JP6555808B2 - Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst - Google Patents

Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst Download PDF

Info

Publication number
JP6555808B2
JP6555808B2 JP2015136359A JP2015136359A JP6555808B2 JP 6555808 B2 JP6555808 B2 JP 6555808B2 JP 2015136359 A JP2015136359 A JP 2015136359A JP 2015136359 A JP2015136359 A JP 2015136359A JP 6555808 B2 JP6555808 B2 JP 6555808B2
Authority
JP
Japan
Prior art keywords
level
oxygen
impurity
oxygen reduction
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015136359A
Other languages
Japanese (ja)
Other versions
JP2017018857A (en
Inventor
俊 坂口
俊 坂口
由美子 渡邊
由美子 渡邊
好成 奥野
好成 奥野
孝彦 小野
孝彦 小野
真幸 吉村
真幸 吉村
建燦 李
建燦 李
広輔 宮崎
広輔 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2015136359A priority Critical patent/JP6555808B2/en
Publication of JP2017018857A publication Critical patent/JP2017018857A/en
Application granted granted Critical
Publication of JP6555808B2 publication Critical patent/JP6555808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、酸素還元触媒の評価方法および選択方法並びに酸素還元触媒に関する。   The present invention relates to an oxygen reduction catalyst evaluation method and selection method, and an oxygen reduction catalyst.

特許文献1には、ニオブ、チタン、タンタルおよびジルコニウムからなる群から選択される少なくとも二種以上の遷移金属元素を含み、且つ白金を含まない金属酸化物材料からなる酸素還元触媒が開示されている。
特許文献2には固体高分子型燃料電池の正極として用いる酸素還元電極用の電極触媒として、ZrCNを酸化して得られるZrCNとZrOが検出され、かつイオン化ポテンシャルが5.0〜6.0eVである触媒が開示されている。さらに明細書内には、酸素欠陥の増加によってイオン化ポテンシャルが低下することが記述されており、表面に酸素欠陥のある状態を作ることが、酸素還元触媒能の向上には必要であると考えられる、と記述されている。つまり、イオン化ポテンシャルは酸素欠陥の存在の指標として用いられている。
また非特許文献1には酸素欠陥が酸化チタンに生じることにより酸素分子が表面に吸着するようになることが指摘されている。
Patent Document 1 discloses an oxygen reduction catalyst made of a metal oxide material containing at least two kinds of transition metal elements selected from the group consisting of niobium, titanium, tantalum and zirconium and not containing platinum. .
In Patent Document 2, ZrCN and ZrO 2 obtained by oxidizing ZrCN are detected as an electrode catalyst for an oxygen reduction electrode used as a positive electrode of a polymer electrolyte fuel cell, and an ionization potential is 5.0 to 6.0 eV. A catalyst is disclosed. Furthermore, it is described in the specification that the ionization potential decreases due to an increase in oxygen defects, and it is considered necessary to improve the oxygen reduction catalytic ability to create a state having oxygen defects on the surface. , Is described. That is, the ionization potential is used as an indicator of the presence of oxygen defects.
Non-Patent Document 1 points out that oxygen molecules are adsorbed on the surface when oxygen defects occur in titanium oxide.

このように従来の金属酸化物を用いた燃料電池触媒の研究の方向性は、酸化物内に酸素欠陥を生成することにより触媒の性能を向上させるものであった。その点から、酸素欠陥が生成されると期待される元素種の置換以外は、理論的あるいは実験的に十分に検討がなされてこなかった。言い換えると従来の研究においては、元素の置換が重要ではなく、どれだけ酸素欠陥を作るか、が検討されてきただけであった   Thus, the research direction of the conventional fuel cell catalyst using a metal oxide has been to improve the performance of the catalyst by generating oxygen defects in the oxide. In that respect, the theoretical and experimental studies have not been sufficiently conducted except for the substitution of the element species expected to generate oxygen defects. In other words, in previous research, element substitution was not important, and only how much oxygen defects were created has been studied.

特開2013−46913号公報JP 2013-46913 A 国際公開WO2009/060777号公報International Publication WO2009 / 060777

Angew.Chem.Int.Ed. 2006, 45, 2897Angew. Chem. Int. Ed. 2006, 45, 2897

本発明は上ルチル型もしくはアナターゼ型の結晶構造を持ち、元素が格子内に侵入したチタン酸化物の酸素還元触媒についての評価方法と酸素還元触媒の選択方法および触媒活性の高い酸素還元触媒を提供する。   The present invention provides an evaluation method for an oxygen reduction catalyst of a titanium oxide having an upper rutile type or anatase type crystal structure and an element entering the lattice, a method for selecting an oxygen reduction catalyst, and an oxygen reduction catalyst having high catalytic activity To do.

すなわち、本発明は以下の発明を含む。   That is, the present invention includes the following inventions.

[1] ルチル型もしくはアナターゼ型の結晶構造を持つチタン酸化物の酸素還元触媒の評価方法であって、
前記チタン酸化物は、
不純物元素が結晶格子内に侵入しており、
前記侵入に由来する電子で占有された不純物準位を有し、
前記チタン酸化物の表面のチタン原子に酸素分子が吸着し、該酸素分子の2p軌道と酸素分子が吸着した前記チタン原子の3d軌道により作られる新しい混成軌道の準位を有し、
前記不純物準位と前記混成軌道の準位とをシミュレーション解析によって取得し、
前記不純物準位が前記混成軌道の準位よりもエネルギー準位が高く、かつ前記不純物準位と前記混成軌道の準位の差が大きくなるほど触媒活性が高いと評価する
ことを特徴とする酸素還元触媒の評価方法。
[2] 前項[1]に記載の評価方法により、 種々の不純物元素について不純物準位と混成軌道の準位とを得、前記不純物元素の中から、不純物準位が混成軌道の準位よりもエネルギー準位が高く、かつ前記不純物準位と前記混成軌道の準位の差が大きくなる不純物元素を有する酸素還元触媒を選択する酸素還元触媒の選択方法。
[3] ルチル型もしくはアナターゼ型の結晶構造を持つチタン酸化物の酸素還元触媒であって、前記チタン酸化物に金属元素が侵入していることを特徴とする酸素還元触媒。
[1] A method for evaluating an oxygen reduction catalyst for titanium oxide having a rutile or anatase crystal structure,
The titanium oxide is
Impurity elements have entered the crystal lattice,
Having an impurity level occupied by electrons derived from the penetration;
An oxygen molecule is adsorbed on a titanium atom on the surface of the titanium oxide, and has a new hybrid orbital level formed by a 2p orbit of the oxygen molecule and a 3d orbit of the titanium atom adsorbed by the oxygen molecule;
Obtaining the impurity level and the level of the hybrid orbital by simulation analysis,
The oxygen reduction characterized in that the impurity level is higher in energy level than the level of the hybrid orbital and the catalytic activity is higher as the difference between the level of the impurity level and the hybrid orbital is larger. Catalyst evaluation method.
[2] By the evaluation method described in [1], the impurity level and the level of the hybrid orbital are obtained for various impurity elements, and the impurity level is higher than the level of the hybrid orbital among the impurity elements. A method for selecting an oxygen reduction catalyst, wherein an oxygen reduction catalyst having an impurity element having a high energy level and a difference between the impurity level and the hybrid orbital level is increased.
[3] An oxygen reduction catalyst for a titanium oxide having a rutile-type or anatase-type crystal structure, wherein a metal element enters the titanium oxide.

本発明により、元素が格子内に侵入したチタン酸化物の酸素還元触媒を効率的に評価および前記他の元素の選択をすることができ、触媒活性の高い酸素還元触媒を得ることができる。   According to the present invention, an oxygen reduction catalyst of titanium oxide in which an element has entered the lattice can be efficiently evaluated and the other elements can be selected, and an oxygen reduction catalyst having high catalytic activity can be obtained.

酸素分子が吸着している、金属元素が格子内に侵入しており、かつその侵入割合が3.125%である酸化チタンスラブモデル。A titanium oxide slab model in which oxygen molecules are adsorbed, a metal element penetrates into the lattice, and the penetration rate is 3.125%. 酸素分子が吸着している、元素が格子内に侵入していない酸化チタンスラブモデル。Titanium oxide slab model in which oxygen molecules are adsorbed and elements do not enter the lattice.

本発明は、ルチル型もしくはアナターゼ型の結晶構造を持ち、元素が結晶格子内に侵入したチタン酸化物の酸素還元触媒の評価方法及び選択方法、並びに酸素還元触媒を含む。   The present invention includes a method for evaluating and selecting a titanium oxide oxygen reduction catalyst having a rutile-type or anatase-type crystal structure in which an element has entered a crystal lattice, and an oxygen reduction catalyst.

(評価方法)
本発明の評価方法は、ルチル型もしくはアナターゼ型の結晶構造を持つチタン酸化物の酸素還元触媒の評価方法であって、前記チタン酸化物は、不純物元素が結晶格子内に侵入しており、前記侵入に由来する電子で占有された不純物準位を有し、前記チタン酸化物の表面のチタン原子に酸素分子が吸着し、該酸素分子の2p軌道と前記チタン原子の3d軌道により作られる新しい混成軌道の準位を有し、前記不純物準位と前記混成軌道準位とをシミュレーション解析によって取得し、前記不純物準位が前記混成軌道の準位よりもエネルギー準位が高く、かつ前記不純物準位と前記混成軌道の準位の差が大きくなるほど触媒活性が高いと評価する。
(Evaluation method)
The evaluation method of the present invention is a method for evaluating an oxygen reduction catalyst of a titanium oxide having a rutile or anatase crystal structure, wherein the titanium oxide has an impurity element penetrating into a crystal lattice, A new hybrid which has an impurity level occupied by electrons derived from penetration and has an oxygen molecule adsorbed on a titanium atom on the surface of the titanium oxide and is formed by the 2p orbit of the oxygen molecule and the 3d orbit of the titanium atom. Having an orbital level, the impurity level and the hybrid orbital level are obtained by simulation analysis, the impurity level is higher in energy level than the hybrid orbital level, and the impurity level The higher the difference between the levels of the hybrid orbitals, the higher the catalytic activity.

上記シミュレーション解析は、例えば、第一原理計算を行うシミュレーションソフトを用いて実施することができる。より具体的には市販のシミュレーションソフトとしてVASP, Dmol, CASTEP等が挙げられる。 The simulation analysis can be performed using, for example, simulation software that performs a first principle calculation. More specifically, commercially available simulation software includes VASP, Dmol 3 , CASTEP and the like.

なお、本明細書内では「不純物準位が混成軌道の準位よりも低く、かつ前記不純物準位と前記混成軌道の準位の差が大きくなる」ことを、「不純物準位が混成軌道の準位よりも浅くなる」と言うことがある。   In this specification, “impurity level is lower than the level of the hybrid orbital and the difference between the level of the impurity level and the hybrid orbital is large”, Sometimes it is shallower than the level. "

(選択方法)
本発明の選択方法は、前記評価方法により、種々の侵入元素について不純物準位と混成軌道の準位とを得、前記侵入元素から、不純物準位が混成軌道の準位よりもエネルギー準位が高く、かつ前記不純物準位と前記混成軌道の準位の差が大きくなる不純物元素を有する酸素還元触媒を選択する。これにより、活性の高い酸素還元触媒を選択することができる。
(Selection method)
The selection method of the present invention obtains impurity levels and hybrid orbital levels for various intruding elements by the evaluation method, and the impurity levels from the intrusive elements have energy levels higher than those of the hybrid orbitals. An oxygen reduction catalyst having an impurity element that is high and has a large difference between the impurity level and the hybrid orbital level is selected. Thereby, a highly active oxygen reduction catalyst can be selected.

前記選択方法により、活性の高い酸化還元触媒が得られる理論原理を記述する。不純物準位が混成軌道の準位よりも浅い場合、不純物準位から混成軌道に電子が移動する。この現象はチタン酸化物から酸素分子へのバックドネーションの機構となる。この混成軌道は酸素分子の反結合性軌道2pπが含まれているので、混成軌道への電子の移動は、酸素の結合解離を易化する。ゆえに、前記選択方法により、活性の高い酸素還元触媒を選択することができる。 The theoretical principle that a highly active redox catalyst can be obtained by the selection method will be described. When the impurity level is shallower than the level of the hybrid orbital, electrons move from the impurity level to the hybrid orbital. This phenomenon becomes a mechanism of back donation from titanium oxide to oxygen molecules. Since this hybrid orbital includes an antibonding orbital 2pπ * of oxygen molecules, the movement of electrons to the hybrid orbital facilitates the bond dissociation of oxygen. Therefore, a highly active oxygen reduction catalyst can be selected by the selection method.

(酸素還元触媒)
本発明の酸素還元触媒は、前記選択方法で選択される。具体例としては、ルチル型もしくはアナターゼ型の結晶構造を持つチタン酸化物の酸素還元触媒であって、前記酸化物に金属元素が侵入している。酸素還元能の観点から、最も好ましくはSbの侵入であり、Sb以下の序列としてSb>Zn>Ga>Sc>Ti>Ca>Ge>As>V>Co>Fe>Ni>Cr>Mn>Cu>Kの順に好ましい。
このように金属元素が格子内侵入することにより、酸素還元活性の高い触媒が得られる。
(Oxygen reduction catalyst)
The oxygen reduction catalyst of the present invention is selected by the selection method. As a specific example, an oxygen reduction catalyst of titanium oxide having a rutile or anatase type crystal structure, a metal element invades the oxide. From the viewpoint of oxygen reduction ability, Sb intrusion is most preferable, and Sb>Zn>Ga>Sc>Ti>Ca>Ge>As>V>Co>Fe>Ni>Cr>Mn> Cu as the order below Sb. It is preferable in the order of> K.
Thus, a metal element penetrates into the lattice, whereby a catalyst having a high oxygen reduction activity is obtained.

本発明では、酸素還元能の観点から、酸素還元触媒中の侵入元素の侵入割合は、0.1原子%より大きいことが好ましく、3原子%以上であることがより好ましく、結晶構造が変化しない範囲で高含有率であることがさらに好ましい。なお、本発明において、侵入元素の侵入割合とは、侵入原子の数/チタン原子の数で求められる。また、前記結晶構造の変化には、格子定数が変化することを含めない。前記結晶構造は、X線回折により確認することができる。   In the present invention, from the viewpoint of oxygen reduction ability, the intrusion ratio of the intruding element in the oxygen reduction catalyst is preferably greater than 0.1 atomic%, more preferably 3 atomic% or more, and the crystal structure does not change. More preferably, the content is high in the range. In the present invention, the intrusion ratio of the intruding element is obtained by the number of intruding atoms / the number of titanium atoms. The change in the crystal structure does not include a change in lattice constant. The crystal structure can be confirmed by X-ray diffraction.

以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何ら制限されるものではない。   Examples of the present invention will be described below to describe the present invention more specifically. Note that these are merely illustrative examples, and the present invention is not limited by these.

本実施例で用いた計算の条件を以下にまとめる。   The calculation conditions used in this example are summarized below.

(分子シミュレーション解析用のソフトウェア)
本計算には、第一原理電子状態計算ソフトウェアであるAccelrys社製Dmol version 6.1を用いた。
(Software for molecular simulation analysis)
In this calculation, Dmol 3 version 6.1 manufactured by Accelrys, which is first principle electronic state calculation software, was used.

(触媒表面モデル)
触媒表面モデルとして、ルチル型酸化チタン(110)面のスラブモデル(本発明では「酸化チタンスラブモデル」と言うことがある)を用いた。酸化チタンスラブモデルは、(4unit x 2unit)の大きさの面を持ち、深さ方向に4層とし、3次元周期境界条件を課した。下層の2層の原子をルチル型酸化チタンの結晶位置に固定し計算を行った。例えば図1を用いて説明すると、図の中での上面が触媒表面であり、酸素分子は触媒表面のチタン原子に吸着し、吸着酸素分子となる。
(Catalyst surface model)
As the catalyst surface model, a slab model of rutile titanium oxide (110) surface (in the present invention, sometimes referred to as “titanium oxide slab model”) was used. The titanium oxide slab model has a surface with a size of (4 units x 2 units), has four layers in the depth direction, and imposes a three-dimensional periodic boundary condition. Calculation was performed with the atoms of the lower two layers fixed at the crystal position of the rutile-type titanium oxide. For example, referring to FIG. 1, the upper surface in the figure is the catalyst surface, and oxygen molecules are adsorbed on titanium atoms on the catalyst surface to become adsorbed oxygen molecules.

(計算条件)
spin polarized density functional theoryを基にしており、汎関数はGGA−RPBEを用いた。各原子に対して、Effective Core Potentialsを与え、計算基底関数はDNPを用い、K点のサンプリングはΓ点のみで行った。
状態密度(以下DOSと記す)および部分状態密度(以下PDOSと記す)の計算において、電子で占有されていない軌道の数は、フェルミ準位からエネルギー準位の浅くなる方へ12個で計算した。
(Calculation condition)
Based on spin polarized density functional theory, GGA-RPBE was used as the functional. Effective Core Potentials were given to each atom, DNP was used as the calculation basis function, and sampling of the K point was performed only at the Γ point.
In the calculation of the density of states (hereinafter referred to as DOS) and the partial density of states (hereinafter referred to as PDOS), the number of orbitals not occupied by electrons was calculated as 12 from the Fermi level to the shallower energy level. .

(構造決定工程)
本実施例で利用した酸化チタンスラブモデル構造および物理量は以下の構造決定工程と呼ぶ4つの工程それぞれより得た。
(Structure determination process)
The titanium oxide slab model structure and physical quantity used in this example were obtained from each of the four steps referred to as the structure determination step below.

構造決定工程(1)
酸素分子が吸着していない、酸化チタンスラブモデルで、元素が格子内に侵入した構造を初期構造とし、構造最適化を実行し、最適化された構造を得た。該最適化された構造のDOSを所得した。該DOSにおけるフェルミ準位を不純物準位として所得した。さらに、前記最適化された構造の全エネルギーの値を所得した。
Structure determination process (1)
In the titanium oxide slab model in which oxygen molecules are not adsorbed, the structure in which the element entered the lattice was taken as the initial structure, and the structure was optimized to obtain an optimized structure. Earned DOS with the optimized structure. The Fermi level in the DOS was obtained as an impurity level. Furthermore, the total energy value of the optimized structure was obtained.

構造決定工程(2)
構造決定工程(1)で得られた構造の触媒表面に、酸素分子を近づけた構造を初期構造とし、構造最適化を実行し、最適化された構造を得た。該最適化された構造のDOSおよび吸着酸素分子のPDOSを所得した。吸着酸素分子の2pπ軌道および吸着されているTi原子の3dz、および吸着酸素分子の2pπおよび吸着されているTi原子の3dyzであることが確認された軌道の準位を、吸着酸素分子の酸素分子の2p軌道と吸着されているTi原子の3d軌道により作られる新しい混成軌道の準位として取得した。なお、前記混成軌道の準位が複数取得できる場合は吸着酸素分子の2pπおよび吸着されているTi原子の3dyzであることが確認された軌道の準位を採用した。軌道の由来は、分子軌道図から確認できる。さらに、また前記最適化された構造の全エネルギーの値を所得した。
Structure determination process (2)
A structure in which oxygen molecules were brought close to the catalyst surface having the structure obtained in the structure determination step (1) was used as an initial structure, and the structure was optimized to obtain an optimized structure. The optimized structure DOS and adsorbed oxygen molecule PDOS were obtained. The adsorbed oxygen molecules represent the 2pπ * orbit of the adsorbed oxygen molecule and 3dz 2 of the adsorbed Ti atom, and the orbital level confirmed to be 2pπ * of the adsorbed oxygen molecule and 3dyz of the adsorbed Ti atom. It was obtained as a new hybrid orbital level created by 2p orbitals of oxygen molecules and 3d orbitals of adsorbed Ti atoms. When a plurality of hybrid orbital levels can be obtained, the orbital levels confirmed to be 2pπ * of adsorbed oxygen molecules and 3dyz of adsorbed Ti atoms were employed. The origin of the orbit can be confirmed from the molecular orbital diagram. In addition, the total energy value of the optimized structure was also obtained.

構造決定工程(3)
構造決定工程(2)で得られた構造の吸着酸素分子の酸素間距離を伸ばした構造を初期構造とし、構造最適化を実行し、酸素原子間距離とTi‐O間の距離を比較したときに、酸素原子間距離のほうが長い最適化された構造を得た。
Structure determination process (3)
When the structure obtained by the structure determination step (2) with the extended oxygen distance of the adsorbed oxygen molecules is taken as the initial structure, the structure optimization is performed, and the distance between oxygen atoms and the distance between Ti-O are compared. In addition, an optimized structure with a longer distance between oxygen atoms was obtained.

構造決定工程(4)
構造決定工程(2)および(3)で得られたそれぞれの最適化された構造を酸素分子解離反応の始状態および終状態とし、LST/QST法を実行し、構造決定工程(2)で得られた最適化された構造と構造決定工程(3)で得られた最適化された構造を結ぶ遷移状態の構造を得た。該遷移状態の構造の全エネルギーの値を所得した。該全エネルギーの値から構造決定工程(2)で得られた全エネルギーの値を差し引き、それを酸素結合解離の活性化障壁とした。
Structure determination process (4)
The respective optimized structures obtained in the structure determination steps (2) and (3) are set as the initial and final states of the oxygen molecule dissociation reaction, the LST / QST method is executed, and the structure determination steps (2) are obtained. A transition state structure connecting the optimized structure thus obtained and the optimized structure obtained in the structure determination step (3) was obtained. The total energy value of the transition state structure was obtained. The total energy value obtained in the structure determination step (2) was subtracted from the total energy value, and this was used as an activation barrier for oxygen bond dissociation.

(活性化障壁)
構造決定工程(4)で得られる活性化障壁は酸素解離の活性化障壁である。触媒能の高い酸素還元触媒を得るべく、活性化障壁が小さくなる侵入元素を選択する。
(Activation barrier)
The activation barrier obtained in the structure determination step (4) is an oxygen dissociation activation barrier. In order to obtain an oxygen reduction catalyst having a high catalytic ability, an intruding element having a small activation barrier is selected.

実施例1:
侵入元素として、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As及びSbのそれぞれについて、前記構造決定工程(1)から(2)を実行し、その侵入割合が3.125%である酸化チタンスラブモデルでの、不純物準位及び混成軌道の準位を得た。本実施例で用いた酸化チタンスラブモデルの構造を図1に示した。図1の酸化チタンスラブモデルでは挿入金属元素が触媒表面から3および4層目に2個存在する。これらの酸化チタンスラブでの不純物準位、混成軌道の準位及びそれらの差を表1に示した。
Example 1:
For each of K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Sb as intruding elements, the structure determination steps (1) to (2) Then, impurity levels and hybrid orbital levels were obtained in the titanium oxide slab model with the penetration rate of 3.125%. The structure of the titanium oxide slab model used in this example is shown in FIG. In the titanium oxide slab model of FIG. 1, there are two inserted metal elements in the third and fourth layers from the catalyst surface. Table 1 shows impurity levels, hybrid orbital levels, and their differences in these titanium oxide slabs.

比較例1:
侵入元素として、Ca、Fe、及びSbのそれぞれについて、前記構造決定工程(1)から(4)を実行し、その侵入割合が3.125%である酸化チタンスラブモデルでの、酸素結合解離の活性化障壁を得た。本比較例で用いた酸化チタンスラブモデルは実施例1と同じである。これらの酸化チタンスラブモデルでの酸素結合解離の活性化障壁を表1にまとめた。
Comparative Example 1:
For each of Ca, Fe, and Sb as intrusion elements, the structure determination steps (1) to (4) are executed, and the oxygen bond dissociation in the titanium oxide slab model in which the intrusion ratio is 3.125%. An activation barrier was obtained. The titanium oxide slab model used in this comparative example is the same as in Example 1. The activation barriers for oxygen bond dissociation in these titanium oxide slab models are summarized in Table 1.

なお、前記不純物準位および前記混成軌道の準位を得る時間は、前記活性化障壁の計算時間に比べいずれも約1/4であった。 The time for obtaining the impurity level and the level of the hybrid orbital was about ¼ of the calculation time of the activation barrier.

比較例2:
チタン元素に他の元素が侵入されていない酸化チタンスラブモデルでの酸素結合解離の活性化障壁を、構造決定工程(1)から(4)を実行し、得た。その結果を表1にまとめた。該酸化チタンスラブモデルの構造を図2に示した。
Comparative Example 2:
An activation barrier for oxygen bond dissociation in a titanium oxide slab model in which no other element has entered the titanium element was obtained by executing the structure determination steps (1) to (4). The results are summarized in Table 1. The structure of the titanium oxide slab model is shown in FIG.

表1にまとめた、実施例1および比較例2の不純物準位および混成軌道準位を比較することにより、本発明における酸素還元触媒の選択法に基づくと金属が侵入している酸化チタンが活性の高い触媒として選択される。さらに、酸素還元活性の高い方から、序列としてSb>Zn>Ga>Sc>Ti>Ca>Ge>As>V>Co>Fe>Ni>Cr>Mn>Cu>Kが導かれた。この序列と表1の酸素結合解離の活性化障壁の計算結果は一致している。表1の結果として、元素侵入に由来する不純物準位が吸着酸素分子の2p軌道と吸着酸素分子が吸着したチタン原子の3d軌道により作られる新しい混成軌道の準位よりも浅くなる酸素還元触媒として、前記序列の順に、前記金属元素が侵入した酸素還元触媒が選択された。   By comparing the impurity levels and hybrid orbital levels of Example 1 and Comparative Example 2 summarized in Table 1, the titanium oxide invading the metal is active according to the selection method of the oxygen reduction catalyst in the present invention. Is selected as a high catalyst. Furthermore, Sb> Zn> Ga> Sc> Ti> Ca> Ge> As> V> Co> Fe> Ni> Cr> Mn> Cu> K was derived from the higher oxygen reduction activity as an order. The calculated result of the activation barrier of oxygen bond dissociation in Table 1 is consistent with this order. As a result of Table 1, as an oxygen reduction catalyst, the impurity level derived from element penetration becomes shallower than the level of the new hybrid orbital formed by the 2p orbit of adsorbed oxygen molecules and the 3d orbit of titanium atoms adsorbed by adsorbed oxygen molecules. The oxygen reduction catalyst into which the metal element invaded was selected in the order of the order.

なお、活性化障壁の計算は、構造決定工程(3)で示した通り、遷移状態の構造を決定する必要があり、この計算時間は構造決定工程(1)などで得られる最適化された構造を決定するための計算時間と比較し非常に多くの時間が必要である。それに比べ、本発明ではより短い時間で評価することができ、活性の高い酸素還元触媒を効率的に選択することができる。   The calculation of the activation barrier needs to determine the structure of the transition state as shown in the structure determination step (3), and this calculation time is an optimized structure obtained in the structure determination step (1) and the like. It takes a lot of time compared to the calculation time to determine. In contrast, in the present invention, evaluation can be performed in a shorter time, and a highly active oxygen reduction catalyst can be efficiently selected.

したがって上記結果より、金属元素が侵入したチタン酸化物は、吸着酸素分子の2p軌道と吸着酸素分子が吸着したチタン原子の3d軌道により作られる新しい混成軌道の準位よりも不純物準位の軌道のエネルギーが浅く、酸素還元能が高いと考えられる。   Therefore, from the above results, the titanium oxide invaded by the metal element has a more orbital impurity level than the new hybrid orbital level formed by the 2p orbit of adsorbed oxygen molecules and the 3d orbit of titanium atoms adsorbed by adsorbed oxygen molecules. It is considered to have low energy and high oxygen reducing ability.

本発明によれば、元素の侵入により得られる活性の高い酸素還元触媒が得られ、燃料電池等に好ましく利用することできる。

According to the present invention, a highly active oxygen reduction catalyst obtained by intrusion of elements is obtained, and can be preferably used for a fuel cell or the like.

Claims (2)

ルチル型もしくはアナターゼ型の結晶構造を持つチタン酸化物の酸素還元触媒の評価方法であって、
前記チタン酸化物は、
不純物元素が結晶格子内に侵入しており、
前記侵入に由来する電子で占有された不純物準位を有し、
前記チタン酸化物の表面のチタン原子に酸素分子が吸着し、該酸素分子の2p軌道と酸素分子が吸着した前記チタン原子の3d軌道により作られる新しい混成軌道の準位を有し、
前記不純物準位と前記混成軌道の準位とをシミュレーション解析によって取得し、
前記不純物準位が前記混成軌道の準位よりもエネルギー準位が高く、かつ前記不純物準位と前記混成軌道の準位の差が大きくなるほど触媒活性が高いと評価する
ことを特徴とする酸素還元触媒の評価方法。
A method for evaluating an oxygen reduction catalyst for titanium oxide having a rutile or anatase crystal structure,
The titanium oxide is
Impurity elements have entered the crystal lattice,
Having an impurity level occupied by electrons derived from the penetration;
An oxygen molecule is adsorbed on a titanium atom on the surface of the titanium oxide, and has a new hybrid orbital level formed by a 2p orbit of the oxygen molecule and a 3d orbit of the titanium atom adsorbed by the oxygen molecule;
Obtaining the impurity level and the level of the hybrid orbital by simulation analysis,
The oxygen reduction characterized in that the impurity level is higher in energy level than the level of the hybrid orbital and the catalytic activity is higher as the difference between the level of the impurity level and the hybrid orbital is larger. Catalyst evaluation method.
請求項1に記載の評価方法により、種々の不純物元素について不純物準位と混成軌道の準位とを得、前記不純物元素の中から、不純物準位が混成軌道の準位よりもエネルギー準位が高く、かつ前記不純物準位と前記混成軌道の準位の差が大きくなる不純物元素を有する酸素還元触媒を選択する酸素還元触媒の選択方法。
According to the evaluation method of claim 1, an impurity level and a hybrid orbital level are obtained for various impurity elements, and the energy level of the impurity element is higher than that of the hybrid orbital among the impurity elements. A method for selecting an oxygen reduction catalyst, which selects an oxygen reduction catalyst having an impurity element that is high and has a large difference between the impurity level and the hybrid orbital level.
JP2015136359A 2015-07-07 2015-07-07 Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst Expired - Fee Related JP6555808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015136359A JP6555808B2 (en) 2015-07-07 2015-07-07 Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136359A JP6555808B2 (en) 2015-07-07 2015-07-07 Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst

Publications (2)

Publication Number Publication Date
JP2017018857A JP2017018857A (en) 2017-01-26
JP6555808B2 true JP6555808B2 (en) 2019-08-07

Family

ID=57889092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136359A Expired - Fee Related JP6555808B2 (en) 2015-07-07 2015-07-07 Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst

Country Status (1)

Country Link
JP (1) JP6555808B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799276B (en) * 2019-02-26 2020-11-17 武汉理工大学 Gas electrode device for evaluating oxygen reduction activity of fuel cell catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796247B2 (en) * 2001-08-31 2011-10-19 三井造船株式会社 Method for predicting activity of metal oxide catalyst
WO2012096022A1 (en) * 2011-01-14 2012-07-19 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof

Also Published As

Publication number Publication date
JP2017018857A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
Wang et al. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2
Cao et al. The use of cluster expansions to predict the structures and properties of surfaces and nanostructured materials
Cui et al. Adsorption, activation, and dissociation of oxygen on doped oxides.
Pandey et al. Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: a computational screening approach
Lim et al. Carbon dioxide conversion into hydrocarbon fuels on defective graphene-supported Cu nanoparticles from first principles
Marrocchelli et al. First-principles assessment of H2S and H2O reaction mechanisms and the subsequent hydrogen absorption on the CeO2 (111) surface
Seriani et al. Presence of gap states at Cu/TiO2 anatase surfaces: consequences for the photocatalytic activity
Iwaszuk et al. SnO-nanocluster modified anatase TiO 2 photocatalyst: exploiting the Sn (II) lone pair for a new photocatalyst material with visible light absorption and charge carrier separation
Iwaszuk et al. TiO 2 nanocluster modified-rutile TiO 2 photocatalyst: a first principles investigation
Conway et al. Nature of electrosorbed H and its relation to metal dependence of catalysis in cathodic H2 evolution
Morales-Garcia et al. Properties of single oxygen vacancies on a realistic (TiO2) 84 nanoparticle: A challenge for density functionals
Wang et al. First-principles study of generalized-stacking-fault (GSF) energy in Mg with Al and Zn alloyings
JP6555808B2 (en) Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst
Wu Oxygen diffusion through titanium and other HCP metals
Gao et al. Localization and stabilization of photogenerated electrons at TiO2 nanoparticle surface by oxygen at ambient temperature
Deng et al. In Situ AFM Imaging of Platinum Electrode Surface during Oxidation–Reduction Cycles in Alkaline Electrolyte
Li et al. Subtle structure matters: The vicinity of surface Ti5c cations alters the photooxidation behaviors of anatase and rutile TiO2 under aqueous environments
Kaneva et al. Pt nanoparticles synthesized by successive ionic layers deposition method and their electrocatalytic properties in hydrogen evolution reaction during water splitting in the acidic medium
JP6555809B2 (en) Evaluation method and selection method of oxygen reduction catalyst
Lahiri et al. Interplay between facets and defects during the dissociative and molecular adsorption of water on metal oxide surfaces
JP6555807B2 (en) Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst
Gu et al. Atomic oxygen absorption into Pt-based alloy subsurfaces
JP6555806B2 (en) Oxygen reduction catalyst evaluation method and selection method, and oxygen reduction catalyst
Díaz et al. Oxide film growth by CSV on AISI 316L: A combined electrochemical and analytical characterization
Zhu et al. Interfacial graphene modulated energetic behavior of the point-defect at the Au/HfO2 interface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6555808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees