JP6554310B2 - 距離測定装置 - Google Patents

距離測定装置 Download PDF

Info

Publication number
JP6554310B2
JP6554310B2 JP2015091372A JP2015091372A JP6554310B2 JP 6554310 B2 JP6554310 B2 JP 6554310B2 JP 2015091372 A JP2015091372 A JP 2015091372A JP 2015091372 A JP2015091372 A JP 2015091372A JP 6554310 B2 JP6554310 B2 JP 6554310B2
Authority
JP
Japan
Prior art keywords
read
region
value
cycle
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015091372A
Other languages
English (en)
Other versions
JP2016206135A (ja
Inventor
光人 間瀬
光人 間瀬
純 平光
純 平光
明洋 島田
明洋 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015091372A priority Critical patent/JP6554310B2/ja
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to KR1020177033724A priority patent/KR102481693B1/ko
Priority to CH01201/17A priority patent/CH712465B1/de
Priority to DE112016001944.0T priority patent/DE112016001944T5/de
Priority to CN201680024207.XA priority patent/CN107533128B/zh
Priority to PCT/JP2016/061535 priority patent/WO2016175012A1/ja
Priority to US15/567,645 priority patent/US10871568B2/en
Publication of JP2016206135A publication Critical patent/JP2016206135A/ja
Application granted granted Critical
Publication of JP6554310B2 publication Critical patent/JP6554310B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本発明は、距離測定装置に関する。
光源からパルス光を放出させ、対象物からの反射光を距離センサで受けることにより、対象物から距離センサまでの距離を測定する飛行時間(TOF:Time−of−Flight)法が知られている。
下記の特許文献1にはTOF法に基づく距離測定装置が記載されている。特許文献2に記載された装置は、距離センサの実効ダイナミックレンジを広げるための構成を有している。具体的には、この装置は、光源からパルス光を放出させ、距離センサのフォトダイオードで発生した電荷をキャパシタに蓄積し、キャパシタに生じる電圧が飽和電圧に達するときに当該電圧をリセットし、リセットの回数とキャパシタに生じた最終の電圧とに基づいて、距離を算出する。
特表2006−523074号公報
本発明は、反射光の強度のダイナミックレンジを拡大することが可能な距離測定装置を提供することを目的とする。
本発明は、飛行時間法により対象物に対する距離を求める距離測定装置であって、変調光を放出する光源部と、入射光に応じて電荷を発生する光感応領域、光感応領域で発生した電荷を蓄積する蓄積領域、光感応領域と蓄積領域との間に設けられた転送電極、及び、蓄積領域とリセット電位との間に設けられたリセットスイッチを有するセンサ部と、変調光の放出タイミング及びセンサ部を制御して、距離を算出する処理部と、備えている。処理部は、リセットスイッチを制御して蓄積領域をリセット電位に接続してから該蓄積領域を次にリセット電位に接続するまでのフレーム期間内の複数の電荷転送サイクルにおいて、一以上の放出期間に光源部に変調光を放出させ、かつ、電荷転送サイクル一回あたりの放出期間の数を一つのフレーム期間内で増加させ、一以上の放出期間に同期した一以上の転送期間に転送電極に与える電圧を制御して光感応領域で発生した電荷を蓄積領域に蓄積させ、複数の電荷転送サイクルのそれぞれに対応する複数の読出しサイクルにおいて、複数の電荷転送サイクルと交互の時点に蓄積領域に蓄積されている電荷量に応じた複数の読出し値をセンサ部から取得し、複数の読出し値に基づいて、距離を算出する。
本発明では、処理部は、電荷転送サイクル一回あたりの放出期間の数を一つのフレーム期間内で増加させている。すなわち、一つのフレーム期間の初期では、電荷転送サイクル一回あたりの放出期間の数が少なく、一つのフレーム期間の後期では、電荷転送サイクル一回あたりの放出期間の数が多い。したがって、距離測定装置に入射する反射光の強度が強い場合(たとえば、対象物が近距離に位置している場合、あるいは対象物の反射率が高い場合など)でも、一つのフレーム期間の初期において、蓄積される信号電荷の飽和が生じ難く、距離測定を適切に行うことができる。距離測定装置に入射する反射光の強度が低い場合(たとえば、対象物が遠距離に位置している場合、あるいは対象物の反射率が低い場合など)でも、蓄積される信号電荷の不足が抑制され、距離測定を適切に行うことができる。これらの結果、一つのフレーム期間を変更することなく、反射光の強度のダイナミックレンジを拡大することができる。
処理部は、放出期間の周期を短くすることにより、電荷転送サイクル一回あたりの放出期間の数を増加させてもよい。また、処理部は、電荷転送サイクルの期間を長くすることにより、電荷転送サイクル一回あたりの放出期間の数を増加させてもよい。
処理部は、電荷転送サイクル一回あたりの放出期間の数を段階的に増加させてもよい。また、処理部は、電荷転送サイクル一回あたりの放出期間の数を徐々に増加させてもよい。
センサ部は、蓄積領域として、第1の蓄積領域及び第2の蓄積領域を含み、転送電極として、光感応領域と第1の蓄積領域との間に設けられた第1の転送電極、及び、光感応領域と第2の蓄積領域との間に設けられた第2の転送電極を含み、リセットスイッチとして、第1の蓄積領域とリセット電位との間に設けられた第1のリセットスイッチ、及び、第2の蓄積領域とリセット電位との間に設けられた第2のリセットスイッチを含み、処理部は、第1のリセットスイッチ及び第2のリセットスイッチを制御して第1の蓄積領域及び第2の蓄積領域をリセット電位に接続してから該第1の蓄積領域及び該第2の蓄積領域を次にリセット電位に接続するまでのフレーム期間内の複数の電荷転送サイクルにおいて、一以上の放出期間に同期した一以上の第1の転送期間に第1の転送電極に与える電圧を制御して光感応領域で発生した電荷を第1の蓄積領域に蓄積させ、一以上の第1の転送期間と位相反転した一以上の第2の転送期間に第2の転送電極に与える電圧を制御して光感応領域で発生した電荷を第2の蓄積領域に蓄積させ、複数の電荷転送サイクルのそれぞれに対応する複数の読出しサイクルにおいて、複数の電荷転送サイクルと交互の時点に第1の蓄積領域に蓄積されている電荷量に応じた複数の第1の読出し値及び該時点に第2の蓄積領域に蓄積されている電荷量に応じた複数の第2の読出し値を、センサ部から取得し、複数の第1の読出し値及び複数の第2の読出し値に基づいて、距離を算出してもよい。
処理部は、n回目の読出しサイクルの第1の読出し値と、n回目の読出しサイクルの第1の読出し値とn−1回目の読出しサイクルの第1の読出し値との間の差分値との和、又は、n回目の読出しサイクルの第2の読出し値と、n回目の読出しサイクルの第2の読出し値とn−1回目の読出しサイクルの第2の読出し値との間の差分値との和が、所定の閾値を超える場合に、n+1回目以降の読出しサイクルを停止してもよい。ここでnは複数の読出しサイクルの順番を示している。この場合、所定の閾値を用いることにより、第1の蓄積領域及び第2の蓄積領域が飽和するまでに取得した第1の読出し値及び第2の読出し値が距離測定に利用することができる。したがって、反射光の強度のダイナミックレンジを確実に拡大することができる。更に、上述した和が所定の閾値を超える場合に、読出し値のセンサ部からの取得が停止されるので、距離の算出を早期に開始することが可能である。
処理部は、複数の第1の読出し値に基づく近似式を用いて第1の推定値を算出し、複数の第2の読出し値に基づく近似式を用いて第2の推定値を算出し、第1の推定値及び第2の推定値に基づいて、距離を算出してもよい。この場合、距離の算出に用いられる第1の推定値及び第2の推定値がそれぞれ、最終の読出しサイクルまでに得られた第1の読出し値に基づく近似式及び第2の読出し値に基づく近似式を用いて算出される。したがって、複数の読出しサイクルで取得される第1の読出し値及び第2の読出し値の一部が外乱等により変動しても、第1の推定値及び第2の推定値では、変動を含む読出し値の影響が低減される。この結果、距離の測定精度が向上され得る。
本発明によれば、反射光の強度のダイナミックレンジを拡大することが可能な距離測定装置を提供することができる。
本発明の実施形態に係る距離測定装置を概略的に示す図である。 センサの一例を概略的に示す図である。 センサにおける一つの画素ユニットの一例を示す平面図である。 図3のIV−IV線に沿った断面構成を示す図である。 図3のV−V線に沿った断面構成を示す図である。 センサ部の一つの画素ユニット及び当該画素ユニット用の対応のサンプルホールド回路の回路図である。 処理部の制御及び演算を示すフローチャートである。 距離測定装置で利用される各種信号のタイミングチャートである。 距離測定装置で利用される各種信号のタイミングチャートである。 距離測定装置で利用される各種信号のタイミングチャートである。 距離測定装置で利用される各種信号のタイミングチャートである。 距離測定装置で利用される各種信号のタイミングチャートである。 距離測定装置で利用される各種信号のタイミングチャートである。 距離測定装置で利用される各種信号のタイミングチャートである。 別の実施形態のセンサの一例を概略的に示す図である。 別の実施形態に係るセンサ部の一つの画素ユニットと当該画素ユニット用の対応のサンプルホールド回路の回路図である。
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
図1は、本実施形態に係る距離測定装置を概略的に示す図である。図1に示す距離測定装置10は、飛行時間法(TOF:Time−of−Flight)法により、対象物と当該距離測定装置10との距離を求める装置である。距離測定装置10は、光源部12、センサ部14、及び処理部16を備えている。
光源部12は、変調光を放出する。本実施形態においては、光源部12は、レーザダイオード12a、反射部材12b、及びドライバ回路12cを有し得る。ドライバ回路12cは、処理部16からの駆動パルス信号に同期した変調電流を、レーザダイオード12aに供給する。レーザダイオード12aは、変調電流に応じて変調光を放出する。変調光は、たとえば、一以上のパルス光を含み得る。レーザダイオード12aは、反射部材12bに向けてパルス光を出射する。反射部材12bは、レーザダイオード12aから出射されたパルス光を反射する。反射部材12bで反射されたパルス光が対象物に照射される。
ドライバ回路12cは、処理部16の制御にしたがって、反射部材12bのアクチュエータに駆動信号を送る。ドライバ回路12cは、レーザダイオード12aから反射部材12bに向けて出射されたパルス光の光路を変更するようにアクチュエータを駆動する。アクチュエータは、ドライバ回路12cからの駆動信号により、反射部材12bの角度を偏向する。反射部材12bの角度の偏向により、レーザダイオード12aから出射されたパルス光の対象物への照射位置が走査される。反射部材12bは、たとえばMEMS(Micro Electro Mechanical Systems)ミラーである。
センサ部14は、本実施形態においては、センサ18、デジタル−アナログ変換部(DAC)20、及び、アナログ−デジタル変換部(ADC)22、を有し得る。デジタル−アナログ変換部20は、処理部16の信号処理部16aからのデジタル信号をアナログ信号に変換して、当該アナログ信号をセンサ18に供給する。アナログ−デジタル変換部22は、センサ18からのアナログ信号をデジタル信号に変換して、当該デジタル信号を処理部16に供給する。
処理部16は、光源部12の変調光の放出タイミング及びセンサ部14を制御して、距離を算出する。一実施形態においては、処理部16は、信号処理部16a及びメモリ16bを含み得る。信号処理部16aは、たとえば、FPGA(Field−Programmable Gate Array)といった演算回路であり、メモリ16bは、SRAM(Static Random Access Memory)である。
図2は、センサの一例を概略的に示す図である。センサ18は、撮像領域IR、サンプルホールド回路群SHG、スイッチ群SWG、水平シフトレジスタ群HSG、信号ラインH1及びH2、並びに、出力アンプOAP1及びOAP2を含んでいる。図2に示されるように、センサ18は、一行の画像を取得するラインセンサとして構成されていてもよい。本実施形態においては、撮像領域IRは、水平方向に配列された複数の画素ユニットP(j)を含んでいる。ここで、jは、1〜Jの整数であり、Jは、2以上の整数であり、画素ユニットの個数を示している。
図3は、センサにおける一つの画素ユニットの一例を示す平面図である。図4は、図3のIV−IV線に沿った断面構成を示す図であり、図5は、図3のV−V線に沿った断面構成を示す図である。各画素ユニットP(1)〜P(J)は、図3〜図5に示された同一の構造を有している。
図4及び図5に示されるように、本実施形態においては、画素ユニットP(j)は、半導体基板SBを含んでいる。半導体基板SBは、たとえばシリコン基板である。半導体基板SBは、第1の半導体領域SR1及び第2の半導体領域SR2を含んでいる。第1の半導体領域SR1は、半導体基板SBの一方の主面SBF1を提供するp型の半導体領域である。第2の半導体領域SR2は、第1の半導体領域SR1上に配置されているp−型の半導体領域である。第2の半導体領域SR2の不純物濃度は、第1の半導体領域SR1の不純物濃度以下である。半導体基板SBは、p型の半導体基板上に、p−型の半導体領域をエピタキシャル成長法により堆積させることにより、形成され得る。
半導体基板SBの他方の主面SBF2上には、絶縁膜ISLが形成されている。絶縁膜ISLは、たとえば、SiOによって構成される。絶縁膜ISL上には、フォトゲート電極PGが配置されている。フォトゲート電極PGは、たとえば、ポリシリコンによって構成される。図3に示されるように、本実施形態では、フォトゲート電極PGは、略矩形の平面形状を有し得る。画素ユニットP(j)では、このフォトゲート電極PGの下方に位置する領域が、入射光に感応して電荷を発生する光感応領域として機能する。
図4及び図5に示されるように、絶縁膜ISL上には、第1の転送電極TX1、第2の転送電極TX2、及び第3の転送電極TX3が配置されている。これら転送電極TX1〜TX3は、たとえば、ポリシリコンによって構成される。図3〜図5に示されるように、第1の転送電極TX1及び第2の転送電極TX2は、それらの間にフォトゲート電極PGが存在するように、配置されている。
本実施形態では、図3に示されるように、四つの第3の転送電極TX3が絶縁膜ISL上に配置されている。二つの第3の転送電極TX3は、第1の転送電極TX1と第2の転送電極TX2が配列されている方向(以下、「X方向」という)に交差する方向(以下、「Y方向」という)において、第1の転送電極TX1が二つの第3の転送電極TX3の間に位置するように、配置されている。別の二つの第3の転送電極TX3は、Y方向において第2の転送電極TX2が上記別の二つの第3の転送電極TX3に位置するように、配置されている。
図4に示されるように、第2の半導体領域SR2には、第1の蓄積領域fd1及び第2の蓄積領域fd2が形成されている。第1の蓄積領域fd1及び第2の蓄積領域fd2は、光感応領域から転送される電荷を蓄積する。第1の蓄積領域fd1及び第2の蓄積領域fd2は、第1の蓄積領域fd1と第2の蓄積領域fd2との間に光感応領域が位置するように、配置されている。本実施形態では、第1の蓄積領域fd1及び第2の蓄積領域fd2は、n型の不純物が高濃度にドープされたn型の半導体領域である。
絶縁膜ISLは、第1の蓄積領域fd1及び第2の蓄積領域fd2の上方において開口を画成している。これら開口内には、電極13が配置されている。電極13は、たとえば、Ti/TiN膜を介して設けられたタングステンから構成される。
X方向において、第1の転送電極TX1は、第1の蓄積領域fd1上の電極13とフォトゲート電極PGとの間に配置されている。第1の蓄積領域fd1に光感応領域から電荷を転送するときには、第1の転送電極TX1の下方の半導体領域のポテンシャルを低減させる電圧VTX1が第1の転送電極TX1に与えられる。電圧VTX1は、信号処理部16aからのデジタル信号に基づいてデジタル−アナログ変換部20から与えられる。
X方向において、第2の転送電極TX2は、第2の蓄積領域fd2上の電極13とフォトゲート電極PGとの間に配置されている。第2の蓄積領域fd2に光感応領域から電荷を転送するときには、第2の転送電極TX2の下方の半導体領域のポテンシャルを低減させる電圧VTX2が、第2の転送電極TX2に与えられる。電圧VTX2は、信号処理部16aからのデジタル信号に基づいてデジタル−アナログ変換部20から与えられる。
図5に示されるように、第2の半導体領域SR2には、n型の半導体領域SR3が形成されている。一実施形態では、四つの半導体領域SR3が配置されている。一対の半導体領域SR3は、当該一対の半導体領域SR3の間に光感応領域が位置するように配置されている。別の一対の半導体領域SR3は、当該別の一対の半導体領域SR3の間に光感応領域が位置するように配置されている。
各半導体領域SR3の上方において、絶縁膜ISLは、開口を画成しており、これら開口内には、電極13が配置されている。電極13は、たとえば、Ti/TiN膜を介して設けられたタングステンから構成される。
X方向において、一つの半導体領域SR3上の電極13とフォトゲート電極PGとの間には、対応の第3の転送電極TX3が配置されている。第3の転送電極TX3に電圧VTX3を与えられることにより、当該第3の転送電極TX3の下方の半導体領域のポテンシャルが低減される。第3の転送電極TX3の下方の半導体領域のポテンシャルが低減されることにより、光感応領域から電荷が半導体領域SR3に転送される。電圧VTX3は、信号処理部16aからのデジタル信号に基づいてデジタル−アナログ変換部20から与えられる。
半導体領域SR3の電極13は、所定の電位Vddにも接続されている(図6参照)。この電位Vddは、信号処理部16aからのデジタル信号に基づいてデジタル−アナログ変換部20によって設定される。電圧VTX3を与えて第3の転送電極TX3の下方の半導体領域のポテンシャルを低減させると、光感応領域の電荷はリセットされる。
以下、図2と共に図6を参照する。図6は、センサ部の一つの画素ユニット及び当該画素ユニット用の対応のサンプルホールド回路の回路図である。図2及び図6に示されるように、センサ18のサンプルホールド回路群SHGは、J個の第1のサンプルホールド回路SH1及びJ個の第2のサンプルホールド回路SH2を含んでいる。各第1のサンプルホールド回路SH1及び各第2のサンプルホールド回路SH2は、対応の画素ユニットP(j)(画素ユニットP(1)〜P(J)のうち対応の画素ユニット)に接続されている。すなわち、サンプルホールド回路群SHGは、各々が一つの第1のサンプルホールド回路SH1及び一つの第2のサンプルホールド回路を含むJ個のサンプルホールド回路対SHP(1)〜SHP(J)を含んでいる。J個のサンプルホールド回路対SHP(1)〜SHP(J)はそれぞれ、画素ユニットP(1)〜P(J)に対応付けられている。
画素ユニットP(j)は、第1のリセットスイッチRS1、第2のリセットスイッチRS2、並びに、電荷−電圧変換回路A1及びA2を更に含んでいる。第1のリセットスイッチRS1は、リセット電位Vrと第1の蓄積領域fd1上の電極13との間に位置している。第2のリセットスイッチRS2は、リセット電位Vrと第2の蓄積領域fd2上の電極13との間に位置している。リセット電位Vrは、信号処理部16aからのデジタル信号に基づいてデジタル−アナログ変換部20によって設定される。
第1のリセットスイッチRS1及び第2のリセットスイッチRS2には、信号処理部16aからリセットパルス信号Sresが与えられる。リセットパルス信号Sresが第1のリセットスイッチRS1及び第2のリセットスイッチRS2に与えられると、第1の蓄積領域fd1及び第2の蓄積領域fd2は、リセット電位Vrに接続される。これにより、第1の蓄積領域fd1の電荷及び第2の蓄積領域fd2の電荷がリセットされる。第1の蓄積領域fd1及び第2の蓄積領域fd2の電荷がリセットされるタイミングから次ぎにリセットされるタイミングまでの間の期間は、フレーム期間Tf(図8参照)となる。
電荷−電圧変換回路A1の入力は、第1の蓄積領域fd1上の電極13に接続されており、電荷−電圧変換回路A1の出力は、第1のサンプルホールド回路SH1のスイッチSW10に接続されている。電荷−電圧変換回路A1は、第1の蓄積領域fd1の電荷量を電圧に変換し、当該電圧を第1のサンプルホールド回路SH1に提供する。電荷−電圧変換回路A2の入力は、第2の蓄積領域fd2上の電極13に接続されており、電荷−電圧変換回路A2の出力は、第2のサンプルホールド回路SH2のスイッチSW12に接続されている。電荷−電圧変換回路A2は、第2の蓄積領域fd2の電荷量を電圧に変換し、当該電圧を第2のサンプルホールド回路SH2に提供する。
第1のサンプルホールド回路SH1は、スイッチSW10及びキャパシタCP10を含んでいる。第2のサンプルホールド回路SH2は、スイッチSW12及びキャパシタCP12を含んでいる。スイッチSW10及びスイッチSW12には、信号処理部16aからサンプリングパルス信号Ssampが与えられる。サンプリングパルス信号SsampがスイッチSW10及びスイッチSW12に与えられると、電荷−電圧変換回路A1の出力とキャパシタCP10とが接続され、電荷−電圧変換回路A2の出力とキャパシタCP12が接続される。これにより、電荷−電圧変換回路A1の出力電圧がキャパシタCP10の両端間に保持され、電荷−電圧変換回路A2の出力電圧がキャパシタCP12の両端間に保持される。サンプリングパルス信号Ssampが与えられてから次にサンプリングパルス信号Ssampが与えられるまでの期間、すなわち、連続する二つのサンプリングパルス信号Ssampの間が、読出し期間となる。
センサ18のスイッチ群SWGは、J個のスイッチSW1及びJ個のスイッチSW2を含んでいる。各スイッチSW1及び各スイッチSW2はそれぞれ、画素ユニットP(1)〜P(J)のうち対応の画素ユニット用の第1のサンプルホールド回路SH1のキャパシタCP10、及び第2のサンプルホールド回路SH2のキャパシタCP12に、接続されている。すなわち、スイッチ群SWGは、各々が一つのスイッチSW1及び一つのスイッチSW2を含むJ個のスイッチ対SWP(1)〜SWP(J)を含んでいる。J個のスイッチ対SWP(1)〜SWP(J)はそれぞれ、サンプルホールド回路対SHP(1)〜SHP(J)に対応付けられている。
スイッチSW1及びスイッチSW2には、読み出しパルス信号Sreadが与えられる。読み出しパルス信号Sreadは、水平シフトレジスタ群HSGから供給される。水平シフトレジスタ群HSGは、J個の水平シフトレジスタを有している。水平シフトレジスタは、たとえば、フリップフロップを含み得る。これら水平シフトレジスタは、画素ユニットP(1)〜P(J)の配列方向に配列されている。水平シフトレジスタ群HSG内の一端に位置している水平シフトレジスタには、信号処理部16aからスタート信号が与えられる。全ての水平シフトレジスタには、信号処理部16aからクロック信号が与えられる。これらスタート信号及びクロック信号に応じて、J個の水平シフトレジスタはそれぞれ、読み出しパルス信号Sreadをスイッチ対SWP(1)〜SWP(J)に順次与える。このように読み出しパルス信号Sreadが与えられることにより、サンプルホールド回路対SHP(1)〜SHP(J)の第1のサンプルホールド回路SH1及び第2のサンプルホールド回路SH2が、信号ラインH1及び信号ラインH2に順次接続される。
読み出しパルス信号SreadがスイッチSW1及びSW2に与えられると、サンプルホールド回路SH1のキャパシタCP10及び第2のサンプルホールド回路SH2のキャパシタCP12はそれぞれ、信号ラインH1及び信号ラインH2に接続される。これにより、第1のサンプルホールド回路SH1に保持された電圧が、信号ラインH1を介して出力アンプOAP1に入力される。第2のサンプルホールド回路SH2に保持された電圧が、信号ラインH2を介して出力アンプOAP2に入力される。出力アンプOAP1及び出力アンプOAP2はそれぞれ、入力された電圧を増幅して、増幅した電圧をアナログ−デジタル変換部22に出力する。
アナログ−デジタル変換部22は、入力された電圧信号を当該電圧信号の大きさに応じた値を有するデジタル値に変換する。アナログ−デジタル変換部22によって出力されるデジタル値は、処理部16のメモリ16bに記憶される。本実施形態では、出力アンプOAP1からの電圧信号に基づくデジタル値は、後述する第1の読出し値として、メモリ16bに記憶される。第1の読出し値は、第1の蓄積領域fd1の蓄積電荷量が多いほど小さい値となる。出力アンプOAP2からの電圧信号に基づくデジタル値は、後述する第2の読出し値として、メモリ16bに記憶される。第2の読出し値は、第2の蓄積領域fd2の蓄積電荷量が多いほど小さい値となる。
続いて、処理部16の制御及び演算について説明する。図7は、処理部の制御及び演算を示すフローチャートである。図8及び図9は、距離測定装置で利用される各種信号のタイミングチャートである。処理部16は、各画素ユニットについて、図7〜図9を参照して以下に説明する制御及び演算を行う。
本実施形態では、処理部16は、まず、光源部12から変調光を放出させない非発光フレーム期間において、N個の第1の読出し値D1(0,…,N)及び第2の読出し値D2(0,…,N)をセンサ部14から取得する(図7中、S11)。
具体的に、信号処理部16aは、初回の電荷転送サイクルの開始前にサンプリングパルス信号SsampをスイッチSW10及びスイッチSW12に与える。これにより、初回の電荷転送サイクルより前の時点に第1の蓄積領域fd1に蓄積されている電荷量に対応する電圧が、第1のサンプルホールド回路SH1に保持される。また、初回の電荷転送サイクルより前の上記時点に第2の蓄積領域fd2に蓄積されている電荷量に対応する電圧が、第2のサンプルホールド回路SH2に保持される。
次いで、信号処理部16aは、水平シフトレジスタから読み出しパルス信号SreadがスイッチSW1及びSW2に与えられるよう、水平シフトレジスタ群HSGにスタート信号及びクロック信号を送出する。これにより、処理部16は、第1の読出し値D1(0)及び第2の読出し値D2(0)をセンサ部14から取得する。
次いで、信号処理部16aは、1回目〜N回目の電荷転送サイクル及び1回目〜N回の読出しサイクルを以下に説明するように実行する。ここで、Nは、予め定められた最大の電荷転送サイクルの順番を示す数値である。以下、読出しサイクルの順番を示すインデックスとして、記号「n」を用いる。
信号処理部16aは、n回目の電荷転送サイクルの第1の転送期間T1において第1の転送電極TX1にHighレベルの電圧信号VTX1が与えられるよう、デジタル信号をセンサ部14に与える。これにより、第1の転送期間T1においては、第1の転送電極TX1の下方の半導体領域、すなわち、光感応領域と第1の蓄積領域fd1との間の半導体領域のポテンシャルが下がり、光感応領域から第1の蓄積領域fd1に電荷が転送される。信号処理部16aは、n回目の電荷転送サイクルの第2の転送期間T2内に第2の転送電極TX2にHighレベルの電圧信号VTX2が与えられるよう、デジタル信号をセンサ部14に与える。これにより、第2の転送期間T2においては、第2の転送電極TX2の下方の半導体領域、すなわち、光感応領域と第2の蓄積領域fd2との間の半導体領域のポテンシャルが下がり、光感応領域から第2の蓄積領域fd2に電荷が転送される。
非発光フレーム期間の第1の転送期間T1及び第2の転送期間T2は、後述する発光フレーム期間の第1の転送期間T1及び第2の転送期間T2と同様に、設定されている。非発光フレーム期間の各電荷転送サイクルにおける第1の転送期間T1の合計長さと、発光フレーム期間の各電荷転送サイクルにおける第1の転送期間T1の合計長さとは同じである。非発光フレーム期間の各電荷転送サイクルにおける第2の転送期間T2の合計長さと、発光フレーム期間の各電荷転送サイクルにおける第2の転送期間T2の合計長さとは同じである。
本実施形態においては、第1の転送期間T1及び第2の転送期間T2の間、信号処理部16aは、第3の転送電極TX3にLowレベルの電圧信号VTX3が与えられるよう、デジタル信号をセンサ部14に与える。したがって、第1の転送期間T1及び第2の転送期間T2の間には、光感応領域と半導体領域SR3との間の半導体領域のポテンシャルは高いままで維持され、光感応領域に発生した電荷は、半導体領域SR3には転送されない。一方、第3の転送電極TX3には、第1の転送期間T1及び第2の転送期間T2以外の期間に、Highレベルの電圧信号VTX3が与えられる。したがって、第1の転送期間T1及び第2の転送期間T2以外の期間では、光感応領域に発生した電荷は半導体領域SR3に転送され、除去される。
次いで、信号処理部16aは、n回目の電荷転送サイクルの終了時点とn+1回目の電荷転送サイクルの開始時点との間の時点にサンプリングパルス信号SsampをスイッチSW10及びスイッチSW12に与える。これにより、複数の電荷転送サイクルと交互の時点に第1の蓄積領域fd1に蓄積されている電荷量に対応する電圧が第1のサンプルホールド回路SH1に保持され、当該時点に第2の蓄積領域fd2に蓄積されている電荷量に対応する電圧が第2のサンプルホールド回路SH2に保持される。次いで、信号処理部16aは、n回目の読出しサイクルにおいて、水平シフトレジスタから読み出しパルス信号SreadがスイッチSW1及びSW2に与えられるよう、水平シフトレジスタ群HSGにスタート信号及びクロック信号を与える。これにより、処理部16は、第1の読出し値D1(n)及び第2の読出し値D2(n)をセンサ部14から取得する。
処理部16は、第1の読出し値D1(0,…,N)及び第2の読出し値D2(0,…,N)をセンサ部14から取得して、これら読出し値をメモリ16bに記憶する。非発光フレーム期間の電荷転送サイクルにおいては、処理部16は光源部12に変調光を放出させない。したがって、非発光フレーム期間において得られる第1の読出し値D1(0,…,N)及び第2の読出し値D2(0,…,N)は、背景光等のノイズ成分のみを反映している。これら、第1の読出し値D1(0,…,N)及び第2の読出し値D2(1,…,N)は、後に発光フレーム期間に取得される第1の読出し値Q1(0,…,N)及び第2の読出し値Q201,…,N)から、背景光等のノイズ成分を除去するために、減算される。
次に、処理部16の信号処理部16aは、第1のリセットスイッチRS1及び第2のRS2にリセットパルス信号Sresを与えて、第1の蓄積領域fd1及び第2の蓄積領域fd2をリセット電位Vrに接続する。これにより、第1の蓄積領域fd1に蓄積された電荷及び第2の蓄積領域fd2に蓄積された電荷がリセットされ(図7中、S12)、次のフレーム期間Tfである発光フレーム期間が開始される。発光フレーム期間の電荷転送サイクルにおいては、光源部12に信号処理部16aから駆動パルス信号が与えられ、光源部12が所定のタイミングで変調光を放出する。
発光フレーム期間においては、処理部16は、第1の読出し値Q1(0)及び第2の読出し値Q2(0)をセンサ部14から取得して、当該第1の読出し値Q1(0)及び第2の読出し値Q2(0)を、第1の読出し値及び第2の読出し値の初期値として、メモリ16bに記憶する(図7中、S13)。
具体的に、信号処理部16aは、初回の電荷転送サイクルCyの開始前にサンプリングパルス信号SsampをスイッチSW10及びスイッチSW12に与える。これにより、初回の電荷転送サイクルより前の時点に第1の蓄積領域fd1に蓄積されている電荷量に対応する電圧が第1のサンプルホールド回路SH1に保持され、当該時点に第2の蓄積領域fd2に蓄積されている電荷量に対応する電圧が第2のサンプルホールド回路SH2に保持される。
次いで、信号処理部16aは、水平シフトレジスタから読み出しパルス信号SreadがスイッチSW1及びSW2に与えられるよう、水平シフトレジスタ群HSGにスタート信号及びクロック信号を送出する。これにより、処理部16は、第1の読出し値Q1(0)及び第2の読出し値Q2(0)をセンサ部14から取得する。すなわち、n回目の電荷転送サイクルCyにおいて蓄積された電荷は、n回目の電荷転送サイクルCyの終了時点とn+1回目の電荷転送サイクルCyの開始時点との間の読出しサイクルにて読み出される。
第1の読出し値Q1(0)及び第2の読出し値Q2(0)は、最初のサンプリングパルス信号Ssampの出力時点、すなわち、初回の電荷転送サイクルの前の時点に、第1の蓄積領域fd1に蓄積されている電荷量及び第2の蓄積領域fd2に蓄積されている電荷量にそれぞれ対応している。したがって、第1の読出し値Q1(0)及び第2の読出し値Q2(0)は、光源部12からの変調光が対象物から反射することにより発生する信号光成分を反映していない。
次いで、信号処理部16aは、nを1にセットして(図7中、S14)、1回目〜N回目の電荷転送サイクルCy及び1回目〜N回目の読出しサイクルを以下に説明するように試みる。読出し期間(連続する二つのサンプリングパルス信号Ssampの間の期間)は、電荷転送サイクルCyと読出しサイクルとを含んでいる。
まず、信号処理部16aは、図8も示されるように、n回目の電荷転送サイクルCyにおいて、光源部12に一以上の駆動パルス信号SLを与えて、光源部12から変調光を駆動パルス信号SLの数と同じ回数放出させる(図7中、S15)。すなわち、n回目の電荷転送サイクルCyでは、光源部12からの変調光の放出期間の数mは、一以上である。各放出期間の時間長は、図9にも示されるように、T0である。
信号処理部16aは、図9も示されるように、n回目の電荷転送サイクルCyの第1の転送期間T1内に第1の転送電極TX1にHighレベルの電圧信号VTX1が与えられるよう、デジタル信号をセンサ部14に与える。信号処理部16aは、n回目の電荷転送サイクルCyの第2の転送期間T2内に第2の転送電極TX2にHighレベルの電圧信号VTX2が与えられるよう、デジタル信号をセンサ部14に与える。
第1の転送期間T1は、駆動パルス信号SLと同期している。すなわち、駆動パルス信号SLの立ち上がりタイミングと電圧信号VTX1の立ち上がりのタイミングは略同期しており、駆動パルス信号SLの持続時間T0と第1の転送期間T1は、略同一の時間長である。
第2の転送期間T2は、第1の転送期間T1と位相反転している。すなわち、各電荷転送サイクルCyにおいて、第2の転送期間T2の位相は、第1の転送期間T1の位相から180度遅れている。より具体的には、電圧信号VTX1の立ち下がりタイミングと電圧信号VTX2の立ち上がりタイミングは略同期しており、第1の転送期間T1と第2の転送期間T2は、略同一の時間長である。
本実施形態においては、第1の転送期間T1及び第2の転送期間T2の間、信号処理部16aは、第3の転送電極TX3にLowレベルの電圧信号VTX3が与えられるよう、デジタル信号をセンサ部14に与える。第3の転送電極TX3には、第1の転送期間T1及び第2の転送期間T2以外の期間に、Highレベルの電圧信号VTX3が与えられる。したがって、第1の転送期間T1及び第2の転送期間T2においては、光感応領域への入射光に応じた電荷は半導体領域SR3に転送されないが、第1の転送期間T1及び第2の転送期間T2以外の期間では、光感応領域に発生した電荷は半導体領域SR3に転送されて、除去される。
上述したように、各回の変調光の放出期間に同期して第1の転送期間T1が設けられており、第1の転送期間T1と位相反転した第2の転送期間T2が設けられている。したがって、n回目の電荷転送サイクルCyには、駆動パルス信号SLの数と同じ数の第1の転送期間T1と、駆動パルス信号SLの数と同じ数の第2の転送期間T2とが設けられている。n回目の電荷転送サイクルCyにおいて、第1の蓄積領域fd1に電荷を蓄積させる時間長は、第1の転送期間T1(時間T0)と駆動パルス信号SLの回数(放出期間の回数)との積となる。n回目の電荷転送サイクルCyにおいて、第2の蓄積領域fd2に電荷を蓄積させる時間長は、第2の転送期間T2(時間T0)と駆動パルス信号SLの回数(放出期間の回数)との積となる。
次いで、信号処理部16aは、第1の読出し値Q1(n)及び第2の読出し値Q2(n)をセンサ部14から取得して、当該第1の読出し値Q1(n)及び第2の読出し値Q2(n)をメモリ16bに記憶する(図7中、S16)。
具体的に、信号処理部16aは、n回目の電荷転送サイクルCyの終了時点とn+1回目の電荷転送サイクルCyの開始時点との間に、サンプリングパルス信号SsampをスイッチSW10及びスイッチSW12に与える。これにより、複数の電荷転送サイクルCyと交互の時点に第1の蓄積領域fd1に蓄積されている電荷量に対応する電圧が第1のサンプルホールド回路SH1に保持され、当該時点に第2の蓄積領域fd2に蓄積されている電荷量に対応する電圧が第2のサンプルホールド回路SH2に保持される。
次いで、信号処理部16aは、n回目の読出しサイクルにおいて、水平シフトレジスタから読み出しパルス信号SreadがスイッチSW1及びSW2に与えられるよう、水平シフトレジスタ群HSGにスタート信号及びクロック信号を与える。これにより、処理部16は、第1の読出し値Q1(n)及び第2の読出し値Q2(n)をセンサ部14から取得する。すなわち、n回目の電荷転送サイクルCyにおいて蓄積された電荷は、n回目の電荷転送サイクルCyの終了時点とn+1回目の電荷転送サイクルCyの開始時点との間の読出しサイクルにて読み出される。第1の読出し値Q1(n)は、n回目の電荷転送サイクルCyの終了時とn+1回目の電荷転送サイクルCyの開始時との間の時点に、第1の蓄積領域fd1に蓄積されている電荷量に対応した値であり、第2の読出し値Q2(n)は、当該時点に第2の蓄積領域fd2に蓄積されている電荷量に対応した値である。
次いで、信号処理部16aは、第1の差分値k1(n)及び第2の差分値k2(n)を求める(図7中、S17)。第1の差分値k1(n)は、n回目の読出しサイクルの第1の読出し値Q1(n)からn−1回目の読出しサイクルの第1の読出し値Q1(n−1)を減算することにより求められる。第2の差分値k2(n)は、n回目の読出しサイクルの第2の読出し値Q2(n)からn−1回目の読出しサイクルの第2の読出し値Q2(n−1)を減算することにより求められる。
次いで、信号処理部16aは、予測値Q1(n+1)及び予測値Q2(n+1)を求める(図7中、S18)。予測値Q1(n+1)は、n回目の読出しサイクルの第1の読出し値Q1(n)に第1の差分値k1(n)を加算することにより、求められる。予測値Q2(n+1)は、n回目の読出しサイクルの第2の読出し値Q2(n)に第2の差分値k2(n)を加算することにより、求められる。予測値Q1(n+1)は、n+1回目の読出しサイクルの第1の読出し値の予測値であり、予測値Q2(n+1)は、n+1回目の読出しサイクルの第2の読出し値の予測値である。
次いで、信号処理部16aは、第1の予測値Q1(n+1)及び第2の予測値Q2(n+1)を所定の閾値Qthと比較する(図7中、S19)。本実施形態においては、閾値Qthは、第1の蓄積領域fd1の飽和蓄積容量に対応する第1の読出し値以上、且つ、第2の蓄積領域fd2の飽和蓄積容量に対応する第2の読出し値以上の値であるよう設定されている。第1の予測値Q1(n+1)が閾値Qth以上であり、且つ、第2の予測値Q2(n+1)が閾値Qth以上である場合には、S19での処理の判定結果は「No」となり、信号処理部16aの処理はS20の処理に進む。S20での処理では、nがN以上であるか否かがテストされる。S20での処理においてnがNより小さい場合には、信号処理部16aは、nの値を1だけ増分し(図7中、S21)、S15からの処理を繰り返す。一方、S20での処理においてnがN以上である場合には、信号処理部16aの処理はS22に進む。
S19での処理(比較)の結果、第1の予測値Q1(n+1)又は第2の予測値Q2(n+1)が閾値Qthを超える、すなわち、閾値よりも小さい場合には、信号処理部16aの処理はS22に進む。したがって、処理部16は、第1の予測値Q1(n+1)又は第2の予測値Q2(n+1)が閾値Qthを超える場合には、n+1回目以降の読出しサイクルを停止する。すなわち、信号処理部16aは、n+1回目以降の読出しサイクルにおける第1の読出し値及び第2の読出し値のセンサ部14からの取得、及びn+1回目以降の読出しサイクルにおける第1の読出し値及び第2の読出し値のメモリ16bへの記憶を停止する。
閾値Qthが、第1の蓄積領域fd1の飽和蓄積容量に対応する第1の読出し値及び第2の蓄積領域fd2の飽和蓄積容量に対応する第2の読出し値のうち大きい方の読出し値と同値である場合には、処理部16は、第1の蓄積領域fd1の飽和蓄積容量に対応する読出し値を超えない範囲の第1の読出し値Q1(n)を取得することができ、第2の蓄積領域fd2の飽和蓄積容量に対応する読出し値を超えない範囲の第2の読出し値Q2(n)を取得することができる。その結果、測定距離のダイナミックレンジが向上され得る。また、距離の測定精度が向上される。更に、信号処理部16aのS22での処理以後の演算を早期に開始することも可能である。
本実施形態においては、閾値Qthは、第1の蓄積領域fd1の飽和蓄積容量に対応する第1の読出し値及び第2の蓄積領域fd2の飽和蓄積容量に対応する第2の読出し値のうち大きい方の読出し値よりも大きな値に設定されていてもよい。この実施形態によれば、第1の蓄積領域fd1及び第2の蓄積領域fd2それぞれの蓄積電荷量と入射光量との関係の線形性が優れた範囲で、センサ部14を利用することができる。したがって、距離の測定精度がより向上され得る。
次に、信号処理部16aは、第1の推定値Q1est及び第2の推定値Q2estを求める(図7中、S22)。具体的には、信号処理部16aは、最終の読出しサイクルであるn回目の読出しサイクルまでの第1の読出し値Q1(0)〜Q1(n)に基づく近似式を作成し、当該近似式を用いて第1の読出し値Q1の補正値Q1corrを算出する。そして、信号処理部16aは、下記の式(1)に示されるように、第1の読出し値Q1の補正値Q1corrと第1の読出し値Q1(0)との和から読出し値D1(n)を減算することにより、第1の推定値Q1estを算出する。
<式(1)>
Q1est=Q1corr+Q1(0)−D1(n)
同様に、信号処理部16aは、最終の読出しサイクルであるn回目の読出しサイクルまでの第2の読出し値Q2(0)〜Q2(n)に基づく近似式を作成し、当該近似式を用いて第2の読出し値Q2の補正値Q2corrを算出する。そして、信号処理部16aは、下記の式(2)に示されるように、第2の読出し値Q2の補正値Q2corrと第2の読出し値Q2(0)との和から読出し値D2(n)を減算することにより、第2の推定値Q2estを算出する。
<式(2)>
Q2est=Q2corr+Q2(0)−D2(n)
本実施形態においては、第1の読出し値Q1の補正値Q1corrは、n回目の読出しサイクルの第1の読出し値Q1(n)の補正値であり、第2の読出し値Q2の補正値Q2corrは、n回目のサイクルの第2の読出し値Q2(n)の補正値であり得る。補正値Q1corr及びQ2Corrは、近似式の出力として得られる補正値であれば、対応する読出しサイクルの番号は限定されるものではない。
近似式は、最小自乗法に基づいて作成され得る。近似式は、その他の公知の近似式の作成方法が用いられてもよい。信号処理部16aは、読出し値D1(0)〜D1(n)に基づく近似式を用いて、読出し値D1の補正値を算出し、当該読出し値D1の補正値を第1の読出し値Q1の補正値Q1corrと第1の読出し値Q1(0)との和から減算して、第1の推定値Q1estを算出してもよい。読出し値D1の補正値及び読出し値Q1の補正値Q1corrは、同じ順番の読出しサイクルの読出し値D1の補正値及び読出し値Q1の補正値である。同様に、信号処理部16aは、読出し値D2(0)〜D2(n)に基づく近似式を用いて読出し値D2の補正値を算出し、当該読出し値D2の補正値を第2の読出し値Q2の補正値Q2corrと第2の読出し値Q2(0)との和から減算して、第2の推定値Q2estを算出してもよい。読出し値D2の補正値及び読出し値Q2の補正値Q2corrは、同じ順番の読出しサイクルの読出し値D2の補正値及び読出し値Q2の補正値である。
第1の推定値Q1estは、近似式を用いて算出した第1の読出し値の補正値と第1の読出し値Q1(0)との和から別のフレーム期間において求めた背景光等のノイズ成分に対応する第1の読出し値を減算したものである。第2の推定値Q2estは、近似式を用いて算出した第2の読出し値の補正値と第1の読出し値Q1(0)との和から別のフレーム期間において求めた背景光等のノイズ成分に対応する第2の読出し値を減算したものである。したがって、最終の読出しサイクルまでに取得される第1の読出し値及び第2の読出し値の一部が外乱等により変動しても、近似式に基づく第1の推定値Q1est及び第2の推定値Q2estでは、変動を含む読出し値の影響が低減され得る。第1の推定値Q1est及び第2の推定値Q2estでは、背景光等のノイズの影響が低減され得る。
次いで、信号処理部16aは、距離を算出する(図7中、S23)。具体的には、信号処理部16aは、下記の式(3)の演算により、距離Lを算出する。
<式(3)>
L=(1/2)×c×T0×{Q2est×α/(Q1est+Q2est×α)}
cは光速であり、αは同量の入射光が第1の転送期間T1及び第2の転送期間T2に光感応領域に入射したときの第1の読出し値と第2の読出し値の比である。このように、信号処理部16aは、第1の蓄積領域fd1の蓄積電荷量に基づく第1の推定値Q1estと第2の蓄積領域fd2の蓄積電荷量に基づく第2の推定値Q2estの比により、対象物に対する距離を高精度に算出することができる。本実施形態においては、信号処理部16aは、各画素について算出した距離に応じた濃淡値を有する1行の距離画像を出力する。本実施形態においては、信号処理部16aはフレーム期間Tfごとに距離画像を更新するよう、図7〜図9を用いて説明した制御及び演算を繰り返してもよい。
ところで、信号処理部16aは、図8に示されるように、電荷転送サイクルCy一回あたりの放出期間の数mを一つのフレーム期間Tf内で増加させている。具体的には、信号処理部16aは、放出期間の周期を短くすることにより、電荷転送サイクルCy一回あたりの放出期間の数mを増加させている。すなわち、信号処理部16aは、放出期間の周期を短くすることにより、電荷転送サイクルCy一回あたりの放出期間の数mを多くし、放出期間の周期を長くすることにより、電荷転送サイクルCy一回あたりの放出期間の数mを少なくしている。
一つのフレーム期間Tfの初期での放出期間の周期は、一つのフレーム期間Tfの後期での放出期間の周期に比して長い。すなわち、一つのフレーム期間Tfの後期での放出期間の周期は、一つのフレーム期間Tfの初期での放出期間の周期に比して短い。放出期間の周期は、一つのフレーム期間Tf内において、単調減少している。本明細書では、「単調減少している」は増加傾向とならないことを意味し、広義の単調減少を意味する。一つのフレーム期間Tf内において、読出し期間の長さは一定であり、電荷転送サイクルCyの期間は変化していない。
信号処理部16aは、電荷転送サイクルCy一回あたりの放出期間の数mを段階的に増加させている。たとえば、一つのフレーム期間Tfの初期では、電荷転送サイクルCy一回あたりの放出期間の数mは、「2」であり、一つのフレーム期間Tfの後期では、電荷転送サイクルCy一回あたりの放出期間の回数は、「M」である。すなわち、信号処理部16aは、電荷転送サイクルCy一回あたりの放出期間の数を二段階で増加させている。ここで、Mは、電荷転送サイクルCy一回あたりの放出期間の数の最大値として、予め定められた数値である。
電荷転送サイクルCy一回あたりの放出期間の数mは、一つのフレーム期間Tf内において、単調増加している。本明細書では、「単調増加している」は減少傾向とならないことを意味し、広義の単調増加を意味する。
本実施形態の距離測定装置10では、一つのフレーム期間Tfの初期では、一つのフレーム期間Tfの後期に比べて、放出期間の周期を長いことにより、電荷転送サイクルCy一回あたりの放出期間の数mが少ない。このため、センサ18の画素ユニットP(j)に入射する反射光の強度が強い場合(たとえば、対象物が近距離に位置している場合、あるいは対象物の反射率が高い場合など)でも、一つのフレーム期間Tfの初期において、蓄積される信号電荷の飽和が生じ難く、距離測定を適切に行うことができる。
一つのフレーム期間Tfの後期では、一つのフレーム期間Tfの初期に比べて、放出期間の周期を短いことにより、電荷転送サイクルCy一回あたりの放出期間の数mが多い。このため、センサ18の画素ユニットP(j)に入射する反射光の強度が低い場合(たとえば、対象物が遠距離に位置している場合、あるいは対象物の反射率が低い場合など)でも、蓄積される信号電荷の不足が抑制され、距離測定を適切に行うことができる。
以上のことから、本実施形態の距離測定装置10によれば、一つのフレーム期間Tfを変更することなく、反射光の強度のダイナミックレンジを拡大することができる。
信号処理部16aは、図10に示されるように、電荷転送サイクルCy一回あたりの放出期間の数mを3段階以上で増加させていてもよい。また、信号処理部16aは、図11に示されるように、電荷転送サイクルCy一回あたりの放出期間の数mを「1」から「M」まで徐々に増加させていてもよい。いずれの場合も、電荷転送サイクルCy一回あたりの放出期間の数mは、一つのフレーム期間Tf内において、単調増加している。
信号処理部16aは、図12に示されるように、読出し期間の長さを長くして、電荷転送サイクルCyの期間を長くすることにより、電荷転送サイクルCy一回あたりの放出期間の数mを増加させていてもよい。すなわち、信号処理部16aは、読出し期間の長さを短くして、電荷転送サイクルCyの期間を短くすることにより、電荷転送サイクルCy一回あたりの放出期間の数mを少なくし、電荷転送サイクルCyの期間を長くすることにより、電荷転送サイクルCy一回あたりの放出期間の数mを多くしている。
一つのフレーム期間Tfの初期での電荷転送サイクルCyの期間は、一つのフレーム期間Tfの後期での電荷転送サイクルCyの期間に比して短い。すなわち、一つのフレーム期間Tfの後期での電荷転送サイクルCyの期間は、一つのフレーム期間Tfの初期での電荷転送サイクルCyの期間に比して長い。電荷転送サイクルCyの期間は、一つのフレーム期間Tf内において、単調増加している。放出期間の周期は、一つのフレーム期間Tf内において、変化していない。
図12に示された例では、信号処理部16aは、電荷転送サイクルCyの期間を二段階で長くしている。たとえば、電荷転送サイクルCy一回あたりの放出期間の数mは、「3」であり、一つのフレーム期間Tfの後期では、電荷転送サイクルCy一回あたりの放出期間の回数は、「M」である。電荷転送サイクルCy一回あたりの放出期間の数mは、一つのフレーム期間Tf内において、単調増加している。
本実施形態の距離測定装置10では、一つのフレーム期間Tfの初期では、一つのフレーム期間Tfの後期に比べて、電荷転送サイクルCyの期間が短いことにより、電荷転送サイクルCy一回あたりの放出期間の数mが少ない。このため、センサ18の画素ユニットP(j)に入射する反射光の強度が強い場合(たとえば、対象物が近距離に位置している場合、あるいは対象物の反射率が高い場合など)でも、一つのフレーム期間Tfの初期において、蓄積される信号電荷の飽和が生じ難く、距離測定を適切に行うことができる。
一つのフレーム期間Tfの後期では、一つのフレーム期間Tfの初期に比べて、電荷転送サイクルCyの期間が長いことにより、電荷転送サイクルCy一回あたりの放出期間の数mが多い。このため、センサ18の画素ユニットP(j)に入射する反射光の強度が低い場合(たとえば、対象物が遠距離に位置している場合、あるいは対象物の反射率が低い場合など)でも、蓄積される信号電荷の不足が抑制され、距離測定を適切に行うことができる。
信号処理部16aは、図13に示されるように、電荷転送サイクルCyの期間を3段階以上で長くしていてもよい。この場合、電荷転送サイクルCy一回あたりの放出期間の数mが3段階以上で増加する。また、信号処理部16aは、図14に示されるように、電荷転送サイクルCyの期間を徐々に長くしていてもよい。この場合、たとえば、電荷転送サイクルCy一回あたりの放出期間の数mが「1」から「M」まで徐々に増加する。いずれの場合も、電荷転送サイクルCy一回あたりの放出期間の数mは、一つのフレーム期間Tf内において、単調増加している。
続いて、図15及び図16を参照して、別の実施形態について説明する。図15は、別の実施形態に係るセンサの一例を示す図である。図16は、別の実施形態に係るセンサ部の一つの画素ユニットと当該画素ユニット用の対応のサンプルホールド回路の回路図である。
距離測定装置10は、センサ18に代えて、図15に示されるセンサ18Aを有していてもよい。センサ18Aは、I×J個の画素ユニットP(i,j)を有する撮像領域IRを有している。ここで、iは1〜Iの整数であり、jは1〜Jの整数であり、I及びJは2以上の整数である。I×J個の画素ユニットP(i,j)は、I行J列に配列されている。撮像領域IRには、画素ユニットの各列用の二つの垂直信号ラインV1(j)及びV2(j)が設けられている。
図16に示されるように、センサ18Aの画素ユニットP(i,j)の電荷−電圧変換回路A1の出力にはスイッチSW20が接続されており、当該スイッチSW20は対応の垂直信号ラインV1(j)を介して対応の第1のサンプルホールド回路SH1のスイッチSW10に接続されている。画素ユニットP(i,j)の電荷−電圧変換回路A2の出力にはスイッチSW22が接続されており、当該スイッチSW22は対応の垂直信号ラインV2(j)を介して対応の第2のサンプルホールド回路SH2のスイッチSW12に接続されている。
センサ18Aは、更に垂直シフトレジスタ群VSGを更に有している。垂直シフトレジスタ群VSGは、垂直方向に配列された複数の垂直シフトレジスタを含んでいる。各垂直シフトレジスタは、たとえばフリップフロップを含んでいる。配列方向において一端に設けられた垂直シフトレジスタには、信号処理部16aからスタート信号が与えられる。全ての垂直シフトレジスタには、信号処理部16aからクロック信号が与えられる。垂直シフトレジスタ群VSGは、スタート信号及びクロック信号を受けると、複数の画素ユニットP(i,j)のスイッチSW20及びスイッチSW22に、行選択信号を行順に順次与える。
これにより、各列の複数の画素ユニット(i,j)の電荷−電圧変換回路A1及びA2の出力は、対応の垂直信号ラインV1(j)及びV2(j)に順次接続されて、複数の画素ユニットP(i,j)の出力電圧が、対応のサンプルホールド回路SH1及びSH2に、行順に順次保持される。各行内の複数の画素ユニット(j,i)の出力電圧が対応のサンプルホールド回路SH1及びSH2に保持されると、サンプルホールド回路SH1及びSH2に保持された電圧は、水平シフトレジスタ群HSGから与えられる読み出しパルス信号により、信号ラインH1及びH2に列順に順次結合される。そして、図7で説明した演算を各画素ユニットについて行うことにより、信号処理部16aは二次元の距離画像を形成することができる。
以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
たとえば、図15に示された実施形態では、画素ユニットの列ごとに対応のサンプルホールド回路SH1及びSH2が設けられているが、画素ユニットごとに対応のサンプルホールド回路SH1及びSH2が設けられていてもよい。撮像領域IRの画素ユニットの個数は、一つであってもよい。
電荷転送サイクルCy一回あたりの放出期間の数mは、図8及び図10〜図14に示された値に限定されない。
各画素ユニットP(1)〜P(J)は、本願出願人による特開2013−178121号公報及び特開2013−206903号公報などに記載されているように、二つの光感応領域(第1の光感応領域と第2の光感応領域)を有していてもよい。この場合、第1の蓄積領域が第1の光感応領域で発生した電荷を蓄積し、第2の蓄積領域が第2の光感応領域で発生した電荷を蓄積する。第1の転送電極は、第1の光感応領域と第1の蓄積領域との間に設けられる。第2の転送電極は、第2の光感応領域と第2の蓄積領域との間に設けられる。
各画素ユニットP(1)〜P(J)が有する光感応領域、蓄積領域、及び転送電極は、上述した特開2013−178121号公報及び特開2013−206903号公報などに記載されているように、それぞれ「1」であってもよい。この場合、転送電極に印加される電圧信号は、所定のタイミンクで間欠的に位相シフトが与えられている。たとえば、上記電圧信号は、180度のタイミングで180度の位相シフトが与えられている。転送電極に印加される電圧信号は、0度のタイミングで駆動パルス信号SLに同期し、180度のタイミングで駆動パルス信号SLに180度の位相差を有している。すなわち、0度のタイミングと180度のタイミングとにおいて、蓄積領域に蓄積された電荷が読み出される。
10…距離測定装置、12…光源部、14…センサ部、16…処理部、16a…信号処理部、18…センサ、Cy…電荷転送サイクル、fd1…第1の蓄積領域、fd2…第2の蓄積領域、PG…フォトゲート電極、RS1…第1のリセットスイッチ、RS2…第2のリセットスイッチ、T1…第1の転送期間、T2…第2の転送期間、Tf…フレーム期間、TX1…第1の転送電極、TX2…第2の転送電極、Vr…リセット電位。

Claims (8)

  1. 飛行時間法により対象物に対する距離を求める距離測定装置であって、
    変調光を放出する光源部と、
    入射光に応じて電荷を発生する光感応領域、前記光感応領域で発生した電荷を蓄積する蓄積領域、前記光感応領域と前記蓄積領域との間に設けられた転送電極、及び、前記蓄積領域とリセット電位との間に設けられたリセットスイッチを有するセンサ部と、
    前記変調光の放出タイミング及び前記センサ部を制御して、距離を算出する処理部と、
    を備え、
    前記処理部は、
    前記リセットスイッチを制御して前記蓄積領域を前記リセット電位に接続してから該蓄積領域を次に前記リセット電位に接続するまでのフレーム期間内の複数の電荷転送サイクルにおいて、一以上の放出期間に前記光源部に前記変調光を放出させ、かつ、前記電荷転送サイクル一回あたりの前記放出期間の数を一つの前記フレーム期間内で増加させ、
    前記一以上の放出期間に同期した一以上の転送期間に前記転送電極に与える電圧を制御して前記光感応領域で発生した電荷を前記蓄積領域に蓄積させ、
    前記複数の電荷転送サイクルのそれぞれに対応する複数の読出しサイクルにおいて、前記複数の電荷転送サイクルと交互の時点に前記蓄積領域に蓄積されている電荷量に応じた複数の読出し値を前記センサ部から取得し、
    前記複数の読出し値に基づいて、距離を算出する、距離測定装置。
  2. 前記処理部は、放出期間の周期を短くすることにより、前記電荷転送サイクル一回あたりの前記放出期間の数を増加させる、請求項1に記載の距離測定装置。
  3. 前記処理部は、電荷転送サイクルの期間を長くすることにより、前記電荷転送サイクル一回あたりの前記放出期間の数を増加させる、請求項1に記載の距離測定装置。
  4. 前記処理部は、前記電荷転送サイクル一回あたりの前記放出期間の数を段階的に増加させる、請求項1〜3のいずれか一項に記載の距離測定装置。
  5. 前記処理部は、前記電荷転送サイクル一回あたりの前記放出期間の数を徐々に増加させる、請求項1〜3のいずれか一項に記載の距離測定装置。
  6. 前記センサ部は、
    前記蓄積領域として、第1の蓄積領域及び第2の蓄積領域を含み、
    前記転送電極として、前記光感応領域と前記第1の蓄積領域との間に設けられた第1の転送電極、及び、前記光感応領域と前記第2の蓄積領域との間に設けられた第2の転送電極を含み、
    前記リセットスイッチとして、前記第1の蓄積領域とリセット電位との間に設けられた第1のリセットスイッチ、及び、前記第2の蓄積領域とリセット電位との間に設けられた第2のリセットスイッチを含み、
    前記処理部は、
    前記第1のリセットスイッチ及び前記第2のリセットスイッチを制御して前記第1の蓄積領域及び前記第2の蓄積領域を前記リセット電位に接続してから該第1の蓄積領域及び該第2の蓄積領域を次に前記リセット電位に接続するまでのフレーム期間内の複数の電荷転送サイクルにおいて、前記一以上の放出期間に同期した一以上の第1の転送期間に前記第1の転送電極に与える電圧を制御して前記光感応領域で発生した電荷を前記第1の蓄積領域に蓄積させ、前記一以上の第1の転送期間と位相反転した一以上の第2の転送期間に前記第2の転送電極に与える電圧を制御して前記光感応領域で発生した電荷を前記第2の蓄積領域に蓄積させ、
    前記複数の電荷転送サイクルのそれぞれに対応する複数の読出しサイクルにおいて、前記複数の電荷転送サイクルと交互の時点に前記第1の蓄積領域に蓄積されている電荷量に応じた複数の第1の読出し値及び該時点に前記第2の蓄積領域に蓄積されている電荷量に応じた複数の第2の読出し値を、前記センサ部から取得し、
    前記複数の第1の読出し値及び前記複数の第2の読出し値に基づいて、距離を算出する、請求項1〜5のいずれか一項に記載の距離測定装置。
  7. 前記処理部は、n回目の前記読出しサイクルの前記第1の読出し値と、n回目の前記読出しサイクルの前記第1の読出し値とn−1回目の前記読出しサイクルの前記第1の読出し値との間の差分値との和、又は、n回目の前記読出しサイクルの前記第2の読出し値と、n回目の前記読出しサイクルの前記第2の読出し値とn−1回目の前記読出しサイクルの前記第2の読出し値との間の差分値との和が、所定の閾値を超える場合に、n+1回目以降の前記読出しサイクルを停止し、ここでnは前記複数の読出しサイクルの順番を示す、請求項6に記載の距離測定装置。
  8. 前記処理部は、
    前記複数の第1の読出し値に基づく近似式を用いて第1の推定値を算出し、前記複数の第2の読出し値に基づく近似式を用いて第2の推定値を算出し、
    前記第1の推定値及び前記第2の推定値に基づいて、距離を算出する、請求項6又は7に記載の距離測定装置。
JP2015091372A 2015-04-28 2015-04-28 距離測定装置 Active JP6554310B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015091372A JP6554310B2 (ja) 2015-04-28 2015-04-28 距離測定装置
CH01201/17A CH712465B1 (de) 2015-04-28 2016-04-08 Distanzmessvorrichtung.
DE112016001944.0T DE112016001944T5 (de) 2015-04-28 2016-04-08 Distanzmessvorrichtung
CN201680024207.XA CN107533128B (zh) 2015-04-28 2016-04-08 距离测定装置
KR1020177033724A KR102481693B1 (ko) 2015-04-28 2016-04-08 거리 측정 장치
PCT/JP2016/061535 WO2016175012A1 (ja) 2015-04-28 2016-04-08 距離測定装置
US15/567,645 US10871568B2 (en) 2015-04-28 2016-04-08 Distance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015091372A JP6554310B2 (ja) 2015-04-28 2015-04-28 距離測定装置

Publications (2)

Publication Number Publication Date
JP2016206135A JP2016206135A (ja) 2016-12-08
JP6554310B2 true JP6554310B2 (ja) 2019-07-31

Family

ID=57199791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015091372A Active JP6554310B2 (ja) 2015-04-28 2015-04-28 距離測定装置

Country Status (7)

Country Link
US (1) US10871568B2 (ja)
JP (1) JP6554310B2 (ja)
KR (1) KR102481693B1 (ja)
CN (1) CN107533128B (ja)
CH (1) CH712465B1 (ja)
DE (1) DE112016001944T5 (ja)
WO (1) WO2016175012A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46672E1 (en) 2006-07-13 2018-01-16 Velodyne Lidar, Inc. High definition LiDAR system
US10627490B2 (en) 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
EP3430428A4 (en) 2016-03-19 2019-11-20 Velodyne Lidar, Inc. INTEGRATED LIGHTING AND DETECTION FOR 3D IMAGING BASED ON LIDAR
WO2017210418A1 (en) 2016-06-01 2017-12-07 Velodyne Lidar, Inc. Multiple pixel scanning lidar
JP6988071B2 (ja) * 2016-11-16 2022-01-05 株式会社リコー 距離測定装置及び距離測定方法
US10386465B2 (en) 2017-03-31 2019-08-20 Velodyne Lidar, Inc. Integrated LIDAR illumination power control
EP3392674A1 (en) * 2017-04-23 2018-10-24 Xenomatix NV A pixel structure
JP2018185179A (ja) * 2017-04-25 2018-11-22 株式会社リコー 測距装置、監視装置、3次元計測装置、移動体、ロボット及び測距方法
CN110809704B (zh) 2017-05-08 2022-11-01 威力登激光雷达美国有限公司 Lidar数据获取与控制
US11294041B2 (en) 2017-12-08 2022-04-05 Velodyne Lidar Usa, Inc. Systems and methods for improving detection of a return signal in a light ranging and detection system
US11971507B2 (en) 2018-08-24 2024-04-30 Velodyne Lidar Usa, Inc. Systems and methods for mitigating optical crosstalk in a light ranging and detection system
US10712434B2 (en) 2018-09-18 2020-07-14 Velodyne Lidar, Inc. Multi-channel LIDAR illumination driver
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
US20220075070A1 (en) * 2019-01-15 2022-03-10 National University Corporation Shizuoka University Distance image measurement device, distance image measurement system, and distance image measurement method
WO2020178920A1 (ja) * 2019-03-01 2020-09-10 株式会社ブルックマンテクノロジ 距離画像撮像装置および距離画像撮像装置による距離画像撮像方法
CN114096886A (zh) * 2019-06-25 2022-02-25 国立大学法人静冈大学 距离图像测量装置
US10613203B1 (en) 2019-07-01 2020-04-07 Velodyne Lidar, Inc. Interference mitigation for light detection and ranging
JP7300618B2 (ja) * 2019-09-06 2023-06-30 パナソニックIpマネジメント株式会社 撮像装置
KR20220122646A (ko) * 2019-12-26 2022-09-02 하마마츠 포토닉스 가부시키가이샤 광 검출 장치, 및 광 센서의 구동 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197635A (ja) * 1997-01-13 1998-07-31 Omron Corp レーザー測距装置
JP3521796B2 (ja) * 1999-03-25 2004-04-19 三菱電機株式会社 レーザレーダ装置
US6919549B2 (en) 2003-04-11 2005-07-19 Canesta, Inc. Method and system to differentially enhance sensor dynamic range
EP1860462A1 (de) * 2006-05-23 2007-11-28 Leica Geosystems AG Distanzmessverfahren und Distanzmesser zur Erfassung der räumlichen Abmessung eines Zieles
WO2009105857A1 (en) * 2008-02-29 2009-09-03 Institut National D'optique Light-integrating rangefinding device and method
JP5192891B2 (ja) * 2008-04-11 2013-05-08 三菱重工業株式会社 撮像システム
TWI540312B (zh) * 2010-06-15 2016-07-01 原相科技股份有限公司 可提高測量精確度、省電及/或能提高移動偵測效率的時差測距系統及其方法
US8681255B2 (en) * 2010-09-28 2014-03-25 Microsoft Corporation Integrated low power depth camera and projection device
JP5218513B2 (ja) 2010-09-30 2013-06-26 オムロン株式会社 変位センサ
JP5518667B2 (ja) 2010-10-12 2014-06-11 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
KR20130066289A (ko) 2011-12-12 2013-06-20 삼성전자주식회사 거리측정센서
JP5876289B2 (ja) * 2011-12-28 2016-03-02 浜松ホトニクス株式会社 距離測定装置
JP6017916B2 (ja) * 2012-10-16 2016-11-02 株式会社豊田中央研究所 光検出器
US9851245B2 (en) * 2012-11-06 2017-12-26 Microsoft Technology Licensing, Llc Accumulating charge from multiple imaging exposure periods
KR20150095033A (ko) * 2014-02-12 2015-08-20 한국전자통신연구원 레이저 레이더 장치 및 그것의 영상 획득 방법
EP3187823B1 (en) * 2014-08-27 2020-08-26 Nikon Vision Co., Ltd. Rangefinder and ranging method
JP6890263B2 (ja) * 2016-12-14 2021-06-18 パナソニックIpマネジメント株式会社 撮像制御装置、撮像制御方法、プログラムおよび記録媒体

Also Published As

Publication number Publication date
DE112016001944T5 (de) 2018-02-15
KR102481693B1 (ko) 2022-12-29
CN107533128B (zh) 2021-02-12
CH712465B1 (de) 2018-09-28
CN107533128A (zh) 2018-01-02
JP2016206135A (ja) 2016-12-08
US20180106902A1 (en) 2018-04-19
US10871568B2 (en) 2020-12-22
WO2016175012A1 (ja) 2016-11-03
KR20170140304A (ko) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6554310B2 (ja) 距離測定装置
JP5876289B2 (ja) 距離測定装置
JP5781918B2 (ja) 距離測定装置
US9706150B2 (en) Image pickup device and camera system with high precision at high speed pixel read
US9621860B2 (en) Image capturing apparatus and control method thereof, and storage medium
JP6501403B2 (ja) イメージセンサ
US20170244422A1 (en) Photoelectric conversion apparatus and image pickup system
CN110024375B (zh) 固态摄像装置和测距摄像装置
JP6406856B2 (ja) 撮像装置及びその制御方法
TW201230794A (en) Solid-state imaging device
EP3334152A1 (en) Solid-state imaging device
US11336854B2 (en) Distance image capturing apparatus and distance image capturing method using distance image capturing apparatus
WO2017056347A1 (ja) 固体撮像装置
US11523099B2 (en) Measurement device
JP2012175690A (ja) 固体撮像素子
US11800255B2 (en) Solid-state imaging device including driver circuits comprising multi-stage buffer elements
JP4770577B2 (ja) 固体撮像装置
US10057507B2 (en) Shifted binning in X-ray sensors
WO2023234253A1 (ja) 距離画像撮像装置、及び距離画像撮像方法
WO2023171345A1 (ja) 光電変換回路、及び光電変換装置
WO2021070212A1 (ja) 距離画像撮像装置及び距離画像撮像方法
JP2017211242A (ja) 受光装置、撮像デバイス
JP2023147558A (ja) 距離画像撮像装置、及び距離画像撮像方法
US20160134297A1 (en) Method and device for analog/digital conversion of an analog signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6554310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150