JP6560568B2 - Energy absorbing structure - Google Patents

Energy absorbing structure Download PDF

Info

Publication number
JP6560568B2
JP6560568B2 JP2015175436A JP2015175436A JP6560568B2 JP 6560568 B2 JP6560568 B2 JP 6560568B2 JP 2015175436 A JP2015175436 A JP 2015175436A JP 2015175436 A JP2015175436 A JP 2015175436A JP 6560568 B2 JP6560568 B2 JP 6560568B2
Authority
JP
Japan
Prior art keywords
energy absorbing
absorbing member
cover member
collision load
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015175436A
Other languages
Japanese (ja)
Other versions
JP2017053365A (en
Inventor
池田 聡
聡 池田
航 加藤
航 加藤
勇 長澤
勇 長澤
秀基 沼内
秀基 沼内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2015175436A priority Critical patent/JP6560568B2/en
Publication of JP2017053365A publication Critical patent/JP2017053365A/en
Application granted granted Critical
Publication of JP6560568B2 publication Critical patent/JP6560568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エネルギ吸収構造体に関する。   The present invention relates to an energy absorbing structure.

車両には、衝突発生時に圧壊し、衝突エネルギを吸収するエネルギ吸収部材が備えられている。エネルギ吸収部材の代表的な例として、フロントバンパビームとフロントフレームとの間に配置されるクラッシュボックスが挙げられる。従来、鋼板等の金属材料により構成されたエネルギ吸収部材が用いられていたが、近年、車体の軽量化のために、炭素繊維等の強化繊維が混合された繊維強化樹脂(FRP)製の筒状のエネルギ吸収部材が実用化されている。   The vehicle is provided with an energy absorbing member that is crushed when a collision occurs and absorbs the collision energy. A typical example of the energy absorbing member is a crush box disposed between the front bumper beam and the front frame. Conventionally, an energy absorbing member made of a metal material such as a steel plate has been used. In recent years, a fiber reinforced resin (FRP) tube in which reinforcing fibers such as carbon fibers are mixed to reduce the weight of the vehicle body. Shaped energy absorbing members have been put into practical use.

係る繊維強化樹脂製のエネルギ吸収部材は、衝突荷重の入力時に、圧縮されることによって軸方向に圧壊する。ここで、衝突荷重の入力時において、エネルギ吸収部材やエネルギ吸収部材の周囲の部材には外力による様々な変形が生じ得るので、エネルギ吸収部材の姿勢が傾く場合がある。エネルギ吸収部材の姿勢が傾くと、衝突荷重の入力方向に対するエネルギ吸収部材の軸方向の傾きが大きくなるので、衝突荷重のうちエネルギ吸収部材の軸方向の圧縮変形に費やされる割合が低下し得る。それにより、エネルギ吸収部材の圧壊におけるエネルギ吸収量が低下し得る。そこで、エネルギ吸収部材の姿勢が傾くことを防止するための技術が提案されている。   The fiber-reinforced resin energy absorbing member is compressed in the axial direction by being compressed when a collision load is input. Here, when the collision load is input, the energy absorbing member and members around the energy absorbing member may be deformed by external force, and thus the energy absorbing member may be inclined. When the posture of the energy absorbing member is inclined, the inclination of the energy absorbing member in the axial direction with respect to the input direction of the collision load increases, so that the ratio of the collision load spent for compressive deformation in the axial direction of the energy absorbing member can be reduced. Thereby, the energy absorption amount in the crushing of the energy absorbing member can be reduced. Therefore, a technique for preventing the energy absorbing member from tilting has been proposed.

例えば、特許文献1には、複数個束ねられた円筒からなるエネルギ吸収部材において、円筒根元部での倒れを防止して各円筒に安定して軸方向の圧縮変形を生じさせるために、円筒基端部とその取付け面部との接合部近傍に、円筒の基端部が曲がるのを防止する曲げ防止手段を設ける技術が開示されている。   For example, in Patent Document 1, in an energy absorbing member composed of a plurality of bundled cylinders, in order to prevent collapse at the base of the cylinder and to cause each cylinder to stably compress in the axial direction, A technique is disclosed in which a bend preventing means for preventing a base end portion of a cylinder from being bent in the vicinity of a joint portion between an end portion and an attachment surface portion thereof is disclosed.

特開2010−111239号公報JP 2010-1111239 A

ここで、繊維強化樹脂製のエネルギ吸収部材は鋼板製のクラッシュボックスに比べて破損しやすいため、繊維強化樹脂製のエネルギ吸収部材を車両に用いる場合、耐チッピング性や耐候性等に考慮する必要がある。具体的には、車輪によって跳ね上げられる小石や雨水等によるエネルギ吸収部材の破損を防ぐことが望まれる。その対策として、エネルギ吸収部材の外周面をカバー部材で覆うことが考えられる。このようなカバー部材は、衝突荷重の入力時には、衝突荷重の一部を受け、エネルギ吸収部材の圧壊とともに軸方向に圧壊する。   Here, since the energy absorbing member made of fiber reinforced resin is more easily damaged than the crash box made of steel plate, when using the energy absorbing member made of fiber reinforced resin for a vehicle, it is necessary to consider chipping resistance, weather resistance, etc. There is. Specifically, it is desired to prevent the energy absorbing member from being damaged by pebbles or rainwater splashed by the wheels. As a countermeasure, it is conceivable to cover the outer peripheral surface of the energy absorbing member with a cover member. Such a cover member receives a part of the collision load when the collision load is input, and collapses in the axial direction together with the collapse of the energy absorbing member.

しかし、エネルギ吸収部材の外周面をカバー部材で覆う場合、衝突荷重の入力によるカバー部材の圧壊の過程の初期に、カバー部材全体が圧壊する以前にカバー部材の衝突荷重の入力側とは反対側の端部において曲げ変形が生じ得る。そのような場合、カバー部材及びエネルギ吸収部材を含むエネルギ吸収構造体の姿勢が傾き得る。それにより、衝突荷重の入力方向に対するエネルギ吸収部材の軸方向の傾きが大きくなるので、衝突荷重のうちエネルギ吸収部材の軸方向の圧縮変形に費やされる割合が低下し得る。ゆえに、エネルギ吸収部材の圧壊におけるエネルギ吸収量が低下し得る。   However, when the outer peripheral surface of the energy absorbing member is covered with the cover member, at the initial stage of the cover member crushing process due to the input of the collision load, the side opposite to the input side of the collision load of the cover member before the entire cover member is crushed Bending deformation may occur at the ends of the. In such a case, the posture of the energy absorbing structure including the cover member and the energy absorbing member can be inclined. Thereby, since the inclination of the energy absorbing member in the axial direction with respect to the input direction of the collision load is increased, the ratio of the collision load spent for compressive deformation in the axial direction of the energy absorbing member can be reduced. Therefore, the energy absorption amount in the crushing of the energy absorbing member can be reduced.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、エネルギ吸収部材の圧壊におけるエネルギ吸収量の低下を抑制することが可能な、新規かつ改良されたエネルギ吸収構造体を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is a new and improved that can suppress a decrease in the amount of energy absorption in the collapse of the energy absorbing member. It is to provide an energy absorbing structure.

上記課題を解決するために、本発明のある観点によれば、衝突荷重の入力時に軸方向に圧壊して衝突エネルギを吸収する繊維強化樹脂製の筒状のエネルギ吸収部材と、前記エネルギ吸収部材の外周面を覆い、前記衝突荷重の入力時に軸方向に圧壊する筒状のカバー部材と、前記カバー部材の前記衝突荷重の入力側とは反対側の端部の内周面側に設けられ、当該端部から前記カバー部材の全長の一部に亘って前記カバー部材の軸方向に延在するリブと、を備えるエネルギ吸収構造体が提供される。また、上記課題を解決するために、本発明の別の観点によれば、衝突荷重の入力時に軸方向に圧壊して衝突エネルギを吸収する繊維強化樹脂製の筒状のエネルギ吸収部材と、前記エネルギ吸収部材の外周面を覆い、前記衝突荷重の入力時に軸方向に圧壊する筒状のカバー部材と、前記カバー部材の少なくとも前記衝突荷重の入力側とは反対側の端部の内周面側に設けられ、前記カバー部材の軸方向に延在するリブと、を備え、前記リブは、前記エネルギ吸収部材の前記入力側とは反対側の端部の外周面に近接する、エネルギ吸収構造体が提供される。また、上記課題を解決するために、本発明の別の観点によれば、衝突荷重の入力時に軸方向に圧壊して衝突エネルギを吸収する繊維強化樹脂製の筒状のエネルギ吸収部材と、前記エネルギ吸収部材の外周面を覆い、前記衝突荷重の入力時に軸方向に圧壊する筒状のカバー部材と、前記カバー部材の少なくとも前記衝突荷重の入力側とは反対側の端部の内周面側に設けられ、前記カバー部材の軸方向に延在する第1のリブと、を備え、前記エネルギ吸収部材の前記入力側とは反対側の端部の少なくとも内周面側又は外周面側のいずれか一方には、前記エネルギ吸収部材の軸方向に延在する第2のリブが設けられる、エネルギ吸収構造体が提供される。 In order to solve the above problems, according to an aspect of the present invention, a cylindrical energy absorbing member made of a fiber reinforced resin that is crushed in the axial direction and absorbs collision energy when a collision load is input, and the energy absorbing member covering the outer peripheral surface of a cylindrical cover member for crushing in the axial direction when the input of the impact load, provided on the inner peripheral surface of the end portion opposite to the input side of the front SL collision load of the cover member There is provided an energy absorbing structure comprising: a rib extending in the axial direction of the cover member over a part of the entire length of the cover member from the end portion . In order to solve the above problem, according to another aspect of the present invention, a cylindrical energy absorbing member made of a fiber reinforced resin that collapses in the axial direction and absorbs collision energy when a collision load is input, A cylindrical cover member that covers the outer peripheral surface of the energy absorbing member and collapses in the axial direction when the collision load is input, and at least the inner peripheral surface side of the end of the cover member opposite to the input side of the collision load And an rib that extends in the axial direction of the cover member, and the rib is adjacent to an outer peripheral surface of an end portion of the energy absorbing member opposite to the input side. Is provided. In order to solve the above problem, according to another aspect of the present invention, a cylindrical energy absorbing member made of a fiber reinforced resin that collapses in the axial direction and absorbs collision energy when a collision load is input, A cylindrical cover member that covers the outer peripheral surface of the energy absorbing member and collapses in the axial direction when the collision load is input, and at least the inner peripheral surface side of the end of the cover member opposite to the input side of the collision load A first rib extending in the axial direction of the cover member, and at least either the inner peripheral surface side or the outer peripheral surface side of the end of the energy absorbing member opposite to the input side On the other hand, there is provided an energy absorbing structure provided with a second rib extending in the axial direction of the energy absorbing member.

前記カバー部材は、前記衝突荷重の入力側から前記入力側とは反対側へ向かうにつれて拡大する断面形状を有してもよい。   The cover member may have a cross-sectional shape that expands from the collision load input side toward the side opposite to the input side.

前記カバー部材の断面は、多角形であってもよい。   The cover member may have a polygonal cross section.

前記エネルギ吸収部材の前記衝突荷重の入力側とは反対側の端部を保持する保持部材を備え、前記保持部材には、前記エネルギ吸収部材の内部空間に対応する位置に開口部が設けられてもよい。   A holding member that holds an end of the energy absorbing member opposite to the input side of the collision load, and the holding member has an opening at a position corresponding to the internal space of the energy absorbing member; Also good.

以上説明したように本発明によれば、エネルギ吸収部材の圧壊におけるエネルギ吸収量の低下を抑制することが可能となる。   As described above, according to the present invention, it is possible to suppress a decrease in energy absorption amount due to the collapse of the energy absorbing member.

本発明の実施形態に係るエネルギ吸収構造体の一例を示す断面図である。It is sectional drawing which shows an example of the energy absorption structure which concerns on embodiment of this invention. 図1に示したエネルギ吸収構造体の軸方向に略垂直な断面を示す断面図である。It is sectional drawing which shows a cross section substantially perpendicular | vertical to the axial direction of the energy absorption structure shown in FIG. 同実施形態に係るエネルギ吸収構造体の逐次破壊の進展の様子を示す模式図である。It is a schematic diagram which shows the mode of progress of the sequential destruction of the energy absorption structure which concerns on the same embodiment. 同実施形態に係るエネルギ吸収構造体の逐次破壊の進展の様子を示す模式図である。It is a schematic diagram which shows the mode of progress of the sequential destruction of the energy absorption structure which concerns on the same embodiment. 同実施形態に係るエネルギ吸収構造体の圧壊における圧壊ストロークと圧壊荷重の関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the crushing stroke and crushing load in the crushing of the energy absorption structure which concerns on the embodiment. 第1の変形例に係るエネルギ吸収構造体の一例を示す断面図である。It is sectional drawing which shows an example of the energy absorption structure which concerns on a 1st modification. 第2の変形例に係るエネルギ吸収構造体の一例を示す断面図である。It is sectional drawing which shows an example of the energy absorption structure which concerns on a 2nd modification. 第3の変形例に係るエネルギ吸収構造体の一例を示す断面図である。It is sectional drawing which shows an example of the energy absorption structure which concerns on a 3rd modification. 第4の変形例に係るエネルギ吸収構造体の一例を示す断面図である。It is sectional drawing which shows an example of the energy absorption structure which concerns on a 4th modification.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<1.エネルギ吸収構造体>
まず、図1を参照して、本実施形態に係るエネルギ吸収構造体10について説明する。
<1. Energy absorbing structure>
First, with reference to FIG. 1, the energy absorption structure 10 which concerns on this embodiment is demonstrated.

図1は、本実施形態に係るエネルギ吸収構造体10の一例を示す断面図である。図1は、エネルギ吸収構造体10が、車両のフロントバンパビーム30とフロントフレーム50との間に取り付けられた様子を示す断面図である。図1は、エネルギ吸収構造体10が保持されている様子を車両の上方側から見た図である。以下の説明においては、エネルギ吸収構造体10のフロントバンパビーム30側を先端側といい、フロントフレーム50側を後端側という場合がある。   FIG. 1 is a cross-sectional view showing an example of an energy absorbing structure 10 according to the present embodiment. FIG. 1 is a cross-sectional view showing a state where the energy absorbing structure 10 is attached between a front bumper beam 30 and a front frame 50 of a vehicle. FIG. 1 is a view of the state in which the energy absorbing structure 10 is held as viewed from above the vehicle. In the following description, the front bumper beam 30 side of the energy absorbing structure 10 may be referred to as a front end side, and the front frame 50 side may be referred to as a rear end side.

エネルギ吸収構造体10は、エネルギ吸収部材100と、固定部材300と、保持部材500と、カバー部材700と、リブ900と、を備える。エネルギ吸収部材100は、先端側が固定部材300に固定され、後端側が保持部材500によって保持されている。固定部材300は、フロントバンパビーム30に接合されている。また、保持部材500は、フロントフレーム50の先端側に接合されている。エネルギ吸収構造体10は、フロントバンパビーム30とフロントフレーム50との間に配置され、フロントバンパビーム30に固定された先端側が、衝突荷重の入力側となっている。   The energy absorbing structure 10 includes an energy absorbing member 100, a fixing member 300, a holding member 500, a cover member 700, and a rib 900. The energy absorbing member 100 has a front end side fixed to the fixing member 300 and a rear end side held by a holding member 500. The fixing member 300 is joined to the front bumper beam 30. The holding member 500 is joined to the front end side of the front frame 50. The energy absorbing structure 10 is disposed between the front bumper beam 30 and the front frame 50, and the front end side fixed to the front bumper beam 30 is an input side of a collision load.

(1−1.エネルギ吸収部材)
エネルギ吸収部材100は、車両が、先行車両や障害物その他の対象物に衝突したときに衝突荷重を受けて圧壊し、衝突エネルギを吸収する。また、エネルギ吸収部材100は、衝突荷重が大きい場合には、衝突荷重をフロントフレーム50に効率的に伝達する役割も担う。係るエネルギ吸収部材100は、繊維強化樹脂により形成される筒状の部材である。本実施形態では、エネルギ吸収部材100は、熱硬化性樹脂と炭素繊維とを用いた炭素繊維強化樹脂(CFRP)を用いて形成される複数層の複合材料であり、高強度、かつ、軽量化を実現可能になっている。
(1-1. Energy absorbing member)
The energy absorbing member 100 receives a collision load when the vehicle collides with a preceding vehicle, an obstacle, or another target object, and absorbs collision energy. The energy absorbing member 100 also plays a role of efficiently transmitting the collision load to the front frame 50 when the collision load is large. The energy absorbing member 100 is a cylindrical member formed of fiber reinforced resin. In this embodiment, the energy absorbing member 100 is a multi-layer composite material formed using a carbon fiber reinforced resin (CFRP) using a thermosetting resin and carbon fiber, and has high strength and light weight. Can be realized.

本実施形態において、エネルギ吸収部材100は円筒形状を有する。繊維強化樹脂製のエネルギ吸収部材100は、衝突荷重の入力時に荷重(圧潰荷重)を受け、先端側から逐次破壊しながら潰れる。繊維強化樹脂製のエネルギ吸収部材100は、鋼板製のクラッシュボックスに比べて、小さい間隔で座屈あるいは逐次破壊が生じるために、荷重変動の少ない安定した衝撃エネルギ吸収を実現することができる。また、繊維強化樹脂製のエネルギ吸収部材100は、潰れ残りが比較的少なく、単位重量当たりの衝撃エネルギ吸収量が大きいという特性を有する。係る繊維強化樹脂製のエネルギ吸収部材100は、例えば、繊維材料及び熱可塑性樹脂を用いた組紐及び縦紐によって構成される組み物とし得る。   In the present embodiment, the energy absorbing member 100 has a cylindrical shape. The energy absorbing member 100 made of fiber reinforced resin receives a load (crush load) when a collision load is input, and is crushed while sequentially breaking from the tip side. Since the energy absorbing member 100 made of fiber reinforced resin is buckled or sequentially broken at a small interval as compared with the crash box made of steel plate, it is possible to realize stable impact energy absorption with little load fluctuation. Further, the energy absorbing member 100 made of fiber reinforced resin has the characteristics that the remaining amount of crushing is relatively small and the amount of impact energy absorbed per unit weight is large. The fiber reinforced resin-made energy absorbing member 100 can be, for example, a braid composed of a braided string and a vertical string using a fiber material and a thermoplastic resin.

エネルギ吸収部材100を構成する繊維強化樹脂に使用される強化繊維は、特に限定されない。例えば、炭素繊維や、ガラス繊維等のセラミックス繊維、アラミド繊維等の有機繊維、さらにはこれらを組み合わせた強化繊維を使用することができる。中でも、高い機械特性を有することや、強度設計の行いやすさ等の観点から、炭素繊維を含むことが好ましい。   The reinforcing fiber used for the fiber reinforced resin constituting the energy absorbing member 100 is not particularly limited. For example, carbon fibers, ceramic fibers such as glass fibers, organic fibers such as aramid fibers, and reinforcing fibers obtained by combining these fibers can be used. Among these, carbon fibers are preferably included from the viewpoint of having high mechanical properties and ease of strength design.

また、エネルギ吸収部材100を構成する繊維強化樹脂のマトリックス樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。熱硬化性樹脂の場合、その主材としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂などが例示される。熱硬化性樹脂は、このうちの1種類、あるいは2種類以上の混合物であってもよい。これらの熱硬化性樹脂をマトリックス樹脂に採用する場合、熱硬化性樹脂に対して適切な硬化剤や反応促進剤が添加されてもよい。   Further, the matrix resin of the fiber reinforced resin constituting the energy absorbing member 100 may be a thermosetting resin or a thermoplastic resin. In the case of a thermosetting resin, examples of the main material include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, polyurethane resins, and silicon resins. The thermosetting resin may be one of these or a mixture of two or more. When these thermosetting resins are employed as the matrix resin, an appropriate curing agent or reaction accelerator may be added to the thermosetting resin.

熱可塑性樹脂の場合、その主材としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリスチレン樹脂、AS樹脂、ナイロン6、ナイロン66等のポリアミド系樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の熱可塑性ポリエステル系樹脂、PPS(ポリフェニレンサルファイド)樹脂、フッ素樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、ポリエーテルスルフォン樹脂、芳香族ポリアミド樹脂などが例示される。   In the case of a thermoplastic resin, the main materials include, for example, polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride resins, ABS resins, polystyrene resins, AS resins, polyamide resins such as nylon 6 and nylon 66, and polyacetal resins. , Polycarbonate resins, polyethylene terephthalate, polybutylene terephthalate and other thermoplastic polyester resins, PPS (polyphenylene sulfide) resins, fluororesins, polyetherimide resins, polyetherketone resins, polyimide resins, polyethersulfone resins, aromatic polyamide resins Etc. are exemplified.

熱可塑性樹脂は、このうちの1種類、あるいは2種類以上の混合物であってもよい。混合物の場合には相溶化剤が併用されてもよい。さらに、難燃剤として臭素系難燃剤、シリコン系難燃剤、赤燐などが加えられてもよい。比較的大量生産することが求められる自動車用の部材には、成形のしやすさ、量産性の観点から、熱可塑性樹脂を使用することが好ましい。   The thermoplastic resin may be one of these, or a mixture of two or more. In the case of a mixture, a compatibilizer may be used in combination. Furthermore, brominated flame retardants, silicon-based flame retardants, red phosphorus, and the like may be added as flame retardants. It is preferable to use a thermoplastic resin for automobile parts that are required to be relatively mass-produced from the viewpoint of ease of molding and mass productivity.

また、円筒形状を有するエネルギ吸収部材100は、軸方向が、車両の前後方向に沿うように配置される。係るエネルギ吸収部材100の寸法は、車両の大きさや、得ようとする荷重特性、エネルギ吸収部材100の重量等によって適宜設計することができる。例えば、エネルギ吸収部材100の軸方向長さは130〜200mmであり、内側空間の直径は40〜70mmであり、厚さは3mmである。   Further, the energy absorbing member 100 having a cylindrical shape is arranged such that the axial direction is along the front-rear direction of the vehicle. The dimensions of the energy absorbing member 100 can be appropriately designed according to the size of the vehicle, the load characteristics to be obtained, the weight of the energy absorbing member 100, and the like. For example, the axial length of the energy absorbing member 100 is 130 to 200 mm, the diameter of the inner space is 40 to 70 mm, and the thickness is 3 mm.

エネルギ吸収部材100は、先端側に、外周が端部に向かって縮径する縮径部102を有する。係る縮径部102により、エネルギ吸収部材100の先端側が押圧されたときに、エネルギ吸収部材100を構成する複数の層間で剥離が生じやすくなる。これにより、エネルギ吸収部材100の先端側の破壊のきっかけが与えられ、エネルギ吸収部材100の先端側から後端側への逐次破壊の進展を生じさせ易くすることができる。   The energy absorbing member 100 has a reduced diameter portion 102 whose outer periphery is reduced in diameter toward the end portion on the distal end side. When the distal end side of the energy absorbing member 100 is pressed by the reduced diameter portion 102, peeling is likely to occur between a plurality of layers constituting the energy absorbing member 100. Thereby, the trigger of the destruction of the front end side of the energy absorption member 100 is given, and it can be made easy to produce the progress of the sequential destruction from the front end side of the energy absorption member 100 to the rear end side.

(1−2.固定部材)
固定部材300は、フロントバンパビーム30に接合され、エネルギ吸収構造体10の先端側が固定される部材である。固定部材300は、例えばバンパステーとも称される。固定部材300は、例えば鋼板等に代表される金属材料やアルミニウム等からなる。車両の衝突発生時において、固定部材300は、フロントバンパビーム30が受けた衝撃を、エネルギ吸収構造体10に伝達する。
(1-2. Fixing member)
The fixing member 300 is a member that is bonded to the front bumper beam 30 and that fixes the front end side of the energy absorbing structure 10. The fixing member 300 is also called, for example, a bumper stay. The fixing member 300 is made of, for example, a metal material typified by a steel plate or the like, aluminum, or the like. When a vehicle collision occurs, the fixing member 300 transmits the impact received by the front bumper beam 30 to the energy absorbing structure 10.

図1に示したエネルギ吸収構造体10では、エネルギ吸収部材100の先端側の端部は、固定部材300に対して、接着剤等により固定されている。エネルギ吸収部材100と固定部材300との接合に使用可能な接着剤としては、エポキシ樹脂系、アクリル樹脂系、ウレタン樹脂系の接着剤等を適宜使用することができる。なお、エネルギ吸収部材100が保持部材500によって強固に保持されている場合、エネルギ吸収部材100の先端側の端部は、固定部材300に接合されていなくてもよい。   In the energy absorbing structure 10 shown in FIG. 1, the end portion on the distal end side of the energy absorbing member 100 is fixed to the fixing member 300 with an adhesive or the like. As an adhesive that can be used for joining the energy absorbing member 100 and the fixing member 300, an epoxy resin-based, acrylic resin-based, urethane resin-based adhesive, or the like can be used as appropriate. Note that, when the energy absorbing member 100 is firmly held by the holding member 500, the end portion on the distal end side of the energy absorbing member 100 may not be joined to the fixing member 300.

(1−3.保持部材)
保持部材500は、フロントフレーム50の先端側に取り付けられ、エネルギ吸収部材100の後端側の端部を保持する。保持部材500は、例えば鋼板等に代表される金属材料やアルミニウム等からなるプレート状の部材である。図1に示すエネルギ吸収構造体10では、エネルギ吸収部材100の後端側の端部は、保持部材500に対して、接着剤等により固定されている。エネルギ吸収部材100と保持部材500との接合に使用可能な接着剤としては、エポキシ樹脂系、アクリル樹脂系、ウレタン樹脂系の接着剤等を適宜使用することができる。
(1-3. Holding member)
The holding member 500 is attached to the front end side of the front frame 50 and holds the end portion on the rear end side of the energy absorbing member 100. The holding member 500 is a plate-like member made of, for example, a metal material typified by a steel plate or the like, aluminum, or the like. In the energy absorbing structure 10 shown in FIG. 1, the end portion on the rear end side of the energy absorbing member 100 is fixed to the holding member 500 with an adhesive or the like. As an adhesive that can be used for joining the energy absorbing member 100 and the holding member 500, an epoxy resin-based, acrylic resin-based, urethane resin-based adhesive, or the like can be used as appropriate.

また、保持部材500には、エネルギ吸収部材100の内部空間に対応する位置に、開口部502が設けられる。係る開口部502は、エネルギ吸収部材100の圧壊時に、内巻きに破壊されたエネルギ吸収部材100の潰れかすの少なくとも一部を、エネルギ吸収部材100の外部に排出する通路である。したがって、破壊された潰れかすがエネルギ吸収部材100の内部空間に溜まることによるエネルギ吸収部材100の潰れ残りの増大が抑制される。なお、開口部502の代わりに、フロントフレーム50側に突出する凹部が設けられてもよい。   Further, the holding member 500 is provided with an opening 502 at a position corresponding to the internal space of the energy absorbing member 100. The opening 502 is a passage that discharges at least a part of the crush of the energy absorbing member 100 that has been destroyed by the inner winding to the outside of the energy absorbing member 100 when the energy absorbing member 100 is crushed. Therefore, the increase in the remaining crushing of the energy absorbing member 100 due to the destroyed crushing residue accumulated in the internal space of the energy absorbing member 100 is suppressed. Instead of the opening 502, a recess protruding toward the front frame 50 may be provided.

(1−4.カバー部材)
カバー部材700は、エネルギ吸収部材100の外周面を覆う筒状の部材である。係るカバー部材700は、車輪によって跳ね上げられた小石等の異物がエネルギ吸収部材100に衝突したり、エネルギ吸収部材100に雨水等が付着したりすることを防ぎ、エネルギ吸収部材100を保護している。本実施形態では、カバー部材700は薄板の鋼板により構成されているが、アルミニウム等の軽金属板や樹脂により構成されていてもよい。
(1-4. Cover member)
The cover member 700 is a cylindrical member that covers the outer peripheral surface of the energy absorbing member 100. The cover member 700 protects the energy absorbing member 100 by preventing foreign objects such as pebbles that are flipped up by the wheels from colliding with the energy absorbing member 100 or attaching rainwater to the energy absorbing member 100. Yes. In this embodiment, the cover member 700 is made of a thin steel plate, but may be made of a light metal plate such as aluminum or a resin.

また、カバー部材700は、衝突荷重の入力時には、衝突荷重の一部を受け、エネルギ吸収部材100の圧壊とともに軸方向に圧壊する。本実施形態に係るエネルギ吸収構造体10は、主としてエネルギ吸収部材100により衝突荷重を担い、カバー部材700が担う衝突荷重は小さくされている。したがって、カバー部材700の構成材料にかかわらず、エネルギ吸収構造体10の圧壊時において、比較的安定した荷重特性が得られるようになっている。   Further, the cover member 700 receives a part of the collision load when the collision load is input, and is crushed in the axial direction together with the collapse of the energy absorbing member 100. In the energy absorbing structure 10 according to the present embodiment, the energy absorbing member 100 mainly bears the collision load, and the cover member 700 bears the collision load. Therefore, regardless of the constituent material of the cover member 700, a relatively stable load characteristic can be obtained when the energy absorbing structure 10 is crushed.

カバー部材700の先端側の端部は固定部材300に接合されている。また、カバー部材700の後端側の端部は保持部材500に接合されている。カバー部材700と固定部材300及び保持部材500とは、溶接や接着剤による接合等、種々の方法により接合され得る。車両の牽引時等において、フロントバンパビーム30が前方へ引っ張られるときに、エネルギ吸収構造体10に引っ張り力が掛かる。本実施例では、カバー部材700が固定部材300及び保持部材500に接合されるので、車両の牽引時等にエネルギ吸収構造体10に掛かる引っ張り力の一部をカバー部材700で受けることができる。ゆえに、車両の牽引時等におけるエネルギ吸収部材100の変形や破損を抑制することができる。   The end of the cover member 700 on the front end side is joined to the fixing member 300. Further, the end portion on the rear end side of the cover member 700 is joined to the holding member 500. The cover member 700, the fixing member 300, and the holding member 500 can be joined by various methods such as welding or joining with an adhesive. When the front bumper beam 30 is pulled forward, for example, when the vehicle is towed, a tensile force is applied to the energy absorbing structure 10. In the present embodiment, since the cover member 700 is joined to the fixing member 300 and the holding member 500, a part of the pulling force applied to the energy absorbing structure 10 when the vehicle is towed can be received by the cover member 700. Therefore, deformation and breakage of the energy absorbing member 100 when the vehicle is towed can be suppressed.

図2は、図1に示したエネルギ吸収構造体10の軸方向に略垂直なA−A断面を示す断面図である。図2に示したように、カバー部材700の断面は、多角形であってもよい。それにより、荷重を担いやすい角部分がカバー部材700に設けられるので、衝突荷重の入力時において、カバー部材700の圧壊におけるエネルギ吸収量を増大することが可能である。なお、カバー部材700の断面は、係る例に限定されず、他の形状であってもよく、例えば、他の数の角部を有する多角形や略円形や略楕円形等であってもよい。   2 is a cross-sectional view showing an AA cross section substantially perpendicular to the axial direction of the energy absorbing structure 10 shown in FIG. As shown in FIG. 2, the cover member 700 may have a polygonal cross section. As a result, corner portions that are likely to bear a load are provided in the cover member 700, so that it is possible to increase the amount of energy absorbed when the cover member 700 is crushed when a collision load is input. In addition, the cross section of the cover member 700 is not limited to the example, and may have other shapes, for example, a polygon having another number of corners, a substantially circular shape, a substantially elliptical shape, or the like. .

(1−5.リブ)
リブ900は、圧壊の初期におけるカバー部材700の後端側の端部における曲げ変形を抑制するために設けられる部材である。リブ900は、例えば、鉄鋼材、アルミニウム等の金属材料や樹脂等により構成される。図1に示したように、リブ900は、カバー部材700の少なくとも後端側の端部の内周面側に設けられ、カバー部材700の軸方向に延在する。具体的には、リブ900は、カバー部材700の後端側の端部の内周面及び保持部材500の先端側の面に当接し、カバー部材700の後端側の端部の内周面及び保持部材500の先端側の面の少なくとも一方と溶接や接着剤によって接合される。なお、リブ900は、カバー部材700又は保持部材500と一体として形成されてもよい。また、リブ900は、カバー部材700の内周面側において、後端側の端部から先端側の端部にかけて延設されてもよい。
(1-5. Ribs)
The rib 900 is a member provided to suppress bending deformation at the end portion on the rear end side of the cover member 700 in the initial stage of crushing. The rib 900 is made of, for example, a metal material such as a steel material or aluminum, a resin, or the like. As shown in FIG. 1, the rib 900 is provided on the inner peripheral surface side of at least the rear end side of the cover member 700, and extends in the axial direction of the cover member 700. Specifically, the rib 900 contacts the inner peripheral surface of the end portion on the rear end side of the cover member 700 and the front end side surface of the holding member 500, and the inner peripheral surface of the end portion on the rear end side of the cover member 700. And it joins with at least one of the surface of the front end side of the holding member 500 by welding or an adhesive agent. The rib 900 may be formed integrally with the cover member 700 or the holding member 500. Further, the rib 900 may extend from the end on the rear end side to the end on the front end side on the inner peripheral surface side of the cover member 700.

また、本実施形態では、図1及び図2に示したように、カバー部材700の軸方向に略垂直な断面におけるリブ900の断面形状は、先端側から後端側へ向かうにつれて拡大する。それにより、リブ900は、衝突荷重の入力時において、先端側から座屈し易くなる。ゆえに、リブ900の潰れ残りの発生を抑制し、大きなエネルギ吸収量を得ることが可能となる。   Moreover, in this embodiment, as shown in FIG.1 and FIG.2, the cross-sectional shape of the rib 900 in the cross section substantially perpendicular | vertical to the axial direction of the cover member 700 expands as it goes to a rear end side from the front end side. As a result, the rib 900 is likely to buckle from the tip side when a collision load is input. Therefore, it is possible to suppress the occurrence of uncrushed ribs 900 and obtain a large energy absorption amount.

図2に示したように、リブ900は、カバー部材700の周方向に間隔をあけて複数設けられてもよい。例えば、複数のリブ900は、周方向に互いに均等な間隔をあけて設けられる。それにより、カバー部材700の周方向における強度のばらつきを低減させることが可能である。なお、リブ900の配置及び数は、係る例に限定されず、図面に示した配置及び数と異なってもよい。   As shown in FIG. 2, a plurality of ribs 900 may be provided at intervals in the circumferential direction of the cover member 700. For example, the plurality of ribs 900 are provided at equal intervals in the circumferential direction. Thereby, it is possible to reduce variation in strength of the cover member 700 in the circumferential direction. Note that the arrangement and number of ribs 900 are not limited to the example, and may be different from the arrangement and number shown in the drawings.

本実施形態では、カバー部材700の軸方向に延在するリブ900がカバー部材700の少なくとも後端側の端部の内周面側に設けられるので、カバー部材700の後端側の端部の曲げ剛性を増大させることができる。それにより、衝突荷重の入力によるカバー部材700の圧壊の過程の初期に、カバー部材700全体が圧壊する以前にカバー部材700の後端側の端部において曲げ変形が生じることを抑制することができる。ゆえに、エネルギ吸収構造体10の圧壊時において、エネルギ吸収構造体10の姿勢が傾くことを抑制し得る。よって、衝突荷重の入力方向に対するエネルギ吸収部材100の軸方向の傾きの増大を抑制することができるので、衝突荷重のうちエネルギ吸収部材100の軸方向の圧縮変形に費やされる割合の低下を抑制し得る。従って、エネルギ吸収部材100の圧壊におけるエネルギ吸収量の低下を抑制することが可能である。   In the present embodiment, since the rib 900 extending in the axial direction of the cover member 700 is provided on the inner peripheral surface side of the end portion on at least the rear end side of the cover member 700, the end portion on the rear end side of the cover member 700 is provided. The bending rigidity can be increased. Thereby, at the initial stage of the crushing process of the cover member 700 due to the input of the collision load, it is possible to suppress the occurrence of bending deformation at the end portion on the rear end side of the cover member 700 before the entire cover member 700 is crushed. . Therefore, when the energy absorbing structure 10 is crushed, the posture of the energy absorbing structure 10 can be suppressed from being inclined. Therefore, since the increase in the axial inclination of the energy absorbing member 100 with respect to the input direction of the collision load can be suppressed, a decrease in the ratio of the collision load spent on the axial compression deformation of the energy absorbing member 100 can be suppressed. obtain. Therefore, it is possible to suppress a decrease in the amount of energy absorption when the energy absorbing member 100 is crushed.

<2.エネルギ吸収構造体の圧壊作用>
ここまで、本実施形態に係るエネルギ吸収構造体10の構成について説明した。続いて、本実施形態に係るエネルギ吸収構造体10の逐次破壊の進展の様子について説明する。図3及び図4は、エネルギ吸収構造体10の逐次破壊の進展の様子を示す模式図である。
<2. Crushing action of energy absorbing structure>
So far, the configuration of the energy absorbing structure 10 according to the present embodiment has been described. Next, the progress of sequential destruction of the energy absorbing structure 10 according to the present embodiment will be described. 3 and 4 are schematic diagrams showing the progress of sequential destruction of the energy absorbing structure 10.

車両の衝突が発生し、エネルギ吸収構造体10に衝突荷重が入力されると、エネルギ吸収部材100及びカバー部材700が圧縮され、軸方向に圧壊し始める。圧壊の初期においては、図3に示したように、エネルギ吸収部材100は、先端側が内巻き及び外巻きに開きながら破壊される。   When a vehicle collision occurs and a collision load is input to the energy absorbing structure 10, the energy absorbing member 100 and the cover member 700 are compressed and begin to collapse in the axial direction. In the initial stage of the crushing, as shown in FIG. 3, the energy absorbing member 100 is broken while the front end side opens to the inner winding and the outer winding.

本実施形態では、カバー部材700の後端側の端部の内周面側にはリブ900が設けられるので、カバー部材700の後端側の端部の曲げ剛性が先端側の部分と比較して大きい。ゆえに、圧壊の初期において、図3に示したように、カバー部材700は、後端側の端部において曲げ変形を生ずることなく、先端側の部分から座屈し始める。そして、エネルギ吸収部材100における破壊が生じる範囲が後端側へ広がるように、逐次破壊が進展する。   In the present embodiment, since the rib 900 is provided on the inner peripheral surface side of the end portion on the rear end side of the cover member 700, the bending rigidity of the end portion on the rear end side of the cover member 700 is compared with the portion on the front end side. Big. Therefore, at the initial stage of crushing, as shown in FIG. 3, the cover member 700 starts to buckle from the front end portion without causing bending deformation at the rear end portion. And destruction progresses sequentially so that the range which destruction in energy absorption member 100 may spread to the back end side.

図4は、図3に示した状態からエネルギ吸収構造体10の逐次破壊がさらに進展した状態を示す。エネルギ吸収構造体10の逐次破壊が進展すると、図4に示したように、リブ900の先端側の端部が固定部材300と接し、リブ900へ固定部材300を介して荷重が伝わり始める。荷重を受けたリブ900は、先端側の端部から座屈し始める。   FIG. 4 shows a state in which sequential destruction of the energy absorbing structure 10 has further progressed from the state shown in FIG. When sequential destruction of the energy absorbing structure 10 progresses, as shown in FIG. 4, the end portion on the tip side of the rib 900 comes into contact with the fixing member 300, and a load starts to be transmitted to the rib 900 via the fixing member 300. The rib 900 receiving the load starts to buckle from the end portion on the front end side.

図5は、本実施形態に係るエネルギ吸収構造体10の圧壊における圧壊ストロークと圧壊荷重の関係の一例を示す説明図である。エネルギ吸収構造体10に衝突荷重が入力されると、エネルギ吸収部材100が圧壊し始めることに伴って、圧壊ストローク量がSt1となるまでの間、エネルギ吸収構造体10の圧壊荷重が上昇する。その後、一例として図3に示したエネルギ吸収部材100及びカバー部材700の圧壊が進展する状態が、圧壊ストローク量がSt2となるまでの間、継続する。図5に示したように、圧壊ストローク量がSt1からSt2となるまでの間において、圧壊荷重は略一定である。そして、圧壊ストローク量がSt2を超えると、図4に示したように、リブ900が座屈し始め、圧壊荷重は上昇する。   FIG. 5 is an explanatory diagram illustrating an example of a relationship between a crush stroke and a crush load in crushing the energy absorbing structure 10 according to the present embodiment. When a collision load is input to the energy absorbing structure 10, the collapsing load of the energy absorbing structure 10 increases until the amount of crushing stroke becomes St1 as the energy absorbing member 100 starts to collapse. After that, the state in which the crushing of the energy absorbing member 100 and the cover member 700 shown in FIG. 3 progresses as an example continues until the crushing stroke amount becomes St2. As shown in FIG. 5, the crushing load is substantially constant until the crushing stroke amount becomes St1 to St2. When the crushing stroke amount exceeds St2, as shown in FIG. 4, the rib 900 starts to buckle and the crushing load increases.

本実施形態では、カバー部材700の軸方向に略垂直な断面におけるリブ900の断面形状は、先端側から後端側へ向かうにつれて拡大する。ゆえに、圧壊ストローク量がSt2を超えると、圧壊荷重は、リブ900の座屈が生じる軸方向の位置における軸方向に略垂直な断面の形状に応じて上昇する。このように、エネルギ吸収構造体10が受ける圧壊荷重の特性は、リブ900の形状に依存するので、リブ900の形状は、所望の圧壊荷重の特性が得られるような形状に適宜設定され得る。   In the present embodiment, the cross-sectional shape of the rib 900 in a cross section substantially perpendicular to the axial direction of the cover member 700 increases from the front end side toward the rear end side. Therefore, when the amount of crushing stroke exceeds St2, the crushing load increases according to the shape of the cross section substantially perpendicular to the axial direction at the axial position where the rib 900 buckles. Thus, since the characteristics of the crushing load received by the energy absorbing structure 10 depend on the shape of the rib 900, the shape of the rib 900 can be appropriately set to a shape that can obtain a desired crushing load characteristic.

なお、本実施形態では、エネルギ吸収部材100の後端側を保持する保持部材500の中央に開口部502が設けられている。それにより、内巻きに破壊されたエネルギ吸収部材100の潰れかすの少なくとも一部が、開口部502を介して、エネルギ吸収部材100内部から外部へ排出される。ゆえに、内巻きに破壊されたエネルギ吸収部材100の潰れかすがエネルギ吸収部材100の内部に詰まりにくく、エネルギ吸収部材100の潰れ残りが少なくなっている。従って、エネルギ吸収部材100の圧壊ストローク量が少なくなることを防いで、大きなエネルギ吸収量を得ることができる。   In the present embodiment, an opening 502 is provided in the center of the holding member 500 that holds the rear end side of the energy absorbing member 100. As a result, at least a part of the crush of the energy absorbing member 100 that has been destroyed by the inner winding is discharged from the inside of the energy absorbing member 100 to the outside through the opening 502. Therefore, the crushed debris of the energy absorbing member 100 destroyed by the inner winding is less likely to be clogged inside the energy absorbing member 100, and the remaining crushed energy absorbing member 100 is reduced. Therefore, it is possible to prevent the crushing stroke amount of the energy absorbing member 100 from decreasing, and to obtain a large energy absorption amount.

<3.変形例>
上記では、本発明の実施形態に係るエネルギ吸収構造体10について説明した。続いて、各変形例に係るエネルギ吸収構造体の構成について説明する。
<3. Modification>
The energy absorbing structure 10 according to the embodiment of the present invention has been described above. Then, the structure of the energy absorption structure which concerns on each modification is demonstrated.

(3−1.第1の変形例)
図6は、第1の変形例に係るエネルギ吸収構造体12の一例を示す断面図である。第1の変形例では、上述の実施形態と比較して、カバー部材の形状が異なる。具体的には、図6に示したように、第1の変形例に係るエネルギ吸収構造体12において、カバー部材702は、先端側から後端側へ向かうにつれて拡大する断面形状を有する。
(3-1. First Modification)
FIG. 6 is a cross-sectional view showing an example of the energy absorbing structure 12 according to the first modification. In the 1st modification, compared with the above-mentioned embodiment, the shape of a cover member differs. Specifically, as illustrated in FIG. 6, in the energy absorbing structure 12 according to the first modification, the cover member 702 has a cross-sectional shape that expands from the front end side toward the rear end side.

それにより、カバー部材702のうち先端側の端部に近い部分ほど、周方向の断面における断面二次モーメントは小さくなる。ゆえに、カバー部材702のうち先端側の端部に近い部分ほど、曲げ剛性が小さくなる。よって、衝突荷重の入力時に、カバー部材702のうち先端側の端部に近い部分ほど優先的に座屈しやすくなる。従って、カバー部材702の圧壊において、カバー部材702の一部が座屈しないまま残ることを抑制することができる。ゆえに、エネルギ吸収部材100の軸方向の圧縮変形が一部阻害されることを抑制することができるので、エネルギ吸収部材100の圧壊ストローク量が少なくなることを防いで、大きなエネルギ吸収量を得ることができる。   Thereby, the cross-section secondary moment in the cross section in the circumferential direction becomes smaller as the portion of the cover member 702 closer to the end on the front end side. Therefore, the bending rigidity becomes smaller as the portion of the cover member 702 closer to the end portion on the front end side. Therefore, when the collision load is input, the portion of the cover member 702 that is closer to the end on the front end side is more likely to buckle preferentially. Therefore, when the cover member 702 is crushed, it can be suppressed that a part of the cover member 702 remains without buckling. Therefore, it is possible to prevent a part of the axial compression deformation of the energy absorbing member 100 from being hindered. Therefore, it is possible to prevent the crushing stroke amount of the energy absorbing member 100 from being reduced and obtain a large energy absorption amount. Can do.

また、カバー部材702が先端側から後端側へ向かうにつれて拡大する多角形の断面形状を有することにより、エネルギ吸収構造体12に対して、車両前後方向に対する斜め方向から衝突荷重が入力された場合に、荷重入力方向との成す角度が小さいカバー部材702の壁面に荷重の一部を担わせやすくなる。ゆえに、車両の衝突発生時に、エネルギ吸収構造体12の姿勢が傾くことを抑制し得る。よって、衝突荷重の入力方向に対するエネルギ吸収部材100の軸方向の傾きの増大を抑制することができるので、衝突荷重のうちエネルギ吸収部材100の軸方向の圧縮変形に費やされる割合の低下を抑制し得る。従って、エネルギ吸収部材100の圧壊におけるエネルギ吸収量の低下を抑制することが可能である。   Further, when the cover member 702 has a polygonal cross-sectional shape that expands from the front end side toward the rear end side, a collision load is input to the energy absorbing structure 12 from an oblique direction with respect to the vehicle front-rear direction. In addition, a part of the load can be easily applied to the wall surface of the cover member 702 having a small angle with the load input direction. Therefore, it is possible to suppress the posture of the energy absorbing structure 12 from being inclined when a vehicle collision occurs. Therefore, since the increase in the axial inclination of the energy absorbing member 100 with respect to the input direction of the collision load can be suppressed, a decrease in the ratio of the collision load spent on the axial compression deformation of the energy absorbing member 100 can be suppressed. obtain. Therefore, it is possible to suppress a decrease in the amount of energy absorption when the energy absorbing member 100 is crushed.

(3−2.第2の変形例)
図7は、第2の変形例に係るエネルギ吸収構造体14の一例を示す断面図である。第2の変形例では、第1の変形例と比較して、リブがエネルギ吸収部材100に近接する点が異なる。具体的には、図7に示したように、第2の変形例に係るエネルギ吸収構造体14において、リブ902は、エネルギ吸収部材100の後端側の端部の外周面に近接する。
(3-2. Second Modification)
FIG. 7 is a cross-sectional view showing an example of the energy absorbing structure 14 according to the second modification. The second modification is different from the first modification in that the rib is close to the energy absorbing member 100. Specifically, as shown in FIG. 7, in the energy absorbing structure 14 according to the second modification, the rib 902 is close to the outer peripheral surface of the end portion on the rear end side of the energy absorbing member 100.

衝突荷重の入力時において、エネルギ吸収部材100の後端部において曲げ変形を生じさせるような力が掛かった場合に、エネルギ吸収部材100の外周面をリブ902により支えることができる。それにより、エネルギ吸収構造体10の圧壊時において、エネルギ吸収部材100の姿勢が傾くことを抑制し得る。よって、衝突荷重の入力方向に対するエネルギ吸収部材100の軸方向の傾きの増大を抑制することができるので、衝突荷重のうちエネルギ吸収部材100の軸方向の圧縮変形に費やされる割合の低下を抑制し得る。従って、エネルギ吸収部材100の圧壊におけるエネルギ吸収量の低下を抑制することが可能である。   When a collision load is input, the outer peripheral surface of the energy absorbing member 100 can be supported by the rib 902 when a force causing bending deformation is applied to the rear end portion of the energy absorbing member 100. Thereby, when the energy absorbing structure 10 is crushed, the posture of the energy absorbing member 100 can be suppressed from being inclined. Therefore, since the increase in the axial inclination of the energy absorbing member 100 with respect to the input direction of the collision load can be suppressed, a decrease in the ratio of the collision load spent on the axial compression deformation of the energy absorbing member 100 can be suppressed. obtain. Therefore, it is possible to suppress a decrease in the amount of energy absorption when the energy absorbing member 100 is crushed.

リブ902とエネルギ吸収部材100の外周面との間には、所定の寸法の隙間が設けられることが好ましい。車両に衝突荷重が入力されない通常時において、走行路面と車輪との間で生じる振動や、車両内部から生じる振動等がエネルギ吸収構造体10に伝わり得る。このような振動に伴い、エネルギ吸収部材100とリブ902とが擦れ合うことによりエネルギ吸収部材100が破損することを抑制するために、当該隙間の寸法が適宜設定される。   A gap having a predetermined size is preferably provided between the rib 902 and the outer peripheral surface of the energy absorbing member 100. During normal times when no collision load is input to the vehicle, vibrations generated between the road surface and the wheels, vibrations generated from the inside of the vehicle, and the like can be transmitted to the energy absorbing structure 10. In order to suppress damage of the energy absorbing member 100 due to friction between the energy absorbing member 100 and the rib 902 due to such vibration, the size of the gap is appropriately set.

(3−3.第3の変形例)
図8は、第3の変形例に係るエネルギ吸収構造体16の一例を示す断面図である。第3の変形例では、第1の変形例と比較して、第2のリブが設けられる点が異なる。上述の実施形態又は第1の変形例に係るリブ900を第1のリブとした場合に、第2のリブは、エネルギ吸収部材100の後端側の端部の少なくとも内周面側又は外周面側のいずれか一方に設けられ、エネルギ吸収部材100の軸方向に延在する。具体的には、図8に示したように、第3の変形例に係るエネルギ吸収構造体16において、エネルギ吸収部材100の後端側の端部の内周面側に、エネルギ吸収部材100の軸方向に延在する第2のリブ910が設けられる。第2のリブ910は、例えば、鉄鋼材、アルミニウム等の金属材料や樹脂等により構成され、保持部材500の先端側の面と溶接や接着剤によって接合される。なお、第2のリブ910は、保持部材500と一体として形成されてもよい。また、第2のリブ910は、エネルギ吸収部材100の内周面側において、後端側の端部から先端側の端部にかけて延設されてもよい。
(3-3. Third Modification)
FIG. 8 is a cross-sectional view showing an example of the energy absorbing structure 16 according to the third modification. The third modification is different from the first modification in that a second rib is provided. When the rib 900 according to the above-described embodiment or the first modification is the first rib, the second rib is at least the inner peripheral surface side or the outer peripheral surface of the end portion on the rear end side of the energy absorbing member 100. It is provided on either one of the sides and extends in the axial direction of the energy absorbing member 100. Specifically, as shown in FIG. 8, in the energy absorbing structure 16 according to the third modification, the energy absorbing member 100 is disposed on the inner peripheral surface side of the rear end side of the energy absorbing member 100. A second rib 910 extending in the axial direction is provided. The second rib 910 is made of, for example, a metal material such as a steel material or aluminum, a resin, or the like, and is joined to the surface on the front end side of the holding member 500 by welding or an adhesive. Note that the second rib 910 may be formed integrally with the holding member 500. Further, the second rib 910 may extend from the rear end side end portion to the front end side end portion on the inner peripheral surface side of the energy absorbing member 100.

衝突荷重の入力時において、エネルギ吸収部材100の後端部において曲げ変形を生じさせるような力が掛かった場合に、エネルギ吸収部材100の内周面を第2のリブ910により支えることができる。それにより、エネルギ吸収構造体10の圧壊時において、エネルギ吸収部材100の姿勢が傾くことを抑制し得る。よって、衝突荷重の入力方向に対するエネルギ吸収部材100の軸方向の傾きの増大を抑制することができるので、衝突荷重のうちエネルギ吸収部材100の軸方向の圧縮変形に費やされる割合の低下を抑制し得る。従って、エネルギ吸収部材100の圧壊におけるエネルギ吸収量の低下を抑制することが可能である。   When a collision load is input, the inner peripheral surface of the energy absorbing member 100 can be supported by the second rib 910 when a force causing bending deformation is applied to the rear end portion of the energy absorbing member 100. Thereby, when the energy absorbing structure 10 is crushed, the posture of the energy absorbing member 100 can be suppressed from being inclined. Therefore, since the increase in the axial inclination of the energy absorbing member 100 with respect to the input direction of the collision load can be suppressed, a decrease in the ratio of the collision load spent on the axial compression deformation of the energy absorbing member 100 can be suppressed. obtain. Therefore, it is possible to suppress a decrease in the amount of energy absorption when the energy absorbing member 100 is crushed.

第2のリブ910とエネルギ吸収部材100の内周面との間には、所定の寸法の隙間が設けられることが好ましい。車両に衝突荷重が入力されない通常時において、エネルギ吸収構造体10に伝わり得る振動に伴い、エネルギ吸収部材100と第2のリブ910とが擦れ合うことによりエネルギ吸収部材100が破損することを抑制するために、当該隙間の寸法が適宜設定される。   A gap having a predetermined size is preferably provided between the second rib 910 and the inner peripheral surface of the energy absorbing member 100. In order to suppress damage to the energy absorbing member 100 due to friction between the energy absorbing member 100 and the second rib 910 due to vibration that can be transmitted to the energy absorbing structure 10 in a normal time when a collision load is not input to the vehicle. In addition, the size of the gap is set as appropriate.

(3−4.第4の変形例)
図9は、第4の変形例に係るエネルギ吸収構造体18の一例を示す断面図である。第4の変形例では、第3の変形例と比較して、第2のリブの配置が異なる。具体的には、図9に示したように、第4の変形例に係るエネルギ吸収構造体18において、エネルギ吸収部材100の後端側の端部の外周面側に、エネルギ吸収部材100の軸方向に延在する第2のリブ912が設けられる。なお、第2のリブ912は、エネルギ吸収部材100の外周面側において、後端側の端部から先端側の端部にかけて延設されてもよい。
(3-4. Fourth Modification)
FIG. 9 is a cross-sectional view showing an example of the energy absorbing structure 18 according to the fourth modification. In the fourth modification, the arrangement of the second ribs is different from that in the third modification. Specifically, as shown in FIG. 9, in the energy absorbing structure 18 according to the fourth modification, the shaft of the energy absorbing member 100 is disposed on the outer peripheral surface side of the end portion on the rear end side of the energy absorbing member 100. A second rib 912 extending in the direction is provided. Note that the second rib 912 may be extended from the end on the rear end side to the end on the front end side on the outer peripheral surface side of the energy absorbing member 100.

衝突荷重の入力時において、エネルギ吸収部材100の後端部において曲げ変形を生じさせるような力が掛かった場合に、エネルギ吸収部材100の外周面を第2のリブ912により支えることができる。それにより、エネルギ吸収構造体10の圧壊時において、エネルギ吸収部材100の姿勢が傾くことを抑制し得る。よって、衝突荷重の入力方向に対するエネルギ吸収部材100の軸方向の傾きの増大を抑制することができるので、衝突荷重のうちエネルギ吸収部材100の軸方向の圧縮変形に費やされる割合の低下を抑制し得る。従って、エネルギ吸収部材100の圧壊におけるエネルギ吸収量の低下を抑制することが可能である。   When a collision load is input, if a force causing bending deformation is applied to the rear end portion of the energy absorbing member 100, the outer peripheral surface of the energy absorbing member 100 can be supported by the second rib 912. Thereby, when the energy absorbing structure 10 is crushed, the posture of the energy absorbing member 100 can be suppressed from being inclined. Therefore, since the increase in the axial inclination of the energy absorbing member 100 with respect to the input direction of the collision load can be suppressed, a decrease in the ratio of the collision load spent on the axial compression deformation of the energy absorbing member 100 can be suppressed. obtain. Therefore, it is possible to suppress a decrease in the amount of energy absorption when the energy absorbing member 100 is crushed.

第2のリブ912とエネルギ吸収部材100の外周面との間には、所定の寸法の隙間が設けられることが好ましい。車両に衝突荷重が入力されない通常時において、エネルギ吸収構造体10に伝わり得る振動に伴い、エネルギ吸収部材100と第2のリブ912とが擦れ合うことによりエネルギ吸収部材100が破損することを抑制するために、当該隙間の寸法が適宜設定される。   A gap having a predetermined size is preferably provided between the second rib 912 and the outer peripheral surface of the energy absorbing member 100. In order to suppress damage of the energy absorbing member 100 due to friction between the energy absorbing member 100 and the second rib 912 due to vibration that can be transmitted to the energy absorbing structure 10 at a normal time when a collision load is not input to the vehicle. In addition, the size of the gap is set as appropriate.

なお、第2〜第4の変形例では、カバー部材702は、先端側から後端側へ向かうにつれて拡大する断面形状を有する例を図面において示したが、カバー部材702の形状は係る例に限定されない。   In the second to fourth modifications, the cover member 702 has an example having a cross-sectional shape that expands from the front end side toward the rear end side, but the shape of the cover member 702 is limited to the example. Not.

また、第3の変形例及び第4の変形例において、第2のリブが、エネルギ吸収部材100の後端側の端部の内周面側又は外周面側のいずれか一方に設けられる例について説明したが、第2のリブは、エネルギ吸収部材100の後端側の端部の内周面側及び外周面側の双方に設けられてもよい。   In the third modification and the fourth modification, the second rib is provided on either the inner peripheral surface side or the outer peripheral surface side of the end portion on the rear end side of the energy absorbing member 100. Although demonstrated, the 2nd rib may be provided in both the inner peripheral surface side and the outer peripheral surface side of the edge part of the rear end side of the energy absorption member 100. FIG.

<4.むすび>
以上説明したように、本発明の各実施形態によれば、リブ900は、カバー部材700の少なくとも後端側の端部の内周面側に設けられ、カバー部材700の軸方向に延在する。よって、カバー部材700の後端側の端部の曲げ剛性を増大させることができる。それにより、衝突荷重の入力によるカバー部材700の圧壊の過程の初期に、カバー部材700全体が圧壊する以前にカバー部材700の後端側の端部において曲げ変形が生じることを抑制することができる。ゆえに、エネルギ吸収構造体10の圧壊時において、エネルギ吸収構造体10の姿勢が傾くことを抑制し得る。よって、衝突荷重の入力方向に対するエネルギ吸収部材100の軸方向の傾きの増大を抑制することができるので、衝突荷重のうちエネルギ吸収部材100の軸方向の圧縮変形に費やされる割合の低下を抑制し得る。従って、エネルギ吸収部材100の圧壊におけるエネルギ吸収量の低下を抑制することが可能である。
<4. Conclusion>
As described above, according to each embodiment of the present invention, the rib 900 is provided on the inner peripheral surface side of at least the rear end side of the cover member 700 and extends in the axial direction of the cover member 700. . Therefore, the bending rigidity of the end portion on the rear end side of the cover member 700 can be increased. Thereby, at the initial stage of the crushing process of the cover member 700 due to the input of the collision load, it is possible to prevent the bending deformation from occurring at the end portion on the rear end side of the cover member 700 before the entire cover member 700 is collapsed. . Therefore, when the energy absorbing structure 10 is crushed, the posture of the energy absorbing structure 10 can be suppressed from being inclined. Therefore, since the increase in the axial inclination of the energy absorbing member 100 with respect to the input direction of the collision load can be suppressed, a decrease in the ratio of the collision load spent on the axial compression deformation of the energy absorbing member 100 can be suppressed. obtain. Therefore, it is possible to suppress a decrease in the amount of energy absorption when the energy absorbing member 100 is crushed.

また、ある実施形態によれば、カバー部材700の断面は、多角形であってもよい。それにより、荷重を担いやすい角部分がカバー部材700に設けられるので、衝突荷重の入力時において、カバー部材700の圧壊におけるエネルギ吸収量を増大することが可能である。   In addition, according to an embodiment, the cover member 700 may have a polygonal cross section. As a result, corner portions that are likely to bear a load are provided in the cover member 700, so that it is possible to increase the amount of energy absorbed when the cover member 700 is crushed when a collision load is input.

また、ある実施形態によれば、エネルギ吸収部材100の後端側を保持する保持部材500の中央に開口部502が設けられている。それにより、内巻きに破壊されたエネルギ吸収部材100の潰れかすの少なくとも一部が、開口部502を介して、エネルギ吸収部材100内部から外部へ排出される。ゆえに、内巻きに破壊されたエネルギ吸収部材100の潰れかすがエネルギ吸収部材100の内部に詰まりにくく、エネルギ吸収部材100の潰れ残りが少なくなっている。従って、エネルギ吸収部材100の圧壊ストローク量が少なくなることを防いで、大きなエネルギ吸収量を得ることができる。   According to an embodiment, the opening 502 is provided in the center of the holding member 500 that holds the rear end side of the energy absorbing member 100. As a result, at least a part of the crush of the energy absorbing member 100 that has been destroyed by the inner winding is discharged from the inside of the energy absorbing member 100 to the outside through the opening 502. Therefore, the crushed debris of the energy absorbing member 100 destroyed by the inner winding is less likely to be clogged inside the energy absorbing member 100, and the remaining crushed energy absorbing member 100 is reduced. Therefore, it is possible to prevent the crushing stroke amount of the energy absorbing member 100 from decreasing, and to obtain a large energy absorption amount.

また、ある変形例によれば、カバー部材702は、先端側から後端側へ向かうにつれて拡大する断面形状を有する。それにより、カバー部材702のうち先端側の端部に近い部分ほど、周方向の断面における断面二次モーメントは小さくなる。ゆえに、カバー部材702のうち先端側の端部に近い部分ほど、曲げ剛性が小さくなる。よって、衝突荷重の入力時に、カバー部材702のうち先端側の端部に近い部分ほど優先的に座屈しやすくなる。従って、カバー部材702の圧壊において、カバー部材702の一部が座屈しないまま残ることを抑制することができる。ゆえに、エネルギ吸収部材100の軸方向の圧縮変形が一部阻害されることを抑制することができるので、エネルギ吸収部材100の圧壊ストローク量が少なくなることを防いで、大きなエネルギ吸収量を得ることができる。   Moreover, according to a certain modification, the cover member 702 has a cross-sectional shape that expands from the front end side toward the rear end side. Thereby, the cross-section secondary moment in the cross section in the circumferential direction becomes smaller as the portion of the cover member 702 closer to the end on the front end side. Therefore, the bending rigidity becomes smaller as the portion of the cover member 702 closer to the end portion on the front end side. Therefore, when the collision load is input, the portion of the cover member 702 that is closer to the end on the front end side is more likely to buckle preferentially. Therefore, when the cover member 702 is crushed, it can be suppressed that a part of the cover member 702 remains without buckling. Therefore, it is possible to prevent a part of the axial compression deformation of the energy absorbing member 100 from being hindered. Therefore, it is possible to prevent the crushing stroke amount of the energy absorbing member 100 from being reduced and obtain a large energy absorption amount. Can do.

また、ある変形例によれば、リブ902は、エネルギ吸収部材100の後端側の端部の外周面に近接する。ゆえに、衝突荷重の入力時において、エネルギ吸収部材100の後端部において曲げ変形を生じさせるような力が掛かった場合に、エネルギ吸収部材100の外周面をリブ902により支えることができる。それにより、エネルギ吸収構造体10の圧壊時において、エネルギ吸収部材100の姿勢が傾くことを抑制し得る。よって、衝突荷重の入力方向に対するエネルギ吸収部材100の軸方向の傾きの増大を抑制することができるので、衝突荷重のうちエネルギ吸収部材100の軸方向の圧縮変形に費やされる割合の低下を抑制し得る。従って、エネルギ吸収部材100の圧壊におけるエネルギ吸収量の低下を抑制することが可能である。   According to a certain modification, the rib 902 is close to the outer peripheral surface of the end portion on the rear end side of the energy absorbing member 100. Therefore, the outer peripheral surface of the energy absorbing member 100 can be supported by the rib 902 when a force causing bending deformation is applied to the rear end portion of the energy absorbing member 100 when a collision load is input. Thereby, when the energy absorbing structure 10 is crushed, the posture of the energy absorbing member 100 can be suppressed from being inclined. Therefore, since the increase in the axial inclination of the energy absorbing member 100 with respect to the input direction of the collision load can be suppressed, a decrease in the ratio of the collision load spent on the axial compression deformation of the energy absorbing member 100 can be suppressed. obtain. Therefore, it is possible to suppress a decrease in the amount of energy absorption when the energy absorbing member 100 is crushed.

また、ある変形例によれば、エネルギ吸収部材100の後端側の端部の少なくとも内周面側又は外周面側のいずれか一方には、エネルギ吸収部材100の軸方向に延在する第2のリブが設けられる。ゆえに、突荷重の入力時において、エネルギ吸収部材100の後端部において曲げ変形を生じさせるような力が掛かった場合に、エネルギ吸収部材100の内周面又は外周面を第2のリブにより支えることができる。それにより、エネルギ吸収構造体10の圧壊時において、エネルギ吸収部材100の姿勢が傾くことを抑制し得る。よって、衝突荷重の入力方向に対するエネルギ吸収部材100の軸方向の傾きの増大を抑制することができるので、衝突荷重のうちエネルギ吸収部材100の軸方向の圧縮変形に費やされる割合の低下を抑制し得る。従って、エネルギ吸収部材100の圧壊におけるエネルギ吸収量の低下を抑制することが可能である。   Further, according to a modification, at least one of the end portion on the rear end side of the energy absorbing member 100 on the inner peripheral surface side or the outer peripheral surface side is extended in the axial direction of the energy absorbing member 100. Ribs are provided. Therefore, when a force that causes bending deformation is applied to the rear end portion of the energy absorbing member 100 when a collision load is input, the inner or outer peripheral surface of the energy absorbing member 100 is supported by the second rib. be able to. Thereby, when the energy absorbing structure 10 is crushed, the posture of the energy absorbing member 100 can be suppressed from being inclined. Therefore, since the increase in the axial inclination of the energy absorbing member 100 with respect to the input direction of the collision load can be suppressed, a decrease in the ratio of the collision load spent on the axial compression deformation of the energy absorbing member 100 can be suppressed. obtain. Therefore, it is possible to suppress a decrease in the amount of energy absorption when the energy absorbing member 100 is crushed.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明は係る例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

また、上記では、エネルギ吸収構造体が、フロントバンパビームとフロントフレームとの間に配置される例について説明したが、エネルギ吸収構造体は、車両の後方に設けられてもよく、例えば、リアバンパビームとリアフレームの間に配置され、車両の後方からの衝突荷重を受けて衝突エネルギを吸収し得る。   In the above description, the example in which the energy absorbing structure is disposed between the front bumper beam and the front frame has been described. However, the energy absorbing structure may be provided at the rear of the vehicle, for example, the rear bumper beam. It is arranged between the rear frame and the rear frame, and can absorb the collision energy by receiving a collision load from the rear of the vehicle.

10、12、14、16、18 エネルギ吸収構造体
30 フロントバンパビーム
50 フロントフレーム
100 エネルギ吸収部材
102 縮径部
300 固定部材
500 保持部材
502 開口部
700、702 カバー部材
900、902 リブ
910、912 第2のリブ
10, 12, 14, 16, 18 Energy absorbing structure 30 Front bumper beam 50 Front frame 100 Energy absorbing member 102 Reduced diameter portion 300 Fixed member 500 Holding member 502 Opening portion 700, 702 Cover member 900, 902 Rib 910, 912 First 2 ribs

Claims (6)

衝突荷重の入力時に軸方向に圧壊して衝突エネルギを吸収する繊維強化樹脂製の筒状のエネルギ吸収部材と、
前記エネルギ吸収部材の外周面を覆い、前記衝突荷重の入力時に軸方向に圧壊する筒状のカバー部材と、
前記カバー部材の前記衝突荷重の入力側とは反対側の端部の内周面側に設けられ、当該端部から前記カバー部材の全長の一部に亘って前記カバー部材の軸方向に延在するリブと、
を備えるエネルギ吸収構造体。
A cylindrical energy absorbing member made of fiber reinforced resin that crushes in the axial direction when absorbing a collision load and absorbs collision energy;
A cylindrical cover member that covers the outer peripheral surface of the energy absorbing member and is crushed in the axial direction when the collision load is input;
Wherein the input side of the front SL collision load of the cover member provided on the inner peripheral surface side of the opposite end, extending in the axial direction of said cover member from said end portion over a portion of the length of said cover member Existing ribs,
An energy absorbing structure comprising:
衝突荷重の入力時に軸方向に圧壊して衝突エネルギを吸収する繊維強化樹脂製の筒状のエネルギ吸収部材と、  A cylindrical energy absorbing member made of fiber reinforced resin that crushes in the axial direction when absorbing a collision load and absorbs collision energy;
前記エネルギ吸収部材の外周面を覆い、前記衝突荷重の入力時に軸方向に圧壊する筒状のカバー部材と、  A cylindrical cover member that covers the outer peripheral surface of the energy absorbing member and is crushed in the axial direction when the collision load is input;
前記カバー部材の少なくとも前記衝突荷重の入力側とは反対側の端部の内周面側に設けられ、前記カバー部材の軸方向に延在するリブと、  A rib provided on an inner peripheral surface side of an end portion of the cover member opposite to the input side of the collision load, and extending in the axial direction of the cover member;
を備え、  With
前記リブは、前記エネルギ吸収部材の前記入力側とは反対側の端部の外周面に近接する、エネルギ吸収構造体。  The said rib is an energy absorption structure which adjoins to the outer peripheral surface of the edge part on the opposite side to the said input side of the said energy absorption member.
衝突荷重の入力時に軸方向に圧壊して衝突エネルギを吸収する繊維強化樹脂製の筒状のエネルギ吸収部材と、A cylindrical energy absorbing member made of fiber reinforced resin that crushes in the axial direction when absorbing a collision load and absorbs collision energy;
前記エネルギ吸収部材の外周面を覆い、前記衝突荷重の入力時に軸方向に圧壊する筒状のカバー部材と、  A cylindrical cover member that covers the outer peripheral surface of the energy absorbing member and is crushed in the axial direction when the collision load is input;
前記カバー部材の少なくとも前記衝突荷重の入力側とは反対側の端部の内周面側に設けられ、前記カバー部材の軸方向に延在する第1のリブと、  A first rib provided on an inner peripheral surface side of an end portion of the cover member opposite to the input side of the collision load, and extending in an axial direction of the cover member;
を備え、  With
前記エネルギ吸収部材の前記入力側とは反対側の端部の少なくとも内周面側又は外周面側のいずれか一方には、前記エネルギ吸収部材の軸方向に延在する第2のリブが設けられる、エネルギ吸収構造体。  A second rib extending in the axial direction of the energy absorbing member is provided on at least one of the inner peripheral surface side and the outer peripheral surface side of the end of the energy absorbing member opposite to the input side. , Energy absorbing structure.
前記カバー部材は、前記衝突荷重の入力側から前記入力側とは反対側へ向かうにつれて拡大する断面形状を有する、請求項1〜3のいずれか一項に記載のエネルギ吸収構造体。 The energy absorbing structure according to any one of claims 1 to 3, wherein the cover member has a cross-sectional shape that expands from the input side of the collision load toward the side opposite to the input side. 前記カバー部材の断面は、多角形である、請求項1〜4のいずれか一項に記載のエネルギ吸収構造体。 The energy absorption structure according to any one of claims 1 to 4 , wherein a cross section of the cover member is a polygon. 前記エネルギ吸収部材の前記衝突荷重の入力側とは反対側の端部を保持する保持部材を備え、
前記保持部材には、前記エネルギ吸収部材の内部空間に対応する位置に開口部が設けられる、
請求項1〜5のいずれか一項に記載のエネルギ吸収構造体。
A holding member that holds an end of the energy absorbing member opposite to the input side of the collision load;
The holding member is provided with an opening at a position corresponding to the internal space of the energy absorbing member.
The energy absorption structure as described in any one of Claims 1-5.
JP2015175436A 2015-09-07 2015-09-07 Energy absorbing structure Active JP6560568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175436A JP6560568B2 (en) 2015-09-07 2015-09-07 Energy absorbing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175436A JP6560568B2 (en) 2015-09-07 2015-09-07 Energy absorbing structure

Publications (2)

Publication Number Publication Date
JP2017053365A JP2017053365A (en) 2017-03-16
JP6560568B2 true JP6560568B2 (en) 2019-08-14

Family

ID=58320586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175436A Active JP6560568B2 (en) 2015-09-07 2015-09-07 Energy absorbing structure

Country Status (1)

Country Link
JP (1) JP6560568B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970487B2 (en) * 2018-04-25 2021-11-24 トヨタ車体株式会社 Impact absorbing member and its manufacturing method
JP6729762B1 (en) * 2019-05-28 2020-07-22 Jfeスチール株式会社 Collision energy absorbing component for automobile and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561152B2 (en) * 2010-12-24 2014-07-30 トヨタ自動車株式会社 Energy absorption structure
JP5776522B2 (en) * 2011-12-02 2015-09-09 トヨタ車体株式会社 Shock absorber for vehicle
JP5776537B2 (en) * 2011-12-26 2015-09-09 トヨタ車体株式会社 Shock absorber for vehicle
JP5791676B2 (en) * 2013-09-10 2015-10-07 富士重工業株式会社 Shock absorber

Also Published As

Publication number Publication date
JP2017053365A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6265889B2 (en) Automotive bumper equipment
JP5791676B2 (en) Shock absorber
JP5797713B2 (en) Shock absorber
JP2007176328A (en) Frp structure
JP6560568B2 (en) Energy absorbing structure
JP6601868B2 (en) Energy absorbing structure
JP2005273872A (en) Mounting structure of energy absorbing member made of fiber-reinforced plastic
JP4462978B2 (en) Energy absorption structure of automobile
KR101624239B1 (en) Structure of bumper-beam
US20200369230A1 (en) Shock-absorbing system for a motor vehicle
JP4520367B2 (en) Impact structure of aircraft
JP5570100B2 (en) Energy absorber and energy absorbing method
JP4910873B2 (en) Shock absorbing member
JP2016180445A (en) Energy absorption structure
JP2017094850A (en) Shock absorbing member structure for vehicle
JP2008045736A (en) Resin member, and method for manufacturing the same
JP6340640B2 (en) Vehicle shock absorption structure
JP2017048804A (en) Energy absorbing structure
JP6601869B2 (en) Energy absorbing structure
JP2017227277A (en) Energy absorption structure
JP6534584B2 (en) Energy absorbing structure
JP2017227276A (en) Energy absorption structure
JP6521290B2 (en) Holding structure of energy absorbing member
JP6521312B2 (en) Energy absorbing structure
JP4440684B2 (en) Mounting structure of fiber reinforced plastic energy absorbing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180611

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190719

R150 Certificate of patent or registration of utility model

Ref document number: 6560568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250