JP6553210B2 - 拡散音響共焦点撮像装置 - Google Patents

拡散音響共焦点撮像装置 Download PDF

Info

Publication number
JP6553210B2
JP6553210B2 JP2017555861A JP2017555861A JP6553210B2 JP 6553210 B2 JP6553210 B2 JP 6553210B2 JP 2017555861 A JP2017555861 A JP 2017555861A JP 2017555861 A JP2017555861 A JP 2017555861A JP 6553210 B2 JP6553210 B2 JP 6553210B2
Authority
JP
Japan
Prior art keywords
acoustic
detector
source
coherent
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017555861A
Other languages
English (en)
Other versions
JP2018501940A (ja
Inventor
ハーリング、ロドニー
Original Assignee
ハーリング、ロドニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハーリング、ロドニー filed Critical ハーリング、ロドニー
Publication of JP2018501940A publication Critical patent/JP2018501940A/ja
Application granted granted Critical
Publication of JP6553210B2 publication Critical patent/JP6553210B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0068Confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/15Transmission-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0681Imaging by acoustic microscopy, e.g. scanning acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8913Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using separate transducers for transmission and reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8956Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using frequencies at or above 20 MHz

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

関連出願への相互参照
この出願は、2015年1月15日に出願された米国仮特許出願第62/103,882号に関連し、その利益を主張する。この優先権を有する特許出願は、参照によりその全体が本明細書に組み込まれている。
発明の技術分野
本技術は、拡散音響共焦点撮像装置に関する。さらに、この技術は、音響共焦点撮像に関し、特に、腫瘍及び関連疾患の診断及び治療においてパルス状又は連続的なコヒーレント音響ビームを使用する方法に関する。
背景技術
ビームの振幅又は位相を検出することによって対象物に関する情報を得るために放射線ビームを使用することは、科学的及び医学的目的でよく知られている。例えば、物体を通過するビームの位相情報は、物体の温度、組成、磁場又は静電場に関する情報を提供することができ、振幅測定は、物体の不透明度又は密度に関する情報を提供することができる。ビームは、放射の波からなり、ここで、波Φは、振幅Aと位相θとの両方を持たせて数学的に、
Φ=Aexp(θ) 1)
として記述することができる。
この方法から得られる情報は、ビーム波の振幅を検出しているのか、ビーム波の振幅と位相との両方を検出しているのかに依存する。この方法がX線の場合のようにビームの振幅のみを測定する場合、対象物内の濃度差のみが報告される。これは、物体の温度、組成、弾性、歪み場、磁場又は静電場のような情報を提供しないので、この技術の限界である。X線イメージング法などの多数のイメージング技術のさらなる欠点は、使用される放射線の強度である。診断に使用される場合、使用されるレベルは体内の細胞に損傷を与える可能性がある。
超音波を含む音響顕微鏡は現在、子宮内の胎児及び動脈及び静脈内の血流など、身体の内部を画像化するために広く使用されている。これらの顕微鏡は、胚の流体と胎児との間の界面などの骨や界面などの表面から反射された音響ビームの強度を測定する。これらの顕微鏡は、筋肉又は胚性液などの軟組織を通過又は反射するビームの強度及び位相を測定することができない。これらの顕微鏡は、音響ビームの位相ではなく、音響ビームの強度のみを使用するため、温度や組成を測定することもできない。したがって、画像は、表面又は界面に関係する情報以外の情報を提供するのに適している。これらの顕微鏡のさらなる欠点は、生成された画像が、ビームの拡散散乱によって生じる相当量の背景強度を有することである。一例として、前立腺を取り上げると、超音波画像は前立腺と他の組織との間の界面を識別しにくく、また尿道を特定することもできるが、前立腺内の異常を特定することはできない。
ビームの振幅を測定する別の方法は、共焦点顕微鏡法である。共焦点走査レーザ顕微鏡は、3次元物体を見るために1980年代に開発された。共焦点走査レーザ顕微鏡法は、物体を通過するレーザービームを使用して、物体の焦点面上の点と共焦点に配置されたピンホールアパーチャを介してビームの振幅を検出することによって、物体の3次元振幅画像を生成する。
共焦点顕微鏡は、現在、材料、生物学、及び医学において幅広い用途を見出している。診断ツールとしての共焦点顕微鏡は、検出されたビームの振幅差を生じる薄い組織及び物体の濃度差のみを検出することに限定される。ビームは、組織や他の材料に遠くまで浸透することはできない。それらは対象物の位相情報を測定しない。したがって、共焦点顕微鏡は、対象物の組成又は温度を測定することができない。
仮に、この方法がビームの位相の変化を測定するならば、対象物の温度及び組成に関する情報を提供することができる。これには音響ビームを使用することができる。音響ビームの位相は、対象物の屈折率によって変化し、屈折率は、対象物の温度及び組成に依存し、音響ビームの音速の尺度である。
物体の絶対位相は、米国特許第7,639,365号に記載されているように、共焦点走査ホログラフィー顕微鏡を使用して測定することができる。この試みは、レーザービームが人体を容易に通過しないので、人体の内部を画像化するためには使用することができない。
物体の相対位相は、米国特許第8,485,034号に記載されているように、音響共焦点干渉計顕微鏡を使用して測定することができる。この試みは、干渉ビームとミラーとプリズムとの複雑な配置を必要とし、幾何学的制約のために人体の内部を撮像するには適していない。
標準的な干渉顕微鏡、標準的なホログラフィック顕微鏡、及び標準的なホログラフィック干渉顕微鏡が、物体の位相及び振幅の両方を測定し、物体の密度、組成及び温度などの重要な情報を与えるために使用されてきた。これらの顕微鏡は、位相と振幅の両方を測定することによって対象物の3次元振幅画像及び位相画像を生成する。それらが光学顕微鏡であるので、これらの顕微鏡から測定された3次元情報は、対象物の表面からのみ得られ、対象物内の点では検出されない。全ての場合、参照ビーム及び物体波はデータを収集するために使用され、これは画像の形成をもたらす。これは、これらの顕微鏡の使用を、物体の表面からの又は表面についてのデータを収集することに制限する。したがって、医学的診断において、それらは、皮膚の疾患に潜在的に有用であるが、内部組織又は器官の疾患には有用ではない。
音響ビームを使用して物体の振幅及び位相を測定することができる他の手段は、米国特許第6,679,846号、第6,436,046号、第6,132,375号及び第6,193,663号に開示されている空間フィルタリングされた送信超音波位相画像である。空間的にフィルタリングされた送信超音波位相画像化は、放射されたビームの振幅及び位相を測定し、その後、検出器への到着時に物体を通過した後の音響ビームの振幅及び位相を再び測定することを含む。振幅と位相の違いは、対象物に起因する。音源から、ビームは外側に拡散して拡散し、必要ではない背景散乱に至る。この背景散乱内又は周囲には、関心のある画像がある。その画像は、画像化されている物体の界面を表す。これは、3次元画像を表すものではなく、関心のある組織又は器官内の病変組織を特定することもできない。同様に、材料においては、液体と固体との間の界面のような界面が存在しない限り、材料内に異なる材料又は材料内の異なる物理的特性を有する領域を示すことができない。
ビームの振幅及び位相の両方を検出することができるデバイス、システム及び方法を提供することが有益である。このようなデバイス、システム及び方法は、物体の密度、温度、組成、弾性、歪み場、磁気又は静電場に関する情報を提供することができる。これは、密度、温度及び組成に関する情報を得ることができるように、医療分野において非常に重要であり、癌などの疾患の治療の有効性を潜在的に診断し、治療し、評価することを可能にする。理想的には、デバイスは、身体の様々な部分(例えば、前立腺、***、頭、及び皮膚などであるが、これらに限定されない)への適用のための様々な異なる形状の検出器ホルダを備えた手持ち型に適している。
温度及び乾燥組成の測定が重要である用途の例には、体内の器官、組織及び疾患領域の機能を理解することを目的とする医学診断が含まれる。現在、医学研究者は、身体の内部温度及び組成を非侵襲的に測定するための良好な手段を有していない。この技術の目的は、このような能力を提供することである。
必要とされるのは、プローブに集束させることができるコヒーレントビームを利用するシステムであり、次いで、拡散散乱ビームの仮想源として作用し、システムの検出器によって検出され、有意なデータに処理される。そのようなシステムは、密度、温度及び組成の差のような健康な組織と疾患のある組織との間の差異などの物質間の差異を検出する能力を提供することが好ましい。より好ましくは、同じシステムが罹患組織の治療を可能にするであろう。この技術の適用は、好ましくは疾患の診断及び治療にあるが、構造又は材料中の異なる材料又は異なる状態の検出に、より広く適用することもできる。
概要
本技術は、プローブに集束されるコヒーレントビームを利用するシステムを提供する。次に、そのプローブは、プローブからランダムに外側に放射する拡散散乱ビームの仮想源として機能する。或る拡散散乱されたビームは、検出器によって検出され、検出器からの出力は、数式を使用して意味のあるデータに処理するためにプロセッサに送られる。したがって、このシステムは、超音波では望ましくなく、画像の明瞭性に干渉する拡散散乱されたビームを利用して、材質の間の差異、例えば、濃度差、温度差、及び組成物差異を含めて、腫瘍と健常組織との間の差異を特定する画像を形成する。この重要性は、例えば健康な組織内の腫瘍又は疾患状態の3次元画像を得ることができることである。同様に、非医療用途では、別の媒体内の任意の構造又は同じ媒体の残りの媒体とは異なる物理的状態の一部の3次元画像を得ることができる。
組織内の腫瘍の3次元画像を提供できるだけでなく、その腫瘍に関する情報も提供することができる。音速は、腫瘍の種類、腫瘍の発達段階及び腫瘍の温度に相関する。
同じシステムを使用して、全てのエミッタ、又は選択された数のエミッタ又はパルスの何れかからビーム強度及び滞留時間を増加させることによって、腫瘍又は疾患状態を治療することができる。画像化及び診断の滞留時間は短く、例えば約1秒以下であり(これは滞留時間が短い)、例えば治療滞留時間は100乃至数100秒(これは滞留時間が長い)であり得る。理論に束縛されるものではないが、増加したビーム強度は、衝撃波砕石術(shock wave lithotripsy)と称されることがある衝撃波を提供し、外部から印加された音響パルスが腎臓石のような内部物体に集束され、増加したビーム強度及び滞留時間は、標的領域の温度を上昇させる。細胞を殺すのに必要なのは、5〜7℃の増加だけである。エミッタも検出器として機能するので、腫瘍の温度に関する情報を用いて、治療中の腫瘍の治療を指示することができる。これは、ビームの温度によって腫瘍の温度が変化するため、また腫瘍の健康状態が変化すると腫瘍の温度が変化するためである。
腫瘍の物理的な破壊は、化学療法が、血流の制限が腫瘍又は疾患状態によって引き起こされる腫瘍及び他の疾患状態の治療において有効であることを可能にする。腫瘍が壊れると、化学物質を含む血液が流れ、対象組織に入ることができる。
腫瘍又は疾患組織の温度に関する情報を提供するシステムの他の利点は、通常使用されていない追加の療法を実施できることである。例えば、遠赤外線は組織に浸透して対象組織を加熱することができるが、対象組織の温度を非常に慎重に監視する必要があるため、現在は使用されていない。本技術のシステムは、その能力を提供し、それにより、遠赤外線を、単独で、又は付加的な熱源として拡散音響共焦点画像化と組み合わせて使用することを可能にする。
システムが腫瘍又は病状の状態を報告することができるので、治療がいつ症状の治療に成功したかを決定することができる。
本技術は、既存の技術とは異なり、最初に非侵襲的に病変組織を画像化し、病変組織の種類及び状態を診断し、画像読取り、診断及びその後の治療を受けることなく疾患状態を治療する。この治療は、病気の状態を特定した直後に開始することができ、機器は患者の上又は体内に配置されたままである。同様に、治療の有効性は、治療が施行されるのと同時に監視することができる。
本技術の焦点は身体の疾患状態の治療の同定、特徴付け、診断、治療及び監視であるが、材料又は材料間の状態及び状態の相違を判定すべき必要がある任意の用途にも適している。
一実施形態では、物体に関する3次元及び状態情報を提供するためのデータ分析と共に使用する拡散音響共焦点撮像デバイスが提供される。このデバイスは、医療撮像目的のために約0.5メガヘルツ乃至約100メガヘルツの範囲の音響共焦点ビームを生成するように構成されたコヒーレント音響源と、仮想コヒーレントビームを仮想源に集束させるように構成された音響コヒーレントビーム集束器と、前記仮想源からの少なくとも1つの散乱ビームと、前記コヒーレント音響源及び前記音響検出器のそれぞれと電子通信するベクトルネットワークアナライザとを含む。
このデバイスにおいては、音響ビーム集束器は、音響共焦点ビームを反射する曲面ミラーであってもよい。
このデバイスは、コヒーレントな音響源を動かすための光源アクチュエータをさらに備えていてもよい。
このデバイスは、音響検出器を移動させるための検出器アクチュエータをさらに備えてもよい。
このデバイスは、ソースアクチュエータ及び検出器アクチュエータのうちの少なくとも1つと電子通信するプロセッサをさらに備えることができる。
このデバイスにおいては、音響検出器は、1次元又は2次元音響領域検出器であってもよい。
このデバイスにおいては、1次元又は2次元音響アレイ検出器は、時間的合成開口を含むことができる。
このデバイスにおいては、音響検出器、曲面ミラー及びコヒーレント音響源は、ボアスコープ又は内視鏡を提供するようにウォンド(wand)内に収容されてもよい。
このデバイスにおいては、コヒーレント音響源、音響コヒーレントビーム集束器及び音響検出器を一つのユニットに統合することができる。
このデバイスにおいては、音響ビーム集束器はレンズであってもよい。
このデバイスにおいては、コヒーレントな音響源をレンズと音響検出器との間に取り付けることができる。
このデバイスにおいては、ユニットはカップ形状であってもよい。
このデバイスは、ウォンドをさらに備えてもよく、ユニットはウォンドの端部に取り付けられる。
他の実施形態では、組織における疾患を診断する方法が提供され、この方法は、約0.5乃至約100メガヘルツの音響共焦点ビームを放射し、音響共焦点ビームを組織内の仮想源に集束させ、低滞留時間にて仮想源で組織を走査し、前記仮想源からの複数の拡散散乱されたビームを検出して複数のデータを与え、この複数のデータを分析することを含む。
この方法においては、拡散音響共焦点撮像装置が音響共焦点ビームを放射することができる。
この方法は、プロセッサと検出器アクチュエータを用いて、複数の散乱ビームの検出を支援することをさらに含むことができる。
この方法は、滞留時間を高い滞留時間へ増加させることによって組織中の疾患を治療することをさらに含み得る。
この方法は、プロセッサ及びソースアクチュエータを用いて、走査を制御することをさらに含むことができる。
この方法においては、音響共焦点ビームを放出してカップ形状ユニットに集束させ、複数の散乱ビームをカップ形状ユニット内で検出することができる。
この方法においては、疾患は前立腺癌である場合があり、カップ形状ユニットは、前立腺に適合するような形状及びサイズにすることができる。
この方法においては、疾患は乳癌である場合があり、カップ形状ユニットは、***に適合するような形状及びサイズにすることができる。
他の実施形態では、組織内の腫瘍を診断する方法が提供され、この方法は、上述のデバイス及びデータ分析器を利用することを含む。
この方法は、腫瘍を診断すると直ちに組織中の腫瘍を治療することをさらに含み得る。
本技術の一実施形態では、適切に選択された検出器と、適切に選択され、約0.5乃至約100メガヘルツの周波数源と共に使用され、対象の状態に関する3次元情報を提供するための拡散音響共焦点撮像装置(Diffuse Acoustic Confocal Imager:DACI)が提供される。DACIは、前記コヒーレントビームを適切に選択されたパターンで移動させる走査手段と、仮想光源ビームを生成して焦点に集束する手段とを有する。仮想源ビームは、音響ビームを有する物体を貫通する。周波数源は、異なる材料について高くても低くてもよいことが予想され、例えば約500メガヘルツ程度の高さ、短波長を有する高周波、より高い空間分解能及び物体への低減された浸透率である。
他の実施形態では、物体上に3次元情報及び状態情報を提供するためのデータ分析器と共に使用する拡散音響共焦点撮像デバイスが提供され、このデバイスは、線形アレイ音響検出器を備え、この線形アレイ音響検出器は、アレイ状の複数の発光素子と検出器と、約0.5メガヘルツから約100メガヘルツの範囲の音響共焦点ビームを生成し、仮想源からの少なくとも1つの散乱ビームを検出するように構成された2次元音響アレイ検出器と、音響コヒーレントビームを仮想源へ合焦させるように構成された音響コヒーレントビーム集束器と、ベクトルネットワークアナライザとを備え、このベクトルネットワークアナライザは線形アレイ音響アクチュエータの検出器と電子的に通信する。
この拡散音響共焦点撮像デバイスにおいては、音響コヒーレントビーム集束器はレンズであってもよい。
この拡散音響共焦点撮像デバイスは、プロセッサをさらに備えてもよく、プロセッサは、複数の発光素子の相対位相を調整するように構成される。
この拡散音響共焦点撮像デバイスは、少なくとも1つのレーザーエミッタをさらに備えることができる。
さらに他の実施形態では、組織内の疾患を診断する方法が提供され、この方法は請求項22乃至25の何れか一項の拡散音響共焦点撮像デバイスを利用し、約0.5乃至約100メガヘルツの音響共焦点ビームを射出し、組織の少なくとも一部の領域に焦点を合わせ、低滞留時間にて仮想源で組織を走査し仮想源から複数の拡散散乱されたビームを検出し、複数のデータを与えて、この複数のデータを解析することを含む。
この方法は、仮想源の滞留時間を増加させることによって組織における疾患を治療することをさらに含み得る。
この方法はさらに、少なくとも1つのレーザーエミッタからのレーザービームを疾患における仮想源に集束させることによって、組織内の疾患を治療することを含むことができる。
この方法においては、レーザービームは赤外線レーザービームとしてもよい。この方法においては、レーザービームは、ヘリウム - ネオンレーザービームとしてもよい。
本技術は、図面と関連して説明される。
図1は、本技術の第1の実施形態による拡散音響共焦点撮像装置である。 図2は、1次元又は2次元領域検出器を点検出器に置き換えた本技術の第2の実施形態による拡散音響共焦点撮像装置である。 図3は、本技術の第3の実施形態による拡散型共焦点撮像装置である。 図4は、本技術の第4の実施形態による拡散型共焦点撮像装置である。 図5は、本技術の第5の実施形態による拡散型共焦点撮像装置である。 図6は、本技術の第6の実施形態による拡散型共焦点撮像装置である。 図7は、本技術の第7の実施形態による拡散型共焦点撮像装置である。 図8Aは、本技術の拡散型共焦点撮像装置を用いて得られた結果を示す。 図8Bは、図8Aの病変1の結果のグラフ表示を示す。 図8Cは、図8Aの病変2の結果のグラフ表示を示す。 図9は、何れかの実施形態による拡散型共焦点撮像装置の一部を示し、追加のビーム源が設けられている。 図10は、本技術の撮像装置で治療可能な前立腺癌及び前立腺の他の状態の非侵襲的な診断及び治療のために撮像装置が構成されている拡散型共焦点撮像装置の一部を示す。 図11は、2つの音響ビームエミッタが物体の機能を決定するために使用される本技術の他の実施形態を示す。
特に明示されない限り、以下の解釈の規則は本明細書(詳細な説明、請求項及び図面)に適用される。(a)本明細書で使用される全ての単語は、状況が必要とするような文法上の性又は数(単数又は複数)であると解釈されるものとする。(b)明細書及び添付の特許請求の範囲で使用されている単数の用語「a」、「an」及び「the」は、文脈上他に明確に指示されない限り、複数の参照を含む。(c)引用された範囲又は値に適用される先行用語「約」は、測定方法から当技術分野で公知又は予想される範囲又は値における偏差内の近似値を示す。(d)「ここに」、「これによって」、「そこに」、「そこへ」、「前に」、及び「以後」という単語及び同様の趣旨の単語は、この明細書全体を参照するものであり、特に指定しない限り、何らかの特定の節、請求項又は他の下位区分を参照するものではない。(e)記述の見出しは便宜上のものであり、明細書の如何なる部分の意味又は構成にも規制若しくは影響を与えるものではない。(f)「又は」及び「任意の」は排他的ではなく、「含む」及び「含む」は限定的ではない。さらに、「備える」、「有する」、「含む」及び「含有する」という用語は、特に明記しない限り、無制限の用語(すなわち、「含むが、これに限定されない」を意味する)として構成されている。
記述的な支持を提供するのに必要な程度まで、添付の特許請求の主題及び/又は本文は、その全体が参照により本明細書に組み込まれる。
本明細書中の値の範囲の列挙は、本明細書中で別段の指示がない限り、範囲内の各別個の値を個別に指す簡略的方法として便宜になることを意図しており、それぞれの個別値は本明細書に個別に列挙されているかのように、特定の範囲の値が提供される場合、下限の単位の10分の1までの各介在値は、その範囲の上限と下限との間の他の記載された値又は介在する値及びその他の記載された範囲内に含まれる。全てのより小さな下位範囲も含まれている。これらのより小さい範囲の上限及び下限も、記載された範囲内の特定の除外された限界を条件として、そこに含まれる。
別に定義されない限り、本明細書で使用される全ての技術用語及び科学用語は、関連技術分野の当業者によって一般的に理解されるのと同じ意味を有する。本明細書に記載された方法及び材料と類似又は均等の任意の方法及び材料も使用することができるが、ここでは許容可能な方法及び材料を記載する。
定義
本技術の文脈において、「直ちに」は、診断が行われ、処置が行われている間、デバイスがその場にとどまることを意味する。デバイスを取り外す必要はなく、診断を決定して治療を行うためにデバイスを交換する必要はない。
本技術の文脈において、衝撃波砕石術は、外部に適用された音響パルスであり、これを石に集中させて、小さな断片に破砕することによってそれを焼灼する。
概要
音響ビームに対して透過性の表面及び内部の物体の周囲の点から音響ビームを得るための拡散型共焦点撮像装置(Diffuse Acoustic Confocal Imager:DACI)が、対象物から散乱された音響ビーム強度の振幅及び位相の3次元測定のために提供される。光学系内の集束レンズは、放射されたコヒーレント音響ビームから集束ビームを生成する。集束ビームは、仮想源を形成する点に集束される。仮想源は、音響的に透過性の物体の表面上及び内部を走査される。検出器は、合焦された仮想源に共焦点に配置される。検出器は、合焦された仮想源から対象物によって散乱されたビームを検出する。物体への集束ビームの集束角は、測定される物体の3次元体積を規定する。合焦された仮想源からの各散乱ビームは、物体上の合焦された仮想源によって与えられた物体の一部と相互作用した散乱ビームの振幅及び位相情報を与える式と等価である。物体の強度測定値の「N」個はDACIによって取得され、3次元物体を記述する「N」個の3次元点を解くために使用される。強度測定値から得られた位相情報から、対象物の屈折率nを決定することができ、これは空気中の音速(すなわち音響ビームの速度)の比として定義され、3次元物体を記述している各点について、物体c内の音速に変換する。すなわち、
n=Cair/C
物体の屈折率は、物体の状態(例えば、その温度及び/又は組成)を決定するために使用することができる。
発明の詳細な説明
図1は、本技術の第1の実施形態による全体的に10として参照する拡散音響共焦点撮像装置の図解を示す。コヒーレント音響エミッタなどのコヒーレント音響源12は、コヒーレント音響ビーム14を放射する。可干渉性音響源12は、手動で移動させることができ、又は可干渉性音響源12と機械的に連通している光源アクチュエータ16で移動することができる。ソースアクチュエータ16は、好ましくは、コヒーレント音響源12に組織又は器官又は物体材料20上にコヒーレント音響ビーム14を走査させるべくソースアクチュエータ16を指向させるように構成されたプロセッサ18によって制御される。可干渉性音響源12は、哺乳類の体内の密度、温度、組成、弾性又は歪み場の1つ又は複数を含む情報を得るために、約0.5メガヘルツ乃至約100メガヘルツの間のビーム周波数を有するコヒーレント音響ビーム14を提供する。
コヒーレント音響ビーム14は、典型的には1センチメートル又は数センチメートル程度の大きな断面積を有する。コヒーレント音響ビーム14は、空間フィルタ21を通って集束ミラー又はレンズ22に至り、そこで曲面によって反射され、集束ビーム30に集束されて対象媒体20を透過し、これは集束ビーム30を対象媒体20における材料又は媒体32の第1の対象、構造、媒体又は異なる物理状態へ伝達する。集束ビーム30は集束し、クロスオーバー点で仮想源34に集束される。仮想源34からは、入射する集束ビーム30のビームは3次元的に全方向に散乱される。散乱ビーム36は、第1の物体32及び物体媒体20から出て、音響検出器40によって検出される。音響検出器40は仮想源34に合焦される。音響検出器40は、図1に示すように、角度方向の範囲を有する散乱ビーム36を収集するように移動することができる。検出器アクチュエータ42は、音響検出器40と機械的に連通し、検出器アクチュエータ42と電子的に通信するプロセッサ44の制御下にある。散乱ビーム36は、対象物媒体20及び第1の対象物32に関する情報を含み、一般に物体波と称される。散乱ビーム36によって搬送される結果の情報は、当技術分野で公知の技術に従って、その振幅及び位相を決定するために分析される。
第1の対象物32全体を観察するために、仮想光源34は、集束ミラー22及び音響検出器40を旋回させることによって、第1の対象物32の外側及び内側を走査する。第1の対象物32の走査は、第1の対象物32を移動させるか、又は顕微鏡10を移動させることによっても達成される。この手段によって、第1の物体32内の第2の物体50は、音響検出器40によって収集された散乱ビーム36によって提供される振幅及び位相情報を用いて撮像され得る。第1のワイヤ52は、コヒーレント音響源12とベクトルネットワークアナライザ54との間に延在し、第2のワイヤ56は、ベクトルネットワークアナライザ54と音響検出器40との間に延在し、これらの構成要素間の電気通信を提供する。ベクトルネットワークアナライザ54の役割は、コヒーレント音響ビーム14及び受信された散乱ビーム36の振幅及び位相情報を測定することである。内蔵の信号発生器が含まれている。これを行うために、ベクトルネットワークアナライザ54は、コヒーレント音響源12及び音響検出器40とそれぞれ通信する第1及び第2のワイヤ52、56を使用して電子的に接続される。ベクトルネットワークアナライザ54は、時間フィルタとしても機能する。空間フィルタ21及び時間フィルタは、音量が小さいほど、撮像に使用される音響仮想源34の音量を制限し、画像についての解像度が良好になる。全ての実施形態において、画像化の方法は、空間フィルタを必要とせず、集束された仮想源34から強度を収集するための時間を制限する時間フィルタのみに依存することができる。理論に束縛されることなく、空間フィルタ21は、場合によってはより高品質の画像を提供するが、検出器によって収集される強度を低減することがあり、これは場合によっては画像を劣化させる可能性がある。1つのフィルタ又は両方のフィルタの何れかによって規定されるビーム14の体積のみが検出に使用される。
空間分解能は、集束された仮想源34における集束ビーム30のサイズによって設定される。対象物は常に焦点外れであり、適切なx,y,zレジストリで対象物を定義する点の振幅及び位相の全てを組み合わせるときに焦点が合うのみである。
図2は、音響検出器40が二次元音響アレイ検出器140に置き換えられた本技術の第2の実施形態による拡散音響共焦点撮像装置110の図解を示す。音響検出器140、コヒーレント音響源112、及び集束ミラー122は、全体的に182で参照されるウォンド型の音響ボアスコープ又は内視鏡を与えるために管180内に収容される。再び、コヒーレント音響エミッタなどのコヒーレント音響源112は、コヒーレント音響ビーム114を放射する。コヒーレントな音響源112は、手動で移動させることができ、又はコヒーレントな音響源112と機械的に連通している光源アクチュエータ116で移動させることができる。ソースアクチュエータ116は、好ましくは、コヒーレント音響源16に組織又は器官又は物体材料120上にコヒーレント音響ビーム114を走査させるべくソースアクチュエータ116を指向させるように構成されたプロセッサ118によって制御される。コヒーレント音響源112は、哺乳類の体内の密度、温度、組成、弾性又は歪み場の1つ又は複数を含む情報を得るために、約0.5メガヘルツと約100メガヘルツとの間のビーム周波数を有するコヒーレント音響ビーム114を与える。
第1の実施形態に関して、コヒーレント音響ビーム114は、代表的にはセンチメートル又は数センチメートルの程度の大きな断面積を有する。コヒーレント音響ビーム114は、集束ミラー122に進み、曲面によって反射され、集束ビーム130に集束され、これは対象媒体120を貫通し、対象媒体は集束ビーム130を対象物体120内の第1の物体、構造、媒体又は異なる物理的状態へ伝達する。集束ビーム130は集束し、クロスオーバ点で仮想源134に合焦される。仮想源134から、到来する集束ビーム130は、3次元の全方向に散乱される。散乱ビーム136は、第1の物体132及び物体媒体120から出て、2次元音響アレイ検出器140によって検出される。2次元音響アレイ検出器140は、仮想源134に焦点を合わせる必要はなく、従って、散乱ビーム136を収集するために移動する必要はない。散乱ビーム136は、物体媒体120及び第1物体132に関する情報を含み、一般に物体波と称される。散乱ビーム136によって搬送された結果の情報は、当技術分野で公知の技術に従ってその振幅及び位相を決定するために分析される。仮想音源134からの強度に対応する所定の設定された時間枠内で、1次元又は2次元音響アレイ検出器140に到達するビーム136のみが使用される。
第1の物体132全体を観察するために、仮想光源134は、集束ミラー122及び2次元音響アレイ検出器140を旋回させることによって、第1の物体132の外側及び内側を走査する。第1の対象物120の走査は、第1の対象物120を移動させるか、又は顕微鏡110を移動させることによっても達成される。これらの手段によって、第1の物体132内の第2の物体150は、音響検出器140によって収集された散乱ビーム136によって提供される振幅及び位相情報を用いて撮像することができる。
第1のワイヤ152は、コヒーレント音響源12とベクトルネットワークアナライザ154との間に延在し、第2のワイヤ156は、ベクトルネットワークアナライザ154と2次元音響アレイ検出器140との間に延在し、これらの構成要素の間の電気通信を提供する。より詳細には、個々のワイヤ190は、二次元音響アレイ検出器140の各要素192に取り付けられる。各検出器要素192は、それ自体の空間フィルタ194を有する。ベクトルネットワークアナライザ154の役割は、放射及び受信された強度の振幅及び位相情報を測定することである。これは内蔵信号発生器を含む。これは時間フィルタとしても機能する。
図3は、本技術の第3の実施形態による拡散音響共焦点撮像装置210の図解を示す。再び、コヒーレント音響エミッタなどのコヒーレント音響源212は、コヒーレント音響ビーム214を放射する。可干渉性音響源212は、手動で移動させることができ、又は、可干渉性音響源212と機械的に通信する光源アクチュエータ216で移動することができる。ソースアクチュエータ216は、好ましくは、コヒーレント音響源216に組織又は器官又は物体材料220上にコヒーレント音響ビーム214を走査させるようにソースアクチュエータ216を指向させるように構成されたプロセッサ218によって制御される。コヒーレント音響源212は、哺乳類の体内の密度、温度、組成、弾性又は歪み場の1つ以上を含む情報を得るために、約0.5メガヘルツと約100メガヘルツとの間のビーム周波数を有するコヒーレント音響ビーム214を与える。
第1の実施形態に関して、コヒーレント音響ビーム214は、代表的には数センチメートル程度の大きな断面積を有する。コヒーレント音響ビーム214は、水のような周囲の音響的に透明な媒体220を通って、音響的に透明な物体232(第1の物体)に入る。可干渉性音響源212は、クロスオーバ点で可干渉性音響ビーム214を仮想源234に合焦させるように成形されたその放射面213を有する。仮想源234から、コヒーレント音響ビーム214は3次元的に全方向に散乱される。散乱ビーム236は、第1の物体232及び物体媒体220から出て、2次元音響アレイ検出器240によって検出される。1次元又は2次元音響アレイ検出器240は、仮想源234に焦点を合わせる必要がないので、散乱ビーム236を収集するために移動させる必要はない。散乱ビーム236は、物体媒体220及び第1の物体232に関する情報を含み、一般に物体波と称される。散乱ビーム236によって搬送される結果の情報は、当該技術分野で公知の技術に従ってその振幅及び位相を決定するために分析される。
第1の物体232全体を観察するために、仮想源234は、コヒーレントな音響源212を旋回させることによって第1の物体232の外側及び内側を走査する。第1の対象物232の走査は、第1の対象物220を移動させるか、又は顕微鏡210を移動させることによっても達成される。これらの手段によって、第1の物体232内の第2の物体250(一つ又は複数)は、2次元音響アレイ検出器240によって収集された散乱ビーム236によって提供される振幅及び位相情報を用いて撮像することができる。
第1のワイヤ252は、コヒーレント音響源212とベクトルネットワークアナライザ254との間に延在し、第2のワイヤ256は、ベクトルネットワークアナライザ254と2次元音響アレイ検出器240との間に延在し、これらの構成要素間の電気通信を与える。より詳細には、個々のワイヤ290は、二次元音響アレイ検出器240の各素子292に取り付けられる。各検出器素子292はそれ自身の空間フィルタ294を有する。ベクトルネットワークアナライザ254の役割は、放出及び受信強度の振幅及び位相情報を測定することである。これは内蔵信号発生器を含む。これは時間フィルタとしても機能する。
空間解像度は、第3の実施形態では、集束仮想源234におけるコヒーレント音響ビーム214のサイズによって設定される。対象物は常に焦点が合っておらず、適切なx、y、zレジストリで対象物を定義する点の振幅と位相の全てを組み合わせると、焦点が合っていることが観察される。
図4は、この技術の第4の実施形態を示す。コヒーレント音響アクチュエータなどのコヒーレント音響源312は、コヒーレント音響ビーム314を放射する。音響検出器340、可干渉性音響源312、及び集束ミラー322(好ましくは可撓性である)は、全体的に382で参照されるウォンド型音響ボアスコープを与えるために管380内に収容される。再び、コヒーレント音響エミッタなどのコヒーレント音響源312は、コヒーレント音響ビーム314を放射する。可干渉性音響源312は、手動で移動させることができ、又は可干渉性音響源312と機械的に連通しているソースアクチュエータ316で移動させることができる。ソースアクチュエータ316は、好ましくは、コヒーレント音響源316に組織又は器官又は物体材料320に亘ってコヒーレント音響ビーム314を走査させるようにソースアクチュエータ316を指向させるように構成されたプロセッサ318によって制御される。コヒーレント音響源312は、哺乳類の体内の密度、温度、組成、弾性、歪み場、磁場又は静電場の1つ又は複数を含む情報を得るために、約0.5メガヘルツと約100メガヘルツとの間のビーム周波数を有するコヒーレント音響ビーム314を与える。
第1の実施形態に関して、コヒーレント音響ビーム314は、典型的にはセンチメートル又は数センチメートル程度の大きな断面積を有する。コヒーレント音響ビーム314は、集束ミラー322に進み、曲面によって反射され、集束ビーム330へ集束して対象媒体320を貫通し、これは集束ビーム330を対象媒体320内の材料又は媒体332の第1の物体、構造、媒体又は異なる物理的状態へ伝達する。集束ビーム330は集束し、クロスオーバ点で仮想源334に集束される。仮想源334から、入射する集束ビーム330のビームは、3次元で全方向に散乱される。散乱ビーム336は、第1の物体332及び物体媒体320から出る。仮想光源強度に対応する所定の設定された時間フレーム内のビーム336のみが使用される。これらのビームは、情報ビーム337と称され、一時的な合成開口を有する1次元又は2次元の音響アレイ検出器340によって検出される。時間的合成アパーチャを有する1次元又は2次元音響アレイ検出器340は、仮想源334に集束する必要はなく、従って、散乱ビーム336を集めるために移動させる必要はない。情報ビーム337は、物体媒体320及び第1物体332に関する情報を含み、一般に物体波と呼ばれる。情報ビーム337によって搬送される結果の情報は、当該技術分野で公知の技術に従って、その振幅及び位相を決定するために分析される。
第1の物体332全体を観察するために、仮想光源334は、集束ミラー322と時間的合成開口を有する2次元音響アレイ検出器340とを旋回させることによって、第1の物体332の外側及び内側を走査する。第1の対象物332の走査は、第1の対象物320を移動させるか、又は顕微鏡310を移動させることによっても達成される。これらの手段によって、第1の物体332内の第2の物体350(一つ又は複数)は、時間的合成アパーチャを有する2次元音響アレイ検出器340によって収集された情報ビーム337によって与えられる振幅及び位相情報を用いて画像化することができる。
第1のワイヤ352は、コヒーレント音響源332とベクトルネットワークアナライザ354との間に延在し、第2のワイヤ356は、ベクトルネットワークアナライザ354と2次元音響アレイ検出器340との間に、時間的合成開口部340を有して延在し、これらの構成要素の間に電気的通信を与える。より詳しくは、個々のワイヤ390は、二次元音響アレイ検出器340の各素子392に取り付けられる。各検出器要素392は、それ自体の空間フィルタ394を有する。2次元音響アレイ検出器340の時間的合成アパーチャは、集束された仮想源から放出された強度のみを検出若しくは受信し、集束された仮想源の前に散乱された強度及び集束された仮想源の後に散乱された強度を無視するために使用される。ベクトルネットワークアナライザ354の役割は、放射及び受信された強度の振幅及び位相情報を測定することである。これは内蔵信号発生器を含む。時間フィルタは、ベクトルネットワークアナライザ354と一体的であってもよい。
この技術の第5の実施形態を図5に示す。この実施形態は、前立腺疾患の診断及び治療のために特別に設計され、内視鏡としても使用することができる。コヒーレント音響源412及び1次元又は2次元音響アレイ検出器440は、前立腺に適合し、ウォンド482の端部478に取り付けられたカップの形状である単一の結合ユニット480に統合される。複合ユニット480は、例えば、ポリメチルペンテンとして形成されるが、これに限定されない、1次元又は2次元音響アレイ検出器440上に結合された透明プラスチックレンズから構成することができる。可干渉性音響源412は、クロスオーバ点で可干渉性音響ビーム414を仮想源434に集束させるように成形された放射面413を有する。仮想源434から、コヒーレント音響ビーム414は、3次元で全ての方向に散乱される。散乱ビーム436は、第1の物体432及び物体媒体420から出て、2次元音響アレイ検出器440によって検出される。結合ユニット480は、並進+回転ステージ484を使用して並進及び回転することができる。結合ユニット480の並進及び回転は、仮想源434を移動するために使用される。
第1の物体432全体を観察するために、仮想源434は、並進及び回転ステージ484を使用して複合ユニット480を旋回させることによって、第1の物体432の外側及び内側を走査する。この手段によって、第1の物体432内の第2の物体450は、2次元音響アレイ検出器440によって収集された散乱ビーム436によって提供される振幅及び位相情報を使用して画像化することができる。
第1のワイヤ452は、コヒーレント音響源412とベクトルネットワークアナライザ454との間に延在し、第2のワイヤ456は、ベクトルネットワークアナライザ454と2次元音響アレイ検出器440との間に延在し、これらの構成要素の間の電気通信を与える。より詳しくは、2次元音響アレイ検出器440の各要素492に個々のワイヤが取り付けられる。ベクトルネットワークアナライザ454の役割は、放出された強度及び受信された強度の振幅及び位相情報を測定することである。それは内蔵信号発生器を含む。これは時間フィルタとしても機能する。
仮想源434の多くの位置からの多くの散乱ビーム436の振幅及び位相を検出することによって、例えば前立腺のような第1の物体432内の物体450の位置及びサイズを決定することができる。散乱されたビーム436の位相を測定することによって、第1の物体432内の第2の物体450の音速を決定することができる。第1の物体432内の第2の物体450の音速は、診断の目的で使用することができる。
エミッタ50及び検出器52は、同じ材料、すなわち圧電材料で製作されている。したがって、集束レンズのようなエミッタ及び検出器ユニット480の放射側を成形することによって、コヒーレント音響ビーム414を集束レンズのように対象物450(前立腺)に集束させ、2次元音響アレイを使用して散乱ビーム436を検出する検出器440をその表面上に置く。二次元音響アレイ検出器440は、その表面上に多数の小さな素子492を含み、各素子492は独立して検出され、それ自体の中のデバイスである。さらに、各検出器要素492は、放出するのみならず、検出することができる。これにより、病変領域の特定が可能になり、直ちに病変領域の治療がなされ、機器の変更、機器の移動は不要であり、デバイスは同じ位置に留まり、コヒーレント音響ビーム414の強度は増加する。各検出器要素492は、それ自身の空間フィルタ494を有する。
第6の実施形態を図6に示す。この実施形態は、***の疾患の診断及び治療のために特別に設計されている。コヒーレント音響源512及び二次元音響アレイ検出器540は、***に嵌合するカップの形状である単一の結合ユニット580に統合される。可干渉性音響源512は、クロスオーバ点で可干渉性音響ビーム514を仮想源534に集束させるように成形された放射面513を有する。仮想源534から、コヒーレント音響ビーム514は、全ての方向に2次元的に散乱される。散乱されたビーム536は、第1の物体532及び対象媒体520の外に出て、時間的な合成開口を有する2次元音響アレイ検出器540によって検出され、仮想の開口に対応する所定の設定時間枠内のビーム536のみを許容する光源強度が使用される。結合されたユニット580は、並進+回転段階584に進む。結合ユニット580の並進及び回転は、仮想源534を移動するために使用される。
第1の物体532全体を観察するために、仮想源534は、並進及び回転ステージ584を用いて結合ユニット580を旋回させることによって、第1の物体532の外側及び内側を走査する。この手段によって、第1の物体532内の第2の物体550(一つ又は複数)は、2次元音響アレイ検出器540によって収集された散乱ビーム536によって与えられる振幅及び位相情報を使用して画像化することができる。
第1のワイヤ552は、コヒーレント音響源512とベクトルネットワークアナライザ554との間に延在し、第2のワイヤ556は、ベクトルネットワークアナライザ554と2次元音響アレイ検出器540との間に延在し、これらの構成要素の電気通信を与える。より詳しくは、個々のワイヤは、二次元音響アレイ検出器540の各要素592に取り付けられる。各検出器要素は、それ自身の空間フィルタ594を有する。ベクトルネットワークアナライザ554の役割は、放出された強度及び受信された強度の振幅及び位相情報を測定することである。これは内蔵信号発生器を含む。これは時間フィルタとしても機能する。
仮想光源534の多くの位置からの多くの散乱ビーム536の振幅及び位相を検出することによって、例えば***などの第1の物体532内の対象物、例えば腫瘍550の位置及びサイズを決定することができる。散乱ビーム536の位相を測定することにより、第1の物体532内の第2の物体550の音速を決定することができる。第1の物体532内の第2の物体550の音速は、診断の目的で使用することができる。
第7の実施形態を図7に示す。コヒーレント音響源612、レンズ635、及び1次元又は2次元音響アレイ検出器640は、カップの形状である単一の結合ユニット680に統合される。レンズ635は、例えば、1次元又は二次元音響アレイ検出器640上に結合されたポリメチルペンテンとして作成されてもよいが、これに限定されるものではない。レンズ635は、コヒーレント音響ビーム614をクロスオーバ点で仮想源634に集束させるような形状をしている。検出器640の下の放射源612の配置は逆にすることができるが、音響ビームの検出感度は低下することに留意されたい。仮想源634から、コヒーレント音響ビーム614は、3次元の全方向に散乱される。散乱ビーム636は、第1の物体632及び物体媒体620から出て、1次元又は2次元音響アレイ検出器640によって検出される。
第1の物体632全体を観察するために、仮想源634は、並進及び回転ステージ684を用いて複合ユニット680を旋回させることによって、第1の物体632の外側及び内側を走査する。この手段により、第1の物体632内の第2の物体650(一つ又は複数)は、1次元又は2次元音響アレイ検出器640によって収集された散乱ビーム636によって与えられる振幅及び位相情報を使用して撮像することができる。
第1のワイヤ652は、コヒーレント音響源612とベクトルネットワークアナライザ654との間に延在し、第2のワイヤ656は、ベクトルネットワークアナライザ654と2次元音響アレイ検出器640との間に延在し、これらの構成要素の電気通信を与える。より詳しくは、個々のワイヤは、二次元音響アレイ検出器640の各要素692に取り付けられる。各要素692は、それ自身の空間フィルタ694を有する。ベクトルネットワークアナライザ654の役割は、放出された強度及び受信された強度の振幅及び位相情報を測定することである。これは内蔵信号発生器を含む。ベクトルネットワークアナライザ及びコヒーレント音響源及び音響領域検出器(1又は2次元)へのその接続は、基準ビーム又は干渉ビームの必要性を排除する。ベクトルネットワークアナライザ654は、時間フィルタとしても機能することができる。
仮想線源634の多くの位置から多くの散乱ビーム636の振幅及び位相を検出することにより、例えば前立腺のような第1の物体632内の対象物、例えば腫瘍650の位置及び大きさを決定することができる。散乱ビーム636の位相を測定することにより、第1の物体632内の第2の物体650の音速を決定することができる。第1の物体632内の第2の物体650の音速は、診断の目的で使用することができる。この例を図8に示す。画像によって示されるように、病変1のサイズは病変2のサイズよりも小さい。これをグラフで表示すると、音速によって質量の大きさが示され、病変1は病変2よりも小さくなる。
図9に示すように、集束された仮想源734の位置が波長とは無関係であるため、追加ビームを音響ビーム714と同じ位置に集束させることができる。音響ビーム714は、音響ビームエミッタ712から放射される。ヘリウム - ネオンレーザエミッタ782は、焼灼に使用することができる黄色のビーム784を生成する。それはまた、身体の表面上の集束音響ビーム714の位置を識別するために使用することができる。赤外線レーザーエミッタ786は、赤外線ビーム788を生成し、これは組織を熱殺し又は組織を切除するために使用することができる。赤外線ビーム788と音響ビームとの組み合わせは、音響ビームが皮膚の温度を報告するために使用でき、赤外線レーザーエミッタ786で皮膚癌の治療を可能にする。ミラー780は、ビーム784、788を反射し、これらがレンズ735に衝突する際に音響ビーム714に整合させる。第2のミラー781を使用して、その場でビーム源を切り替えることもできる。代わりに、平らな表面を有する丸いミラーを使用して、その場でビーム源を切り替えるように回転させることができる。理論に束縛されることなく、ミラー780は、コマ収差及び球面収差を除去することができる。ビームの特定の狭い波長が使用される場合、色収差も除去することができる。重要な変更を明確に示すために、この図にはデバイスの一部のみが示されていることに留意されたい。前述の実施形態の全ての構成要素がこの実施形態に見出される。
図10に示すように、ビームエミッタ812とレンズ835は一体的に機能する。前立腺癌の検出及び治療のために、音響ビーム814は膀胱に集束される。集束した仮想源834は、前立腺を介して散乱し、検出器840によって検出される。検出器840は、患者がその上に座ることを可能にするような形状をしている。この図には、先述の実施形態と異なる構成要素のみが示されていることに留意されたい。先述の実施形態における全ての構成要素は、この実施形態において見出される。
図11に示すように、2つの音響ビームエミッタが調和して使用される。第1の音響ビームエミッタ912は、第1の音響ビーム914を放射し、第2の音響ビーム916は、第2の音響ビームエミッタ918から放射される。第2の音響ビームエミッタ918は、線形アレイ検出器940の下に配置される。ベクトルネットワークアナライザ954は、上述のように構成されている。先の実施形態で説明した構成要素がこの実施形態で見られる。第1のビーム914は、仮想光源934を与えるように集束され、仮想光源934は、上述したように、散乱されたビームを物体に送り、撮像を可能にする。第2の音響ビーム916は、それを機能させるために物体932に集束される。これは、機能異常の判定を可能にし、好ましい実施形態においては、対象物は前立腺である。
例1
図7に示すように、デバイスとシステムの有効性は、CSPメディカルの3つの無作為に配置された等エコー病変を含む前立腺エラストグラフィファントムを用いて実証された。前立腺の縁及び明るいオレンジから明るい黄色への着色のある尿道の縁が確認できる10mmから25mmまでの走査深度で4つの音響位相画像を撮影した。超音波ビームはビーム源から放射され、画像は拡散ビームから収集される。より速い音の領域がA及びBに示されている。本技術の実施形態1−4及び6の何れかを使用して、2つの病変が走査された。これらの病変は明らかに識別可能であった。サイズ、3次元形状、位置及び位置を決定することができた。疾患組織の他の特徴は前立腺ファントムに存在しなかったため、情報は異なる特徴に限定された。
例2
DACIは、臓器、筋肉、脂肪組織、癌性組織内、及び身体器官とその周囲との間の界面などの(但し、これらに限定されるものではない)生体内の温度変化を非侵襲的に観察するために医療診断に使用することができる。DACIはビームをある点を迅速に通過する仮想線源に集束させるので、放射線量を少なくすることで体に非常に穏やかになる。パワー密度は、一般に1ワット/平方センチメートル未満であり、検査中の物体の加熱及びキャビテーションの影響を避けるために、数ミリ秒乃至数秒の滞留時間である。内部体がDACIによって見えるようになると、強度を数十ワットから数百ワット/平方センチメートルに増加させ、ビームの滞留時間を数秒から数百秒にすることにより、ビーム加熱法及び腫瘍切除(ブレーク・アップ)方法、例えば高強度集束超音波を用いて治療が可能になる。DACI顕微鏡は、対象物のビームの音速を決定することによって温度を測定することもできるので、治療中にビーム加熱によって治療されている身体の領域の温度を監視することができ、治療の成功を確実にすることができる。更に、散乱強度は、腫瘍切除/壊死の増加と共に減少するので、散乱強度を測定することによって治療を監視することができる。
例3
プラズマ、気体、液体、及び固体を含む物体では、例えば、対象物内に存在する3D温度及び3D組成、及び非混和性液体と混和性液体との間の界面、コンテナ及びその内容物、並びに燃焼中の単純な火炎燃焼燃料のような様々な状態を有する流体内(但し、これらに限定されるものではない)には物質の単純状態に対する多くの未解決の問題がある。物質の状態が変化すると、音の速さが変化する。より硬くて弾力のある素材については、より高い音速がある。音響ビームに透明な対象物にDACI顕微鏡を適用すると、これらの問題の多くに答えることができる。
例4
非常に良好なビームコヒーレンスを有する音響ビームなどの放射線源が得られるようになり、数センチメートル程度の大きな物体の振幅及び位相画像が可能になる。将来の遙かに大きな物体及び小さい物体を観察することができる音響ビームに対して透明又は反射性のプラスチックなどの新しい光学集束材料の開発が可能になる。
例5
前立腺癌の診断と治療。前立腺癌の腫瘍は硬く、細く枝分かれした多形状である。腫瘍周囲の血流が増加するが、腫瘍の硬度によって血液が腫瘍に到達するのが妨げられ、最終的に腫瘍周囲の血流が制限される。現在の技術水準は、前立腺の超音波画像化である。これは、前立腺と周囲の組織との間の界面のみを同定することができるので、腺の大きさに関する情報を提供する。この場合、ビームの拡散散乱が画像と干渉してぼやけたエッジにつながるので、画像は非常に正確ではない。
本技術は、エミッタ複合体及び検出器ホルダを遠位端に有するウォンドとして提供される。上述したように、エミッタは検出器としても機能することができる。これは、撮像される身体部分のために適切に形成されたホルダーと共に単一の複合体を使用することを可能にする。あるいは、エミッタは、検出器ホルダに一体化されたエミッタ複合体上に収容される。再び、ホルダーの形状は、撮像される身体部分に適している。
体の中には、前立腺内のような独自の音速を有する疾患が存在するため、音速は各疾患の特徴である(例6参照)。さらに、この疾患の各発達状態には、特有の音速がある。
例6
音速は、任意の疾患又は状態、並びに疾患又は状態の各発達段階について測定される。本技術は、この決定を行うために使用される。次いで、本技術は、疾患又は状態の進行を診断又は診断し、治療し、又は追跡し、又は疾患又は状態の治療の進行を追跡するために使用される。音速の変化は、細胞サイズ、細胞粒度、組織弾性、血液蓄積、温度上昇、炎症及び免疫細胞浸潤のうちの1つ以上の変化によって引き起こされ得る。異なる速度の例は、平滑筋線維の場合1574m/s、乳頭腺癌の場合1610m/s、(よく分化した)管状腺癌の場合1610m/s、(中程度に分化した)管状腺癌の場合1600m/s、1557m/sであり、一重項 - 環細胞癌では1523m/sであった。他の知られている音速は、脂肪組織の場合1422m/s、***柔組織の場合1487m/s、悪性病変の場合1548m/s、良性病変の場合1513m/sの速度で、***組織に対するものである。標準偏差は±1.7%以下であった。
例7
2次元音響アレイ検出器は、リニア音響アレイ検出器に置き換えられた。集束された仮想源も、線形アレイアクチュエータの放射によって生成されることが分かった。リニアアレイアクチュエータは、レンズの湾曲した表面によってビームを集束させることができ、又は、トランスデューサのアレイ(すなわち、「フェーズドアレイ」)内の発光素子の相対位相を調整することによって集束させることもできる。フェーズドアレイは小さな仮想ソースを生成することはできないが、仮想ソースを生成することができる。これは、より低い空間解像度で画像化するために使用できる。
本明細書に記載された例示的な実施形態の利点は、本明細書で特に指摘された手段及び組み合わせによって実現及び達成され得る。前述の一般的な説明及び詳細な説明を提示することは例示的及び説明的なものにすぎず、以下の特許請求の範囲を限定するものではないことを理解されたい。以上、例示的な実施形態について詳細に説明したが、前述の説明は全ての態様において例示的であって、限定的ではない。例示的な実施形態の範囲から逸脱することなく、様々な他の修正例及び変更例を考え出せることを理解されたい。
例示的な実施形態は、現在考えられる最も実用的及び/又は適切な実施形態の例であると現在考えられているものに関連して説明されてきたが、説明は開示された実施形態に限定されるものではなく、例示的な実施形態の趣旨及び範囲内に含まれる様々な修正及び均等な構成を包含することが意図されていること理解されたい。当業者であれば、日常的な実験のみを用いて、本明細書に具体的に記載された具体的な実施形態の多くの均等物を認識するか、又は確認することができるであろう。そのような均等物は、本明細書に添付されるか又はその後に提出される特許請求の範囲に包含されることが意図される。

Claims (25)

  1. 少なくとも1つの位相画像に基づいて物体上の3次元及び状態情報を与えるためのデータアナライザと共に使用するための拡散音響共焦点撮像デバイスであって、約0.5メガヘルツ乃至約100メガヘルツの範囲の音響共焦点ビームを生成するように構成されたコヒーレント音響源と、仮想コヒーレントビームを仮想源に集束させるように構成された音響コヒーレントビーム集束器と、仮想源からの少なくとも1つの拡散散乱ビームを検出するための音響検出器と、ベクトルネットワークアナライザとを備え、そのベクトルネットワークアナライザは、音響共焦点ビームの位相と少なくとも1つの拡散散乱ビームの位相とを測定して、少なくとも1つの位相画像を与え、前記ベクトルネットワークアナライザは、コヒーレント音響源と音響検出器との各々と電子的に通信しているデバイス。
  2. 請求項1のデバイスにおいて、前記音響ビーム集束器は、音響共振ビームを反射する曲面ミラーであるデバイス。
  3. 請求項1又は2のデバイスにおいて、前記コヒーレント音響源に機械的に連絡するソースアクチュエータをさらに備えるデバイス。
  4. 請求項1乃至3の何れか一項に記載のデバイスにおいて、前記音響検出器に機械的に連絡する検出器アクチュエータをさらに備えるデバイス。
  5. 請求項4のデバイスにおいて、前記ソースアクチュエータ及び前記検出器アクチュエータとのうちの少なくとも一方と電子的に通信するプロセッサをさらに備えるデバイス。
  6. 請求項1乃至5の何れか一項に記載のデバイスにおいて、前記音響検出器は、1次元又は2次元音響アレイ検出器であるデバイス。
  7. 請求項2乃至6の何れか一項に記載のデバイスにおいて、前記音響検出器、前記曲面ミラー及び前記コヒーレント音響源は、ボアスコープ又は内視鏡を与えるようにウォンド内に収容されているデバイス。
  8. 請求項6に記載のデバイスにおいて、前記1次元又は2次元音響アレイ検出器は、空間的アパーチャを含むデバイス。
  9. 請求項1乃至6及び8の何れか一項に記載のデバイスにおいて、前記コヒーレント音響源、前記音響コヒーレントビーム集束器、及び前記音響検出器は、ユニットに一体化されているデバイス。
  10. 請求項に記載のデバイスにおいて、前記音響コヒーレントビーム集束器は、レンズであるデバイス。
  11. 請求項10に記載のデバイスにおいて、前記レンズは、前記コヒーレント音響源と前記音響検出器との間に取り付けられているデバイス。
  12. 請求項1乃至6及び8乃至10の何れか一項に記載のデバイスにおいて、前記デバイスは、第1の端部における前記コヒーレント音響源及び前記音響コヒーレントビーム集束器と第2の端部における少なくとも1つの音響検出器を保持する少なくとも1つの調節可能アームとを含むデバイス。
  13. 請求項12のデバイスにおいて、前記デバイスは支持体を含み、前記音響検出器は前記支持体に着座し、前記調節可能アームは前記支持体に取り付けられて前記支持体と前記第1の端部との間に延在するデバイス。
  14. 少なくとも1つの位相画像に基づいて組織を画像化する方法であって、コヒーレント音響源から約0.5乃至約100メガヘルツの音響共焦点ビームを放出し、この音響共焦点ビームを前記組織内の仮想源に集束させ、低い滞留時間で前記仮想源によって組織を走査し、仮想源からの複数の拡散散乱されたビームを音響検出器で検出し、前記音響共焦点ビームの位相と前記複数の拡散散乱されたビームの位相とを測定して少なくとも1つの位相画像を与え、この位相画像を解析することによって、組織を画像化する方法。
  15. 請求項1に記載の方法において、拡散音響共焦点画像形成デバイスが前記音響共焦点ビームを放出する方法。
  16. 請求項14又は15に記載の方法において、プロセッサ及び検出器アクチュエータを用いて前記音響検出器を移動させ、前記複数の散乱ビームの検出を支援することをさらに含む方法。
  17. 請求項16の方法において、調節可能アームが前記コヒーレント音響源に取り付けられ、前記音響コヒーレントビーム収束器及び前記音響検出器が前記コヒーレント音響源の位置を合わせるように移動する方法。
  18. 少なくとも1つの位相画像に基づいて対象物に関する3次元及び状態情報を提供するためのデータ分析器と共に使用する拡散音響共焦点撮像デバイスであって、線形アレイ音響検出器であり、そのアレイ内の複数の放射素子と、検出器とを含む線形アレイ音響検出器と、約0.5メガヘルツ乃至約100メガヘルツの範囲の音響共焦点ビームを生成し、仮想源からの少なくとも1つの拡散散乱ビームを検出するように構成された2次元音響アレイ検出器と、音響コヒーレントビームを仮想源へ集束するように構成された音響コヒーレントビーム集束器と、ベクトルネットワークアナライザとを備え、そのベクトルネットワークアナライザは、前記音響共焦点ビームの位相と前記少なくとも1つの拡散散乱ビームの位相とを検出して少なくとも1つの位相画像を与えるように構成され、前記ベクトルネットワークアナライザは、リニアアレイ音響アクチュエータの検出器と電子的に通信する拡散音響共焦点撮像デバイス。
  19. 請求項18に記載の拡散音響共焦点撮像デバイスにおいて、前記音響コヒーレントビーム集束器がレンズである拡散音響共焦点撮像デバイス。
  20. 請求項18又は19に記載の拡散音響共焦点撮像デバイスにおいて、プロセッサをさらに備え、このプロセッサは、前記複数の発光素子の相対位相を調整するように構成されている拡散音響共焦点撮像デバイス。
  21. 請求項18乃至20の何れか一項に記載の拡散音響共焦点撮像デバイスにおいて、少なくとも1つのレーザーエミッタをさらに備える拡散音響共焦点撮像デバイス。
  22. 対象の少なくともつの位相画像を生成する方法であって、この方法は、請求項18乃至21の何れか一項に記載の拡散音響共焦点撮像デバイスを利用し、約0.5乃至約100メガヘルツの音響共焦点ビームを放射し、この音響共焦点ビームを組織内の仮想源へ集束させ、低滞留時間にて前記仮想源で組織を走査し、前記仮想源からの複数の拡散散乱されたビームを検出し、前記音響共焦点ビームの位相と前記複数の拡散散乱されたビームの位相とを測定して少なくともつの位相画像を与え、前記対象の前記少なくともつの位相画像を表示する方法。
  23. 請求項2に記載の方法において、組織内の異なる位置における走査を繰り返して少なくとも2つの位相画像を得ることをさらに含む方法。
  24. 少なくとも1つの位相画像に基づいて対象物理的状態を判定する方法であって、この方法は、請求項18乃至21の何れか一項に記載の拡散音響共焦点撮像デバイスを利用し、約0.5乃至約100メガヘルツの音響共焦点ビームを放射し、この音響共焦点ビームを組織内の仮想源へ集束させ、低滞留時間にて前記仮想源で組織を走査し、前記仮想源からの複数の拡散散乱されたビームを検出し、前記音響共焦点ビームの位相と前記複数の拡散散乱されたビームの位相とを測定して少なくともつの位相画像を与え、この少なくともつの位相画像を分析することにより、前記対象物理的状態を判定する方法。
  25. 請求項24に記載の方法において、前記対象内の異なる位置における走査を繰り返して少なくとも2つの位相画像を得ることをさらに含む方法。
JP2017555861A 2015-01-15 2016-01-11 拡散音響共焦点撮像装置 Active JP6553210B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562103882P 2015-01-15 2015-01-15
US62/103,882 2015-01-15
PCT/IB2016/050109 WO2016113664A1 (en) 2015-01-15 2016-01-11 Diffuse acoustic confocal imager

Publications (2)

Publication Number Publication Date
JP2018501940A JP2018501940A (ja) 2018-01-25
JP6553210B2 true JP6553210B2 (ja) 2019-07-31

Family

ID=56405309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017555861A Active JP6553210B2 (ja) 2015-01-15 2016-01-11 拡散音響共焦点撮像装置

Country Status (9)

Country Link
US (1) US20170311804A1 (ja)
EP (1) EP3247280B1 (ja)
JP (1) JP6553210B2 (ja)
CN (1) CN107530046B (ja)
AU (2) AU2016207757A1 (ja)
CA (1) CA2973655C (ja)
HK (1) HK1246128A1 (ja)
NZ (1) NZ734614A (ja)
WO (1) WO2016113664A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210302708A1 (en) * 2020-03-30 2021-09-30 Carl Zeiss Meditec Ag Medical-optical observation apparatus with opto-acoustic sensor fusion
US12025785B2 (en) * 2020-03-30 2024-07-02 Carl Zeiss Meditec Ag Medical-optical observation apparatus with opto-acoustic sensor fusion

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190117189A1 (en) * 2015-01-15 2019-04-25 Rodney Herring Non-invasive diffuse acoustic confocal three-dimensional imaging
JP6819012B2 (ja) 2015-06-03 2021-01-27 モンテフィオーレ メディカル センターMontefiore Medical Center 癌と転移を処置するための低密度焦点式超音波
CN111836666A (zh) * 2017-11-09 2020-10-27 蒙特非奥里医疗中心 用于治疗癌症和转移的低能量免疫致敏
WO2020118406A1 (en) * 2018-12-11 2020-06-18 Herring Rodney Non-invasive diffuse acoustic con focal three-dimensional imaging
CN110495855B (zh) * 2019-08-19 2021-10-08 武汉大学 癌细胞实时检测诊断治疗方法、装置及***

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847141A (en) * 1973-08-08 1974-11-12 Nasa Ultrasonic bone densitometer
JPS581438A (ja) * 1981-06-29 1983-01-06 旭メデイカル株式会社 超音波診断装置
JPS5883257A (ja) * 1981-11-13 1983-05-19 Noritoshi Nakabachi 超音波顕微鏡
JPH0470562A (ja) * 1990-07-12 1992-03-05 Olympus Optical Co Ltd 透過型超音波顕微鏡
JPH06102260A (ja) * 1992-09-21 1994-04-15 Olympus Optical Co Ltd 共焦点型超音波顕微鏡
US5535751A (en) * 1994-12-22 1996-07-16 Morphometrix Technologies Inc. Confocal ultrasonic imaging system
US5760901A (en) * 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
EP1063920B1 (en) * 1998-03-20 2006-11-29 Barbara Ann Karmanos Cancer Institute Multidimensional detection and characterization of pathologic tissues
JP2001145628A (ja) * 1999-11-19 2001-05-29 Aloka Co Ltd 音波計測装置
US6450960B1 (en) 2000-08-29 2002-09-17 Barbara Ann Karmanos Cancer Institute Real-time three-dimensional acoustoelectronic imaging and characterization of objects
JP2005532097A (ja) * 2002-07-01 2005-10-27 アレズ フィジオニックス リミテッド 心組織およびパラメータの非侵襲的評価システムおよび方法
US20040059265A1 (en) 2002-09-12 2004-03-25 The Regents Of The University Of California Dynamic acoustic focusing utilizing time reversal
US20060241524A1 (en) * 2005-03-11 2006-10-26 Qi Yu Intravascular ultrasound catheter device and method for ablating atheroma
JP2009505771A (ja) * 2005-08-31 2009-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 実時間空間合成によるフローイメージングのための超音波画像形成システム及び方法
US7445335B2 (en) * 2006-01-20 2008-11-04 Clarity Medical Systems, Inc. Sequential wavefront sensor
WO2007120890A2 (en) * 2006-04-13 2007-10-25 The Research Foundation Of State University Of New York Phased array ultrasound with electronically controlled focal point for assessing bone quality via acoustic topology and wave transmit functions
US7460248B2 (en) * 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
CN107126182B (zh) * 2007-01-19 2020-06-16 桑尼布鲁克健康科学中心 用于成像探头的扫描机构
CN102292029B (zh) * 2008-07-18 2014-11-05 罗切斯特大学 用于c扫描光声成像的低成本设备
US8485034B2 (en) * 2009-12-14 2013-07-16 Rodney Arthur Herring Acoustic confocal interferometry microscope
CN101782506B (zh) * 2010-03-05 2012-05-30 华南师范大学 共焦—光声双模显微成像方法及其装置
GB2484753B (en) * 2010-08-20 2013-01-02 Surf Technology As Method for imaging of nonlinear interaction scattering
US8954130B2 (en) * 2010-12-17 2015-02-10 Canon Kabushiki Kaisha Apparatus and method for irradiating a medium
JP5939786B2 (ja) * 2011-02-10 2016-06-22 キヤノン株式会社 音響波取得装置
JP5783779B2 (ja) * 2011-04-18 2015-09-24 キヤノン株式会社 被検体情報取得装置及び被検体情報取得方法
CN103442646A (zh) * 2011-06-17 2013-12-11 松下电器产业株式会社 光声摄像***和光声摄像装置
CN102488494B (zh) * 2011-11-16 2013-09-25 华中科技大学 全内反射式光声显微成像***及方法
CN102608036B (zh) * 2012-03-20 2014-09-10 中北大学 基于声学透镜和传感器阵列的三维光声成像***及方法
US8894580B2 (en) * 2012-04-27 2014-11-25 Ut-Battelle, Llc Reflective echo tomographic imaging using acoustic beams
CN103054610B (zh) * 2012-11-29 2014-11-05 华南师范大学 无超声换能器频带限制的光声成像装置及其检测方法
CN203662804U (zh) * 2014-01-20 2014-06-25 王金文 一种便携式超声诊断设备
CN104225810B (zh) * 2014-09-09 2017-12-15 西安交通大学 基于双频共焦超声分时激励的超声力学毁损和热凝固装置及方法
US20160114193A1 (en) * 2014-10-23 2016-04-28 Oleg Prus Multilayer ultrasound transducers for high-power transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210302708A1 (en) * 2020-03-30 2021-09-30 Carl Zeiss Meditec Ag Medical-optical observation apparatus with opto-acoustic sensor fusion
US12025785B2 (en) * 2020-03-30 2024-07-02 Carl Zeiss Meditec Ag Medical-optical observation apparatus with opto-acoustic sensor fusion

Also Published As

Publication number Publication date
AU2016207757A1 (en) 2017-08-31
AU2020257073B2 (en) 2022-08-25
CN107530046A (zh) 2018-01-02
HK1246128A1 (zh) 2018-09-07
CA2973655A1 (en) 2016-07-21
JP2018501940A (ja) 2018-01-25
EP3247280A4 (en) 2019-01-02
EP3247280A1 (en) 2017-11-29
EP3247280B1 (en) 2023-07-12
US20170311804A1 (en) 2017-11-02
CN107530046B (zh) 2021-07-13
WO2016113664A1 (en) 2016-07-21
AU2020257073A1 (en) 2020-11-19
CA2973655C (en) 2024-05-07
NZ734614A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
AU2020257073B2 (en) Diffuse acoustic confocal imager
JP5808741B2 (ja) 小動物の光音響イメージング用画像化装置及び画像化方法
US9964747B2 (en) Imaging system and method for imaging an object
JP6643251B2 (ja) 物体の光音響画像化用のデバイス及び方法
KR102144551B1 (ko) 레이저 광음향 초음파 영상 시스템 및 그 사용 방법
US20100094134A1 (en) Method and apparatus for medical imaging using near-infrared optical tomography combined with photoacoustic and ultrasound guidance
JP2013500091A5 (ja)
EP2148183B1 (en) Imaging device and method for optoacoustic imaging of small animals
WO1996021938A1 (en) Video-rate confocal scanning laser microscope
CN108553080A (zh) 一种面向小动物皮下肿瘤的立体扫描光声介观成像***
JP6071589B2 (ja) 被検体情報取得装置
Gao et al. Laparoscopic photoacoustic imaging system based on side-illumination diffusing fibers
KR20180062393A (ko) 표시 제어장치, 표시 제어방법, 및 기억매체
TWI616190B (zh) 聲致顯影增強光同調影像之鏡頭及其系統和運作方法
JP7510697B2 (ja) 非侵襲性拡散音響共焦点3次元撮像
US20190117189A1 (en) Non-invasive diffuse acoustic confocal three-dimensional imaging
WO2017205626A1 (en) Photoacoustics imaging system
EP3894892A1 (en) Non-invasive diffuse acoustic confocal three-dimensional imaging
WO2018101258A1 (en) Display control apparatus, display method, and program
van Es et al. Multimodal photoacoustic and ultrasound imaging
Tian et al. Other Molecular Imaging Technology
Anis et al. Principles and applications of photoacoustic computed tomography

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20170824

Free format text: JAPANESE INTERMEDIATE CODE: A525

Effective date: 20170824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6553210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250