法は、実施の形態1と同様である(図5のステップS104参照)。或いは、変形例2と同様に、段階的に撮像を行っても良い。それにより、各スライスFj=0〜Fj=Nにおける視野Vの像が重畳された多重焦点重畳画像SIiが取得される。
続くステップS124において、制御部23は、変数iが最大値nに至ったか否かを判定する。変数iが最大値nに至っていない場合(ステップS124:No)、制御部23は、変数iをインクリメントする(ステップS125)。その後、制御部23の動作はステップS121に戻る。このようにステップS121〜S123を繰り返すことにより、シフト量σiが異なる複数の多重焦点重畳画像SIiが取得される。
ここで、多重焦点重畳画像SIiの取得順序や、撮像開始位置や、焦点面及び視野Vの位置のシフト方向を制御する撮像パラメータを適切に設定することにより、ステージ131の移動量を抑制し、トータルの撮像時間を短縮して多重焦点重畳画像SIiを効率的に取得することができる。
具体的には、まず、図11の(a)に示すように、1露光期間中に焦点面を+Z方向にシフトさせながら視野Vの位置をシフト量kのペースでX方向にシフトさせることにより、シフト量σ11の多重焦点重畳画像SI11を取得する。続いて、図11の(b)に示すように、撮像開始位置を−X方向に距離t12=σ11×Nだけ移動させた上で露光を開始し、焦点面を−Z方向にシフトさせることにより、視野Vの位置のシフト量σ12=0の多重焦点重畳画像SI12を取得する。続いて、図11の(c)に示すように、直前の撮像終了位置において露光を開始し、焦点面を+Z方向にシフトさせながら視野Vの位置をシフト量kのペースで−X方向にシフトさせることにより、シフト量σ13の多重焦点重畳画像SI13を取得する。
一方、ステップS124において、変数iが最大値nに至った場合(ステップS124:Yes)、顕微鏡観察システム1の動作はメインルーチンに戻る。
このように生成された複数の多重焦点重畳画像SIiに基づく全焦点画像の生成処理(図3のステップS11及び図6参照)は、全体として実施の形態1と同様である。このうち、図6に示すステップS112〜S115においては、多重焦点重畳画像SIiを生成した際に用いられたシフト量σiを用いて、多重焦点重畳画像SIiごとに多重焦点重畳PSF画像を生成し、これらの多重焦点重畳PSF画像をそれぞれ用いて、多重焦点重畳画像SIiを復元する。それにより、シフト量σiが異なる複数の全焦点画像が生成される。
また、複数の全焦点画像を表示する際には(図3のステップS12参照)、複数の全焦点画像を並べて表示しても良いし、これらの全焦点画像を同じ領域に順次切り替えて表示しても良い。例えば、図11の(a)〜(c)に示す複数の多重焦点重畳画像SIiからそれぞれ取得された複数の全焦点画像を、シフト量σ11=+k→シフト量σ12=0→シフト量σ13=−k→シフト量σ12=0→シフト量σ11=+k→シフト量σ12=0→…の順に繰り返し切り替えても良い。
以上説明したように、本発明の実施の形態1の変形例3によれば、視野Vの位置をシフトさせる方向が異なる複数の全焦点画像を生成して表示するので、仮想的に、被写体Sを真上(θ12)、左上(θ11)、右上(θ12)の各方向から見た状態を再現することができる。従って、このような全焦点画像を参照することにより、ユーザは、被写体S内の構造同士のZ方向における重なり具合や前後関係をさらに詳細に把握することが可能となる。
(変形例4)
次に、本発明の実施の形態1の変形例4について説明する。上記変形例3においては、2つの多重焦点重畳画像SI11、SI13の間で視野Vの位置のシフト量σiの大きさを同一にしたが、複数の多重焦点重畳画像SIiの間で、シフト量σiの大きさを変化させても良い。
図12は、変形例4における多重焦点重畳画像の取得処理を説明するための模式図である。図12の(a)〜(e)に示す多重焦点重畳画像SI21〜SI25においては、シフト量σ21〜σ25の大きさを、σ21<σ22<σ23<σ24<σ25の順に大きくしている。このようにシフト量σiの大きさを変化させることにより、仮想的に被写体Sを様々な角度から観察した状態を再現することができる。これらの多重焦点重畳画像SIiの取得処理は上記変形例3と同様である(図10参照)。
また、この場合においても、多重焦点重畳画像SIiの取得順序や、各多重焦点重畳画像SIiの撮像開始位置や、焦点面及び視野Vの位置のシフト方向等の制御パラメータを適切に設定することにより、ステージ131の移動量を抑制し、トータルの撮像時間を短縮して多重焦点重畳画像SIiを効率的に取得することができる。
具体的には、まず、図12の(a)に示すように、1露光期間中に焦点面を+Z方向にシフトさせることにより、シフト量σ21=0の多重焦点重畳画像SI21を取得する。続いて、図12の(b)に示すように、撮像開始位置を+X方向に距離t22(t22=σ22×N)だけ移動させた上で露光を開始し、焦点面を−Z方向にシフトさせながら視野Vを−X方向にシフト量σ22のペースでシフトさせることにより、多重焦点重畳画像SI22を取得する。続いて、図12の(c)に示すように、直前の撮像終了位置において露光を開始し、焦点面を−Z方向にシフトさせながら視野Vを+X方向にシフト量σ23のペースでシフトさせることにより、多重焦点重畳画像SI23を取得する。続いて、図12の(d)に示すように、撮像開始位置を+X方向に距離t24(t24=σ24×N−σ23×N)だけ移動させた上で露光を開始し、焦点面を−Z方向にシフトさせながら視野Vを−X方向にシフト量σ24のペースでシフトさせることにより、多重焦点重畳画像SI24を取得する。さらに、図12の(e)に示すように、直前の撮像終了位置において露光を開始し、焦点面を+Z方向にシフトさせながら視野Vを+X方向にシフト量σ25のペースでシフトさせることにより、多重焦点重畳画像SI25を取得する。
これらの多重焦点重畳画像SIiに基づく複数の全焦点画像の生成処理及び複数の画像の表示処理は、変形例3と同様である。
以上説明したように、本発明の実施の形態1の変形例4によれば、複数の多重焦点重畳画像SIiの間でシフト量σiの大きさを変化させるので、仮想的に、より広い範囲の複数の方向から被写体Sを観察した状態を再現することができる。従って、ユーザは、被写体S内の構造のZ方向における位置、構造同士の重なり具合や前後関係を直感的かつよりリアルに把握することが可能となる。
(実施の形態2)
次に、本発明の実施の形態2について説明する。図13は、本発明の実施の形態2に係る顕微鏡観察システムの構成を示すブロック図である。図13に示すように、実施の形態2に係る顕微鏡観察システム2は、顕微鏡装置10と、該顕微鏡装置10が生成した被写体像の画像を取得して処理する撮像装置40と、撮像装置40が処理した画像等を表示する表示装置50とを備える。このうち、顕微鏡装置10の構成及び動作は実施の形態1と同様である(図2参照)。
撮像装置40は、図1に示す制御部23の代わりに制御部41を備える。制御部41は、制御部23に対して、注目スライス取得部411をさらに備える。なお、シフト量取得処理部231及び全焦点画像生成部232の動作は、実施の形態1と同様である。
注目スライス取得部411は、後述する表示装置50から入力部25を介して入力される観察領域に対応する被写体S内の構造が含まれるスライスのZ方向における位置を取得し、このスライスを注目スライスとして決定する。
表示装置50は、例えばLCD、ELディスプレイ又はCRTディスプレイ等によって構成され、出力部26から出力された画像や関連情報を表示する画像表示部51と、外部からなされる操作に応じて、画像表示部51に表示される全焦点画像内の領域を観察領域として決定し、該観察領域を表す信号を制御部41に入力する観察領域決定部52とを備える。
次に、顕微鏡観察システム2の動作を説明する。図14は、顕微鏡観察システム2の動作を示すフローチャートである。なお、ステップS10〜S12における動作は実施の形態1と同様である。また、図15は、ステップS10において生成される複数の多重焦点重畳画像SIi(i=31〜34)を示す模式図である。実施の形態2においては、これらの多重焦点重畳画像SIiを復元することにより複数の全焦点画像AIiがそれぞれ生成され、画像表示部51に順次切り替えて表示されるものとする。
ステップS12に続くステップS21において、観察領域決定部52は、画像表示部51に表示された全焦点画像AI31、AI32、AI33、AI34のいずれかに対して任意の領域を選択するユーザ操作がなされたか否かを判定する。
ユーザ操作がなされない場合(ステップS21:No)、顕微鏡観察システム2の動作はステップS12に戻る。
一方、ユーザ操作がなされた場合(ステップS21:Yes)、観察領域決定部52は、ユーザ操作により選択された領域を観察領域として決定し、該観察領域を表す信号を制御部41に入力する(ステップS22)。図16は、観察領域の選択方法の一例を示す模式図である。観察領域の選択は、例えば図16に示すように、マウス等を用いたポインタ操作により画像表示部51に表示された全焦点画像内の所望の領域を囲むことによって行われる。
続くステップS23において、制御部41は、観察領域決定部52から入力された観察領域を表す情報に基づいて、観察領域のZ位置情報を取得する。図17は、観察領域のZ位置情報の取得処理の詳細を示すフローチャートである。以下においては、一例として、図15に示す全焦点画像AI34内の領域R34が観察領域として決定されたものとして説明する。
ステップS231において、注目スライス取得部411は、全焦点画像A34における観察領域R34のXY位置情報を取得する。
続くステップS232において、注目スライス取得部411は、全焦点画像A34以外の各全焦点画像AI31、AI32、AI33から、観察領域R34に対応する領域R’31、R’32、R’33を抽出し、各領域のXY位置情報を取得する。領域R’31、R’32、R’33は、パターンマッチング等の公知の画像認識技術を用いて抽出することができる。以下、これらの領域R’31、R’32、R’33を観察領域ともいう。
続くステップS233において、注目スライス取得部411は、全焦点画像AI31、AI32、AI33、AI34間における観察領域R’31、R’32、R’33、R34のXY位置のシフト量を取得する。図15の(a)〜(d)の場合、全焦点画像AI31における観察領域R’31のX位置と全焦点画像AI32における観察領域R’32の位置との間のシフト量、全焦点画像AI32における観察領域R’32のX位置と全焦点画像AI33における観察領域R’33の位置との間のシフト量、及び、全焦点画像AI33における観察領域R’33のX位置と全焦点画像AI34における観察領域R34の位置との間のシフト量が取得される。
続くステップS234において、注目スライス取得部411は、観察領域R’31、R’32、R’33、R34のシフト量に基づいて、これらの観察領域R’31、R’32、R’33、R34が含まれるスライスFjを取得する。
ここで、全焦点画像AIiにおけるシフト量がσiであった場合、最上面のスライスFj=0における視野Vの位置に対する各スライスFjにおける視野Vの位置のシフト量si,jは、次式(6)によって与えられる。
i,j=σi×j …(6)
従って、観察領域R’31、R’32、R’33、R34間のシフト量|s(i+1),j−si,j|が与えられれば、次式(7)により、当該観察領域R’31、R’32、R’33、R34が含まれるスライスFjを特定することができる。
|s(i+1) ,j−si,j|=σi+1×j−σi×j
j=|s(i+1),j−si,j|/(σi+1−σi) …(7)
例えば図15の(c)、(d)に示すように、全焦点画像AI33におけるシフト量σ33が2ピクセル、全焦点画像AI34におけるシフト量σ34が3ピクセル、観察領域R’33、R34間のシフト量が2ピクセルであるとき、式(7)より、j=2となる。即ち、観察領域R34はスライスFj=2に含まれることがわかる。
注目スライス取得部411は、このようにして取得したスライスFjを観察領域のZ位置情報として出力する。その後、制御部41の動作はメインルーチンに戻る。
ステップS23に続くステップS24において、制御部41は、注目スライス取得部411が出力したZ位置情報に基づき、このZ位置に焦点を合わせて撮像を行うことにより、観察領域を含むスライスの画像を取得して表示装置50に表示させる。この際、制御部41は、観察領域を含むスライスの画像と共に、このスライスに対して隣り合う他の(即ち、前後の)スライスの画像も取得して表示させることとしても良い。その後、顕微鏡観察システム2の動作は終了する。
以上説明した本発明の実施の形態2によれば、ユーザは、平面上では重なって見える構造のZ方向における位置や、構造同士の前後関係を直感的に容易に把握することが可能となる。
(実施の形態3)
次に、本発明の実施の形態3について説明する。図18は、本発明の実施の形態3に係る顕微鏡観察システムの構成例を示すブロック図である。図18に示すように、実施の形態3に係る顕微鏡観察システム3は、顕微鏡装置10と、該顕微鏡装置10が生成した被写体像の画像を取得して処理する撮像装置60と、撮像装置60が処理した画像等を表示する表示装置50とを備える。このうち、顕微鏡装置10の構成及び動作は、実施の形態1と同様である(図2参照)。また、表示装置50の構成及び動作は、実施の形態2と同様である(図13参照)。
撮像装置60は、図13に示す制御部41の代わりに制御部61を備える。制御部61は、制御部41に対して、全焦点画像生成部232の代わりに全焦点画像生成部611を備える。制御部61以外の撮像装置60の各部の構成及び動作、並びに、全焦点画像生成部611以外の制御部61の各部の構成及び動作は、実施の形態3と同様である。
全焦点画像生成部611は、注目スライス決定部411が決定した注目スライスの位置に基づいて、多重焦点重畳画像を取得する際の撮像位置を決定する撮像位置決定処理部612を有する。
次に、顕微鏡観察システム3の動作について説明する。図19は、顕微鏡観察システム3の動作を示すフローチャートである。なお、ステップS10〜S24は、実施の形態2と同様である(図14参照)。また、図20は、顕微鏡観察システム3の動作を説明するための模式図である。以下の説明においては、ステップS22において観察領域Rが決定され、ステップS23においてこの観察領域RがスライスFj=2に含まれることが判明したものとする。
ステップS24に続くステップS31において、撮像位置決定処理部612は、複数の全焦点画像の間で、ステップS22において決定された観察領域の位置が変化しないように、多重焦点重畳画像を取得する際の撮像位置を決定する。例えば図20の場合、撮像位置決定処理部612は、全焦点画像AI41、AI42、AI43、AI44の間で観察領域Rの位置が変化しないように、観察領域Rが含まれるスライスFj=2における視野Vの位置を確定する。図20の(a)〜(d)においては、観察領域Rが視野Vの中心となるように、視野Vの位置を確定している。そして、確定した視野Vの位置を基準として、多重焦点重畳画像SI41、SI42、SI43、SI44についてそれぞれ設定されているシフト量σ41、σ42、σ43、σ44に基づいて、各多重焦点重畳画像SI41、SI42、SI43、SI44の撮像開始位置を算出する。この撮像開始位置とシフト量σ41、σ42、σ43、σ44とにより、各多重焦点重畳画像SI41、SI42、SI43、SI44を取得する際の各スライスFjに対する撮像位置が決まる。
続くステップS32において、撮像制御部22は、撮像位置決定処理部612が決定した撮像位置に基づいてステージ131の位置及び撮像部211を制御することにより、複数の多重焦点重畳画像を再取得する。複数の多重焦点重畳画像の再取得処理は、撮像パラメータが異なること以外は、ステップS11と同様である。
続くステップS33において、全焦点画像生成部611は、ステップS32において取得された多重焦点重畳画像をPSF関数を用いて復元することにより、複数の全焦点画像を生成する。この全焦点画像の生成処理は、ステップS12と同様である。
続くステップS34において、撮像装置60は、ステップS33において生成した複数の全焦点画像を表示装置50に表示させる。その後、顕微鏡観察システム3の動作は終了する。
以上説明したように、本発明の実施の形態3によれば、ユーザが選択した観察領域の全焦点画像における位置を変化させることなく、仮想的な視点の異なる複数の全焦点画像を表示することができる。従って、ユーザは、自身が選択した観察領域に対する視線を変化させることなく、観察領域のZ方向における位置や他の構造との前後関係等を直感的に把握することが可能となる。
(変形例)
次に、本発明の実施の形態3の変形例について説明する。上記実施の形態3では、各多重焦点重畳画像内において隣り合うスライス間でのシフト量を同一としたが、1つの多重焦点重畳画像内においても、隣り合うスライス間でのシフト量を変化させても良い。
図21は、実施の形態3の変形例における視野の位置のシフト方法を示す模式図である。図21においては、スライスFj=1に含まれる観察領域R1の位置が複数の全焦点画像の間で変化しないように多重焦点重畳画像SI51、SI52を取得している。
図21の(a)、(b)に示す多重焦点重畳画像SI51、SI52の間において、基準とするスライスFj=0における視野Vの位置に対する各スライスFjにおける視野Vの位置のシフト量、例えばシフト量s51,N、s52,Nは、多重焦点重畳画像SI52の方で大きくなっている。また、各多重焦点重畳画像SI51、SI52において、隣り合うスライス間における視野Vの位置のシフト量σは、基準とするスライスFj=0に近いほど大きくなっている。
このように、ユーザが注目した観察領域を含むスライスに近いほど、隣り合うスライス間における視野Vの位置のシフト量を多くすることにより、注目するスライスの構造を把握し易くすることができる。
また、上記実施の形態3においては、各スライスFj=0〜Fj=Nにおける視野Vの位置が一方向に並ぶように、最上面のスライスFj=0又は最下面のスライスFj=Nにおける視野Vに対するシフト量を順次増加又は順次減少させた。しかしながら、スライスに応じて視野の位置のシフト量の増減を変化させても良い。
図22は、実施の形態3の変形例における視野の別のシフト方法を示す模式図である。図22においては、スライスFj=3に含まれる観察領域R2の位置が複数の全焦点画像の間で変化しないように多重焦点重畳画像SI61、SI62を取得している。
図22の(a)、(b)に示す多重焦点重畳画像SI61、SI62においては、観察領域を含むスライスFj=3を境に、隣り合うスライス間のシフト量の増減を転換させている。それにより、全焦点画像を生成した場合においても、ユーザが選択した観察領域を含むスライスをより際立たせて表示することが可能となる。
以上説明した実施の形態1〜3及び変形例はそのままに限定されるものではなく、各実施の形態及び変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、実施の形態に示される全構成要素からいくつかの構成要素を除外して形成してもよい。あるいは、異なる実施の形態に示した構成要素を適宜組み合わせて形成してもよい。
1、2、3 顕微鏡観察システム
10 顕微鏡装置
20、40、60 撮像装置
21 画像取得部
22 撮像制御部
23、41、61 制御部
24 記憶部
25 入力部
26 出力部
30、50 表示装置
51 画像表示部
52 観察領域決定部
100 アーム
101 三眼鏡筒ユニット
102 鏡筒
103 接眼レンズユニット
104 観察光学系
110 落射照明ユニット
111 落射照明用光源
112 落射照明光学系
120 透過照明ユニット
121 透過照明用光源
122 透過照明光学系
130 電動ステージユニット
131 ステージ
132 ステージ駆動部
133 位置検出部
140、141 対物レンズ
142 レボルバ
161 台座
161a 斜面
211 撮像部
212 メモリ
231 シフト量取得処理部
232、611 全焦点画像生成部
241 パラメータ記憶部
242 プログラム記憶部
411 注目スライス取得部
612 撮像位置決定処理部

Claims (6)

  1. 顕微鏡の観察光学系により生成される被写体像を撮像して画像を取得する撮像部と、
    前記観察光学系の焦点面及び視野の位置をシフトさせるシフト手段と、
    前記撮像部の1露光期間中に、前記焦点面及び前記視野の位置をシフトさせることにより、前記観察光学系の光軸方向の複数の面における画像情報を含む多重焦点重畳画像を前記撮像部に取得させる撮像制御部と、
    前記視野の位置をシフトさせるシフト量を取得するシフト量取得処理部と、
    前記シフト量が異なる複数の条件の下でそれぞれ取得された複数の多重焦点重畳画像をもとに、複数の全焦点画像をそれぞれ生成する全焦点画像生成部と、
    前記複数の全焦点画像を表示する表示部と、
    外部からなされる操作に応じて前記複数の全焦点画像のうちのいずれかの全焦点画像から選択された領域を観察領域として決定する観察領域決定処理部と、
    前記観察領域を選択された全焦点画像以外の全焦点画像から前記観察領域に対応する領域を抽出すると共に、前記観察領域を選択された全焦点画像における前記観察領域の位置と、前記領域を抽出された全焦点画像における前記領域の位置との間のシフト量に基づいて、前記観察領域に対応する被写体内の構造が含まれるスライスの位置を取得する注目スライス取得部と、
    を備えることを特徴とする顕微鏡観察システム。
  2. 前記撮像制御部は、前記シフト量取得処理部が取得した前記シフト量に基づいて、前記複数の多重焦点重畳画像の各々を取得する際の撮像開始位置を決定する、ことを特徴とする請求項1に記載の顕微鏡観察システム。
  3. 前記全焦点画像生成部は、前記観察領域を選択された全焦点画像における前記観察領域の位置に基づき、前記撮像部の1露光期間中に前記観察光学系の視野の位置をシフトさせて多重焦点重畳画像を取得する際の撮像位置を決定する撮像位置決定処理部を有する、ことを特徴とする請求項に記載の顕微鏡観察システム。
  4. 前記撮像位置決定処理部は、前記複数の全焦点画像の間で各全焦点画像における前記観察領域の位置が変化しないように、前記撮像位置を決定する、ことを特徴とする請求項に記載の顕微鏡観察システム。
  5. 顕微鏡の観察光学系により生成される被写体像を撮像部により撮像して画像を取得する顕微鏡観察方法において、
    前記撮像部の1露光期間中に、前記観察光学系の焦点面及び視野の位置をシフトさせることにより、前記観察光学系の光軸方向の複数の面における画像情報を含む多重焦点重畳画像を取得する撮像ステップと、
    前記視野の位置をシフトさせるシフト量が異なる複数の条件の下でそれぞれ取得された複数の多重焦点重畳画像をもとに、複数の全焦点画像をそれぞれ生成する全焦点画像生成ステップと、
    前記複数の全焦点画像を表示部に表示させる表示ステップと、
    外部からなされる操作に応じて前記複数の全焦点画像のうちのいずれかの全焦点画像から選択された領域を観察領域として決定する観察領域決定処理ステップと、
    前記観察領域を選択された全焦点画像以外の全焦点画像から前記観察領域に対応する領域を抽出すると共に、前記観察領域を選択された全焦点画像における前記観察領域の位置と、前記領域を抽出された全焦点画像における前記領域の位置との間のシフト量に基づいて、前記観察領域に対応する被写体内の構造が含まれるスライスの位置を取得する注目スライス取得ステップと、
    を含むことを特徴とする顕微鏡観察方法。
  6. 顕微鏡の観察光学系により生成される被写体像を撮像部により撮像して画像を取得する顕微鏡観察プログラムにおいて、
    前記撮像部の1露光期間中に、前記観察光学系の焦点面及び視野の位置をシフトさせることにより、前記観察光学系の光軸方向の複数の面における画像情報を含む多重焦点重畳画像を取得する制御を行う撮像制御ステップと、
    前記視野の位置をシフトさせるシフト量が異なる複数の条件の下でそれぞれ取得された複数の多重焦点重畳画像をもとに、複数の全焦点画像をそれぞれ生成する全焦点画像生成ステップと、
    前記複数の全焦点画像を表示部に表示させる表示ステップと、
    外部からなされる操作に応じて前記複数の全焦点画像のうちのいずれかの全焦点画像から選択された領域を観察領域として決定する観察領域決定処理ステップと、
    前記観察領域を選択された全焦点画像以外の全焦点画像から前記観察領域に対応する領域を抽出すると共に、前記観察領域を選択された全焦点画像における前記観察領域の位置と、前記領域を抽出された全焦点画像における前記領域の位置との間のシフト量に基づいて、前記観察領域に対応する被写体内の構造が含まれるスライスの位置を取得する注目スライス取得ステップと、
    をコンピュータに実行させることを特徴とする顕微鏡観察プログラム。
JP2017512154A 2015-04-16 2015-04-16 顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラム Active JP6563486B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061742 WO2016166871A1 (ja) 2015-04-16 2015-04-16 顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラム

Publications (2)

Publication Number Publication Date
JPWO2016166871A1 JPWO2016166871A1 (ja) 2018-02-08
JP6563486B2 true JP6563486B2 (ja) 2019-08-21

Family

ID=57125922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017512154A Active JP6563486B2 (ja) 2015-04-16 2015-04-16 顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラム

Country Status (4)

Country Link
US (1) US10613313B2 (ja)
JP (1) JP6563486B2 (ja)
DE (1) DE112015006271T5 (ja)
WO (1) WO2016166871A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066845A (ja) * 2016-10-19 2018-04-26 オリンパス株式会社 顕微鏡システム
CN109241812B (zh) * 2017-07-10 2022-10-11 安徽爱观视觉科技有限公司 一种原物识别装置及识别方法
CN107367515B (zh) * 2017-07-14 2019-11-15 华南理工大学 一种超薄柔性ic基板油墨异物检测方法
JP7034636B2 (ja) * 2017-09-07 2022-03-14 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察装置、および医療用観察システム
JP7265248B2 (ja) * 2019-02-15 2023-04-26 日本分光株式会社 自動サンプル検出機能を有する顕微分光装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905619C2 (de) 1988-02-23 2000-04-13 Olympus Optical Co Bildeingabe-/Ausgabevorrichtung
JP3191928B2 (ja) * 1988-02-23 2001-07-23 オリンパス光学工業株式会社 画像入出力装置
DE3931934C2 (de) 1988-10-03 1994-11-10 Olympus Optical Co Bild-Ein/Ausgabevorrichtung
EP1436658B1 (de) * 2001-09-11 2008-06-18 Leica Microsystems CMS GmbH Verfahren und vorrichtung zur optischen untersuchung eines objektes
JP3867143B2 (ja) * 2003-06-25 2007-01-10 独立行政法人産業技術総合研究所 三次元顕微鏡システムおよび画像表示方法
JP2008067915A (ja) * 2006-09-14 2008-03-27 Canon Inc 医用画像表示装置
JP5499732B2 (ja) * 2009-06-23 2014-05-21 ソニー株式会社 生体サンプル像取得装置、生体サンプル像取得方法及び生体サンプル像取得プログラム
CN102472619B (zh) 2010-06-15 2014-12-31 松下电器产业株式会社 摄像装置及摄像方法
US9151944B2 (en) * 2012-07-19 2015-10-06 Sony Corporation Method and apparatus for navigating stacked microscopy images
EP2967473B1 (en) * 2013-03-15 2020-02-19 Hologic, Inc. System and method for navigating a tomosynthesis stack including automatic focusing
JPWO2016166858A1 (ja) * 2015-04-15 2018-02-08 オリンパス株式会社 顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラム
RU2734447C2 (ru) * 2016-02-22 2020-10-16 Конинклейке Филипс Н.В. Система для формирования синтезированного двухмерного изображения биологического образца с повышенной глубиной резкости
US20180192030A1 (en) * 2016-06-07 2018-07-05 Gary Greenberg 4-D Video Of An Object Using A Microscope
WO2017223206A1 (en) * 2016-06-21 2017-12-28 Sri International Hyperspectral imaging methods and apparatuses

Also Published As

Publication number Publication date
JPWO2016166871A1 (ja) 2018-02-08
US20180081162A1 (en) 2018-03-22
US10613313B2 (en) 2020-04-07
DE112015006271T5 (de) 2018-01-18
WO2016166871A1 (ja) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6563486B2 (ja) 顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラム
JP5555014B2 (ja) バーチャルスライド作成装置
CN109417602B (zh) 图像处理方法、图像处理装置、摄像装置及摄像方法
EP3035104B1 (en) Microscope system and setting value calculation method
JP2016024489A (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
JP2008020498A (ja) 自動焦点検出装置
JP6300606B2 (ja) 顕微鏡システム
US10429632B2 (en) Microscopy system, microscopy method, and computer-readable recording medium
JP6027875B2 (ja) 撮像装置及び顕微鏡システム
US10721413B2 (en) Microscopy system, microscopy method, and computer readable recording medium
JP2014134632A (ja) 撮像装置、顕微鏡システム及び撮像方法
JP6887875B2 (ja) 顕微鏡システム、制御方法、及び、プログラム
JP6479041B2 (ja) 観察システム、光学部品、及び観察方法
JP6408817B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、及び撮像システム
JP7030986B2 (ja) 画像生成装置、画像生成方法および画像生成プログラム
JP2018019319A (ja) 画像処理方法、画像処理装置、および撮像装置
JP6422761B2 (ja) 顕微鏡システム、及び、z位置と補正装置の設定値との関係算出方法
JP6423261B2 (ja) 顕微鏡システム、関数算出方法、及び、プログラム
JP2016206228A (ja) 合焦位置検出装置、合焦位置検出方法、撮像装置、撮像システム
JP6263589B1 (ja) 画像処理方法、画像処理装置、および撮像装置
JP2012150142A (ja) 顕微鏡制御装置、顕微鏡システム及び該制御方法
JP2013174709A (ja) 顕微鏡装置およびバーチャル顕微鏡装置
US20210041684A1 (en) Whole slide image creation device
JP2013255100A (ja) 顕微鏡システム
JP2018033059A (ja) 画像処理方法、画像処理装置、画像処理プログラムおよび撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190724

R151 Written notification of patent or utility model registration

Ref document number: 6563486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250