JP6561879B2 - Method for producing InAs colloidal particles - Google Patents

Method for producing InAs colloidal particles Download PDF

Info

Publication number
JP6561879B2
JP6561879B2 JP2016045176A JP2016045176A JP6561879B2 JP 6561879 B2 JP6561879 B2 JP 6561879B2 JP 2016045176 A JP2016045176 A JP 2016045176A JP 2016045176 A JP2016045176 A JP 2016045176A JP 6561879 B2 JP6561879 B2 JP 6561879B2
Authority
JP
Japan
Prior art keywords
inas
particles
colloidal particles
colloidal
inas colloidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016045176A
Other languages
Japanese (ja)
Other versions
JP2017160078A (en
Inventor
宇野 貴博
貴博 宇野
政美 三宅
政美 三宅
大悟 生田
大悟 生田
岡田 智
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016045176A priority Critical patent/JP6561879B2/en
Publication of JP2017160078A publication Critical patent/JP2017160078A/en
Application granted granted Critical
Publication of JP6561879B2 publication Critical patent/JP6561879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、次世代の太陽電池、光検出器(赤外線センサ等)、レーザ等の主材料であるInAsコロイド粒子を製造する方法に関するものである。   The present invention relates to a method for producing InAs colloidal particles, which are main materials such as next-generation solar cells, photodetectors (infrared sensors, etc.), and lasers.

1980年代初期に量子サイズ効果の概念が導入されて以来、CdSe(セレン化カドミウム)コロイド粒子は無機半導体ナノ粒子の中で最も研究されてきたナノ結晶である。高品質のCdSeコロイド粒子を作るために、非常に成功した製造方法が確立している(例えば、非特許文献1参照。)。この非特許文献1に示される方法は、Se(セレン)とアルキルホスフィンとの間で前駆体を作るために、アルキルホスフィンとして、トリオクチルホスフィン(TOP)又はトリブチルホスフィン(TBP)を用いている。   Since the concept of quantum size effect was introduced in the early 1980s, CdSe (cadmium selenide) colloidal particles are the most studied nanocrystals among inorganic semiconductor nanoparticles. In order to produce high-quality CdSe colloidal particles, a very successful production method has been established (for example, see Non-Patent Document 1). The method disclosed in Non-Patent Document 1 uses trioctylphosphine (TOP) or tributylphosphine (TBP) as the alkylphosphine in order to make a precursor between Se (selenium) and alkylphosphine.

一方、非特許文献1には、有機金属前駆体を用いてII−VI族半導体ナノ結晶を製造できる、即ちCdSeコロイド粒子以外のII−VI族のコロイド粒子を合成できることが示唆されている。一方で、III−V族化合物は供給結合性が強く、かつ前駆体化合物から半導体形成に対する反応エネルギ障壁が高いので、化学合成法にて合成することが非常に難しい。このため、次のように、非常に反応性の高い原料を使用することで、上記課題を解決する試みがなされた。臭化インジウム(InBr3)とトリメチルシリルアルシン(As[Si(CH3)3]3)の反応を用いてコロイド化学合成によりInAs(ヒ化インジウム)コロイド粒子を合成する方法が開発された(例えば、非特許文献2。)。このInAsコロイド粒子の合成方法では、直径25〜60ÅのInAsコロイド粒子のサイズが、直径±10〜15%のサイズ分布で生成されかつ単離される。また、InAsコロイド粒子は、一般的に球状であり、非極性有機溶媒への溶解性をそれらに与えるトリオクチルホスフィン(TOP)により修飾された表面を有する。 On the other hand, Non-Patent Document 1 suggests that II-VI semiconductor nanocrystals can be produced using an organometallic precursor, that is, II-VI group colloidal particles other than CdSe colloidal particles can be synthesized. On the other hand, the III-V group compound has a strong supply binding property and a high reaction energy barrier against semiconductor formation from the precursor compound, so that it is very difficult to synthesize it by a chemical synthesis method. For this reason, an attempt was made to solve the above problems by using a highly reactive raw material as follows. A method for synthesizing InAs (indium arsenide) colloidal particles by colloidal chemical synthesis using a reaction of indium bromide (InBr 3 ) and trimethylsilylarsine (As [Si (CH 3 ) 3 ] 3 ) has been developed (for example, Non-patent document 2.). In this method of synthesizing InAs colloidal particles, the size of InAs colloidal particles having a diameter of 25 to 60 mm is produced and isolated with a size distribution of ± 10 to 15% in diameter. InAs colloidal particles are also generally spherical and have a surface modified with trioctylphosphine (TOP) that gives them solubility in non-polar organic solvents.

非特許文献2のInAsコロイド粒子の合成に用いられるトリメチルシリルアルシン(As[Si(CH3)3]3)は、室温で液体であり、反応性も非常に高く、効率良くInAsコロイド粒子を合成できる。しかし、非特許文献2のInAsコロイド粒子の合成に用いられるトリメチルシリルアルシン(As[Si(CH3)3]3)は、水蒸気と反応して、毒性が極めて高くなり、爆発のおそれもあるアルシン(AsH3)が生成される問題点があった。 Trimethylsilylarsine (As [Si (CH 3 ) 3 ] 3 ) used for the synthesis of InAs colloidal particles in Non-Patent Document 2 is liquid at room temperature, has very high reactivity, and can synthesize InAs colloidal particles efficiently. . However, trimethylsilylarsine (As [Si (CH 3 ) 3 ] 3 ) used for the synthesis of InAs colloidal particles of Non-Patent Document 2 reacts with water vapor to become extremely toxic and possibly explosive. AsH 3 ) was generated.

このため、As原料として、安全かつ簡便で処理し易いトリフェニルアルシン(As(C65)3)を用いたInAsコロイド粒子の合成方法が開発された(例えば、非特許文献3参照。)。このInAsコロイド粒子は、オレイルアミン(OLA)、トリオクチルホスフィン(TOP)及びオクタデセン(ODE)の混合物に、トリフェニルアルシン(As(C65)3)と臭化インジウム(InBr3)を含む有機金属溶液を320℃に加熱することにより合成される。このとき、最適なトリオクチルホスフィン(TOP)の濃度において、320℃に保持する時間、即ち反応時間(InAsコロイドの核生成後の粒成長時間)を変えることにより、InAsコロイド粒子の粒径を制御する。このように、安全かつ簡便で処理し易いAs原料(トリフェニルアルシン:As(C65)3)を用いて、近赤外発光を観測可能なInAsコロイド粒子を合成できる。 For this reason, a method for synthesizing InAs colloidal particles using triphenylarsine (As (C 6 H 5 ) 3 ), which is safe, simple, and easy to process as an As raw material has been developed (see, for example, Non-Patent Document 3). . This InAs colloidal particle is an organic material containing triphenylarsine (As (C 6 H 5 ) 3 ) and indium bromide (InBr 3 ) in a mixture of oleylamine (OLA), trioctylphosphine (TOP) and octadecene (ODE). It is synthesized by heating the metal solution to 320 ° C. At this time, the particle size of InAs colloidal particles is controlled by changing the reaction time (grain growth time after nucleation of InAs colloid) at the optimum concentration of trioctylphosphine (TOP) at 320 ° C. To do. In this manner, InAs colloidal particles capable of observing near-infrared light emission can be synthesized using an As raw material (triphenylarsine: As (C 6 H 5 ) 3 ) that is safe, simple, and easy to process.

C. B. Murray et al. J. Am. Chem. Soc. 1993, 115, 8706-8715C. B. Murray et al. J. Am. Chem. Soc. 1993, 115, 8706-8715 A. A. Guzelian et al. Appl. Phys. Lett., 1996, 69, 1432・1434A. A. Guzelian et al. Appl. Phys. Lett., 1996, 69, 1432 ・ 1434 H. Uesugi et al. J. Cryst. Growth 416, 134-141(2015)H. Uesugi et al. J. Cryst. Growth 416, 134-141 (2015)

InAsコロイド粒子を用いて、太陽電池、光検出器(赤外線センサ等)、レーザ等を製造する場合、InAsコロイド粒子の持つバンドギャップを精密に制御することが重要である。これは、量子サイズ効果の原理に従うと、粒径を精密に制御することに相当する。上記従来の非特許文献3に示されたInAsコロイド粒子の合成方法では、In原料液及びAs原料液の混合液(合成液)を所定の温度に保持し、InAsコロイドの核生成後の粒成長時間でInAsコロイド粒子の粒径を制御している。   When manufacturing solar cells, photodetectors (infrared sensors, etc.), lasers, etc. using InAs colloidal particles, it is important to precisely control the band gap of InAs colloidal particles. This corresponds to precisely controlling the particle size according to the principle of the quantum size effect. In the conventional method for synthesizing InAs colloidal particles disclosed in Non-Patent Document 3, grain growth after nucleation of InAs colloid is performed by maintaining a mixed liquid (synthetic liquid) of In raw material liquid and As raw material liquid at a predetermined temperature. The particle size of the InAs colloidal particles is controlled by time.

しかし、上記従来の非特許文献3に示されたInAsコロイド粒子の合成方法では、粒径の小さいInAsコロイド粒子を得るには粒成長時間を短くしなければならず、粒成長時間が短いと、InAsコロイド粒子の粒度分布標準偏差σが増大するという不具合があった。即ち、上記従来の非特許文献3に示されたInAsコロイド粒子の合成方法では、粒成長時間を短くして粒径の小さいInAsコロイド粒子を得ようとすると、粒成長に伴う粒度分布縮小の原理から、粒度分布が広がったままになってしまうため、このInAsコロイド粒子は粒径の均一性に乏しくなり、このInAsコロイド粒子を例えば太陽電池の光電変換素子の主材料として用いると、太陽電池の効率が低下する等の問題点があった。   However, in the conventional method for synthesizing InAs colloidal particles shown in Non-Patent Document 3, in order to obtain InAs colloidal particles having a small particle size, the grain growth time must be shortened. There was a problem that the standard deviation σ of the particle size distribution of InAs colloidal particles increased. That is, in the conventional method for synthesizing InAs colloidal particles shown in Non-Patent Document 3, if an attempt is made to obtain InAs colloidal particles having a small particle size by shortening the particle growth time, the principle of particle size distribution reduction accompanying the particle growth is described. Therefore, the InAs colloidal particles have poor particle size uniformity. For example, when the InAs colloidal particles are used as the main material of a photoelectric conversion element of a solar cell, There were problems such as reduced efficiency.

本発明の目的は、粒径の小さいInAsコロイド粒子であっても、粒度分布標準偏差σが小さい高品質のInAsコロイド粒子を製造でき、これにより比較的広い粒径範囲にわたって粒度分布標準偏差σが小さい高品質のInAsコロイド粒子を製造できる、InAsコロイド粒子の製造方法を提供することにある。本発明の別の目的は、InAsコロイド核の粒成長のために合成液を加熱したときに、合成液中の有機溶媒の揮発を抑制できる、InAsコロイド粒子の製造方法を提供することにある。   The object of the present invention is to produce high-quality InAs colloidal particles having a small particle size distribution standard deviation σ, even for InAs colloidal particles having a small particle size. An object of the present invention is to provide a method for producing InAs colloidal particles, which can produce small, high-quality InAs colloidal particles. Another object of the present invention is to provide a method for producing InAs colloidal particles, which can suppress volatilization of an organic solvent in a synthetic solution when the synthetic solution is heated for grain growth of InAs colloidal nuclei.

本発明の第1の観点は、In原料液とAs原料液とを混合して合成液を調製する混合工程と、合成液を300〜350℃に加熱してInAsコロイド核を生成させる核生成工程と、InAsコロイド核が生成した合成液を加熱温度で所定の時間保持してInAsコロイド核を粒成長させる粒成長工程と、InAsコロイド核が粒成長した合成液を冷却する冷却工程と、冷却した合成液を固液分離してInAsコロイド粒子を得るコロイド粒子分離工程とを含むInAsコロイド粒子の製造方法であって、In原料液がトリオクチルホスフィンとトリオクチルホスフィンオキシドを含み、粒成長工程の加熱保持時間が5分間〜120分間であり、トリオクチルホスフィンに対するトリオクチルホスフィンオキシドの含有割合がモル比で0.12〜0.13倍であることを特徴とする。   A first aspect of the present invention is a mixing step of preparing a synthetic solution by mixing an In raw material solution and an As raw material solution, and a nucleation step of generating a InAs colloid nucleus by heating the synthetic solution to 300 to 350 ° C. And a grain growth step in which the synthesis liquid in which the InAs colloid nuclei are generated is held at a heating temperature for a predetermined time to grow InAs colloid nuclei, a cooling process in which the synthesis liquid in which the InAs colloid nuclei have grown is cooled, and cooling A method for producing InAs colloidal particles, comprising a solid-liquid separation of a synthesis liquid to obtain InAs colloidal particles, wherein the In raw material liquid contains trioctylphosphine and trioctylphosphine oxide, and heating in the grain growth step Holding time is 5 minutes to 120 minutes, and the content ratio of trioctylphosphine oxide to trioctylphosphine is 0.12 in terms of molar ratio. Characterized in that it is a 0.13-fold.

本発明の第2の観点は、第1の観点に基づく発明であって、更に冷却工程とコロイド粒子分離工程との間に、合成液中の粗大粒子を分離除去する粗大粒子分離除去工程を更に含むことを特徴とする。   The second aspect of the present invention is an invention based on the first aspect, further comprising a coarse particle separation and removal step for separating and removing coarse particles in the synthesis solution between the cooling step and the colloidal particle separation step. It is characterized by including.

本発明の第3の観点は、第2の観点に基づく発明であって、更に粗大粒子分離除去工程とコロイド粒子分離工程との間に、合成液に極性溶媒を添加混合して反応液を調製することによりInAsコロイド粒子を凝集させてInAsコロイド凝集粒子を得る凝集工程と、反応液を固液分離してInAsコロイド凝集粒子を回収する回収工程と、InAsコロイド凝集粒子に非極性溶媒を添加混合しInAsコロイド凝集粒子を再分散させてInAsコロイド凝集粒子をInAsコロイド粒子にほぐす再分散・解こう工程とを更に含むことを特徴とする。   A third aspect of the present invention is an invention based on the second aspect, and further prepares a reaction liquid by adding and mixing a polar solvent to the synthesis liquid between the coarse particle separation and removal step and the colloid particle separation step. Agglomeration step for aggregating InAs colloidal particles to obtain InAs colloidal agglomerated particles, a recovery step for recovering InAs colloidal agglomerated particles by solid-liquid separation of the reaction solution, and adding and mixing a nonpolar solvent to InAs colloidal agglomerated particles And a redispersion / peptization step of redispersing the InAs colloidal aggregated particles to loosen the InAs colloidal aggregated particles into the InAs colloidal particles.

本発明の第1の観点のInAsコロイド粒子の製造方法では、In原料液がトリオクチルホスフィンとトリオクチルホスフィンオキシドを含み、トリオクチルホスフィンに対するトリオクチルホスフィンオキシドの含有割合がモル比で0.12〜0.13倍であるので、InAsコロイド核生成後の粒成長時間を長くしても、即ち、粒成長に伴う粒度分布縮小の原理に基づいて粒度分布をシャープにする操作を施しても、トリオクチルホスフィンオキシドが存在するため、比較的広い粒径範囲にわたって粒度分布標準偏差σが小さい高品質のInAsコロイド粒子を製造できる。また、InAsコロイド核の粒成長のために合成液を300〜350℃と比較的低い温度で加熱したので、合成液中の有機溶媒の揮発を抑制できる。   In the method for producing InAs colloidal particles according to the first aspect of the present invention, the In raw material liquid contains trioctylphosphine and trioctylphosphine oxide, and the content ratio of trioctylphosphine oxide with respect to trioctylphosphine is 0.12 to 0.12. Even if the grain growth time after the InAs colloid nucleation is increased, that is, even if an operation for sharpening the grain size distribution based on the principle of grain size reduction accompanying grain growth is performed, Since octylphosphine oxide is present, high-quality InAs colloidal particles having a small particle size distribution standard deviation σ over a relatively wide particle size range can be produced. Moreover, since the synthesis solution is heated at a relatively low temperature of 300 to 350 ° C. for the growth of InAs colloidal nuclei, volatilization of the organic solvent in the synthesis solution can be suppressed.

本発明の第2の観点のInAsコロイド粒子の製造方法では、冷却工程とコロイド粒子分離工程との間に、合成液中の粗大粒子を分離除去する粗大粒子分離除去工程を更に含むので、核生成工程や粒成長工程中に合成液中に粗大粒子が発生した場合に、この粗大粒子を粗大粒子分離除去工程で取除くことにより、InAsコロイド粒子の粒度分布の均一性を維持できる。   The InAs colloidal particle production method of the second aspect of the present invention further includes a coarse particle separation / removal step for separating and removing coarse particles in the synthesis solution between the cooling step and the colloidal particle separation step. When coarse particles are generated in the synthetic solution during the step or the grain growth step, the coarse particle distribution is removed in the coarse particle separation and removal step, whereby the uniformity of the particle size distribution of the InAs colloidal particles can be maintained.

本発明の第3の観点のInAsコロイド粒子の製造方法では、合成液中のInAsコロイド粒子が極めて小さいため、合成液から固液分離し難いInAsコロイド粒子を凝集工程で軽く凝集させて固液分離し易くした後に、この軽く凝集したInAsコロイド粒子を回収工程で固液分離して回収し、更にこの回収された凝集物(軽く凝集したInAsコロイド粒子)を再分散・解こう工程で再分散させてほぐすことにより、InAsコロイド粒子が得えられる。この結果、合成液中のInAsコロイド粒子を合成液中から効率良く回収できる。   In the method for producing InAs colloidal particles according to the third aspect of the present invention, since the InAs colloidal particles in the synthesis solution are extremely small, the InAs colloidal particles that are difficult to separate into solid and liquid from the synthesis solution are agglomerated lightly in the agglomeration step to perform solid-liquid separation. After this, the lightly aggregated InAs colloidal particles are recovered by solid-liquid separation in the recovery process, and the recovered aggregates (lightly aggregated InAs colloidal particles) are redispersed in the redispersion / peptization process. By loosening, InAs colloidal particles can be obtained. As a result, the InAs colloidal particles in the synthesis solution can be efficiently recovered from the synthesis solution.

本発明第1実施形態のInAsコロイド粒子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the InAs colloidal particle of 1st Embodiment of this invention. 本発明第2実施形態のInAsコロイド粒子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the InAs colloidal particle of 2nd Embodiment of this invention. 本発明第3実施形態のInAsコロイド粒子の製造工程の前半を示すフローチャートである。It is a flowchart which shows the first half of the manufacturing process of the InAs colloidal particle of 3rd Embodiment of this invention. 本発明第3実施形態のInAsコロイド粒子の製造工程の後半を示すフローチャートである。It is a flowchart which shows the second half of the manufacturing process of the InAs colloidal particle of 3rd Embodiment of this invention.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

<第1の実施の形態>
本実施形態のInAsコロイド粒子は、図1に示す工程を経て作られる。各原料の秤量は各原料の雰囲気ガスとの反応を回避するため、窒素ガス等の不活性ガス雰囲気下で行われる。
<First Embodiment>
The InAs colloidal particles of this embodiment are made through the process shown in FIG. Each raw material is weighed under an inert gas atmosphere such as nitrogen gas in order to avoid reaction with the atmospheric gas of each raw material.

[As原料液の調製]
本実施形態のAs原料液は、不活性ガスで置換した雰囲気下で、容器にAs源としてのトリフェニルアルシン(As(C65)3)を入れ、これに溶媒としてのオクタデセン(C1836:ODE)を加えて混合し、トリフェニルアルシン(As(C65)3)をオクタデセン(C1836:ODE)に溶解することにより、As原料液を調製する。
[Preparation of As raw material liquid]
In the As raw material liquid of the present embodiment, triphenylarsine (As (C 6 H 5 ) 3 ) as an As source is placed in a container in an atmosphere substituted with an inert gas, and octadecene (C 18 ) as a solvent is added thereto. H 36 : ODE) is added and mixed, and triphenylarsine (As (C 6 H 5 ) 3 ) is dissolved in octadecene (C 18 H 36 : ODE) to prepare an As raw material liquid.

[In原料液の調製]
本実施形態のIn原料液は、不活性ガスで置換した雰囲気下で、容器にIn源としての臭化インジウム(InBr3)を入れ、これに主配位子剤(コロイドには表面修飾剤として働く。)としてのトリオクチルホスフィン(C2451P:TOP)と、溶媒(配位子剤としても働く。)としてのオレイルアミン(C1837N:OLA)とを加え、更に副配位子剤としてのトリオクチルホスフィンオキシド(C2451OP:TOPO)をモル比でトリオクチルホスフィン(C2451P:TOP)の0.12〜0.13倍となるように添加し、所定温度に保持した恒温槽内で振とう機に所定時間かけて臭化インジウム(InBr3)を溶解して、In原料液を調製する。ここで、トリオクチルホスフィンオキシド(C2451OP:TOPO)をモル比でトリオクチルホスフィン(C2451P:TOP)の0.12〜0.13倍となるように添加したのは、0.12倍未満ではInAsコロイド粒子の粒度分布標準偏差σが大きくなってInAsコロイド粒子の品質が低下してしまい、また粒径の小さいInAsコロイド粒子を作製できず、0.13倍を超えるとInAsコロイド粒子の収量が実用化(量産化)の障害になるほど減少してしまうからである。また、振とう機にかけるときの恒温槽内の所定温度は50〜70℃であることが好ましく、60℃であることが更に好ましい。更に、振とう機にかける所定時間は0.5〜5時間であることが好ましく、1時間であることが更に好ましい。ここで、振とう機にかけるときの恒温槽内の好ましい所定温度を50〜80℃の範囲内に限定したのは、50℃未満では臭化インジウム(InBr3)の溶解速度が著しく低下してしまい、80℃を超えると振とう機の耐熱性に問題が発生するからである。また、振とう機にかける好ましい所定時間0.5〜5時間の範囲内に限定したのは、0.5時間満では臭化インジウム(InBr3)の未溶解物が残存してしまい、5時間を超えると作業効率が著しく低下してしまうからである。
[Preparation of In raw material liquid]
In the In raw material liquid of this embodiment, in an atmosphere substituted with an inert gas, indium bromide (InBr 3 ) as an In source is placed in a container, and a main ligand agent (as a surface modifier for a colloid) Trioctylphosphine (C 24 H 51 P: TOP) as a solvent and oleylamine (C 18 H 37 N: OLA) as a solvent (also works as a ligand agent) Trioctylphosphine oxide (C 24 H 51 OP: TOPO) as a child agent was added in a molar ratio of 0.12 to 0.13 times that of trioctylphosphine (C 24 H 51 P: TOP). Indium bromide (InBr 3 ) is dissolved in a shaker in a thermostatic chamber maintained at a temperature over a predetermined time to prepare an In raw material solution. Here, trioctyl phosphine oxide (C 24 H 51 OP: TOPO) was added in a molar ratio of 0.12 to 0.13 times that of trioctyl phosphine (C 24 H 51 P: TOP). If it is less than 0.12 times, the standard deviation σ of the particle size distribution of the InAs colloidal particles becomes large and the quality of the InAs colloidal particles is deteriorated, and InAs colloidal particles having a small particle size cannot be produced. This is because the yield of InAs colloidal particles decreases as it becomes an obstacle to practical use (mass production). Moreover, it is preferable that the predetermined temperature in a thermostat when applying to a shaker is 50-70 degreeC, and it is still more preferable that it is 60 degreeC. Furthermore, the predetermined time applied to the shaker is preferably 0.5 to 5 hours, and more preferably 1 hour. Here, the preferable predetermined temperature in the thermostatic bath when shaken is limited to the range of 50 to 80 ° C. because the dissolution rate of indium bromide (InBr 3 ) is remarkably reduced at less than 50 ° C. That is, if the temperature exceeds 80 ° C., a problem occurs in the heat resistance of the shaker. Further, the preferable predetermined time of 0.5 to 5 hours applied to the shaker is limited to the range of 0.5 to 5 hours, in which insoluble bromide (InBr 3 ) remains after 5 hours and 5 hours. It is because work efficiency will fall remarkably when exceeding.

[In原料液とAs原料液との混合]
不活性ガスで置換した雰囲気下で、As原料液が入っている容器にIn原料液を投入し、ミキサー等で十分撹拌し、In原料液とAs原料液の合成液を調製する(混合工程)。
[Mixing of In raw material liquid and As raw material liquid]
In an atmosphere substituted with an inert gas, the In raw material liquid is put into a container containing the As raw material liquid and sufficiently stirred with a mixer or the like to prepare a synthetic liquid of the In raw material liquid and the As raw material liquid (mixing step). .

[InAsコロイド核の生成]
合成液を300〜350℃、好ましくは320〜330℃に加熱してInAsコロイド核を生成させる(核生成工程)。ここで、合成液の加熱温度を300〜350℃の範囲内に限定したのは、300℃未満ではInAsコロイド粒子が全く生成されず、350℃を超えると合成液中の有機溶媒の揮発の影響が生じてしまうからである。また、合成液を上記加熱温度に20〜40分間程度(約30分間)保持すると、合成液が着色し始めてInAsコロイド核が生成される。
[Generation of InAs colloid nuclei]
The synthesis solution is heated to 300 to 350 ° C., preferably 320 to 330 ° C., to generate InAs colloid nuclei (nucleation step). Here, the heating temperature of the synthesis solution is limited to the range of 300 to 350 ° C. The reason why InAs colloidal particles are not generated at all below 300 ° C., and the effect of volatilization of the organic solvent in the synthesis solution when the temperature exceeds 350 ° C. This is because of this. Further, when the synthesis solution is held at the above heating temperature for about 20 to 40 minutes (about 30 minutes), the synthesis solution starts to be colored and InAs colloid nuclei are generated.

[InAsコロイド核の粒成長]
InAsコロイド核が生成した合成液を加熱温度で所定の時間保持してInAsコロイド核を粒成長させる(粒成長工程)。この粒成長工程の加熱保持時間は5分間〜120分間、好ましくは5〜40分間である。ここで、粒成長工程の加熱保持時間を5分間〜120分間の範囲内に限定したのは、5分間未満ではInAsコロイド粒子の収量が減少し、InAsコロイド粒子の製造効率が低下してしまい、120分間を超えると量産したときの経済効率が低下してしまうからである。
[Growth of InAs colloidal nuclei]
The synthesis solution in which InAs colloid nuclei are generated is held at a heating temperature for a predetermined time to grow InAs colloid nuclei (grain growth step). The heating and holding time of this grain growth step is 5 minutes to 120 minutes, preferably 5 to 40 minutes. Here, the heating and holding time of the grain growth step is limited to the range of 5 minutes to 120 minutes. If less than 5 minutes, the yield of InAs colloidal particles decreases, and the production efficiency of InAs colloidal particles decreases. This is because if it exceeds 120 minutes, the economic efficiency when mass-produced decreases.

[合成液の冷却]
InAsコロイド核が粒成長した合成液を室温まで冷却する(冷却工程)。この合成液の冷却は、大気中に放置する自然冷却でもよいが、冷却時間を短縮できるファンを用いた強制冷却でもよい。
[Cooling of synthesis solution]
The synthesis solution in which the InAs colloid nuclei have grown is cooled to room temperature (cooling step). The synthetic solution may be cooled by natural cooling left in the atmosphere or by forced cooling using a fan that can shorten the cooling time.

[合成液の固液分離]
室温まで冷却した合成液を固液分離してInAsコロイド粒子を得る(コロイド粒子分離工程)。具体的には、合成液に対して3000〜10000rpm、好ましくは6000rpmで、5〜30分間、好ましくは10分間の遠心分離を行う。これにより、InAsコロイド粒子が回収される。
[Solid-liquid separation of synthetic liquid]
The synthesis solution cooled to room temperature is subjected to solid-liquid separation to obtain InAs colloid particles (colloid particle separation step). Specifically, the synthetic solution is centrifuged at 3000 to 10000 rpm, preferably 6000 rpm, for 5 to 30 minutes, preferably 10 minutes. Thereby, InAs colloidal particles are collected.

このように構成されたInAsコロイド粒子の製造方法では、InAsコロイド核生成後の粒成長時間を長くしても、即ち、粒成長に伴う粒度分布縮小の原理に基づいて粒度分布をシャープにする操作を施しても、トリオクチルホスフィンオキシドが存在するため、比較的広い粒径範囲にわたって粒度分布標準偏差σが小さい高品質のInAsコロイド粒子を製造できる。具体的には、InAsコロイド粒子の粒径を3.0〜8.0nmに制御できるとともに、InAsコロイド粒子の粒度分布標準偏差σを0.7nm以下に制御できる。   In the manufacturing method of InAs colloidal particles thus configured, even if the grain growth time after InAs colloid nucleation is increased, that is, an operation for sharpening the grain size distribution based on the principle of grain size distribution reduction accompanying grain growth. However, since trioctylphosphine oxide is present, high quality InAs colloidal particles having a small particle size distribution standard deviation σ can be produced over a relatively wide particle size range. Specifically, the particle size of the InAs colloidal particles can be controlled to 3.0 to 8.0 nm, and the particle size distribution standard deviation σ of the InAs colloidal particles can be controlled to 0.7 nm or less.

<第2の実施の形態>
図2は本発明の第2の実施の形態を示す。この実施の形態では、冷却工程とコロイド粒子分離工程との間に、合成液中の粗大粒子を分離除去する粗大粒子分離除去工程を更に含む。具体的には、室温まで冷却した合成液に、液量を調整するためにヘキサン(C614)を加え、ミキサー等で十分に撹拌した後、5〜30分間、好ましくは10分間遠心分離を行う。これにより合成液から粗大粒子が取り除かれる。なお、粗大粒子分離除去工程と固液分離工程との間に、粗大粒子が取除かれた合成液に、洗浄のためのヘキサノールを加える工程と、ミキサー等で十分に撹拌する工程と、固液を分離する工程とを繰返すことにより、洗浄することが好ましい(洗浄工程)。上記以外は第1の実施の形態と同一に構成される。
<Second Embodiment>
FIG. 2 shows a second embodiment of the present invention. In this embodiment, a coarse particle separation and removal step of separating and removing coarse particles in the synthesis solution is further included between the cooling step and the colloid particle separation step. Specifically, hexane (C 6 H 14 ) is added to the synthetic solution cooled to room temperature and the mixture is sufficiently stirred with a mixer or the like, and then centrifuged for 5 to 30 minutes, preferably 10 minutes. I do. This removes coarse particles from the synthesis solution. In addition, between the coarse particle separation and removal step and the solid-liquid separation step, a step of adding hexanol for washing to the synthetic liquid from which the coarse particles have been removed, a step of sufficiently stirring with a mixer, and the like, It is preferable to wash by repeating the step of separating (cleaning step). The configuration other than the above is the same as that of the first embodiment.

このように構成されたInAsコロイド粒子の製造方法では、核生成工程や粒成長工程中に合成液中に粗大粒子が発生した場合に、この粗大粒子を粗大粒子分離除去工程で取除くことにより、InAsコロイド粒子の粒度分布の均一性を維持できる。上記以外の動作は、第1の実施の形態の動作と略同様であるので、繰返しの説明を省略する。   In the manufacturing method of InAs colloidal particles configured in this way, when coarse particles are generated in the synthesis solution during the nucleation step or the grain growth step, the coarse particles are removed in the coarse particle separation and removal step, The uniformity of the particle size distribution of the InAs colloidal particles can be maintained. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.

<第3の実施の形態>
図3及び図4は本発明の第3の実施の形態を示す。この実施の形態では、冷却工程とコロイド粒子分離工程との間に、合成液中の粗大粒子を分離除去する粗大粒子分離除去工程を更に含む。また、粗大粒子分離除去工程とコロイド粒子分離工程との間に、合成液に極性溶媒を添加混合して反応液を調製することによりInAsコロイド粒子を凝集させてInAsコロイド凝集粒子を得る凝集工程と、反応液を固液分離してInAsコロイド凝集粒子を回収する回収工程と、InAsコロイド凝集粒子に非極性溶媒を添加混合しInAsコロイド凝集粒子を再分散させてInAsコロイド凝集粒子をInAsコロイド粒子にほぐす再分散・解こう工程とを更に含む。
<Third Embodiment>
3 and 4 show a third embodiment of the present invention. In this embodiment, a coarse particle separation and removal step of separating and removing coarse particles in the synthesis solution is further included between the cooling step and the colloid particle separation step. In addition, between the coarse particle separation and removal step and the colloid particle separation step, an aggregation step of aggregating InAs colloidal particles by adding a polar solvent to the synthesis solution and preparing a reaction solution to obtain InAs colloidal aggregated particles And a recovery step of collecting the InAs colloidal aggregated particles by solid-liquid separation of the reaction liquid, and adding and mixing a non-polar solvent to the InAs colloidal aggregated particles to redisperse the InAs colloidal aggregated particles to convert the InAs colloidal aggregated particles into the InAs colloidal particles. And further comprising a step of re-dispersing and unraveling.

上記粗大粒子分離除去工程は、第2の実施の形態の粗大粒子分離除去工程と同一の工程である。一方、上記凝集工程は、粗大粒子を取り除いた合成液に、極性溶媒としてエタノール(C26O:極性溶媒)を加え、ミキサー等で十分に撹拌して合成液中のInAsコロイド粒子を軽く凝集させる工程である。また、上記回収工程は、軽く凝集したInAsコロイド粒子が分散した合成液を、2〜30分間、好ましくは5分間遠心分離を行うことにより、InAsコロイド凝集粒子を回収する工程である。更に、上記再分散・解こう工程は、上記回収したInAsコロイド凝集粒子に、非極性溶媒としてテトラクロロエチレン(C2Cl4)を加え、ミキサー等で十分に撹拌して再分散させて、InAsコロイド凝集粒子をInAsコロイド粒子にほぐす工程である。 The coarse particle separation / removal step is the same as the coarse particle separation / removal step of the second embodiment. On the other hand, in the agglomeration step, ethanol (C 2 H 6 O: polar solvent) is added as a polar solvent to the synthesis solution from which coarse particles have been removed, and the InAs colloid particles in the synthesis solution are lightly agitated with a mixer or the like. It is a process of agglomerating. Moreover, the said collection | recovery process is a process of collect | recovering InAs colloid aggregated particles by performing centrifugation for 2 to 30 minutes, Preferably it is 5 minutes, for the synthetic liquid in which the lightly aggregated InAs colloidal particles were disperse | distributed. Further, in the redispersion / peptization step, tetrachloroethylene (C 2 Cl 4 ) is added as a nonpolar solvent to the recovered InAs colloidal aggregated particles, and they are sufficiently dispersed by stirring with a mixer or the like. This is a step of loosening the particles into InAs colloidal particles.

なお、上記回収工程と上記再分散・解こう工程との間に、回収したInAsコロイド凝集粒子に、洗浄するためのヘキサノール(C614O)を加え、ミキサー等で十分に撹拌し洗浄した後に(洗浄工程)、5〜30分間、好ましくは10分間遠心分離を行うことにより、InAsコロイド凝集粒子を回収し(回収工程)、この洗浄して回収したInAsコロイド凝集粒子を、室温かつ大気圧雰囲気中で1時間〜24時間乾燥するか、又は室温かつ真空雰囲気中で30分〜10時間乾燥する(乾燥工程)ことが好ましい。上記以外は、第1の実施の形態と同一に構成される。 In addition, hexanol (C 6 H 14 O) for washing was added to the collected InAs colloidal aggregated particles between the collection step and the redispersion / peptization step, and the mixture was thoroughly stirred and washed with a mixer or the like. After (washing step), the InAs colloidal aggregated particles are recovered by performing centrifugation for 5 to 30 minutes, preferably 10 minutes (recovery step), and the InAs colloidal aggregated particles recovered by washing are collected at room temperature and atmospheric pressure. It is preferable to dry in an atmosphere for 1 hour to 24 hours, or to dry at room temperature in a vacuum atmosphere for 30 minutes to 10 hours (drying step). Other than the above, the configuration is the same as that of the first embodiment.

このように構成されたInAsコロイド粒子の製造方法では、第2の実施の形態と同様に、核生成工程や粒成長工程中に合成液中に粗大粒子が発生した場合に、この粗大粒子を粗大粒子分離除去工程で取除くことにより、InAsコロイド粒子の粒度分布の均一性を維持できる。また、合成液中のInAsコロイド粒子が極めて小さいため、合成液から固液分離し難いInAsコロイド粒子を凝集工程で軽く凝集させて固液分離し易くした後に、この軽く凝集したInAsコロイド粒子を回収工程で固液分離して回収し、更にこの回収された凝集物(軽く凝集したInAsコロイド粒子)を再分散・解こう工程で再分散させてほぐすことにより、InAsコロイド粒子が得えられる。この結果、合成液中のInAsコロイド粒子を合成液中から効率良く回収できる。上記以外の動作は、第1の実施の形態の動作と略同様であるので、繰返しの説明を省略する。   In the method for producing InAs colloidal particles configured in this way, as in the second embodiment, when coarse particles are generated in the synthesis solution during the nucleation process or the grain growth process, the coarse particles are coarsened. By removing in the particle separation and removal step, the uniformity of the particle size distribution of the InAs colloidal particles can be maintained. Also, since the InAs colloid particles in the synthesis solution are extremely small, the InAs colloid particles that are difficult to separate from the synthesis solution are lightly aggregated in the aggregation process to facilitate solid-liquid separation, and then the lightly aggregated InAs colloid particles are recovered. InAs colloidal particles can be obtained by solid-liquid separation and recovery in the process, and further, the recovered aggregates (lightly aggregated InAs colloidal particles) are redispersed and loosened in a redispersion / peptization process. As a result, the InAs colloidal particles in the synthesis solution can be efficiently recovered from the synthesis solution. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
図3に示すように、InAsコロイド粒子をホットソープ法で作製した。なお、次に記載する秤量作業は全てグローブボックス内(N2ガス雰囲気)で実施した。先ず、10ミリリットルのフラスコに、トリフェニルアルシン(As(C65)3)382.4mg(1.25ミリモル)と、オクタデセン(C1836:ODE)2.00ミリリットル(6.25ミリモル)とを入れてミキサーで撹拌し、トリフェニルアルシン(As(C65)3)をオクタデセン(C1836:ODE)に溶解して、As原料液を調製した。また、10ミリリットルのバイアル瓶に、臭化インジウム(InBr3)106.4mg(0.30ミリモル)を入れ、これにトリオクチルホスフィン(C2451P:TOP)0.67ミリリットル(1.50ミリモル)と、オレイルアミン(C1837N:OLA)3.60ミリリットル(10.94ミリモル)とを加え、更にトリオクチルホスフィンオキシド(C2451OP:TOPO)をモル比でトリオクチルホスフィン(C2451P:TOP)の0.12倍(0.18ミリモル)となるように添加し、60℃に保持された振とう機に1時間かけて臭化インジウム(InBr3)を溶解して、In原料液を調製した。次いで、As原料液が入っている10ミリリットルのフラスコに、In原料液を投入し、ミキサーで十分撹拌し、In原料液とAs原料液の合成液を調製した。
<Example 1>
As shown in FIG. 3, InAs colloidal particles were produced by a hot soap method. All the weighing operations described below were performed in a glove box (N 2 gas atmosphere). First, in a 10 ml flask, 382.4 mg (1.25 mmol) of triphenylarsine (As (C 6 H 5 ) 3 ) and 2.00 ml (6.25 mmol) of octadecene (C 18 H 36 : ODE) were added. And triphenylarsine (As (C 6 H 5 ) 3 ) was dissolved in octadecene (C 18 H 36 : ODE) to prepare an As raw material liquid. Further, 106.4 mg (0.30 mmol) of indium bromide (InBr 3 ) was placed in a 10 ml vial, and 0.67 ml (1.50) of trioctylphosphine (C 24 H 51 P: TOP) was added thereto. and mmol), oleylamine (C 18 H 37 N: OLA ) 3.60 milliliters (10.94 mmol) were added and further trioctylphosphine oxide (C 24 H 51 OP: TOPO ) trioctylphosphine in a molar ratio ( C 24 H 51 P: added so that 0.12 times the TOP) and (0.18 mmol), over a period of 1 hour shaker held at 60 ° C. to dissolve the indium bromide (InBr 3) Thus, an In raw material liquid was prepared. Next, the In raw material liquid was put into a 10 ml flask containing the As raw material liquid, and was sufficiently stirred by a mixer to prepare a synthetic liquid of the In raw material liquid and the As raw material liquid.

この合成液をグローブボックスから取出し、合成液が入っている10ミリリットルのフラスコを330℃のシリコンオイルに浸し、合成を開始した。合成中はフラスコ内にArガスを通気した。シリコンオイルに浸してから30分経過後、合成液が薄い橙色に着色し始めた(InAsコロイド核の生成)。着色し始めてから5分間330℃に保持した後(InAsコロイド核の粒成長のための加熱保持時間)、10ミリリットルのフラスコをシリコンオイルから取出して空冷(ファンによる強制冷却)した。このとき合成液は茶色を呈していた。室温まで冷却した茶色の合成液に、ヘキサン(C614)3.0ミリリットル加えて液量を調整し、ミキサーで十分に撹拌した後、10分間遠心分離を行い、粗大粒子を取り除いた(粗大粒子分離除去工程)。次に、粗大粒子を取り除いた茶色の合成液にエタノール(C26O:極性溶媒)6.0ミリリットル加え、ミキサーで十分に撹拌して合成液中のInAsコロイド粒子を軽く凝集させた後(凝集工程)、5分間遠心分離を行い、InAsコロイド凝集粒子を回収した(回収工程)。この回収したInAsコロイド凝集粒子にヘキサノール(C614O)2.0ミリリットルを加え、ミキサーで十分に撹拌し洗浄した後(洗浄工程)、10分間遠心分離を行い、InAsコロイド凝集粒子を回収した(回収工程)。この洗浄して回収したInAsコロイド凝集粒子を室温で2時間真空乾燥した(乾燥工程)。更に、乾燥したInAsコロイド凝集粒子をテトラクロロエチレン(C2Cl4)1.5ミリリットルに再分散させて、InAsコロイド凝集粒子をInAsコロイド粒子にほぐした後(再分散・解こう工程)、10分間遠心分離を行い、ほぐし切れなかったInAs凝集粒子を取除いて、InAsコロイド粒子を得た。このInAsコロイド粒子を実施例1とした。 The synthesis solution was taken out from the glove box, and a 10 ml flask containing the synthesis solution was immersed in silicon oil at 330 ° C. to start synthesis. Ar gas was bubbled through the flask during the synthesis. 30 minutes after immersion in silicon oil, the synthesis solution started to turn pale orange (production of InAs colloid nuclei). After maintaining the temperature at 330 ° C. for 5 minutes from the start of coloring (heating holding time for the growth of InAs colloidal nuclei), a 10 ml flask was taken out of the silicon oil and air-cooled (forced cooling with a fan). At this time, the synthesis solution was brown. To the brown synthetic liquid cooled to room temperature, 3.0 ml of hexane (C 6 H 14 ) was added to adjust the liquid volume, and after sufficiently stirring with a mixer, centrifugation was performed for 10 minutes to remove coarse particles ( Coarse particle separation and removal step). Next, after adding 6.0 ml of ethanol (C 2 H 6 O: polar solvent) to the brown synthetic liquid from which coarse particles are removed, the InAs colloid particles in the synthetic liquid are lightly aggregated by sufficiently stirring with a mixer. (Aggregation step) Centrifugation was performed for 5 minutes to collect InAs colloid aggregated particles (recovery step). Add 2.0 ml of hexanol (C 6 H 14 O) to the collected InAs colloid aggregated particles, thoroughly agitate and wash with a mixer (washing process), and centrifuge for 10 minutes to collect InAs colloid aggregated particles. (Recovery process). The washed InAs colloidal aggregated particles were vacuum-dried at room temperature for 2 hours (drying step). Further, the dried InAs colloidal aggregated particles are redispersed in 1.5 ml of tetrachloroethylene (C 2 Cl 4 ), and the InAs colloidal aggregated particles are loosened into InAs colloidal particles (redispersion / peptization process), and centrifuged for 10 minutes. Separation was performed to remove InAs agglomerated particles that were not loosened to obtain InAs colloidal particles. This InAs colloidal particle was designated as Example 1.

<実施例2〜8>
実施例2〜8のInAsコロイド粒子は、表1に示すように、InAsコロイド核の粒成長のための加熱保持時間及びトリオクチルホスフィンオキシド(C2451OP:TOPO)の含有割合を変えて合成した。
<Examples 2 to 8>
As shown in Table 1, the InAs colloidal particles of Examples 2 to 8 were obtained by changing the heating and holding time for grain growth of InAs colloidal nuclei and the content ratio of trioctylphosphine oxide (C 24 H 51 OP: TOPO). Synthesized.

<比較例1〜30>
比較例1〜30のInAsコロイド粒子は、表2及び表3に示すように、InAsコロイド核の粒成長のための加熱保持時間、オレイルアミン(C1837N:OLA)の含有割合及びトリオクチルホスフィンオキシド(C2451OP:TOPO)の含有割合を変えて成した。
<Comparative Examples 1-30>
As shown in Tables 2 and 3, the InAs colloidal particles of Comparative Examples 1 to 30 were heated and held for grain growth of InAs colloidal nuclei, the content ratio of oleylamine (C 18 H 37 N: OLA), and trioctyl. The content ratio of phosphine oxide (C 24 H 51 OP: TOPO) was changed.

<比較試験1>
実施例1〜8及び比較例1〜30のInAsコロイド粒子をテトラクロロエチレン(C2Cl4)に再分散させた分散液の吸光光度を、紫外可視近赤外分光光度計(日立ハイテクサイエンス社製)により測定し、そのピーク波長よりInAsコロイド粒子の粒径を算出した。また、上記吸光光度の測定に用いた分散液を利用して透過電子顕微鏡(TEM)観察を行い、視野に存在するInAsコロイド粒子の粒径を十分な数計測することで粒度分布を測定し、この粒度分布から標準偏差σを算出した。これらの結果を表1〜表3に示す。なお、表1〜表3には、In原料液のオレイルアミン(C1837N:OLA)、トリオクチルホスフィン(C2451P:TOP)及びトリオクチルホスフィンオキシド(C2451OP:TOPO)の含有割合と、InAsコロイド核の粒成長のための加熱温度及び加熱保持時間も示した。
<Comparison test 1>
The absorbance of the dispersions obtained by redispersing the InAs colloidal particles of Examples 1 to 8 and Comparative Examples 1 to 30 in tetrachloroethylene (C 2 Cl 4 ) was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Hitachi High-Tech Science). The particle diameter of the InAs colloidal particles was calculated from the peak wavelength. In addition, a transmission electron microscope (TEM) observation is performed using the dispersion liquid used for the measurement of the spectrophotometry, and a particle size distribution is measured by measuring a sufficient number of particle sizes of InAs colloidal particles present in the visual field. The standard deviation σ was calculated from this particle size distribution. These results are shown in Tables 1 to 3. In Table 1 to Table 3, oleylamine In raw material liquid (C 18 H 37 N: OLA ), trioctyl phosphine (C 24 H 51 P: TOP ) and trioctyl phosphine oxide (C 24 H 51 OP: TOPO ) Content, and the heating temperature and heating holding time for grain growth of InAs colloidal nuclei are also shown.

Figure 0006561879
Figure 0006561879

Figure 0006561879
Figure 0006561879

Figure 0006561879
なお、表3において、『注1』には『InAsとIn23が生成され所望のコロイド粒子が得られなかった。』という文言が挿入され、『注2』には『InAsとAs23が生成され所望のコロイド粒子が得られなかった。』という文言が挿入される。
Figure 0006561879
In Table 3, “InAs and In 2 O 3 were produced in“ Note 1 ”, and the desired colloidal particles could not be obtained. Was inserted, and “InAs and As 2 O 3 were produced in“ Note 2 ”, and the desired colloidal particles could not be obtained. Is inserted.

<評価>
表2から明らかなように、トリオクチルホスフィンオキシド(TOPO)を全く添加しなかった比較例2〜5では、InAsコロイド核の粒成長のための加熱保持時間を5分から120分まで変えたときの、InAsコロイド粒子の粒度分布標準偏差σが0.9〜1.0nmと大きくなり、トリオクチルホスフィンオキシド(TOPO)をトリオクチルホスフィン(TOP)に対してモル比で0.05倍と少なすぎる量を共存させた比較例7〜10では、InAsコロイド核の粒成長のための加熱保持時間を5分から120分まで変えたときの、InAsコロイド粒子の粒度分布標準偏差σが0.8〜1.0nmと大きくなった。また、TOPOをTOPに対してモル比で0.07倍と未だ少なすぎる量を共存させた比較例12〜15では、InAsコロイド核の粒成長のための加熱保持時間を5分から120分まで変えたときの、InAsコロイド粒子の粒度分布標準偏差σが0.8〜0.9nmと大きくなり、TOPOをTOPに対してモル比で0.10倍と未だ少なすぎる量を共存させた比較例17〜20では、InAsコロイド核の粒成長のための加熱保持時間を5分から120分まで変えたときの、InAsコロイド粒子の粒度分布標準偏差σが0.8〜1.2nmと大きくなった。これは、臭化インジウム−オレイルアミン−トリオクチルホスフィン錯体量が増加し、In−Asモノマーが自発的核生成を起こし易い状態が生じたため、核生成と粒成長を分離することができず、InAsコロイド粒子の粒度分布の均一性が低下したものと考えられる。即ち、In−Asモノマーが自発的核生成を起こし易い状態が生じ、核生成と粒成長を分離することができないため、InAsコロイド核の粒成長のための加熱保持時間を制御することでInAsコロイド粒子の粒径を制御することはできるけれども、粒度分布の均一性は低下したままになったと考えられる。
<Evaluation>
As is clear from Table 2, in Comparative Examples 2 to 5 in which no trioctylphosphine oxide (TOPO) was added, the heating and holding time for the growth of InAs colloid core grains was changed from 5 minutes to 120 minutes. , The standard deviation σ of the particle size distribution of InAs colloidal particles is as large as 0.9 to 1.0 nm, and the amount of trioctylphosphine oxide (TOPO) is too small, 0.05 times the molar ratio with respect to trioctylphosphine (TOP). In Comparative Examples 7 to 10, in which the particle size distribution standard deviation σ of InAs colloidal particles was changed from 0.8 to 1 when the heating and holding time for grain growth of InAs colloidal nuclei was changed from 5 minutes to 120 minutes. It became as large as 0 nm. Further, in Comparative Examples 12 to 15 in which TOPO is present in a molar ratio of 0.07 times that of TOP, which is still too small, the heating and holding time for grain growth of InAs colloidal nuclei is changed from 5 minutes to 120 minutes. Comparative Example 17 in which the particle size distribution standard deviation σ of the InAs colloidal particles was as large as 0.8 to 0.9 nm, and TOPO was coexisting with a molar ratio of 0.10 times as much as TOP. In .about.20, the particle size distribution standard deviation .sigma. Of InAs colloidal particles increased from 0.8 to 1.2 nm when the heating and holding time for the growth of InAs colloidal nuclei was changed from 5 minutes to 120 minutes. This is because the amount of indium bromide-oleylamine-trioctylphosphine complex is increased and the In-As monomer is prone to spontaneous nucleation, so that nucleation and grain growth cannot be separated. It is thought that the uniformity of the particle size distribution of the particles was lowered. That is, the In-As monomer is prone to spontaneous nucleation, and nucleation and grain growth cannot be separated. Therefore, the InAs colloid is controlled by controlling the heating and holding time for grain growth of InAs colloid nuclei. Although the particle size can be controlled, it is believed that the uniformity of the particle size distribution has remained degraded.

これらに対し、表1から明らかなように、TOPOをTOPに対してモル比で0.12倍と適切な量を共存させた実施例1〜4では、InAsコロイド核の粒成長のための加熱保持時間を5分から120分まで変えたときの、InAsコロイド粒子の粒度分布標準偏差σが0.5〜0.7nmと小さくなり、TOPOをTOPに対してモル比で0.13倍と適切な量を共存させた実施例5〜8では、InAsコロイド核の粒成長のための加熱保持時間を5分から120分まで変えたときの、InAsコロイド粒子の粒度分布標準偏差σが0.6〜0.7nmと小さくなった。これは、TOPOをTOPに対してモル比で0.12〜0.13倍と適切な割合だけ共存させることによって、臭化インジウム−オレイルアミン−トリオクチルホスフィン錯体量が最適値を採り、In−Asモノマが自発的核生成を起こし難い状態が生じたため、InAsコロイド粒子の粒度分布の均一性が向上したものと考えられる。即ち、In−Asモノマが自発的核生成を起こし難い状態が生じ、核生成と粒成長を分離できることで、合成初期に生成したInAsコロイド核が均一に粒成長するため、InAsコロイド核の粒成長のための加熱保持時間を制御することで、粒度分布の均一性を維持したまま、比較的広範囲に渡ってInAsコロイド粒子の粒径を制御できたと考えられる。   On the other hand, as is clear from Table 1, in Examples 1 to 4 in which TOPO was mixed in an appropriate amount of 0.12 times the molar ratio with respect to TOP, heating for grain growth of InAs colloidal nuclei was performed. When the retention time is changed from 5 minutes to 120 minutes, the standard deviation σ of particle size distribution of InAs colloidal particles is reduced to 0.5 to 0.7 nm, and TOPO is appropriately 0.13 times the molar ratio with respect to TOP. In Examples 5 to 8 in which the amounts coexist, the particle size distribution standard deviation σ of the InAs colloidal particles when the heating and holding time for the growth of InAs colloidal nuclei is changed from 5 minutes to 120 minutes is 0.6 to 0. It was as small as .7nm. This is because the amount of indium bromide-oleylamine-trioctylphosphine complex takes an optimum value by allowing TOPO to coexist in an appropriate ratio of 0.12 to 0.13 times the molar ratio with respect to TOP, and In-As It is considered that the uniformity of the particle size distribution of the InAs colloidal particles was improved because a state in which the monomer hardly caused spontaneous nucleation occurred. That is, the In-As monomer is unlikely to spontaneously nucleate, and the nucleation and grain growth can be separated, so that the InAs colloid nuclei generated early in the synthesis grow uniformly. It is considered that the particle size of the InAs colloidal particles could be controlled over a relatively wide range while maintaining the uniformity of the particle size distribution by controlling the heating and holding time for.

一方、表2から明らかなように、InAsコロイド核の粒成長のための加熱保持時間を1分と短すぎ、TOPOをTOPに対してモル比で0〜0.10倍と少なすぎる量を共存させた比較例1、6、11及び16では、InAsコロイド粒子の粒度分布標準偏差σが0.9〜1.0nmと大きくなった。また、表3から明らかなように、TOPOをTOPに対してモル比で0.12倍及び0.13倍と適切な量を共存させたけれども、InAsコロイド核の粒成長のための加熱保持時間を1分と短すぎた比較例21及び22では、InAsコロイド粒子の粒度分布標準偏差σが0.8nm及び0.9nmと大きくなった。更に、表3から明らかなように、TOPOをTOPに対してモル比で0.12倍及び0.13倍と適切な量を共存させたけれども、InAsコロイド核の粒成長のための加熱保持時間を130分と長すぎた比較例23及び24では、InAsコロイド粒子の粒度分布標準偏差σが0.9nm及び0.8nmと大きくなった。これらに対し、上述したように、TOPOをTOPに対してモル比で0.12倍と適切な量を共存させ、InAsコロイド核の粒成長のための加熱保持時間を5分から120分と適切な時間とした実施例1〜4では、InAsコロイド粒子の粒度分布標準偏差σが0.5〜0.7nmと小さくなり、TOPOをTOPに対してモル比で0.13倍と適切な量を共存させ、InAsコロイド核の粒成長のための加熱保持時間を5分から120分と適切な時間とした実施例5〜8では、InAsコロイド粒子の粒度分布標準偏差σが0.6〜0.7nmと小さくなった。なお、比較例23〜24では、InAsコロイド核の粒成長のための加熱保持時間が130分と長すぎると、オストワルド成長の影響が大きくなってきて、粒度分布の均一性が低下たためであると考えられる。   On the other hand, as is clear from Table 2, the heating and holding time for the growth of InAs colloidal nuclei is too short as 1 minute, and TOPO coexists in a molar ratio of 0 to 0.10 times that of TOP. In Comparative Examples 1, 6, 11, and 16, the particle size distribution standard deviation σ of InAs colloidal particles was as large as 0.9 to 1.0 nm. Further, as is apparent from Table 3, although the appropriate amount of TOPO in the molar ratio of 0.12 times and 0.13 times with respect to TOP coexists, the heat holding time for grain growth of InAs colloidal nuclei. In Comparative Examples 21 and 22, which was too short for 1 minute, the standard deviation σ of the particle size distribution of InAs colloidal particles was as large as 0.8 nm and 0.9 nm. Further, as is apparent from Table 3, although the appropriate amount of TOPO was 0.12 times and 0.13 times in molar ratio with respect to TOP, the heat retention time for grain growth of InAs colloidal nuclei was observed. In Comparative Examples 23 and 24, which was too long for 130 minutes, the particle size distribution standard deviation σ of InAs colloidal particles was as large as 0.9 nm and 0.8 nm. On the other hand, as described above, TOPO coexists with an appropriate amount of 0.12 times the molar ratio with respect to TOP, and the heating holding time for the growth of InAs colloidal nuclei is appropriate from 5 to 120 minutes. In Examples 1 to 4 in which time is used, the particle size distribution standard deviation σ of InAs colloidal particles is reduced to 0.5 to 0.7 nm, and TOPO is present in an appropriate amount of 0.13 times the molar ratio with respect to TOP. In Examples 5 to 8, in which the heating and holding time for grain growth of InAs colloidal nuclei was an appropriate time of 5 to 120 minutes, the standard deviation σ of particle size distribution of InAs colloidal particles was 0.6 to 0.7 nm. It has become smaller. In Comparative Examples 23 to 24, when the heating and holding time for growing InAs colloidal nuclei is too long as 130 minutes, the influence of Ostwald growth is increased, and the uniformity of the particle size distribution is reduced. Conceivable.

一方、表3から明らかなように、TOPOをTOPに対してモル比で0.15倍と多すぎる量を共存させた比較例25〜28では、InAsコロイド核の粒成長のための加熱保持時間を5分から120分まで変えたときの、InAsコロイド粒子の粒度分布標準偏差σが0.6〜0.7nmと小さくなったけれども、臭化インジウム−オレイルアミン−トリオクチルホスフィン錯体量が減少するため、InAsコロイド粒子の収量が著しく低減した。また、表3から明らかなように、TOP及びTOPOを全く添加しなかった比較例29では、InAsとIn23が生成され所望のコロイド粒子が得られなかった。更に、表3から明らかなように、オレイルアミン(OLA)及びTOPOを全く添加しなかった比較例30では、InAsとAs23が生成され所望のコロイド粒子が得られなかった。 On the other hand, as is clear from Table 3, in Comparative Examples 25 to 28 in which TOPO is present in an excessive amount of 0.15 times the molar ratio with respect to TOP, the heat holding time for grain growth of InAs colloidal nuclei. Although the standard deviation σ of the particle size distribution of InAs colloidal particles when the value was changed from 5 minutes to 120 minutes was reduced to 0.6 to 0.7 nm, the amount of indium bromide-oleylamine-trioctylphosphine complex decreased. The yield of InAs colloidal particles was significantly reduced. Further, as is apparent from Table 3, in Comparative Example 29 in which TOP and TOPO were not added at all, InAs and In 2 O 3 were generated, and desired colloidal particles were not obtained. Further, as is apparent from Table 3, in Comparative Example 30 in which oleylamine (OLA) and TOPO were not added at all, InAs and As 2 O 3 were produced, and desired colloidal particles were not obtained.

<実施例9〜12及び比較例31〜32>
実施例9〜12及び比較例31〜32のInAsコロイド粒子は、表4に示すように、InAsコロイド核の粒成長のための加熱温度を変えて合成した。
<Examples 9 to 12 and Comparative Examples 31 to 32>
As shown in Table 4, the InAs colloidal particles of Examples 9 to 12 and Comparative Examples 31 to 32 were synthesized by changing the heating temperature for grain growth of InAs colloidal nuclei.

<比較試験2>
実施例9〜12及び比較例31〜32のInAsコロイド粒子をテトラクロロエチレン(C2Cl4)に再分散させた分散液について、比較試験1と同様にして、InAsコロイド粒子の粒径を算出し、InAsコロイド粒子の粒度分布標準偏差σを算出した。また、実施例9〜12及び比較例31〜32のInAsコロイド粒子の製造工程において、InAsコロイド核の粒成長のために合成液を加熱したときに、合成液中の有機溶媒の揮発量が装置の後段に設けた有機溶媒のトラップの容量を超えたか否かを評価した。そして有機溶媒の揮発量がトラップ量を超えなかった場合を『良好』とし、有機溶媒の揮発量がトラップ量を超えた場合を『不可』とした。これらの結果を表4に示す。なお、表4には、In原料液のオレイルアミン(C1837N:OLA)、トリオクチルホスフィン(C2451P:TOP)及びトリオクチルホスフィンオキシド(C2451OP:TOPO)の含有割合と、InAsコロイド核の粒成長のための加熱温度及び加熱保持時間も示した。
<Comparison test 2>
For the dispersions obtained by redispersing the InAs colloidal particles of Examples 9 to 12 and Comparative Examples 31 to 32 in tetrachloroethylene (C 2 Cl 4 ), the particle diameter of the InAs colloidal particles was calculated in the same manner as in Comparative Test 1. The particle size distribution standard deviation σ of InAs colloidal particles was calculated. In addition, in the manufacturing process of InAs colloidal particles of Examples 9 to 12 and Comparative Examples 31 to 32, when the synthesis solution was heated for the grain growth of InAs colloid nuclei, the volatilization amount of the organic solvent in the synthesis solution was changed. It was evaluated whether or not the capacity of the organic solvent trap provided in the latter stage was exceeded. When the volatilization amount of the organic solvent did not exceed the trap amount, “good” was set, and when the volatilization amount of the organic solvent exceeded the trap amount, “impossible”. These results are shown in Table 4. In Table 4, oleylamine In raw material liquid (C 18 H 37 N: OLA ), trioctyl phosphine (C 24 H 51 P: TOP ) and trioctylphosphine oxide: containing (C 24 H 51 OP TOPO) The ratio and the heating temperature and holding time for grain growth of InAs colloidal nuclei are also shown.

Figure 0006561879
Figure 0006561879

<評価>
表4から明らかなように、InAsコロイド核の粒成長のための加熱温度が290℃と低すぎた比較例31では、InAsコロイド粒子が全く生成せず、InAsコロイド核の粒成長のための加熱温度が360℃と高すぎた比較例32では、InAsコロイド粒子の粒度分布標準偏差σが0.6nmと小さくなったけれども、合成液中の有機溶媒の揮発量が多いため、有機溶媒のトラップ量の評価は『不可』となった。即ち、比較例32では、装置の後段に設けた有機溶媒のトラップの容量を有機溶媒の揮発量が直ぐに超えてしまい、有機溶媒が系外に漏洩するおそれが高まって、揮発した有機溶媒の無害化処理に多くの手間を要する問題点があった。これらに対し、InAsコロイド核の粒成長のための加熱温度が300〜350℃と適切な範囲内である実施例9〜12では、InAsコロイド粒子の粒度分布標準偏差σが0.6〜0.7nmと小さくなるとともに、合成液中の有機溶媒の揮発量が少ないため、有機溶媒のトラップ量の評価は『良好』となった。即ち、実施例9〜12では、装置の後段に設けた有機溶媒のトラップの容量を有機溶媒の揮発量が超えず、有機溶媒が系外に漏洩することがなく、揮発した有機溶媒の無害化処理を行う必要がなかった。なお、実施例9〜12では、InAsコロイド核の粒成長のための加熱温度が高くなる程、In−Asモノマの熱解離が促進するので、粒径は増大し、またTOPOをTOPに対してモル比で0.12倍共存しているので、臭化インジウム−オレイルアミン−トリオクチルホスフィン錯体量が最適値を採り、In−Asモノマが自発的核生成を起こし難い状態が生じ、更に粒度分布標準偏差σがσ≦0.7という関係を満たしているので、粒度分布の均一性が向上した。
<Evaluation>
As is clear from Table 4, in Comparative Example 31, where the heating temperature for grain growth of InAs colloidal nuclei was too low at 290 ° C., no InAs colloidal particles were formed, and heating for grain growth of InAs colloidal nuclei was performed. In Comparative Example 32 where the temperature was too high at 360 ° C., the particle size distribution standard deviation σ of InAs colloidal particles was as small as 0.6 nm, but the amount of organic solvent in the synthesis solution was large, so the amount of trapped organic solvent The evaluation of "No". That is, in Comparative Example 32, the volatilization amount of the organic solvent immediately exceeds the capacity of the organic solvent trap provided in the subsequent stage of the apparatus, and the risk of the organic solvent leaking out of the system increases, and the volatilization of the volatilized organic solvent is harmless. There has been a problem that requires a lot of labor for the conversion process. In contrast, in Examples 9 to 12, in which the heating temperature for grain growth of InAs colloid nuclei is within a suitable range of 300 to 350 ° C., the particle size distribution standard deviation σ of InAs colloid particles is 0.6 to 0.00. While the value was as small as 7 nm, the amount of volatilization of the organic solvent in the synthesis solution was small. That is, in Examples 9 to 12, the volatilization amount of the organic solvent does not exceed the capacity of the organic solvent trap provided in the subsequent stage of the apparatus, the organic solvent does not leak out of the system, and the volatilized organic solvent is rendered harmless. There was no need to do any processing. In Examples 9 to 12, the higher the heating temperature for InAs colloid nucleus grain growth, the more the thermal dissociation of the In-As monomer is promoted, so the particle diameter increases and TOPO is reduced relative to TOP. Since 0.12 times the molar ratio coexists, the amount of indium bromide-oleylamine-trioctylphosphine complex takes the optimum value, and the In-As monomer is unlikely to spontaneously nucleate. Since the deviation σ satisfies the relationship of σ ≦ 0.7, the uniformity of the particle size distribution is improved.

本発明の方法で製造されたInAsコロイド粒子は、次世代の太陽電池、光検出器(赤外線センサ等)、レーザ等の主材料として利用できる。   The InAs colloidal particles produced by the method of the present invention can be used as main materials for next-generation solar cells, photodetectors (infrared sensors, etc.), lasers and the like.

Claims (3)

In原料液とAs原料液とを混合して合成液を調製する混合工程と、前記合成液を300〜350℃に加熱してInAsコロイド核を生成させる核生成工程と、前記InAsコロイド核が生成した合成液を前記加熱温度で所定の時間保持してInAsコロイド核を粒成長させる粒成長工程と、前記InAsコロイド核が粒成長した合成液を冷却する冷却工程と、前記冷却した合成液を固液分離してInAsコロイド粒子を得るコロイド粒子分離工程とを含むInAsコロイド粒子の製造方法であって、
前記In原料液がトリオクチルホスフィンとトリオクチルホスフィンオキシドを含み、
前記粒成長工程の加熱保持時間が5分間〜120分間であり、
前記トリオクチルホスフィンに対する前記トリオクチルホスフィンオキシドの含有割合がモル比で0.12〜0.13倍である
ことを特徴とするInAsコロイド粒子の製造方法。
A mixing step of preparing a synthetic solution by mixing an In raw material solution and an As raw material solution, a nucleation step of heating the synthetic solution to 300 to 350 ° C. to generate InAs colloid nuclei, and the generation of InAs colloid nuclei The synthesized liquid is maintained at the heating temperature for a predetermined time to grow a grain of InAs colloid nuclei, a cooling process of cooling the synthesized liquid with the InAs colloid nuclei grown, and the cooled synthetic liquid is solidified. A method for producing InAs colloidal particles, comprising: a colloidal particle separation step for obtaining InAs colloidal particles by liquid separation,
The In raw material liquid contains trioctylphosphine and trioctylphosphine oxide,
The heating and holding time of the grain growth step is 5 minutes to 120 minutes,
The method for producing InAs colloidal particles, wherein a content ratio of the trioctylphosphine oxide to the trioctylphosphine is 0.12 to 0.13 times in molar ratio.
前記冷却工程と前記コロイド粒子分離工程との間に、前記合成液中の粗大粒子を分離除去する粗大粒子分離除去工程を更に含む請求項1記載のInAs粒子の製造方法。   The method for producing InAs particles according to claim 1, further comprising a coarse particle separation and removal step of separating and removing coarse particles in the synthesis solution between the cooling step and the colloidal particle separation step. 前記粗大粒子分離除去工程と前記コロイド粒子分離工程との間に、前記合成液に極性溶媒を添加混合して反応液を調製することにより前記InAsコロイド粒子を凝集させてInAsコロイド凝集粒子を得る凝集工程と、前記反応液を固液分離して前記InAsコロイド凝集粒子を回収する回収工程と、前記InAsコロイド凝集粒子に非極性溶媒を添加混合し前記InAsコロイド凝集粒子を再分散させて前記InAsコロイド凝集粒子をInAsコロイド粒子にほぐす再分散・解こう工程とを更に含む請求項2記載のInAsコロイド粒子の製造方法。   Aggregating the InAs colloidal particles to obtain InAs colloidal agglomerated particles by preparing a reaction solution by adding a polar solvent to the synthesis solution and mixing between the coarse particle separation and removal step and the colloidal particle separation step A step of recovering the InAs colloidal aggregated particles by solid-liquid separation of the reaction liquid; and adding and mixing a nonpolar solvent to the InAs colloidal aggregated particles to redisperse the InAs colloidal aggregated particles The method for producing InAs colloidal particles according to claim 2, further comprising a redispersion / peptization step of loosening the aggregated particles into InAs colloidal particles.
JP2016045176A 2016-03-09 2016-03-09 Method for producing InAs colloidal particles Active JP6561879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045176A JP6561879B2 (en) 2016-03-09 2016-03-09 Method for producing InAs colloidal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045176A JP6561879B2 (en) 2016-03-09 2016-03-09 Method for producing InAs colloidal particles

Publications (2)

Publication Number Publication Date
JP2017160078A JP2017160078A (en) 2017-09-14
JP6561879B2 true JP6561879B2 (en) 2019-08-21

Family

ID=59854634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045176A Active JP6561879B2 (en) 2016-03-09 2016-03-09 Method for producing InAs colloidal particles

Country Status (1)

Country Link
JP (1) JP6561879B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022138051A (en) * 2021-03-09 2022-09-22 三菱マテリアル株式会社 Method for producing colloidal particles, and colloidal particles

Also Published As

Publication number Publication date
JP2017160078A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6114369B2 (en) Nanoparticles
Mićić et al. Synthesis and characterization of binary and ternary III–V quantum dots
JP4344613B2 (en) High quality colloidal nanocrystals and methods for their preparation in non-coordinating solvents
Xiong et al. A novel in situ oxidization–sulfidation growth route via self-purification process to β-In2S3 dendrites
JP3674691B2 (en) Method for producing high-quality manganese-doped semiconductor nanocrystals
US11247914B2 (en) Colloidal ternary group III-V nanocrystals synthesized in molten salts
JP2005343782A (en) Method for producing bismuth telluride nanoparticle and method for producing tellurium nanoparticle
TW201523874A (en) Colloidal semiconductor metal chalcogenide nanostructures
Carolan et al. Size and emission color tuning in the solution phase synthesis of highly luminescent germanium nanocrystals
CN108046223A (en) A kind of preparation method of quantum dot solution
JP2013189367A (en) SYNTHETIC METHOD FOR InP NANOPARTICLE, AND NANOPARTICLE
JP6561879B2 (en) Method for producing InAs colloidal particles
TW201936896A (en) Method for producing luminescent particles, luminescent particles, and bioimaging material
Mirzai et al. The room temperature phosphine-free synthesis of near-infrared emitting HgSe quantum dots
Wang et al. A simple strategy to achieve shape control of Au-Cu 2− x S colloidal heterostructured nanocrystals and their preliminary use in organic photovoltaics
WO2014127585A1 (en) Zinc selenide fluorescent nanoparticles and preparation method thereof
JP5212588B2 (en) Method for producing nanoparticles
JP6569566B2 (en) Method for producing CdSe colloidal particles
Wang et al. Phosphine-Free Synthesis of CdSe Quantum Dots in a New Co-CappingLigand System
Sletnes et al. Octoxy capped Si nanoparticles synthesized by homogeneous reduction of SiCl 4 with crown ether alkalide
JP2018131685A (en) METHOD FOR SYNTHESIZING InAs COLLOIDAL PARTICLE
WO2022191178A1 (en) Method for producing colloidal particles, and colloidal particles
JP6531681B2 (en) Method of producing CdSe colloidal particles
Sangsefidi et al. Synthesis and characterization of mercury telluride nanoparticles using a new precursor
CN112877059A (en) MAPbBr with long fluorescence lifetime3Preparation method of perovskite nanocrystalline and method for photocatalytic degradation of organic pollutants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6561879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150