JP6560902B2 - LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE SAME - Google Patents

LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE SAME Download PDF

Info

Publication number
JP6560902B2
JP6560902B2 JP2015106113A JP2015106113A JP6560902B2 JP 6560902 B2 JP6560902 B2 JP 6560902B2 JP 2015106113 A JP2015106113 A JP 2015106113A JP 2015106113 A JP2015106113 A JP 2015106113A JP 6560902 B2 JP6560902 B2 JP 6560902B2
Authority
JP
Japan
Prior art keywords
stem
light source
source device
cap
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015106113A
Other languages
Japanese (ja)
Other versions
JP2016219723A (en
Inventor
研二 秋貞
研二 秋貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2015106113A priority Critical patent/JP6560902B2/en
Publication of JP2016219723A publication Critical patent/JP2016219723A/en
Application granted granted Critical
Publication of JP6560902B2 publication Critical patent/JP6560902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、たとえばレーザ光を利用した光源装置及びこれを用いた照明装置に関する。   The present invention relates to a light source device using, for example, laser light and an illumination device using the same.

従来、レーザダイオード(LD)素子を利用した光源装置においては、蛍光体を含む波長変換部材を設け、レーザ光の一部を吸収して波長変換し、波長変換された光と波長変換されない光とを混色して混色光たとえば疑似白色光を出射する。特に、LD素子は発光ダイオード(LED)素子に比較して光密度が大きいので、LD素子の発光部のサイズを小さくして高輝度にできる。従って、レンズの小型化もでき、この結果、光源装置も小型化できる。他方、レーザ光の波長変換部材の発熱量も大きくなり、従って、波長変換部材の熱密度が大きくなり、波長変換部材の放熱効率が低下する。波長変換部材の放熱効率が低下すると、波長変換部材の波長変換効率が低下して発光波長が変化し、白色光の色度が変化する。   Conventionally, in a light source device using a laser diode (LD) element, a wavelength conversion member including a phosphor is provided, a part of the laser light is absorbed and wavelength-converted, and wavelength-converted light and light that is not wavelength-converted Are mixed to emit mixed color light such as pseudo white light. In particular, since the LD element has a higher light density than the light emitting diode (LED) element, the size of the light emitting portion of the LD element can be reduced to increase the luminance. Therefore, the lens can be reduced in size, and as a result, the light source device can also be reduced in size. On the other hand, the amount of heat generated by the wavelength conversion member of the laser light also increases, so that the heat density of the wavelength conversion member increases and the heat dissipation efficiency of the wavelength conversion member decreases. When the heat dissipation efficiency of the wavelength conversion member decreases, the wavelength conversion efficiency of the wavelength conversion member decreases, the emission wavelength changes, and the chromaticity of white light changes.

図6は第1の従来の光源装置を示す(参照:特許文献1)。   FIG. 6 shows a first conventional light source device (see Patent Document 1).

図6においては、LD素子101がステム102に搭載され、窓部103aを有する封止キャップ103によって封止されている。ステム102に設けられたホルダ104はレンズ105と共に波長変換部材106を支持する。この場合、波長変換部材106は保持部材107によってホルダ104の上部に固定される。108は外部リード端子である。図6の光源装置においては、LD素子101からの熱は放熱経路P101に沿ってステム102へ伝播し、他方、波長変換部材106からの熱は放熱経路P102に沿って保持部材107及びホルダ104を介してステム102へ伝播する。   In FIG. 6, an LD element 101 is mounted on a stem 102 and sealed with a sealing cap 103 having a window portion 103a. The holder 104 provided on the stem 102 supports the wavelength conversion member 106 together with the lens 105. In this case, the wavelength conversion member 106 is fixed to the upper portion of the holder 104 by the holding member 107. Reference numeral 108 denotes an external lead terminal. In the light source device of FIG. 6, the heat from the LD element 101 propagates along the heat dissipation path P101 to the stem 102, while the heat from the wavelength conversion member 106 passes the holding member 107 and the holder 104 along the heat dissipation path P102. It propagates to the stem 102 via

図7は第2の従来の光源装置を示す(参照:特許文献2)。   FIG. 7 shows a second conventional light source device (see Patent Document 2).

図7においては、LD素子201がステム202に搭載され、封止キャップ203によって封止されている。ステム202に設けられたホルダ204はレンズ205を支持する。他方、ステム202のホルダ204の外側に設けられたキャップ207は波長変換部材206を支持する。208は外部リード端子である。図7の光源装置においては、LD素子201からの熱は放熱経路P201に沿ってステム202へ伝播し、他方、波長変換部材206からの熱は放熱経路P202に沿ってキャップ207を介してステム202へ伝播する。   In FIG. 7, an LD element 201 is mounted on a stem 202 and sealed with a sealing cap 203. A holder 204 provided on the stem 202 supports the lens 205. On the other hand, a cap 207 provided outside the holder 204 of the stem 202 supports the wavelength conversion member 206. Reference numeral 208 denotes an external lead terminal. In the light source device of FIG. 7, the heat from the LD element 201 propagates to the stem 202 along the heat dissipation path P201, while the heat from the wavelength conversion member 206 passes through the cap 207 along the heat dissipation path P202. Propagate to.

特開2010−165834号公報JP 2010-165834 A 特許5233172号公報(特開2008−305936号公報)Japanese Patent No. 5233172 (Japanese Patent Laid-Open No. 2008-305936)

しかしながら、上述の図6に示す第1の従来の光源装置においては、ホルダ104は、ニッケル、コバルト、鉄、真鍮、ステンレス、ニッケル/鉄合金、鉄/ニッケル/コバルト合金(コバール)等よりなり、その熱伝導率が比較的低い。たとえば、ステム102のSPCと溶接可能、波長変換部材106との熱膨張係数差が小さい等の理由から、ホルダ104の材料としてコバールが選択される。この場合、ホルダ104のコバールの熱伝導率は17W/m・Kと低く、従って、放熱経路P102の熱抵抗が大きくなる。また、ステム102は、SPC、銅、真鍮、タングステン、アルミニウム、銅/タングステン合金等よりなり、たとえば、SPCの熱伝導率は50W/m・K程度と小さい。しかも、封止キャップ103がステム102の上面の大部分を占有しているので、ステム102とホルダ104との接触面積も小さい。この結果、たとえば、空冷放熱の場合、熱伝導率97〜200W/m・K程度のアルミニウム合金よりなるヒートシンクをステム102の底部に接続すると、ホルダ104とヒートシンクとの間のステム102の熱抵抗は大きくなる。このように、ホルダ104の放熱経路P101の熱抵抗及びステム102の熱抵抗が大きいので、波長変換部材106の温度が上昇し、従って、波長変換効率が低下して白色光の色度が変化するという課題がある。   However, in the first conventional light source device shown in FIG. 6, the holder 104 is made of nickel, cobalt, iron, brass, stainless steel, nickel / iron alloy, iron / nickel / cobalt alloy (Kovar), or the like. Its thermal conductivity is relatively low. For example, Kovar is selected as the material for the holder 104 because it can be welded to the SPC of the stem 102 and the difference in thermal expansion coefficient between the wavelength conversion member 106 and the like is small. In this case, the thermal conductivity of the Kovar of the holder 104 is as low as 17 W / m · K, and thus the thermal resistance of the heat radiation path P102 is increased. The stem 102 is made of SPC, copper, brass, tungsten, aluminum, copper / tungsten alloy or the like. For example, the thermal conductivity of SPC is as small as about 50 W / m · K. In addition, since the sealing cap 103 occupies most of the upper surface of the stem 102, the contact area between the stem 102 and the holder 104 is also small. As a result, for example, in the case of air cooling heat dissipation, when a heat sink made of an aluminum alloy having a thermal conductivity of about 97 to 200 W / m · K is connected to the bottom of the stem 102, the thermal resistance of the stem 102 between the holder 104 and the heat sink is growing. As described above, since the thermal resistance of the heat dissipation path P101 of the holder 104 and the thermal resistance of the stem 102 are large, the temperature of the wavelength conversion member 106 increases, and therefore the wavelength conversion efficiency decreases and the chromaticity of white light changes. There is a problem.

さらに、上述の図6に示す第1の従来の光源装置においては、LD素子101のステム102までの放熱経路P101と波長変換部材106のステム102までの放熱経路P102とは別経路であるが、放熱経路P101と放熱経路P102とはステム102によって間接的に繋がっている。従って、LD素子101を高出力とした場合、波長変換部材106で発生する熱量が増大し、その熱は放熱経路P102及びステム102内の放熱経路P103を経てLD素子101に向い、LD素子101の放熱経路P101の熱と干渉し合い、LD素子101の放熱効果を低下させるという課題もある。   Furthermore, in the first conventional light source device shown in FIG. 6 described above, the heat dissipation path P101 to the stem 102 of the LD element 101 and the heat dissipation path P102 to the stem 102 of the wavelength conversion member 106 are different paths. The heat dissipation path P101 and the heat dissipation path P102 are indirectly connected by the stem 102. Therefore, when the LD element 101 has a high output, the amount of heat generated by the wavelength conversion member 106 increases, and the heat passes through the heat dissipation path P102 and the heat dissipation path P103 in the stem 102 to the LD element 101. There is also a problem that the heat dissipation effect of the LD element 101 is reduced by interfering with the heat of the heat dissipation path P101.

他方、上述の図7に示す第2の従来の光源装置においても、キャップ207の熱伝導率が比較的小さい。従って、放熱経路P202の熱抵抗が大きくなる。また、ステム202の熱伝導率も小さい。しかも、ステム202の上面は広くなっているもののキャップ207との接触面積も小さい。この結果、たとえば、空冷放熱の場合、熱伝導率97〜200W/m・K程度のアルミニウム合金よりなるヒートシンクをステム202の底部に接続すると、キャップ207とヒートシンクとの間のステム202の熱抵抗は大きくなる。このように、キャップ207の放熱経路P202の熱抵抗及びステム202の熱抵抗が大きいので、波長変換部材206の温度が上昇し、従って、波長変換効率が低下して白色光の色度が変化するという課題がある。   On the other hand, also in the second conventional light source device shown in FIG. 7 described above, the thermal conductivity of the cap 207 is relatively small. Therefore, the thermal resistance of the heat dissipation path P202 is increased. In addition, the thermal conductivity of the stem 202 is small. Moreover, although the upper surface of the stem 202 is wide, the contact area with the cap 207 is also small. As a result, for example, in the case of air cooling heat dissipation, when a heat sink made of an aluminum alloy having a thermal conductivity of about 97 to 200 W / m · K is connected to the bottom of the stem 202, the thermal resistance of the stem 202 between the cap 207 and the heat sink is growing. Thus, since the thermal resistance of the heat dissipation path P202 of the cap 207 and the thermal resistance of the stem 202 are large, the temperature of the wavelength conversion member 206 rises, and therefore the wavelength conversion efficiency is lowered and the chromaticity of white light changes. There is a problem.

さらに、上述の図7に示す第2の従来の光源装置においても、LD素子201のステム202までの放熱経路P201と波長変換部材206のステム202までの放熱経路P202とは別経路であるが、放熱経路P201と放熱経路P202とはステム202によって間接的に繋がっている。従って、LD素子201を高出力とした場合、波長変換部材206で発生する熱量が増大し、その熱は放熱経路P202及びステム202内の放熱経路P203を経てLD素子201へ伝播し、LD素子201の放熱経路P201の熱と干渉し合い、LD素子201の放熱効果を低下させるという課題もある。   Further, in the second conventional light source device shown in FIG. 7 described above, the heat dissipation path P201 to the stem 202 of the LD element 201 and the heat dissipation path P202 to the stem 202 of the wavelength conversion member 206 are different paths. The heat dissipation path P201 and the heat dissipation path P202 are indirectly connected by the stem 202. Therefore, when the LD element 201 has a high output, the amount of heat generated in the wavelength conversion member 206 increases, and the heat propagates to the LD element 201 through the heat dissipation path P202 and the heat dissipation path P203 in the stem 202, and the LD element 201 There is also a problem that the heat dissipation effect of the LD element 201 is reduced by interfering with the heat of the heat dissipation path P201.

上述の課題を解決するために、本発明に係る光源装置は、半導体発光素子と、半導体発光素子を搭載するステムと、半導体発光素子からの光の一部を波長変換し残りの光と混色して出射する波長変換部材と、波長変換部材を支持するキャップと、ステム及びキャップに接触して設けられたヒートシンクと、ステムに固定され、レンズを支持するホルダと、ホルダの上部をキャップの上部に接続する取付部材とを具備するものである。これにより、半導体発光素子からステムを介してヒートシンクへ到る放熱経路と波長変換部材からキャップを介してヒートシンクへ到る放熱経路とはほとんど干渉しない。また、波長変換部材から発生した熱は、熱伝導率の高い部材から構成されかつ一体で成形されたキャップによりヒートシンクへ到るので、放熱経路の熱抵抗が小さい。 In order to solve the above-mentioned problems, a light source device according to the present invention includes a semiconductor light emitting element, a stem on which the semiconductor light emitting element is mounted, and a part of light from the semiconductor light emitting element that is wavelength-converted and mixed with the remaining light. A wavelength converting member that emits light, a cap that supports the wavelength converting member, a heat sink provided in contact with the stem and the cap, a holder that is fixed to the stem and supports the lens, and an upper portion of the holder is placed on the upper portion of the cap. And an attachment member to be connected . Thereby, the heat radiation path from the semiconductor light emitting element to the heat sink via the stem and the heat radiation path from the wavelength conversion member to the heat sink via the cap hardly interfere with each other. Further, the heat generated from the wavelength conversion member reaches the heat sink by a cap formed of a member having a high thermal conductivity and integrally formed, so that the heat resistance of the heat dissipation path is small.

また、本発明に係る照明装置は、上述の光源装置と、光源装置の出射光を所定方向に投影する投影光学ユニットとを具備するものである。   An illumination device according to the present invention includes the above-described light source device and a projection optical unit that projects light emitted from the light source device in a predetermined direction.

本発明によれば、半導体発光素子の放熱経路と波長変換部材の放熱経路とはほとんど干渉しないので、波長変換部材の放熱効率を向上できる。また、波長変換部材の放熱経路の熱抵抗を小さくすることができ、放熱性能を向上できる。   According to the present invention, since the heat dissipation path of the semiconductor light emitting element and the heat dissipation path of the wavelength conversion member hardly interfere, the heat dissipation efficiency of the wavelength conversion member can be improved. Moreover, the thermal resistance of the heat dissipation path of the wavelength conversion member can be reduced, and the heat dissipation performance can be improved.

本発明に係る光源装置の第1の実施の形態を示す斜視図である。It is a perspective view which shows 1st Embodiment of the light source device which concerns on this invention. 図1の光源装置の断面図である。It is sectional drawing of the light source device of FIG. 図2の波長変換部材及び保持部材の詳細を示す断面図である。It is sectional drawing which shows the detail of the wavelength conversion member of FIG. 2, and a holding member. 図2の光源装置の第1の変更例を示す断面図である。It is sectional drawing which shows the 1st modification of the light source device of FIG. 図2の光源装置の第2の変更例を示す断面図である。It is sectional drawing which shows the 2nd modification of the light source device of FIG. 図2の光源装置の第3の変更例を示す断面図である。It is sectional drawing which shows the 3rd modification of the light source device of FIG. 本発明に係る光源装置の第2の実施の形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the light source device which concerns on this invention. 第1の従来の光源装置を示す断面図である。It is sectional drawing which shows a 1st conventional light source device. 第2の従来の光源装置を示す断面図である。It is sectional drawing which shows the 2nd conventional light source device.

図1は本発明に係る光源装置の第1の実施の形態を示す斜視図、図2は図1の光源装置の断面図である。   FIG. 1 is a perspective view showing a first embodiment of a light source device according to the present invention, and FIG. 2 is a sectional view of the light source device of FIG.

図1、図2においては、LD素子1がステム2に搭載され、ステム2の側面に接触して設けられたホルダ3はレンズ4を支持する。ステム2はヒートシンク5のプレート部51に接触している。ヒートシンク5は、プレート部51に加えて、ザグリ部52aを設けたベース部52及びフィン部53よりなる。他方、ヒートシンク5のプレート部51に設けられたキャップ6は保持部材8を介して波長変換部材7を支持する。キャップ6は上部61、脚部62及び土台部63を一体に構成しており、この場合、土台部63を広くしてキャップ6とヒートシンク5との接触面積を大きくする。また、図1に示すごとく、キャップ6は円形の一部を切り落とした形成をなしている。これは、光源装置を複数個近接して配置した場合に、波長変換部材7の間の距離を小さくするためである。しかし、キャップ6はホルダ3の軸回りを360°囲む形状にしてもよい。ホルダ3とキャップ6の上部61との間は取付部材9によって接着剤または圧入を用いて固定される。取付部材9はホルダ3の中心とキャップ6の中心とを合致させる調整機構を果たしている。   In FIG. 1 and FIG. 2, the LD element 1 is mounted on the stem 2, and the holder 3 provided in contact with the side surface of the stem 2 supports the lens 4. The stem 2 is in contact with the plate portion 51 of the heat sink 5. The heat sink 5 includes a base portion 52 and a fin portion 53 provided with a counterbore portion 52 a in addition to the plate portion 51. On the other hand, the cap 6 provided on the plate portion 51 of the heat sink 5 supports the wavelength conversion member 7 via the holding member 8. The cap 6 integrally includes an upper portion 61, a leg portion 62, and a base portion 63. In this case, the base portion 63 is widened to increase the contact area between the cap 6 and the heat sink 5. Further, as shown in FIG. 1, the cap 6 is formed by cutting off a part of a circle. This is to reduce the distance between the wavelength conversion members 7 when a plurality of light source devices are arranged close to each other. However, the cap 6 may have a shape that surrounds the axis of the holder 3 by 360 °. The holder 3 and the upper portion 61 of the cap 6 are fixed by the attachment member 9 using an adhesive or press-fitting. The attachment member 9 serves as an adjustment mechanism for matching the center of the holder 3 with the center of the cap 6.

ヒートシンク5のベース部52のザグリ部52aには、給電基板10が収容され、給電基板10とステム2との間には、リード端子11が接続される。   The feed board 10 is accommodated in the counterbore part 52 a of the base part 52 of the heat sink 5, and the lead terminal 11 is connected between the feed board 10 and the stem 2.

ステム2は、SPC(熱伝導率は50W/m・K)、銅、真鍮、タングステン、アルミニウム、銅/タングステン合金等よりなり、ステム2の熱伝導率は小さい。   The stem 2 is made of SPC (thermal conductivity is 50 W / m · K), copper, brass, tungsten, aluminum, copper / tungsten alloy, etc., and the thermal conductivity of the stem 2 is small.

ホルダ3及び取付部材9は、ニッケル、コバルト、鉄、真鍮、ステンレス(SUS)(熱伝導率16W/m・K)、ニッケル/鉄合金、鉄/ニッケル/コバルト合金(コバール)(熱伝導率17W/m・K)等よりなり、やはり、ホルダ3及び取付部材9の熱伝導率は小さい。   The holder 3 and the mounting member 9 are nickel, cobalt, iron, brass, stainless steel (SUS) (thermal conductivity 16 W / m · K), nickel / iron alloy, iron / nickel / cobalt alloy (Kovar) (thermal conductivity 17 W). / M · K), and the thermal conductivity of the holder 3 and the mounting member 9 is small.

ヒートシンク5及びキャップ6は、アルミニウム(熱伝導率140W/m・K)、銅(熱伝導率390W/m・K)等よりなり、ヒートシンク5及びキャップ6の熱伝導率は大きい。   The heat sink 5 and the cap 6 are made of aluminum (thermal conductivity 140 W / m · K), copper (thermal conductivity 390 W / m · K) or the like, and the heat conductivity of the heat sink 5 and the cap 6 is large.

図3は図2の波長変換部材7及び保持部材8の詳細を示す断面図である。   FIG. 3 is a cross-sectional view showing details of the wavelength conversion member 7 and the holding member 8 of FIG.

波長変換部材7は、蛍光体層71、拡散板72及び金属反射層73を有する。蛍光体層71はたとえばYAG蛍光体を酸化アルミニウムに分散したYAGセラミック焼結体である。拡散板72はアルミナ等の光散乱粒子を含む透光性材料(ガラス)等よりなる。金属反射層73は高反射率のアルミニウム等よりなる。レーザ光Lは金属反射層73の開口から入射し、拡散板72によって拡散され、蛍光体層71の全体に亘って入射する。この場合、拡散板72によって拡散されて蛍光体層71と反対方向に向かった光は金属反射層73によって反射されて蛍光体層71に再び向かうことになる。   The wavelength conversion member 7 includes a phosphor layer 71, a diffusion plate 72, and a metal reflection layer 73. The phosphor layer 71 is, for example, a YAG ceramic sintered body in which a YAG phosphor is dispersed in aluminum oxide. The diffusion plate 72 is made of a translucent material (glass) containing light scattering particles such as alumina. The metal reflection layer 73 is made of aluminum or the like having high reflectivity. The laser light L enters from the opening of the metal reflection layer 73, is diffused by the diffusion plate 72, and enters the entire phosphor layer 71. In this case, the light diffused by the diffusion plate 72 and directed in the direction opposite to the phosphor layer 71 is reflected by the metal reflecting layer 73 and travels again to the phosphor layer 71.

他方、保持部材8は、サブマウント81、内側スリーブ82、外側スリーブ83及び内側スリーブ82と外側スリーブ83との間に充填された白色樹脂層84を有する。波長変換部材7と保持部材8のサブマウント81との接合はバンブ85またはAuSn接合等の金属接合によって行われる。サブマウント81は波長変換部材7を直接支持するもので、たとえばセラミックよりなる。内側スリーブ82、外側スリーブ83は白色樹脂層84を堰き止めるためのものであり、チクリ性樹脂またはガラスよりなる。白色樹脂層84はレーザ光Lの外部への漏れを防止して発光部と非発光部との輝度差を大きくする。   On the other hand, the holding member 8 includes a submount 81, an inner sleeve 82, an outer sleeve 83, and a white resin layer 84 filled between the inner sleeve 82 and the outer sleeve 83. The wavelength conversion member 7 and the submount 81 of the holding member 8 are joined by metal joining such as a bump 85 or AuSn joining. The submount 81 directly supports the wavelength conversion member 7 and is made of, for example, ceramic. The inner sleeve 82 and the outer sleeve 83 are for damming the white resin layer 84, and are made of chic resin or glass. The white resin layer 84 prevents the laser light L from leaking to the outside and increases the luminance difference between the light emitting portion and the non-light emitting portion.

波長変換部材7の蛍光体層71内で発生した熱は、放熱経路P2に沿って拡散板72から金属反射層73、バンプ85、サブマウント81、キャップ6の上部61へ伝播する。   The heat generated in the phosphor layer 71 of the wavelength conversion member 7 propagates from the diffusion plate 72 to the metal reflection layer 73, the bump 85, the submount 81, and the upper portion 61 of the cap 6 along the heat dissipation path P2.

図2に戻ると、LD素子1からの熱は、放熱経路P1に沿ってステム2を介してヒートシンク5のプレート部51に伝播し、さらにヒートシンク5のベース部52を介してフィン部53に伝播し、対流、放射によって周囲雰囲気に放熱される。他方、波長変換部材7からの熱は、放熱経路P2を介してキャップ6の上部61に入射する。キャップ6の上部61の放熱経路P2は、2つの放熱経路P21、P22に分けられる。
放熱経路P21:キャップ6の上部61→キャップ6の脚部62→キャップ6の土台部63→ヒートシンク5のプレート部51
放熱経路P22:キャップ6の上部61→取付部材9→ホルダ3→ステム2→ヒートシンク5のプレート部51
いずれの放熱経路P21、P22の熱もヒートシンク5のベース52を介してフィン部53に伝播し、対流、放射によって周囲雰囲気に放熱される。
Returning to FIG. 2, the heat from the LD element 1 propagates along the heat dissipation path P <b> 1 to the plate portion 51 of the heat sink 5 via the stem 2, and further propagates to the fin portion 53 via the base portion 52 of the heat sink 5. The heat is dissipated to the surrounding atmosphere by convection and radiation. On the other hand, the heat from the wavelength conversion member 7 enters the upper portion 61 of the cap 6 through the heat dissipation path P2. The heat radiation path P2 of the upper part 61 of the cap 6 is divided into two heat radiation paths P21 and P22.
Heat dissipation path P21: upper part 61 of cap 6 → leg part 62 of cap 6 → base part 63 of cap 6 → plate part 51 of heat sink 5
Heat dissipation path P22: upper part 61 of cap 6 → mounting member 9 → holder 3 → stem 2 → plate part 51 of heat sink 5
The heat of any of the heat radiation paths P21 and P22 propagates to the fin portion 53 via the base 52 of the heat sink 5, and is radiated to the surrounding atmosphere by convection and radiation.

放熱経路P21はステム2を介さずにヒートシンク5に通じているので、放熱経路P21の熱はステム2を介する放熱経路P1の熱とほとんど干渉しない。従って、放熱経路P21の熱はLD素子1へほとんど伝播しない。この結果、放熱経路P21の熱はLD素子1の放熱効果を低下させない。   Since the heat dissipation path P21 communicates with the heat sink 5 without passing through the stem 2, the heat of the heat dissipation path P21 hardly interferes with the heat of the heat dissipation path P1 via the stem 2. Therefore, the heat of the heat dissipation path P21 hardly propagates to the LD element 1. As a result, the heat of the heat dissipation path P21 does not deteriorate the heat dissipation effect of the LD element 1.

他方、放熱経路P22の熱は取付部材9、ホルダ3及びステム2を介してヒートシンク5に伝播する。従って、放熱経路P22の熱はLD素子1の放熱経路P1の熱と干渉してLD素子1の放熱効果を低下させる。この点から、放熱経路P22の熱抵抗はできるだけ大きい方がよい。このため、取付部材9の熱抵抗は、大きく、たとえば、上述のごとく、コバール等よりなる。この場合、放熱経路P21の熱抵抗と放熱経路P22の熱抵抗との比は多くとも0.5以下、好ましくは0.3以下である。理想的には、取付部材9は断熱部材で構成することが好ましい。   On the other hand, the heat of the heat dissipation path P <b> 22 propagates to the heat sink 5 through the attachment member 9, the holder 3 and the stem 2. Therefore, the heat of the heat dissipation path P22 interferes with the heat of the heat dissipation path P1 of the LD element 1 to reduce the heat dissipation effect of the LD element 1. From this point, it is better that the thermal resistance of the heat radiation path P22 is as large as possible. For this reason, the thermal resistance of the attachment member 9 is large, and is made of, for example, Kovar as described above. In this case, the ratio of the thermal resistance of the heat dissipation path P21 and the heat resistance of the heat dissipation path P22 is at most 0.5 or less, preferably 0.3 or less. Ideally, the attachment member 9 is preferably composed of a heat insulating member.

たとえば、キャップ6の材料としてアルミニウム(熱伝導率140W/m・K)または銅(熱伝導率390W/m・K)を選択すると、サイズ、形状にも依存するが、波長変換部材7直下のキャップ6の上部61からヒートシンク5のプレート部51上部までつまり放熱経路P21の熱抵抗は約3〜6℃/Wである。これに対し、ホルダ3及び取付部材9の材料を、レンズ4と溶接可能、熱膨張率差が小さいという理由からSUS(熱伝導率16W/m・K)またはコバール(熱伝導率17W/m・K)を選択すると、サイズ、形状にも依存するが、波長変換部材7直下のキャップ6の上部61から取付部材9及びホルダ3を介してヒートシンク5のプレート部51の上部までつまり放熱経路P22の熱抵抗は約20〜30℃/Wである。この場合、放熱経路P21の熱抵抗/放熱経路P22の熱抵抗は0.1〜0.3となる。このように、熱抵抗が小さい放熱経路P21によって波長変換部材7の温度を著しく低くすることができる。   For example, when aluminum (thermal conductivity 140 W / m · K) or copper (thermal conductivity 390 W / m · K) is selected as the material of the cap 6, the cap just below the wavelength conversion member 7 depends on the size and shape. From the upper part 61 of 6 to the upper part of the plate part 51 of the heat sink 5, that is, the heat resistance of the heat radiation path P21 is about 3 to 6 ° C./W. On the other hand, the material of the holder 3 and the mounting member 9 can be welded to the lens 4 and SUS (thermal conductivity 16 W / m · K) or Kovar (thermal conductivity 17 W / m · K) because the difference in thermal expansion coefficient is small. When K) is selected, it depends on the size and shape, but from the upper part 61 of the cap 6 directly below the wavelength conversion member 7 to the upper part of the plate part 51 of the heat sink 5 via the mounting member 9 and the holder 3, that is, the heat dissipation path P22. The thermal resistance is about 20-30 ° C./W. In this case, the thermal resistance of the heat dissipation path P21 / heat resistance of the heat dissipation path P22 is 0.1 to 0.3. Thus, the temperature of the wavelength conversion member 7 can be remarkably lowered by the heat radiation path P21 having a small thermal resistance.

図4Aは図2の光源装置の第1の変更例を示す。図4Aにおいては、ホルダ3をステム2の上面に設けてある。図2のホルダ3とステム2の側面との接合部の機械的強度に比較して図4Aのホルダ3とステム2の上面との接合部の機械的強度は劣る。しかし、ホルダ3は取付部材9によってキャップ6の上部61に固定されているので、図4Aのホルダ3とステム2の上面との接合部の機械的強度で十分である。さらに、図4Aの光源装置においては、キャップ6の直径DAは図2のキャップ6の直径Dより小さくなり、従って、図4Aの放熱経路P21は図2の放熱経路P21より短くなり、図4Aの放熱経路P22は図2の放熱経路P22より短くなる。この結果、図4Aの放熱経路P21の熱抵抗は小さくなり、従って、波長変換部材7の温度をさらに低下させることができる。さらに、光源装置を小型化できる。   FIG. 4A shows a first modification of the light source device of FIG. In FIG. 4A, the holder 3 is provided on the upper surface of the stem 2. The mechanical strength of the joint between the holder 3 and the upper surface of the stem 2 in FIG. 4A is inferior to the mechanical strength of the joint between the holder 3 and the side surface of the stem 2 in FIG. However, since the holder 3 is fixed to the upper portion 61 of the cap 6 by the attachment member 9, the mechanical strength of the joint between the holder 3 and the upper surface of the stem 2 in FIG. 4A is sufficient. Further, in the light source device of FIG. 4A, the diameter DA of the cap 6 is smaller than the diameter D of the cap 6 of FIG. 2, so that the heat dissipation path P21 of FIG. 4A is shorter than the heat dissipation path P21 of FIG. The heat dissipation path P22 is shorter than the heat dissipation path P22 of FIG. As a result, the thermal resistance of the heat dissipation path P21 in FIG. 4A is reduced, and therefore the temperature of the wavelength conversion member 7 can be further reduced. Furthermore, the light source device can be reduced in size.

図4Bは図2の光源装置の第2の変更例を示す。図4Bにおいては、図4Aのステム2をヒートシンク5のプレート部51の段差51aに埋込んである。これにより、図4Bのキャップ6の高さHBは図4Aのキャップ6の高さHAより小さくなる。従って、図4Bの放熱経路P21は図4Aの放熱経路P21より短くなる。この結果、図4Bの放熱経路P21の熱抵抗はさらに小さくなり、従って、波長変換部材7の温度をさらに低下させることができる。さらに、光源装置を小型化できる。さらにまた、ステム2とヒートシンク5のプレート部51との接触面積が増大するので、LD素子1の放熱効率を大きくできる。   FIG. 4B shows a second modification of the light source device of FIG. In FIG. 4B, the stem 2 of FIG. 4A is embedded in the step 51 a of the plate portion 51 of the heat sink 5. Accordingly, the height HB of the cap 6 in FIG. 4B is smaller than the height HA of the cap 6 in FIG. 4A. Therefore, the heat dissipation path P21 in FIG. 4B is shorter than the heat dissipation path P21 in FIG. 4A. As a result, the thermal resistance of the heat dissipation path P21 in FIG. 4B is further reduced, and therefore the temperature of the wavelength conversion member 7 can be further reduced. Furthermore, the light source device can be reduced in size. Furthermore, since the contact area between the stem 2 and the plate portion 51 of the heat sink 5 increases, the heat dissipation efficiency of the LD element 1 can be increased.

図4Cは図2の光源装置の第3の変更例を示す。図4Cにおいては、図4Aのステム2をヒートシンク5のプレート部51の開口51bに埋込んである。プレート部51の開口51bの場合、ステム2とプレート部51との接触面積が減少するが、プレート部51の段差51aより開口51bの方が加工し易い。図4Bの場合と同様に、図4Cのキャップ6の高さHCは図4Aのキャップ6の高さHAより小さくなる。従って、図4Cの放熱経路P21は図4Aの放熱経路P21より短くなる。この結果、図4Cの放熱経路P21の熱抵抗はさらに小さくなり、従って、波長変換部材7の温度をさらに低下させることができる。さらに、光源装置を小型化できる。   FIG. 4C shows a third modification of the light source device of FIG. In FIG. 4C, the stem 2 in FIG. 4A is embedded in the opening 51 b of the plate portion 51 of the heat sink 5. In the case of the opening 51 b of the plate part 51, the contact area between the stem 2 and the plate part 51 is reduced, but the opening 51 b is easier to process than the step 51 a of the plate part 51. As in the case of FIG. 4B, the height HC of the cap 6 in FIG. 4C is smaller than the height HA of the cap 6 in FIG. 4A. Therefore, the heat dissipation path P21 in FIG. 4C is shorter than the heat dissipation path P21 in FIG. 4A. As a result, the thermal resistance of the heat dissipation path P21 in FIG. 4C is further reduced, and therefore the temperature of the wavelength conversion member 7 can be further reduced. Furthermore, the light source device can be reduced in size.

図5は本発明に係る光源装置の第2の実施の形態を示す断面図である。   FIG. 5 is a sectional view showing a second embodiment of the light source device according to the present invention.

図5においては、図2の構成要素に、冷却部材13をキャップ6の上部61に付加してある。これにより、波長変換部材7からの熱は放熱経路P21を伝播する際に、その一部は冷却部材13にも伝播する。従って、波長変換部材7の温度をさらに低下させることができる。尚、冷却部材13はキャップ6の上部61の形状に合わせて脚部61の全周または一部に設けられる。   In FIG. 5, the cooling member 13 is added to the upper portion 61 of the cap 6 in the components shown in FIG. 2. Thereby, when the heat from the wavelength conversion member 7 propagates through the heat dissipation path P <b> 21, part of the heat also propagates to the cooling member 13. Therefore, the temperature of the wavelength conversion member 7 can be further reduced. The cooling member 13 is provided on the entire circumference or a part of the leg portion 61 according to the shape of the upper portion 61 of the cap 6.

尚、上述の光源装置を投影光学ユニットと組合わせることにより種々の照明装置を構成することができる。たとえば、プロジェクタ型、リフレクタ型の車両用前照灯を構成することができる。   Various illumination devices can be configured by combining the above light source device with the projection optical unit. For example, a projector-type or reflector-type vehicle headlamp can be configured.

また、本発明はLD素子以外の半導体発光素子たとえば高輝度のLED素子にも適用できる。   The present invention can also be applied to semiconductor light emitting elements other than LD elements, for example, high-brightness LED elements.

さらに、本発明は上述の実施の形態の自明の範囲内のいかなる変更にも適用し得る。   Furthermore, the present invention can be applied to any modification within the obvious scope of the above-described embodiment.

本発明は車両用前照灯以外の車両用灯具及び一般照明の照明装置に利用できる。   The present invention can be used for a vehicular lamp other than a vehicular headlamp and an illumination device for general illumination.

1:LD素子
2:ステム
3:ホルダ
4:レンズ
5:ヒートシンク
51:プレート部
51a:段差
51b:開口
52:ベース部
52a:ザグリ部
53:フィン部
6:キャップ
61:上部
62:脚部
63:土台部
7:波長変換部材
71:蛍光体層
72:拡散板
73:金属反射層
8:保持部材
81:サブマウント
82:内側スリーブ
83:外側スリーブ
84:白色樹脂層
9:取付部材
10:給電基板
11:リード端子
13:冷却部材
P1、P2、P21、P22:放熱経路
101:LD素子
102:ステム
103:封止キャップ
103a:窓部
104:ホルダ
105:レンズ
106:波長変換部材
107:保持部材
108:外部リード端子
P11、P12、P13:放熱経路
201:LD素子
202:ステム
203:封止キャップ
204:ホルダ
205:レンズ
206:波長変換部材
207:キャップ
208:外部リード端子
P21、P22、P23:放熱経路
1: LD element 2: Stem 3: Holder 4: Lens 5: Heat sink 51: Plate portion
51a: level difference
51b: Opening
52: Base part
52a: counterbore part
53: Fin part
6: Cap 61: Upper part
62: Leg
63: Foundation
7: Wavelength converting member 71: Phosphor layer 72: Diffuser plate 73: Metal reflecting layer 8: Holding member 81: Submount 82: Inner sleeve 83: Outer sleeve 84: White resin layer 9: Mounting member 10: Power supply substrate 11: Lead terminal 13: Cooling members P1, P2, P21, P22: Heat radiation path 101: LD element 102: Stem 103: Sealing cap 103a: Window portion 104: Holder 105: Lens 106: Wavelength conversion member 107: Holding member 108: External Lead terminals P11, P12, P13: heat dissipation path 201: LD element 202: stem 203: sealing cap 204: holder 205: lens 206: wavelength conversion member 207: cap 208: external lead terminals P21, P22, P23: heat dissipation path

Claims (6)

半導体発光素子と、
前記半導体発光素子を搭載するステムと、
前記半導体発光素子からの光の一部を波長変換し残りの光と混色して出射する波長変換部材と、
前記波長変換部材を支持するキャップと、
前記ステム及び前記キャップに接触して設けられたヒートシンクと
前記ステムに固定され、レンズを支持するホルダと、
前記ホルダの上部を前記キャップの上部に接続する取付部材と
を具備する光源装置。
A semiconductor light emitting device;
A stem on which the semiconductor light emitting element is mounted;
A wavelength converting member that converts a wavelength of a part of the light from the semiconductor light emitting element and mixes the remaining light with the emitted light; and
A cap that supports the wavelength conversion member;
A heat sink provided in contact with the stem and the cap ;
A holder fixed to the stem and supporting the lens;
A light source device comprising: an attachment member that connects an upper portion of the holder to an upper portion of the cap .
前記ホルダは前記ステムの側面に固定された請求項に記載の光源装置。 The light source device according to claim 1 , wherein the holder is fixed to a side surface of the stem. 前記ホルダは前記ステムの上面に固定された請求項に記載の光源装置。 The light source device according to claim 1 , wherein the holder is fixed to an upper surface of the stem. 前記ステムは前記ヒートシンクに埋込まれている請求項1に記載の光源装置。   The light source device according to claim 1, wherein the stem is embedded in the heat sink. さらに、前記キャップに接触して設けられた冷却部材を具備する請求項1に記載の光源装置。   The light source device according to claim 1, further comprising a cooling member provided in contact with the cap. 請求項1〜のいずれかに記載の光源装置と、
前記光源装置の出射光を所定方向に投影する投影光学ユニットと
を具備する照明装置。
The light source device according to any one of claims 1 to 5 ,
An illumination device comprising: a projection optical unit that projects light emitted from the light source device in a predetermined direction.
JP2015106113A 2015-05-26 2015-05-26 LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE SAME Active JP6560902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015106113A JP6560902B2 (en) 2015-05-26 2015-05-26 LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015106113A JP6560902B2 (en) 2015-05-26 2015-05-26 LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2016219723A JP2016219723A (en) 2016-12-22
JP6560902B2 true JP6560902B2 (en) 2019-08-14

Family

ID=57581551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015106113A Active JP6560902B2 (en) 2015-05-26 2015-05-26 LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP6560902B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323836B2 (en) * 2017-09-29 2023-08-09 日亜化学工業株式会社 Light source device
JP7356311B2 (en) * 2019-09-27 2023-10-04 豊田合成株式会社 Light emitting device, wavelength conversion unit, and headlight or display device
EP4368879A1 (en) * 2021-07-07 2024-05-15 Koito Manufacturing Co., Ltd. Vehicular lamp

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287275B2 (en) * 2009-01-15 2013-09-11 日亜化学工業株式会社 Light emitting device
WO2013042193A1 (en) * 2011-09-20 2013-03-28 Necディスプレイソリューションズ株式会社 Light source device and projection-type display device
JP2014138046A (en) * 2013-01-16 2014-07-28 Stanley Electric Co Ltd Semiconductor light emitting element package-fixing structure
JP6103998B2 (en) * 2013-03-15 2017-03-29 スタンレー電気株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2016219723A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
US9685759B2 (en) Semiconductor laser device
JP4231418B2 (en) Light emitting module and vehicle lamp
JP4999551B2 (en) Light emitting element module
JP6514281B2 (en) Laser component and method for manufacturing a laser component
JP5480466B2 (en) Light emitting device
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
US7985981B2 (en) Semiconductor light-emitting device
JP2010067939A (en) Light-emitting device
JP5425023B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP6493308B2 (en) Light emitting device
JP2005109282A (en) Light emitting device
US8455888B2 (en) Light emitting diode module, and light emitting diode lamp
JP2013084810A (en) Light-emitting device
KR20140036670A (en) Light emitting device package and head light for vehicle having the same
JP6560902B2 (en) LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE SAME
JP7053184B2 (en) Vehicle lighting
JP5271349B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP2015008074A (en) Semiconductor type light source of vehicular lamp fitting and vehicular lamp fitting
JP2009105343A (en) Light emitting device
JP2007266246A (en) Led module
JP6879290B2 (en) Light emitting device
JP2013030598A (en) Heat generation device
JP5742629B2 (en) LIGHT EMITTING DEVICE AND LIGHTING APPARATUS HAVING THE SAME
JP2017111862A (en) Light source unit and lighting fixture using the same
JP2016134539A (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6560902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250