JP6552833B2 - Boiler water supply system, boiler equipped with the same, and boiler water supply method - Google Patents

Boiler water supply system, boiler equipped with the same, and boiler water supply method Download PDF

Info

Publication number
JP6552833B2
JP6552833B2 JP2015023977A JP2015023977A JP6552833B2 JP 6552833 B2 JP6552833 B2 JP 6552833B2 JP 2015023977 A JP2015023977 A JP 2015023977A JP 2015023977 A JP2015023977 A JP 2015023977A JP 6552833 B2 JP6552833 B2 JP 6552833B2
Authority
JP
Japan
Prior art keywords
water
path
temperature
boiler
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015023977A
Other languages
Japanese (ja)
Other versions
JP2016148468A (en
JP2016148468A5 (en
Inventor
正広 天野
正広 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015023977A priority Critical patent/JP6552833B2/en
Priority to CN201680009182.6A priority patent/CN107250666B/en
Priority to KR1020187025619A priority patent/KR102197740B1/en
Priority to KR1020177020327A priority patent/KR101959154B1/en
Priority to PCT/JP2016/052449 priority patent/WO2016129395A1/en
Publication of JP2016148468A publication Critical patent/JP2016148468A/en
Publication of JP2016148468A5 publication Critical patent/JP2016148468A5/ja
Application granted granted Critical
Publication of JP6552833B2 publication Critical patent/JP6552833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/007Control systems for waste heat boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/12Control devices, e.g. for regulating steam temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、ボイラ給水システム及びそれを備えたボイラ、ボイラ給水方法に関するものである。   The present invention relates to a boiler water supply system, a boiler equipped with the same, and a boiler water supply method.

例えば、船舶に搭載し、船内の温熱需要に応える舶用補助ボイラは、使用頻度が低いことから効率よりも初期費用が安くなるものが選定されていたが、近年燃料代が高くなり効率を重視する傾向にある。ボイラの効率を向上させるには、ボイラ排ガス出口に給水を加熱するエコノマイザを設置する方法が考えられるが、エコノマイザ内で給水が蒸気化し、所定の性能が得られなくなるという課題がある。   For example, for auxiliary marine boilers installed on ships to meet the thermal demand in the ship, those with lower initial costs than efficiency have been selected due to their low frequency of use, but in recent years the cost of fuel has increased and importance is placed on efficiency There is a tendency. In order to improve the efficiency of the boiler, a method of installing an economizer for heating feed water at the boiler exhaust gas outlet can be considered, but there is a problem that the feed water is vaporized in the economizer and predetermined performance can not be obtained.

下記特許文献1では、コンバインドサイクル発電プラントの排熱回収ボイラにおいて、エコノマイザを流れる水とエコノマイザをバイパスする水量を調整する調整弁を設け、エコノマイザ出口の出力信号を用いてエコノマイザ内の水が蒸発しないようにエコノマイザを流れる流量とバイパスする流量を調整弁で調整する技術が記載されている。
下記特許文献2では、ガスタービンコンバインドプラントの排熱回収ボイラにおいて、節炭器の水の上昇部伝熱管の途中から、排気ガスにより加熱されないように排熱回収ボイラの外部を経由してドラムに至る抜き出しラインを設置して、節炭器でのスチーミング発生時に伝熱管でのスチーミング発生による流量低下を防止するために、流路を排熱回収ボイラ外へ切り替える技術が記載されている。
In Patent Document 1 below, the waste heat recovery boiler of the combined cycle power plant is provided with a regulating valve that regulates the amount of water flowing through the economizer and the water bypassing the economizer, and the water in the economizer is not evaporated using the output signal from the economizer outlet As described above, there is described a technique for adjusting the flow rate flowing through the economizer and the bypass flow rate with an adjustment valve.
According to Patent Document 2 below, in the exhaust heat recovery boiler of the gas turbine combined plant, the drum of the heat recovery pipe of the economizer is transferred to the drum via the outside of the exhaust heat recovery boiler so as not to be heated by the exhaust gas In order to prevent the flow reduction due to the occurrence of steaming in the heat transfer pipe at the time of occurrence of steaming in the economizer, a technique for switching the flow path out of the exhaust heat recovery boiler is described.

特開平2−75802号公報Unexamined-Japanese-Patent No. 2-75802 特開平8−327001号公報JP-A-8-327001

しかしながら、上記特許文献1や上記特許文献2は、排ガスエコノマイザを用いる構成が記載されており、火炉を備えるボイラにエコノマイザを配置する具体的な構成等は一切記載されておらず、ボイラにエコノマイザを適用する場合に生じるエコノマイザでの蒸気化を抑制するという問題は解決できない。   However, Patent Document 1 and Patent Document 2 describe a configuration using an exhaust gas economizer, no specific configuration and the like for arranging the economizer in a boiler equipped with a furnace, and the economizer in the boiler. The problem of suppressing the steaming in the economizer, which occurs when applied, can not be solved.

本発明は、このような事情に鑑みてなされたものであって、火炉を備えるボイラのエコノマイザでの給水の蒸気化を防止した給水システム及びそれを備えたボイラ、ボイラ給水方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a water supply system in which steaming of water supply in an economizer of a boiler equipped with a furnace is prevented, a boiler equipped with the same, and a boiler water supply method. To aim.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、火炉からの排ガスと熱交換する温水加熱器に給水する第1経路と、前記温水加熱器の給水出口からボイラに給水する第2経路と、前記第1経路から分岐して前記温水加熱器をバイパスして前記ボイラに給水する第3経路と、前記第2経路に設けられ、流通する水の温度を検出する温度検出手段と、前記第1経路に流通する水量と、前記第3経路に流通する水量との割合を調整する流量調整手段と、前記温度検出手段で検出される温度が前記温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように、前記流量調整手段を調整する制御手段と、を具備し、前記制御手段は、前記第1所定温度以上となり、前記第1経路の水量をゼロにし、前記第3経路に給水の全量を流通させる制御をした後、前記第1経路で水が蒸気化されるのに必要な熱量の演算結果と、前記温水加熱器に与えうる熱量の推定結果とに基づいて、前記第1経路の水量と前記第3経路の水量を制御前の状態に戻すボイラ給水システムを提供する。
In order to solve the above-mentioned subject, the present invention adopts the following means.
According to the present invention, a first path for supplying water to a hot water heater which exchanges heat with exhaust gas from a furnace, a second path for supplying water to a boiler from a water supply outlet of the hot water heater, and a branch from the first path A third path for supplying water to the boiler by bypassing a heater, temperature detection means provided in the second path for detecting the temperature of the circulating water, the amount of water flowing in the first path, and the third The flow rate adjustment means for adjusting the ratio to the amount of water flowing in the path, and the flow rate adjustment so that the temperature detected by the temperature detection means is lower than a first predetermined temperature below the evaporation temperature of water in the hot water heater Control means for adjusting means, the control means having a temperature above the first predetermined temperature, and making the water amount in the first path zero, and controlling the flow of the entire water supply in the third path Water in the first route Heat and operation results required for being vaporized, the based on the estimation result of the heat quantity that could cause the hot water heater, a boiler return water of water and the third path of the first path to the control state before Provide a water supply system.

本発明の構成によれば、第1経路を介して温水加熱器に水が供給され、温水加熱器に供給された水は火炉からの排ガスと熱交換され、熱交換後の水が温水加熱器の給水出口から第2経路を介してボイラに供給される。第1経路から分岐して温水加熱器をバイパスされ第3経路に流れる水は、温水加熱器を流通しないので温水加熱器で熱交換されずに、第1経路で給水された温度でボイラ側に供給される。第1経路を流通し温水加熱器で熱交換される水量と、第3経路に流通する水量は、温水加熱器の給水出口側である第2経路で計測される水の温度が、温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように調整される。
このように、温水加熱器による加熱のし過ぎによって給水された水が蒸気化される温度を下回る温度に第1所定温度を設定しておくことにより、火炉の排ガスによって熱交換する温水加熱器における蒸気化を簡便に防ぐことができる。また、従来は温水加熱器における蒸気化を防ぐための運転切替えを運転員によって手動で行っていたが、本発明によれば、オペレーションのミスを防ぐことができる。
また、このように、第2経路の水温だけで判定するのでなく、第1経路で生じる蒸気化に必要な熱量の演算結果と、温水加熱器に与えうる熱量の推定結果とに応じて判定することにより、水が蒸気化されることを安全に防ぐ。
According to the configuration of the present invention, the water is supplied to the hot water heater through the first path, the water supplied to the hot water heater is heat exchanged with the exhaust gas from the furnace, and the water after heat exchange is the hot water heater Is supplied to the boiler from the water supply outlet of Since the water branched from the first path bypasses the hot water heater and flows to the third path does not flow through the hot water heater, it is not exchanged with the hot water heater and the water supplied to the boiler side at the temperature supplied to the first path Supplied. The amount of water circulated in the first path and heat-exchanged by the hot water heater, and the amount of water circulated in the third path are the temperature of water measured in the second path on the water supply outlet side of the hot water heater. It adjusts so that it may become smaller than the 1st predetermined temperature lower than the evaporation temperature of water.
Thus, by setting the first predetermined temperature to a temperature below the temperature at which the water supplied by excessive heating by the hot water heater is vaporized, the hot water heater exchanges heat with the exhaust gas of the furnace. Vaporization can be easily prevented. Moreover, conventionally, the operation switching for preventing the steaming in the hot water heater has been manually performed by the operator, but according to the present invention, an operation mistake can be prevented.
Also, as described above, the determination is made not only based on the water temperature of the second path, but also based on the calculation result of the heat amount required for the vaporization occurring in the first path and the estimation result of the heat amount that can be given to the hot water heater. To safely prevent water from being vaporized.

上記ボイラ給水システムは、前記火炉が、硫黄化物等の腐食成分を含まない燃料を用いる場合に給水の温度を制御して、前記腐食成分を含む燃料を用い給水の温度を制御しない場合の前記第1経路の給水温度より低温の水を第1経路に給水することとしてもよい。  The boiler water supply system controls the temperature of the feed water when the furnace uses a fuel that does not contain corrosive components such as sulfides and does not control the temperature of the feed water using the fuel that contains the corrosive components. Water having a temperature lower than the feed water temperature of one path may be supplied to the first path.
硫黄化物等の腐食成分を含まない燃料を用いる場合には、温水加熱器の硫酸腐食の問題が発生しないため、硫黄化物などの腐食成分を含む燃料を用いる場合の給水温度よりも、低温の水を供給することができるので、給水の温度を制御して給水温度を下げる。これにより、温水加熱器における給水温度が下げられ、温水加熱器によって熱交換後の水温が、給水の温度を制御しない場合より抑えられる。  When using fuel that does not contain corrosive components such as sulphide, the problem of sulfuric acid corrosion of hot water heaters does not occur, so the temperature of the water is lower than the water supply temperature when using fuel containing corrosive components such as sulphide. Control the temperature of the feed water to lower the feed water temperature. Thereby, the feed water temperature in a warm water heater is lowered, and the water temperature after heat exchange by a warm water heater is suppressed compared with the case where the temperature of feed water is not controlled.

上記ボイラは、舶用補助ボイラであるボイラ給水システムとしてもよい。   The above boiler may be a boiler water supply system which is a marine auxiliary boiler.

舶用補助ボイラと温水加熱器を組み合わせても、蒸気化を抑えることができる。
なお、舶用補助ボイラとは、船舶に搭載し、船内の温熱需要に応えるボイラであり、例えば、船内の蒸気駆動機器の動力源や加熱媒体として、或いは、厨房用の温水暖房、タンカーの荷役ポンプに必要な蒸気とイナートガスの供給等に利用されるものであり、船舶の原動力に応えるための主ボイラとは区別される。
Even if a marine auxiliary boiler and a hot water heater are combined, vaporization can be suppressed.
A marine auxiliary boiler is a boiler that is mounted on a marine vessel and responds to thermal demand in the ship. For example, as a power source or a heating medium for steam-driven equipment in the ship, or for hot water heating for kitchens, tanker cargo handling pumps. It is used for the supply of steam and inert gas required for the above, and is distinguished from the main boiler for responding to the motive power of the ship.

上記ボイラ給水システムの前記第3経路は、前記第1経路から分岐して前記第2経路に合流させてもよい。   The third path of the boiler water supply system may be branched from the first path and merged with the second path.

ボイラに第3経路を直接接続する場合には、ボイラの設計変更やそのためのコストがかかるが、第2経路と合流させる構成にすることにより、ボイラの設計変更を不要とし、コストも抑えられる。   When the third path is directly connected to the boiler, it takes a boiler design change and costs for it, but by adopting a configuration that merges with the second path, the boiler design change becomes unnecessary and the cost can be reduced.

上記ボイラ給水システムは、前記流量調整手段の位置は、前記温水加熱器の給水入口よりも鉛直方向に高い位置とすることが好ましい。   In the boiler water supply system, it is preferable that the position of the flow rate adjusting means is higher in the vertical direction than the water supply inlet of the hot water heater.

これにより、流量調整手段を制御して第1経路を閉状態にした場合であっても、流量調整手段より下流側の第1経路に水が溜まることを防ぐ。   This prevents water from accumulating in the first path downstream of the flow rate adjusting means even when the flow rate adjusting means is controlled to close the first path.

上記ボイラ給水システムの前記制御手段は、前記温度検出手段で計測される温度が前記第1所定温度より小さい場合に、前記第1経路に給水の全量を流通させ、かつ、前記第3経路の水量をゼロにし、前記温度検出手段で計測される温度が前記第1所定温度以上となった場合に、前記第1経路の水量をゼロにし、かつ、前記第3経路に給水の全量を流通させることが好ましい。   When the temperature measured by the temperature detection unit is lower than the first predetermined temperature, the control unit of the boiler water supply system distributes the entire amount of water supply to the first path, and the amount of water in the third path When the temperature measured by the temperature detection means is equal to or higher than the first predetermined temperature, the amount of water in the first path is set to zero, and the entire amount of water supply is circulated through the third path. Is preferred.

温水加熱器の給水出口側で計測される温度が第1所定温度より小さければ、全量の水が温水加熱器で加熱され、第1所定温度以上となった場合には、水を温水加熱器に流通させずに全てバイパスさせるので、確実に温水加熱器での給水の蒸気化を防ぐことができる。   If the temperature measured at the feed water outlet of the hot water heater is lower than the first predetermined temperature, the entire amount of water is heated by the hot water heater, and when the temperature exceeds the first predetermined temperature, the water is supplied to the hot water heater. Since all are bypassed without circulating, the vaporization of the water supply with a warm water heater can be prevented reliably.

上記ボイラ給水システムの前記制御手段は、前記温度検出手段によって計測される水の温度と、前記第1所定温度との温度差に応じて、前記第1経路に流通させる水量と前記第3経路に流通させる水量との分配を調整することとしてもよい。  The control means of the boiler water supply system is configured to adjust the amount of water to be circulated in the first path and the third path according to a temperature difference between the temperature of the water measured by the temperature detection means and the first predetermined temperature. It is good also as adjusting distribution with the amount of water to distribute | circulate.
これにより、温度検出手段によって計測される水の温度の微調整ができる。  Thereby, the fine adjustment of the temperature of the water measured by a temperature detection means can be performed.

上記ボイラ給水システムは、前記ボイラから前記温水加熱器に排ガスを供給する排ガスラインにおいて、前記温水加熱器をバイパスする排ガスバイパスラインと、前記排ガスバイパスラインの経路上に設けられたバイパス弁と、をさらに備え、前記制御手段は、前記温度検出手段で計測される温度が前記第1所定温度以上となった場合に、前記バイパス弁を開状態にするとしてもよい。  The boiler water supply system includes an exhaust gas bypass line bypassing the hot water heater and an bypass valve provided on a path of the exhaust gas bypass line in an exhaust gas line for supplying exhaust gas from the boiler to the hot water heater. Further, the control unit may open the bypass valve when the temperature measured by the temperature detection unit is equal to or higher than the first predetermined temperature.

本発明は、火炉からの排ガスと熱交換する温水加熱器に給水する第1経路と、前記温水加熱器の給水出口からボイラに給水する第2経路と、前記第1経路から分岐して前記温水加熱器をバイパスして前記ボイラに給水する第3経路と、前記第2経路に設けられ、流通する水の温度を検出する温度検出手段と、前記第1経路に流通する水量と、前記第3経路に流通する水量との割合を調整する流量調整手段と、前記温度検出手段で検出される温度が、前記温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように、前記流量調整手段を調整する制御手段と、を具備し、前記火炉は、硫黄化物等の腐食成分を含まない燃料を用いる場合に前記温度検出手段で検出された温度が前記第1所定温度以上の場合は、給水の温度を制御して、前記腐食成分を含む燃料を用い給水の温度を制御しない場合の前記第1経路の給水温度より低温の水を前記第1経路に給水するボイラ給水システムを提供する。 According to the present invention, a first path for supplying water to a hot water heater which exchanges heat with exhaust gas from a furnace, a second path for supplying water to a boiler from a water supply outlet of the hot water heater, and a branch from the first path A third path for supplying water to the boiler by bypassing a heater, temperature detection means provided in the second path for detecting the temperature of the circulating water, the amount of water flowing in the first path, and the third The flow rate adjusting means for adjusting the ratio to the amount of water flowing through the route, and the flow rate such that the temperature detected by the temperature detecting means is lower than a first predetermined temperature below the evaporation temperature of water in the hot water heater A control means for adjusting the adjusting means, wherein the furnace uses the fuel containing no corrosive component such as sulfurized material, and the temperature detected by the temperature detecting means is higher than the first predetermined temperature; , control the temperature of the water supply Te, provides a boiler water supply system for supplying water to cold water from the feed water temperature of said first path when no controlling the temperature of the feed water using the fuel containing the corrosive components to said first path.

本発明は、上記いずれかに記載のボイラ給水システムを具備する舶用補助ボイラを提供する。   The present invention provides a marine auxiliary boiler including the boiler water supply system described above.

本発明は、温水加熱器の給水出口からボイラに給水する第2経路において、流通する水の温度を検出する第1過程と、前記温水加熱器に給水する第1経路と、前記第1経路から分岐して前記温水加熱器をバイパスして前記ボイラに給水する第3経路とに流通する水量を調整する第2過程と、前記第1過程で検出される温度が、前記温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように、前記第1経路に流通する水量と、前記第3経路に流通する水量との割合を調整する第3過程と、前記第1所定温度以上となり、前記第1経路の水量をゼロにし、前記第3経路に給水の全量を流通させる制御をした後、前記第1経路で水が蒸気化されるのに必要な熱量の演算結果と、前記温水加熱器に与えうる熱量の推定結果とに基づいて、前記第1経路の水量と前記第3経路の水量を制御前の状態に戻す第4過程とを有するボイラ給水方法を提供する。
また本発明は、温水加熱器の給水出口からボイラに給水する第2経路において、流通する水の温度を検出する第1過程と、前記温水加熱器に給水する第1経路と、前記第1経路から分岐して前記温水加熱器をバイパスして前記ボイラに給水する第3経路とに流通する水量を調整する第2過程と、前記第1過程で検出される温度が、前記温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように、前記第1経路に流通する水量と、前記第3経路に流通する水量との割合を調整する第3過程と、火炉が硫黄化物等の腐食成分を含まない燃料を用いる場合に前記温度検出手段で検出された温度が前記第1所定温度以上の場合は、給水の温度を制御して、前記腐食成分を含む燃料を用い給水の温度を制御しない場合の前記第1経路の給水温度より低温の水を前記第1経路に給水する第4過程とを有するボイラ給水方法を提供する
According to the present invention, in a second path for supplying water to a boiler from a water supply outlet of a hot water heater, a first process for detecting the temperature of flowing water, a first path for supplying water to the hot water heater, and the first path A second process of adjusting the amount of water branched and bypassing the hot water heater and flowing to a third path for supplying water to the boiler, and a temperature detected in the first process is the temperature of water in the hot water heater The third process of adjusting the ratio between the amount of water flowing in the first path and the amount of water flowing in the third path so as to be lower than the first predetermined temperature below the evaporation temperature, and above the first predetermined temperature After controlling the flow amount of water in the first path to zero and circulating the entire amount of water supply in the third path, the calculation result of the amount of heat required for the water to be vaporized in the first path, and the hot water Based on the estimation result of the amount of heat that can be given to the heater Te, it provides a boiler feedwater method and a fourth step of returning the water of water and the third path of the first path to control the state before.
Further, according to the present invention, in the second path for supplying water to the boiler from the water supply outlet of the hot water heater, a first process for detecting the temperature of the circulating water, a first path for supplying water to the hot water heater, and the first path And a second step of adjusting the amount of water distributed to a third path for supplying water to the boiler, bypassing the hot water heater, and a temperature detected in the first step is the water in the hot water heater A third step of adjusting the ratio between the amount of water flowing in the first path and the amount of water flowing in the third path so as to be lower than a first predetermined temperature below the evaporation temperature of the furnace; If the temperature detected by the temperature detection means is higher than the first predetermined temperature when using a fuel containing no corrosive component, the temperature of the water is controlled using the fuel containing the corrosive component by controlling the temperature of the water supply. The first route when not controlling A fourth step of the water supply cold water from the feed water temperature in the first path, to provide a boiler feedwater method with.

本発明は、エコノマイザを備えるボイラにおいて、エコノマイザ内の給水の蒸気化を防止できるという効果を奏する。   The present invention has an effect of preventing vaporization of feed water in an economizer in a boiler equipped with an economizer.

本発明の第1の実施形態に係るボイラ給水システムの概略構成図である。It is a schematic block diagram of the boiler feed water system concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係るボイラ給水システムの動作フローである。It is an operation | movement flow of the boiler water supply system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るボイラ給水システムにおける第1経路と第3経路の水量の分配量の一例を示している。The example of the distribution amount of the water quantity of the 1st path | route and the 3rd path | route in the boiler water supply system which concerns on the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態に係るボイラ給水システムの概略構成図である。It is a schematic block diagram of the boiler feed water system concerning a 3rd embodiment of the present invention. 本発明の第4の実施形態の変形例に係るボイラ給水システムの概略構成図である。It is a schematic block diagram of the boiler water supply system which concerns on the modification of the 4th Embodiment of this invention.

以下に、本発明に係るボイラ給水システム及びそれを備えたボイラ、ボイラ給水方法の実施形態について、図面を参照して説明する。なお、実施形態の説明においては、本発明に係るボイラ給水システムは、例えば、舶用のボイラに適用されるものとして説明するが、これに限定されない。   EMBODIMENT OF THE INVENTION Below, the boiler water supply system which concerns on this invention, the boiler provided with the same, and embodiment of a boiler water supply method are described with reference to drawings. In addition, in description of embodiment, although the boiler water supply system which concerns on this invention is demonstrated as what is applied to the boiler for ships, for example, it is not limited to this.

〔第1の実施形態〕
本実施形態においては、舶用の補助ボイラであることを例に挙げて説明するが、舶用主ボイラであってもよい。舶用補助ボイラは、船舶に搭載し、船内の温熱需要に応えるボイラである。例えば、船内の蒸気駆動機器の動力源や加熱媒体として、また厨房用の温水暖房、タンカーの荷役ポンプに必要な蒸気とイナートガスの供給に利用される。また、舶用補助ボイラは、加熱が必要な燃料(例えば、内燃機関の燃料等)を加熱し、燃料の粘度を下げることにも利用される。舶用主ボイラは、蒸気推進船の蒸気タービン等に蒸気を供給するものである。
本実施形態の舶用補助ボイラは、各種の洋上浮体式設備(例としては、洋上浮体式生産・貯蔵・積出設備(FPSO:Floating Production Storage and Offloading unit)、洋上浮体式貯蔵・積出設備(FSO:Floating Storage and Offloading unit)、洋上浮体式貯蔵・ガス化設備(FSRU:Floating Stprage and Re-gasification Unit)など)の補助ボイラに適用可能である。
First Embodiment
In this embodiment, although it is mentioned as an example that it is a marine auxiliary boiler, it may be a marine main boiler. The marine auxiliary boiler is a boiler that is mounted on a ship and meets the heat demand of the ship. For example, it is used as a power source and heating medium of steam drive equipment in a ship, and also for supply of steam and inert gas necessary for hot water heating for a kitchen, and a cargo handling pump of a tanker. In addition, the marine auxiliary boiler is also used to heat the fuel that needs to be heated (for example, the fuel of an internal combustion engine, etc.) to lower the viscosity of the fuel. The marine main boiler supplies steam to a steam turbine of a steam propulsion ship.
The marine auxiliary boiler according to the present embodiment includes various offshore floating type facilities (for example, floating production storage and offloading unit (FPSO), offshore floating type storage and offloading equipment ( It can be applied to the auxiliary boilers of FSO (Floating Storage and Offloading Unit), Floating Floating Storage and Gasification Equipment (FSRU), and the like.

図1は、本実施形態に係るボイラ給水システム1の概略構成を示している。
ボイラ給水システム1は、舶用補助ボイラ(以下「補助ボイラ」という)2と、補助ボイラ2からの排ガスと熱交換する給水加熱用エコノマイザ(温水加熱器)4と、給水系統と、温度検出部(温度検出手段)11と、流量調整部(流量調整手段)12と、制御部(制御手段)13とを備えている。
FIG. 1 shows a schematic configuration of a boiler water supply system 1 according to the present embodiment.
The boiler water supply system 1 includes a marine auxiliary boiler (hereinafter referred to as “auxiliary boiler”) 2, a feed water heating economizer (hot water heater) 4 that exchanges heat with exhaust gas from the auxiliary boiler 2, a water supply system, and a temperature detector ( A temperature detection unit) 11, a flow rate adjustment unit (flow rate adjustment unit) 12, and a control unit (control unit) 13 are provided.

補助ボイラ2は、投入された燃料を燃焼させて発生した熱により蒸気を生成し、生成された蒸気は上部に配置される蒸気ドラム(汽水ドラム)3に貯留される。補助ボイラ2は、蒸気圧力が0.2MPa以上6MPa以下とし、典型的には2MPa以下とする。また、例えば、補助ボイラ2の蒸気圧力が2MPa程度の場合は、給水加熱用エコノマイザ4において給水が蒸気化される温度は、215℃となる。
給水加熱用エコノマイザ4内で給水が蒸気化すると、給水加熱用エコノマイザ4内の圧力が高まり機器が破損する恐れがある。また、水・蒸気の2層流となり給水が滞留する可能性がある。これらのことから、給水加熱用エコノマイザ4での給水の蒸気化を防ぐことが必要である。
補助ボイラ2は、排ガスライン5を介して給水加熱用エコノマイザ4に排ガスを供給する。
The auxiliary boiler 2 burns the supplied fuel to generate steam from the generated heat, and the generated steam is stored in a steam drum (boiling water drum) 3 disposed at the top. The auxiliary boiler 2 has a steam pressure of 0.2 MPa or more and 6 MPa or less, and typically 2 MPa or less. Also, for example, when the steam pressure of the auxiliary boiler 2 is about 2 MPa, the temperature at which feed water is vaporized in the feed water heating economizer 4 is 215 ° C.
When the feed water is vaporized in the feed water heating economizer 4, the pressure in the feed water heating economizer 4 is increased, and there is a possibility that the equipment may be damaged. In addition, there is a possibility that the water supply will stay due to a two-layer flow of water and steam. From these things, it is necessary to prevent vaporization of the feed water in the economizer 4 for heating the feed water.
The auxiliary boiler 2 supplies exhaust gas to the feed water heating economizer 4 through the exhaust gas line 5.

給水系統は、給水加熱用エコノマイザ4に給水する第1経路10aと、給水加熱用エコノマイザ4の給水出口から補助ボイラ2に給水する第2経路10bと、第1経路10aと、第1経路10aから分岐して給水加熱用エコノマイザ4をバイパスして補助ボイラ2に給水する第3経路10cとを備える。また、第1経路10aと第3経路10cとの分岐点より上流側の給水入口からは、硫酸腐食を防止するために酸露点を考慮し、何らかの処理によって昇温された水温(例えば、135℃)の水(湯)が供給されている。
なお、第2経路10bと第3経路10cは、給水加熱用エコノマイザ4の出口と補助ボイラ2との間で合流させる。合流点の位置は特に限定されないが、図1に示されるように、合流点Xの位置が最適である。
The water supply system includes a first path 10a for supplying water to the feed water heating economizer 4, a second path 10b for supplying water to the auxiliary boiler 2 from a water supply outlet of the water supply heating economizer 4, a first path 10a, and a first path 10a. A third path 10c is branched to bypass the feed water heating economizer 4 and feed water to the auxiliary boiler 2. Also, from the feed water inlet on the upstream side of the branch point between the first path 10a and the third path 10c, the water temperature (eg, 135 ° C.) raised by some processing in consideration of the acid dew point to prevent sulfuric acid corrosion. ) Water (hot water).
The second path 10 b and the third path 10 c are joined together between the outlet of the feed water heating economizer 4 and the auxiliary boiler 2. The position of the merge point is not particularly limited, but the position of the merge point X is optimal as shown in FIG.

例えば、1時間当たりに40tonから100tonの給水が必要な場合には、蒸気ドラム3に接続するノズルは大口径(例えば、4インチから6インチ程度)となり、ノズルの追加設置をするため蒸気ドラム3に穴を空け、新たなノズルを接続するという設計変更を要し、多大なコストがかかる。そのため、第2経路10bと第3経路10cとに合流点Xを設けて経路間を接続した場合、蒸気ドラム3の設計変更が不要となり、コストを抑えることができる。   For example, when water supply from 40 ton to 100 ton per hour is required, the nozzle connected to the steam drum 3 has a large diameter (for example, about 4 inches to 6 inches), and the steam drum 3 is used for additional installation of nozzles. It requires a design change such as drilling holes and connecting new nozzles, which is costly. Therefore, when the junction point X is provided in the 2nd path | route 10b and the 3rd path | route 10c, and the path | routes are connected, the design change of the steam drum 3 becomes unnecessary and it can hold down cost.

温度検出部11は、第2経路10bに設けられ、流通する水の温度を検出する。例えば、温度検出部11は、温度センサであり、合流点Xと、給水加熱用エコノマイザ4の出口との間に接続されている。温度検出部11は、給水加熱用エコノマイザ4の出口における温度を検出し、制御部13に出力する。   The temperature detection unit 11 is provided in the second path 10 b and detects the temperature of the flowing water. For example, the temperature detection part 11 is a temperature sensor, and is connected between the junction X and the exit of the economizer 4 for heating water supply. The temperature detector 11 detects the temperature at the outlet of the feed water heating economizer 4 and outputs the detected temperature to the controller 13.

流量調整部12は、第1経路10aに流通する水量と、第3経路10cに流通する水量の割合を調整する。具体的には、制御部13からの指令に基づいて、流量調整部12が調整され、第1経路10aに流通させる水量と第3経路10cに流通させる水量とが調整される。
例えば、流量調整部12は、三方弁(制御弁)である。本実施形態においては、流量調整部12を三方弁として説明するが、これに限定されず、第1経路10aと第3経路10cとのそれぞれに二方弁(制御弁)を設け、制御しても良い。
なお、流量調整部12の位置は、給水加熱用エコノマイザ4の給水入口よりも鉛直方向に高い位置に設けられることが好ましい。これにより、流量調整部12によって第1経路10aの弁を閉状態にした後に、第1経路10aの配管に給水を滞留させず、給水加熱用エコノマイザ4へ導入させ、配管に水が溜まることを防ぐ。
The flow rate adjustment unit 12 adjusts the ratio of the amount of water flowing through the first path 10a to the amount of water flowing through the third path 10c. Specifically, based on the command from the control unit 13, the flow rate adjusting unit 12 is adjusted, and the amount of water circulated through the first path 10a and the amount of water circulated through the third path 10c are adjusted.
For example, the flow rate adjustment unit 12 is a three-way valve (control valve). In the present embodiment, although the flow rate adjustment unit 12 is described as a three-way valve, the present invention is not limited thereto, and two-way valves (control valves) are provided in each of the first passage 10a and the third passage 10c to control them. Also good.
In addition, it is preferable that the position of the flow rate adjustment unit 12 is provided at a position higher in the vertical direction than the water supply inlet of the water supply heating economizer 4. Thus, after the valve of the first path 10a is closed by the flow rate adjusting unit 12, the feed water is not retained in the pipe of the first path 10a, but introduced into the feed water heating economizer 4, and water is accumulated in the pipe. prevent.

制御部13は、例えば、図示しないCPU(中央演算装置)、RAM(Random Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成されている。後述の各種機能を実現するための一連の処理の過程は、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。   The control unit 13 includes, for example, a CPU (Central Processing Unit) (not shown), a RAM (Random Access Memory), a computer-readable recording medium, and the like. The process of a series of processes for realizing various functions to be described later is recorded in the form of a program on a recording medium or the like, and the CPU reads this program to a RAM or the like to execute information processing and arithmetic processing. Thus, various functions described later are realized.

具体的には、制御部13は、温度検出部11で検出される温度が給水加熱用エコノマイザ4における水の蒸発温度(例えば、215℃)を下回る第1所定温度(例えば、210℃)より小さくなるように、流量調整部12を調整する。   Specifically, the control unit 13 is smaller than a first predetermined temperature (for example, 210 ° C.) in which the temperature detected by the temperature detection unit 11 is lower than the water evaporation temperature (for example, 215 ° C.) in the feed water heating economizer 4. The flow rate adjusting unit 12 is adjusted so that

制御部13は、温度検出部11で計測される温度が第1所定温度より小さい場合に、第1経路10aに給水の全量を流通させ、かつ、第3経路10cの水量をゼロにし、温度検出部11で計測される温度が第1所定温度以上となった場合に、第1経路10aの水量をゼロにし、かつ、第3経路10cに給水の全量を流通させる。
なお、温度検出部11で計測される水温の温度変化が生じる要因は、給水加熱用エコノマイザ4の入口における給水温度、給水加熱用エコノマイザ4に導入される排ガス温度の変化、給水入口からの給水量の変化、及びドラム蒸気圧力の変化が挙げられる。
When the temperature measured by the temperature detection unit 11 is lower than the first predetermined temperature, the control unit 13 distributes the entire amount of water supply to the first path 10a, and makes the water amount of the third path 10c zero, thereby detecting the temperature. When the temperature measured by the unit 11 becomes equal to or higher than the first predetermined temperature, the water amount of the first path 10a is made zero, and the entire amount of water supplied is circulated through the third path 10c.
The factors causing the temperature change of the water temperature measured by the temperature detector 11 are the feed water temperature at the inlet of the feed water heating economizer 4, the change in the exhaust gas temperature introduced into the feed water heating economizer 4, and the amount of feed water from the feed water inlet. And changes in drum vapor pressure.

例えば、給水加熱用エコノマイザ4の入口の給水温度が約135℃で運転している場合には全量の水を第1経路10aに流通させ、船側の温度管理に応じて約10℃給水温度が上昇すると温度検出部11で検出される温度も約10℃上昇することになるので、第1経路10aを閉状態にし、第3経路10cを開状態にして全量の水を第3経路10cに流通させる。   For example, when the feed water temperature at the inlet of the feed water heating economizer 4 is operating at about 135 ° C., the entire amount of water is circulated through the first route 10 a, and the feed water temperature rises by about 10 ° C. according to the temperature control on the ship side. Then, the temperature detected by the temperature detection unit 11 also rises by about 10 ° C. Therefore, the first path 10a is closed, the third path 10c is opened, and the entire amount of water flows through the third path 10c. .

また、例えば、給水加熱用エコノマイザ4に導入される排ガス温度が約400℃で運転している場合には全量の水を第1経路10aに流通させ、補助ボイラ2の火炉で用いられる燃料の種類の変化、燃料ガス成分の変化、及び外気温度の変化等が生じ、排ガス温度が約420℃に上昇した場合には第1経路10aを閉状態にし、第3経路10cを開状態にして全量の水を第3経路10cに流通させる。   Further, for example, when the exhaust gas temperature introduced into the feed water heating economizer 4 is operating at about 400 ° C., the entire amount of water is circulated in the first path 10 a, and the type of fuel used in the furnace of the auxiliary boiler 2 When the exhaust gas temperature rises to about 420 ° C., the first path 10a is closed, the third path 10c is opened, and the entire amount is changed. Water is circulated through the third path 10c.

また、プラントの負荷が変動し、必要な蒸気量の要求が変化すると、給水入口からの給水量が変化し、これによって給水加熱用エコノマイザ4の給水流量が変化する。例えば、給水加熱用エコノマイザ4の給水流量が少なくなると給水が蒸気化されやすくなるので、給水加熱用エコノマイザ4の出口の温度変化につながる。
ドラム蒸気圧力の変化が生じると、燃料の種類等に応じて必要な燃料量が変化し、補助ボイラ2の排ガス温度が変化するので、給水加熱用エコノマイザ4の出口の温度変化につながる。
In addition, when the load on the plant fluctuates and the demand for the required amount of steam changes, the amount of water supplied from the water supply inlet changes, and the water supply flow rate of the water heating economizer 4 changes. For example, when the feed water flow rate of the feed water heating economizer 4 decreases, the feed water is easily vaporized, which leads to a temperature change of the outlet of the feed water heating economizer 4.
When a change in drum steam pressure occurs, the required amount of fuel changes according to the type of fuel and so on, and the exhaust gas temperature of the auxiliary boiler 2 changes, leading to a change in temperature at the outlet of the feedwater heating economizer 4.

また、制御部13は、第1所定温度以上となり、第1経路10aの水量をゼロにし、第3経路10cに給水の全量を流通させる制御をした後、第1経路10aで水が蒸気化されるのに必要な熱量の演算結果と、給水加熱用エコノマイザ4に与えうる熱量の推定結果とに基づいて、第1経路10aの水量と第3経路10cの水量を制御前の状態に戻す。   In addition, the control unit 13 controls the first path 10a so that the amount of water in the first path 10a is zero and the entire amount of water supply is circulated through the third path 10c, and then the water is vaporized in the first path 10a. The amount of water in the first path 10a and the amount of water in the third path 10c are returned to the pre-control state based on the calculation result of the amount of heat necessary for the calculation and the estimation result of the amount of heat that can be given to the economizer 4 for heating the feed water.

具体的には、第1経路10aで計測される給水流量、圧力、及び給水温度の情報を計測し、これらの情報に基づいて第1経路10aで水が蒸気化されるのに必要な熱量を演算する。また、排ガスライン5における給水加熱用エコノマイザ4に導入される排ガスの入口温度と、ボイラ負荷から想定される排ガス量と、給水加熱用エコノマイザ4に給水を通した場合の給水加熱用エコノマイザ4の出口における排ガス温度(この値は推定値となるが、給水温度+αの温度とする)とに基づいて、給水加熱用エコノマイザ4に与える熱量を推定する。   Specifically, information on the feed water flow rate, pressure, and feed water temperature measured in the first path 10a is measured, and the amount of heat necessary for water to be vaporized in the first path 10a based on these information is calculated. Calculate Further, the inlet temperature of the exhaust gas introduced to the feed water heating economizer 4 in the exhaust gas line 5, the exhaust gas amount assumed from the boiler load, and the outlet of the feed water heating economizer 4 when water is fed to the feed water heating economizer 4 The amount of heat given to the economizer 4 for heating the feed water is estimated based on the exhaust gas temperature at 1 (this value is an estimated value, but the feed water temperature + α).

第1経路10aで水が蒸気化されるのに必要な熱量が、排ガスが給水加熱用エコノマイザ4に与える熱量より大きい場合に、通常の給水ライン(第1経路10a)に戻しても給水加熱用エコノマイザ4の出口の給水が蒸気化しないことと推定されるので、この熱量の大小判定の結果により、通常のライン(第1経路10aに水を流通させる)に戻す。
このように、バイパスラインである第3経路10cから通常ラインである第1経路10aに給水経路を戻した場合に、給水が蒸気化することがないように上述のような演算、推定を行う。
If the amount of heat required for the water to be vaporized in the first path 10a is greater than the amount of heat that the exhaust gas gives to the feedwater heating economizer 4, even if it is returned to the normal water supply line (first path 10a) Since it is presumed that the feed water at the outlet of the economizer 4 is not vaporized, the normal line (flowing water through the first path 10a) is returned according to the result of this heat quantity determination.
As described above, when the water supply path is returned from the third path 10c, which is a bypass line, to the first path 10a, which is a normal line, the calculation and estimation as described above are performed so that the water is not vaporized.

なお、第3経路10cを使用する場合には、給水加熱用エコノマイザ4内に残った給水を排出するため、ドレンライン7に設けられるドレン弁8も開く。
また、船舶の乗組員の作業負担低減のためには、ドレンライン7をピストン弁として自動化してもよい。このとき、流量調整部12(三方弁)の開閉と共に、ドレン弁8も開閉させる制御をする。
When the third path 10c is used, the drain valve 8 provided in the drain line 7 is also opened in order to discharge the water supply remaining in the water supply heating economizer 4.
Moreover, in order to reduce the work load on the crew of the ship, the drain line 7 may be automated as a piston valve. At this time, the drain valve 8 is also controlled to be opened and closed along with the opening and closing of the flow rate adjusting unit 12 (three-way valve).

なお、給水加熱用エコノマイザ4における給水の蒸気化発生を懸念するケースとしては、FPSOのように運転中に燃料ガスの成分が代わり、排ガス温度が上昇側に変化するような場合に、給水が蒸気化しやすくなる。また、運転中に油燃料からガス燃料に切り替える場合など燃料の種類が変わる場合には、排ガス温度が上がる傾向になり、給水が蒸気化しやすくなる。   In addition, as a case concerned about the occurrence of steaming of the water supply in the economizer 4 for water supply heating, the component of fuel gas changes during operation like FPSO, and when the exhaust gas temperature changes to the rising side, the water supply is steam It is easy to In addition, when the type of fuel changes, such as when switching from oil fuel to gas fuel during operation, the exhaust gas temperature tends to rise, and the feed water is easily vaporized.

このため、燃料ガス配管に燃料の分析計を付け、燃料ガスの成分や発熱量を計測しておき、給水加熱用エコノマイザ4の出口の温度が上昇する傾向か否かを判定し、この判定結果に応じて流量調整部12を調整してもよい。
このように、温度検出部11の温度が上昇する前兆をとらえ、ボイラ給水の制御に役立てることとしてもよい。
For this reason, a fuel analyzer is attached to the fuel gas pipe, the component of the fuel gas and the calorific value are measured, and it is determined whether the temperature at the outlet of the feed water heating economizer 4 tends to increase or not. The flow rate adjusting unit 12 may be adjusted according to the above.
As described above, it is possible to catch the precursor that the temperature of the temperature detection unit 11 rises and use it for the control of the boiler feed water.

次に、本実施形態に係るボイラ給水システム1の作用を図1及び図2を用いて説明する。
硫酸腐食を防止するために酸露点が考慮され、何らかの処理によって昇温された水温(例えば、135℃)の水(湯)が給水入口から供給されている。
給水入口から供給された水は、全量第1経路10aを介して給水加熱用エコノマイザ4に給水されている(図2のステップSA1)。給水加熱用エコノマイザ4に供給された水は火炉からの排ガスと熱交換され、熱交換後の水が給水加熱用エコノマイザ4の給水出口から第2経路を介してボイラに供給される。
Next, the effect | action of the boiler water supply system 1 which concerns on this embodiment is demonstrated using FIG.1 and FIG.2.
The acid dew point is taken into consideration in order to prevent sulfuric acid corrosion, and water (hot water) having a water temperature (eg, 135 ° C.) heated by some treatment is supplied from the water supply inlet.
The water supplied from the water supply inlet is supplied to the water supply heating economizer 4 via the total amount first path 10a (step SA1 in FIG. 2). The water supplied to the feed water heating economizer 4 is heat exchanged with the exhaust gas from the furnace, and the water after the heat exchange is supplied from the feed water outlet of the feed water heating economizer 4 to the boiler via the second path.

給水加熱用エコノマイザ4の出口の水温(温度検出部11の検出温度)が210℃(第1所定温度)より低いか否かが判定される。(図2のステップSA2)
給水加熱用エコノマイザ4の出口温度が210℃より低い(図2のステップSA2のYES)と判定された場合には、流量調整部12を制御し、三方弁の第1経路10a側を全開状態にして第3経路10cを流通する水量をゼロにし、給水の全量を第1経路10aに流通させ、給水加熱用エコノマイザ4に流通させ(図2のステップSA3)、本処理を終了する。
一方、給水加熱用エコノマイザ4の出口温度が210℃以上と判定された場合には(図2のステップSA2のNO)、流量調整部12を調整し、三方弁の第1経路10a側を全閉状態にして第1経路10aに流通する水量をゼロにし、三方弁の第3経路10c側を全開状態にして、給水の全量を第3経路10cに流通させる(図2のステップSA4)。
It is determined whether the water temperature at the outlet of the feed water heating economizer 4 (the temperature detected by the temperature detection unit 11) is lower than 210 ° C. (first predetermined temperature). (Step SA2 in FIG. 2)
If it is determined that the outlet temperature of the feed water heating economizer 4 is lower than 210 ° C. (YES in step SA2 in FIG. 2), the flow rate adjusting unit 12 is controlled to fully open the first path 10a side of the three-way valve. The amount of water flowing through the third path 10c is reduced to zero, and the entire amount of water supply is caused to flow through the first path 10a, and is allowed to flow through the feedwater heating economizer 4 (step SA3 in FIG. 2).
On the other hand, when the outlet temperature of the feed water heating economizer 4 is determined to be 210 ° C. or higher (NO in step SA2 of FIG. 2), the flow rate adjusting unit 12 is adjusted to fully close the first path 10a side of the three-way valve. In this state, the amount of water flowing through the first path 10a is made zero, and the third path 10c side of the three-way valve is fully opened, and the entire amount of water supplied is allowed to flow through the third path 10c (step SA4 in FIG. 2).

第1経路10aから分岐して給水加熱用エコノマイザ4をバイパスされ第3経路10cに流れる水は、給水加熱用エコノマイザ4を流通しないので給水加熱用エコノマイザ4で熱交換されず給水温度のまま、第2経路10bと合流点Xにて合流され、補助ボイラ2側に供給される。
このように、給水加熱用エコノマイザ4の給水出口側である第2経路10bで計測される水の温度が、第1所定温度より小さくなるように第1経路10aに水を流通させるか、第3経路10cに水を流通させるかが調整される。
The water that branches from the first path 10a and bypasses the feed water heating economizer 4 and flows to the third path 10c does not circulate through the feed water heating economizer 4, so that the heat is not exchanged in the feed water heating economizer 4 and remains at the feed water temperature. The two paths 10b are merged at the merge point X and supplied to the auxiliary boiler 2 side.
As described above, the water may be circulated in the first path 10 a so that the temperature of the water measured in the second path 10 b on the water supply outlet side of the economizer 4 for water supply heating becomes lower than the first predetermined temperature. It is adjusted whether the water is to be circulated in the path 10c.

給水加熱用エコノマイザ4で水が蒸気化されるのに必要な熱量を演算し、給水加熱用エコノマイザ4に与えうる熱量を推定する(図2のステップSA5)。給水加熱用エコノマイザ4で水が蒸気化されるのに必要な熱量が、給水加熱用エコノマイザ4に与えうる熱量より大きいか否かが判定される(図2のステップSA6)。給水加熱用エコノマイザ4で水が蒸気化されるのに必要な熱量が、給水加熱用エコノマイザ4に与えうる熱量以下と判定された場合には(図2のステップSA6のNO)、図2のステップSA4を繰り返す。
給水加熱用エコノマイザ4で水が蒸気化されるのに必要な熱量が、給水加熱用エコノマイザ4に与えうる熱量より大きいと判定された場合には(図2のステップSA6のYES)、流量調整部12が制御され、三方弁の第1経路10a側を全開状態にして第3経路10cを流通する水量をゼロにし、給水の全量を第1経路10aに流通させ(図2のステップSA7)、本処理を終了する。
これにより、給水加熱用エコノマイザ4での給水の蒸気化を確実に防止する。
The amount of heat required to vaporize the water by the feed water heating economizer 4 is calculated, and the amount of heat that can be given to the feed water heating economizer 4 is estimated (step SA5 in FIG. 2). It is determined whether the amount of heat required to vaporize water in the feed water heating economizer 4 is larger than the amount of heat that can be applied to the feed water heating economizer 4 (step SA6 in FIG. 2). When it is determined that the amount of heat required to vaporize water in the feed water heating economizer 4 is equal to or less than the amount of heat that can be applied to the feed water heating economizer 4 (NO in step SA6 in FIG. 2), Repeat SA4.
When it is determined that the amount of heat necessary for the water to be vaporized by the feed water heating economizer 4 is larger than the amount of heat that can be given to the feed water heating economizer 4 (YES in step SA6 of FIG. 2), the flow rate adjustment unit 12 is controlled, the first passage 10a side of the three-way valve is fully opened, the amount of water flowing through the third passage 10c is zero, and the entire amount of water supplied is allowed to flow through the first passage 10a (step SA7 in FIG. 2). End the process.
This reliably prevents vaporization of the feed water in the economizer 4 for heating the feed water.

以上説明してきたように、本実施形態に係るボイラ給水システム1及びそれを備えた補助ボイラ2、ボイラ給水方法によれば、温水加熱器による加熱のし過ぎによって給水された水が蒸気化される温度を下回る第1所定温度を設定しておき、第1所定温度と温度検出部11の温度とを比較し、三方弁を調整することにより、給水加熱用エコノマイザ4における給水の蒸気化を簡便に防ぐことができる。また、従来は給水加熱用エコノマイザ4における給水の蒸気化を防ぐための運転切替えを運転員によって手動で行っていたが、本実施形態によれば、温度検出部11で検出された温度に応じて、制御部13によって自動で制御されるので、オペレーションのミスを防ぐことができる。   As described above, according to the boiler water supply system 1 and the auxiliary boiler 2 including the same, and the boiler water supply method according to the present embodiment, the water supplied by excessive heating by the hot water heater is vaporized By setting the first predetermined temperature below the temperature, comparing the first predetermined temperature with the temperature of the temperature detection unit 11, and adjusting the three-way valve, the steaming of the feedwater in the feedwater heating economizer 4 can be simplified easily. It can prevent. Also, conventionally, the operator manually switches the operation to prevent the water supply from being vaporized in the feed water heating economizer 4, but according to the present embodiment, depending on the temperature detected by the temperature detection unit 11. Since the control unit 13 automatically controls the control unit 13, it is possible to prevent an operation mistake.

〔第2の実施形態〕
以下、本発明の第2の実施形態について図1及び図3用いて説明する。本第2の実施形態に係るボイラ給水システムは、第1経路と第3経路との流量を調整する点で第1の実施形態と異なる。以下、第1の実施形態と共通する点については説明を省略し、異なる点について主に説明する。
Second Embodiment
A second embodiment of the present invention will be described below with reference to FIGS. The boiler water supply system according to the second embodiment differs from the first embodiment in that the flow rates of the first path and the third path are adjusted. Hereinafter, description of points common to the first embodiment will be omitted, and different points will be mainly described.

第1の実施形態においては、第1経路10aと第3経路10cとのうち、給水入口からの水を一方に全量流した場合には他方を流量ゼロ(弁を全閉)にしていたが、本実施形態では、予め設計条件を得ておき、第1経路10aと第3経路10cとの分配量を設定し、設定された分配量で運転する。
制御部13は、温度検出部11によって計測される水の温度と、第1所定温度との温度差に応じて、第1経路10aに流通させる水量と第3経路10cに流通させる水量との分配を調整する。
In the first embodiment, in the first path 10a and the third path 10c, when the entire amount of water from the water supply inlet is flowed to one side, the other is set to zero flow (the valve is fully closed), In the present embodiment, the design conditions are obtained in advance, the distribution amount between the first path 10a and the third path 10c is set, and the operation is performed with the set distribution amount.
The control unit 13 distributes the amount of water circulated through the first path 10a and the amount of water circulated through the third path 10c according to the temperature difference between the temperature of water measured by the temperature detection unit 11 and the first predetermined temperature. Adjust the

具体的には、図3に示されるように、第1経路10aに流通させる給水量と第3経路10cに流通させる給水量とを所定の割合(例えば、設計点として50%:50%)にしておき、給水加熱用エコノマイザ4に給水する給水量と、補助ボイラ2にバイパスさせて給水する給水量とでバランスをとる。これは、予め試験等によってバランスする運転点の情報を得て格納手段等に格納しておき、運転点の情報を適宜読み出して、第1所定温度と給水加熱用エコノマイザ4の出口の温度との温度差に応じて、第1経路10aと第3経路10cとの流量調整をする。   Specifically, as shown in FIG. 3, the amount of water supplied to the first path 10a and the amount of water supplied to the third path 10c are set to a predetermined ratio (for example, 50%: 50% as a design point). A balance is established between the amount of water supplied to the economizer 4 for heating the water supply and the amount of water supplied by bypass to the auxiliary boiler 2. This is because the information on the operating point that is balanced in advance by a test or the like is obtained and stored in the storage means or the like, the information on the operating point is read out as appropriate, and the The flow rates of the first path 10a and the third path 10c are adjusted according to the temperature difference.

本実施形態に係るボイラ給水システム及びそれを備えたボイラ、ボイラ給水方法によれば、第1経路10aと第3経路10cとの流通させる流量を、運転点の情報に基づいて、給水加熱用エコノマイザ4の出口の水温と第1所定温度との温度差に応じて調整する。
このように第1経路10aに流通する水量と第3経路10cに流通する水量との分配量を変更することによって、給水加熱用エコノマイザ4の出口温度の微調整ができ、給水加熱用エコノマイザ4の熱回収を少しでも増加させることができる。
According to the boiler water supply system and the boiler and boiler water supply method according to the present embodiment, the flow rate of circulation between the first path 10a and the third path 10c is determined based on the operating point information. It adjusts according to the temperature difference of the water temperature of 4 exits, and 1st predetermined temperature.
In this way, by changing the distribution amount between the amount of water flowing through the first path 10a and the amount of water flowing through the third path 10c, the outlet temperature of the feed water heating economizer 4 can be finely adjusted, and the feed water heating economizer 4 Heat recovery can be increased by a small amount.

〔第3の実施形態〕
以下、本発明の第3の実施形態について図4を用いて説明する。本第3の実施形態に係るボイラ給水システムは、給水の温度を制御する点で第1の実施形態、第2の実施形態と異なる。以下、第1の実施形態、第2の実施形態と共通する点については説明を省略し、異なる点について主に説明する。
Third Embodiment
Hereinafter, a third embodiment of the present invention will be described with reference to FIG. The boiler water supply system according to the third embodiment differs from the first embodiment and the second embodiment in that the temperature of the water supply is controlled. Hereinafter, description of points common to the first embodiment and the second embodiment will be omitted, and different points will be mainly described.

補助ボイラ2の火炉は、硫黄化物等の腐食成分を含まない燃料(例えば、LNG(Liquefied Natural Gas)等液化ガス燃料)を用いる場合には、給水加熱用エコノマイザ4の硫酸腐食の問題は生じないので、給水加熱用エコノマイザ4の入口の給水温度を、腐食成分を含む燃料を用いる場合の温度(例えば、135℃)よりも低い第2所定温度(例えば、100℃から135℃)にすることができる。
本実施形態においては、流量調整部12よりも上流側の給水入口に給水加熱器(例えば、脱気器等。図示略)を設け、給水加熱用エコノマイザ4の入口における給水温度が、第2所定温度となるように給水温度制御する。
When the furnace of the auxiliary boiler 2 uses a fuel that does not contain corrosive components such as sulfurized substances (for example, liquefied gas fuel such as LNG (Liquefied Natural Gas)), the problem of sulfuric acid corrosion of the economizer 4 for heating the feedwater does not occur. Therefore, the feed water temperature at the inlet of the feed water heating economizer 4 may be set to a second predetermined temperature (for example, 100.degree. C. to 135.degree. C.) lower than the temperature (for example, 135.degree. C.) when using a fuel containing a corrosive component. it can.
In the present embodiment, a feed water heater (for example, a deaerator etc., not shown) is provided at the feed water inlet on the upstream side of the flow rate adjusting unit 12, and the feed water temperature at the inlet of the feed water heating economizer 4 is a second predetermined value. Control the feed water temperature so that the temperature is reached.

制御部13は、火炉が硫黄化物等の腐食成分を含まない燃料を用いる場合に、給水の温度を制御して、腐食成分を含む燃料を用い給水の温度を制御しない場合の給水加熱用エコノマイザ4の入口の給水温度より低温となる第2所定温度にし、第2所定温度にした水を第1経路10aに流通させ、給水加熱用エコノマイザ4に供給する。
例えば、給水加熱器として脱気器を用いて給水温度を下げる場合には、制御弁を絞り、投入する飽和蒸気の圧力を下げる。これにより、給水加熱用エコノマイザ4における給水の蒸気化を防止することができる。
When the furnace uses a fuel that does not contain corrosive components such as sulphide, the control unit 13 controls the temperature of the feed water, and uses the fuel containing the corrosive components to control the temperature of the feed water. The second predetermined temperature, which is lower than the water supply temperature at the inlet, is circulated to the first path 10 a and the water supplied to the economizer 4 for water supply heating.
For example, in the case of using a deaerator as a feed water heater to lower the feed water temperature, the control valve is squeezed to lower the pressure of the input saturated steam. Thereby, vaporization of the feed water in the economizer 4 for heating the feed water can be prevented.

以下に、本実施形態に係るボイラ給水システム1´の作用を図4を用いて説明する。
給水の温度制御はせずに給水入口から給水させ、第1経路10aに給水全量を給水させている。給水加熱用エコノマイザ4の出口の水温が第1所定温度以上と検出された場合には、給水入口において給水加熱器を用い、給水加熱用エコノマイザ4の入口の給水温度が第2所定温度となるように温度制御する。温度制御をしても、給水加熱用エコノマイザ4の出口の水温が第1所定温度以下にならない場合には、第1経路10aに流通させる水量をゼロにし、第3経路10cに流通させる水量を給水量の全量とする。
Below, the effect | action of the boiler water supply system 1 'which concerns on this embodiment is demonstrated using FIG.
Without controlling the temperature of the water supply, water is supplied from the water supply inlet, and the entire amount of water supplied is supplied to the first path 10a. When the water temperature at the outlet of the feed water heating economizer 4 is detected to be equal to or higher than the first predetermined temperature, a feed water heater is used at the feed water inlet so that the feed water temperature at the inlet of the feed water heating economizer 4 becomes the second predetermined temperature. Temperature control. If the water temperature at the outlet of the feed water heating economizer 4 does not fall below the first predetermined temperature even if the temperature control is performed, the amount of water flowing through the first path 10a is set to zero and the amount of water flowing through the third path 10c is supplied. It shall be the total amount.

本実施形態に係るボイラ給水システム及びそれを備えたボイラ、ボイラ給水方法によれば、燃料が給水加熱用エコノマイザ4の腐食成分を含まない場合には、流量調整部12よりも上流側の給水入口において給水が温度制御され、給水加熱用エコノマイザ4の入口の給水温度が下げられる。これにより、給水加熱用エコノマイザ4によって熱交換後の水温が、給水の温度を制御しない場合より抑えられる。   According to the boiler water supply system and the boiler and the boiler water supply method including the same according to the present embodiment, when the fuel does not include the corrosion component of the water supply heating economizer 4, the water supply inlet on the upstream side of the flow rate adjusting unit 12 The temperature of the feed water is controlled at, and the feed water temperature at the inlet of the economizer 4 for heating the feed water is lowered. Thereby, the water temperature after heat exchange by the economizer 4 for heating the feed water is suppressed compared to the case where the temperature of the feed water is not controlled.

〔第4の実施形態〕
以下、本発明の第4の実施形態について図5を用いて説明する。本第4の実施形態に係るボイラ給水システム1´´は、排ガスバイパスライン30及びバイパス弁31を設ける点で第1の実施形態、第2の実施形態、第3の実施形態と異なる。以下、第1の実施形態、第2の実施形態、第3の実施形態と共通する点については説明を省略し、異なる点について主に説明する。
Fourth Embodiment
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. The boiler water supply system 1 ′ ′ according to the fourth embodiment is different from the first embodiment, the second embodiment, and the third embodiment in that an exhaust gas bypass line 30 and a bypass valve 31 are provided. Hereinafter, the description of points in common with the first embodiment, the second embodiment, and the third embodiment will be omitted, and different points will be mainly described.

図5に示されるように、補助ボイラ2から給水加熱用エコノマイザ4に排ガスを供給する排ガスライン5で、給水加熱用エコノマイザ4をバイパスする排ガスバイパスライン30と、排ガスバイパスライン30の経路上にバイパス弁31とを設け、給水加熱用エコノマイザ4の出口の温度が第1所定温度以上となった場合に、バイパス弁31を開状態にし、排ガスバイパスライン30に排ガスを流通させるようにしてもよい。   As shown in FIG. 5, in the exhaust gas line 5 for supplying exhaust gas from the auxiliary boiler 2 to the feed water heating economizer 4, the exhaust gas bypass line 30 bypassing the feed water heating economizer 4 and bypass on the path of the exhaust gas bypass line 30 A valve 31 may be provided, and when the temperature at the outlet of the feed water heating economizer 4 becomes equal to or higher than a first predetermined temperature, the bypass valve 31 may be opened to allow the exhaust gas to flow through the exhaust gas bypass line 30.

こうした場合には、給水加熱用エコノマイザ4の熱交換の効果は下がるが、蒸気化による機器の損傷を抑えることを優先でき、運転を継続できる。
例えば、給水加熱用エコノマイザ4の出口の温度が第1所定温度以上となった場合に、バイパス弁31の開度を調整し、補助ボイラ2からの排ガスの一部、或いは全量を排バスパイパスライン30に流通させ、給水加熱用エコノマイザ4に供給する排ガスを減らす、或いは、排ガスを供給させない。
In such a case, although the heat exchange effect of the feed water heating economizer 4 decreases, priority can be given to suppressing damage to the equipment due to the vaporization, and the operation can be continued.
For example, when the temperature at the outlet of the feed water heating economizer 4 becomes equal to or higher than the first predetermined temperature, the opening degree of the bypass valve 31 is adjusted, and a part or all of the exhaust gas from the auxiliary boiler 2 is discharged 30 to reduce the amount of exhaust gas supplied to the feed water heating economizer 4 or not to supply the exhaust gas.

これにより、排ガスの温度はそのままであるが、給水加熱用エコノマイザ4内の排ガス流量が減るので、給水加熱用エコノマイザ4で受ける熱量が減り、給水加熱用エコノマイザ4の出口の温度が上がり過ぎることを防ぐことができ、給水加熱用エコノマイザ4での蒸気化を防止できる。
また、例えば、第2の実施形態と組み合わせ、第1経路10a及び第3経路10cの流量を調整しても給水加熱用エコノマイザ4出口の温度が第1所定温度より小さく制御できないとなった場合に、排ガスをバイパスさせてもよい。
As a result, although the temperature of the exhaust gas remains unchanged, the flow rate of the exhaust gas in the feedwater heating economizer 4 decreases, so the amount of heat received by the feedwater heating economizer 4 decreases and the temperature of the outlet of the feedwater heating economizer 4 rises too much. It is possible to prevent vaporization in the economizer 4 for heating the feed water.
Also, for example, in combination with the second embodiment, the temperature of the outlet of the feed water heating economizer 4 can not be controlled to be lower than the first predetermined temperature even if the flow rates of the first path 10a and the third path 10c are adjusted. The exhaust gas may be bypassed.

〔変形例〕
排ガスのバイパスに代えて、温度検出部11における温度が第1所定温度以上となった場合には、補助ボイラ2の負荷を下げ、補助ボイラ2からの排ガス量を低減させ、給水加熱用エコノマイザ4での蒸気化を防止することとしてもよい。
[Modification]
When the temperature in the temperature detection unit 11 is equal to or higher than the first predetermined temperature instead of the exhaust gas bypass, the load on the auxiliary boiler 2 is reduced, the amount of exhaust gas from the auxiliary boiler 2 is reduced, and the economizer 4 for heating the feed water It is good also as preventing vaporization in.

以上、本発明の実施形態について説明したが、発明は上述の実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲において種々変形実施が可能である。
なお、第1の実施形態から第4の実施形態を適宜組み合わせて実施してもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
The first to fourth embodiments may be implemented in combination as appropriate.

1 ボイラ給水システム
2 補助ボイラ(ボイラ)
3 蒸気ドラム
4 給水加熱用エコノマイザ(温水加熱器)
5 排ガスライン
7 ドレンライン
8 ドレン弁
11 温度検出部(温度検出手段)
12 流量調整部(流量調整手段)
13 制御部(制御手段)
30 排ガスバイパスライン
31 バイパス弁
1 Boiler water supply system 2 Auxiliary boiler (boiler)
3 Steam drum 4 Water heater economizer (hot water heater)
5 Exhaust gas line 7 Drain line 8 Drain valve 11 Temperature detector (temperature detection means)
12 Flow adjustment part (flow adjustment means)
13 Control unit (control means)
30 exhaust gas bypass line 31 bypass valve

Claims (12)

火炉からの排ガスと熱交換する温水加熱器に給水する第1経路と、
前記温水加熱器の給水出口からボイラに給水する第2経路と、
前記第1経路から分岐して前記温水加熱器をバイパスして前記ボイラに給水する第3経路と、
前記第2経路に設けられ、流通する水の温度を検出する温度検出手段と、
前記第1経路に流通する水量と、前記第3経路に流通する水量との割合を調整する流量調整手段と、
前記温度検出手段で検出される温度が、前記温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように、前記流量調整手段を調整する制御手段と、
を具備し、
前記制御手段は、前記第1所定温度以上となり、前記第1経路の水量をゼロにし、前記第3経路に給水の全量を流通させる制御をした後、
前記第1経路で水が蒸気化されるのに必要な熱量の演算結果と、前記温水加熱器に与えうる熱量の推定結果とに基づいて、前記第1経路の水量と前記第3経路の水量を制御前の状態に戻すボイラ給水システム。
A first path for supplying water to a hot water heater that exchanges heat with exhaust gas from the furnace;
A second path for supplying water to the boiler from a water supply outlet of the hot water heater;
A third path that branches from the first path and bypasses the hot water heater to supply water to the boiler;
Temperature detecting means provided in the second path for detecting the temperature of the flowing water;
Flow rate adjusting means for adjusting the ratio between the amount of water flowing in the first path and the amount of water flowing in the third path;
Control means for adjusting the flow rate adjustment means such that the temperature detected by the temperature detection means is lower than a first predetermined temperature below the evaporation temperature of water in the hot water heater;
Comprising
The control means makes the water amount in the first path equal to or higher than the first predetermined temperature, and performs control to circulate the entire amount of water supplied to the third path,
The amount of water in the first path and the amount of water in the third path based on the calculation result of the amount of heat necessary for the water to be vaporized in the first path and the estimation result of the amount of heat that can be given to the hot water heater Boiler water supply system to return the state before control.
前記火炉は、硫黄化物等の腐食成分を含まない燃料を用いる場合に給水の温度を制御して、前記腐食成分を含む燃料を用い給水の温度を制御しない場合の前記第1経路の給水温度より低温の水を第1経路に給水する請求項1に記載のボイラ給水システム。   The furnace controls the temperature of the feed water when using a fuel that does not contain corrosive components such as sulfides, and the feed water temperature of the first path when the temperature of the feed water is not controlled using the fuel containing the corrosive components. The boiler water supply system according to claim 1, wherein low temperature water is supplied to the first path. 前記ボイラは、舶用補助ボイラである請求項1または請求項2に記載のボイラ給水システム。   The boiler water supply system according to claim 1, wherein the boiler is a marine auxiliary boiler. 前記第3経路は、前記第1経路から分岐して前記第2経路と合流させる請求項1から請求項3のいずれかに記載のボイラ給水システム。   The boiler water supply system according to any one of claims 1 to 3, wherein the third path is branched from the first path and merges with the second path. 前記流量調整手段の位置は、前記温水加熱器の給水入口よりも鉛直方向に高い位置とする請求項1から請求項4のいずれかに記載のボイラ給水システム。   The boiler water supply system according to any one of claims 1 to 4, wherein a position of the flow rate adjusting means is a position that is higher in a vertical direction than a water supply inlet of the hot water heater. 前記制御手段は、
前記温度検出手段で計測される温度が前記第1所定温度より小さい場合に、前記第1経路に給水の全量を流通させ、かつ、前記第3経路の水量をゼロにし、
前記温度検出手段で計測される温度が前記第1所定温度以上となった場合に、前記第1経路の水量をゼロにし、かつ、前記第3経路に給水の全量を流通させる請求項1から請求項5のいずれかに記載のボイラ給水システム。
The control means
When the temperature measured by the temperature detection means is lower than the first predetermined temperature, the entire amount of water supply is caused to flow through the first path, and the amount of water in the third path is made zero.
When the temperature measured by the temperature detection means becomes equal to or higher than the first predetermined temperature, the amount of water in the first path is made zero, and the entire amount of water supply is circulated in the third path. The boiler water supply system in any one of claim | item 5.
前記制御手段は、前記温度検出手段によって計測される水の温度と、前記第1所定温度との温度差に応じて、前記第1経路に流通させる水量と前記第3経路に流通させる水量との分配を調整する請求項1から請求項6のいずれかに記載のボイラ給水システム。   The control means includes a water amount measured by the temperature detection means and a water amount circulated through the first path and a water amount circulated through the third path in accordance with a temperature difference between the first predetermined temperature and the water temperature. The boiler feed water system according to any one of claims 1 to 6, wherein the distribution is adjusted. 前記ボイラから前記温水加熱器に排ガスを供給する排ガスラインにおいて、前記温水加熱器をバイパスする排ガスバイパスラインと、
前記排ガスバイパスラインの経路上に設けられたバイパス弁と、をさらに備え、
前記制御手段は、前記温度検出手段で計測される温度が前記第1所定温度以上となった場合に、前記バイパス弁を開状態にする請求項1から請求項7のいずれかに記載のボイラ給水システム。
In an exhaust gas line for supplying an exhaust gas from the boiler to the hot water heater, an exhaust gas bypass line bypassing the hot water heater;
A bypass valve provided on a path of the exhaust gas bypass line,
The boiler feed water according to any one of claims 1 to 7, wherein the control means opens the bypass valve when the temperature measured by the temperature detection means becomes equal to or higher than the first predetermined temperature. system.
火炉からの排ガスと熱交換する温水加熱器に給水する第1経路と、
前記温水加熱器の給水出口からボイラに給水する第2経路と、
前記第1経路から分岐して前記温水加熱器をバイパスして前記ボイラに給水する第3経路と、
前記第2経路に設けられ、流通する水の温度を検出する温度検出手段と、
前記第1経路に流通する水量と、前記第3経路に流通する水量との割合を調整する流量調整手段と、
前記温度検出手段で検出される温度が、前記温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように、前記流量調整手段を調整する制御手段と、
を具備し、
前記火炉は、硫黄化物等の腐食成分を含まない燃料を用いる場合に前記温度検出手段で検出された温度が前記第1所定温度以上の場合は、給水の温度を制御して、前記腐食成分を含む燃料を用い給水の温度を制御しない場合の前記第1経路の給水温度より低温の水を前記第1経路に給水するボイラ給水システム。
A first path for supplying water to a hot water heater that exchanges heat with exhaust gas from the furnace;
A second path for supplying water to the boiler from a water supply outlet of the hot water heater;
A third path that branches from the first path and bypasses the hot water heater to supply water to the boiler;
Temperature detecting means provided in the second path for detecting the temperature of the flowing water;
Flow rate adjusting means for adjusting the ratio of the amount of water flowing through the first path and the amount of water flowing through the third path;
Control means for adjusting the flow rate adjustment means such that the temperature detected by the temperature detection means is lower than a first predetermined temperature below the evaporation temperature of water in the hot water heater;
Comprising
If the temperature detected by the temperature detection means is higher than the first predetermined temperature when using a fuel that does not contain a corrosive component such as a sulfide, the furnace controls the temperature of the water supply to make the corrosive component The boiler water supply system which water-supplys temperature water lower than the water supply temperature of the said 1st path | route at the time of not controlling the temperature of water supply using the fuel containing to the said 1st path | route.
請求項1から請求項のいずれかに記載のボイラ給水システムを具備する舶用補助ボイラ。 A marine auxiliary boiler comprising the boiler water supply system according to any one of claims 1 to 9 . 温水加熱器の給水出口からボイラに給水する第2経路において、流通する水の温度を検出する第1過程と、
前記温水加熱器に給水する第1経路と、前記第1経路から分岐して前記温水加熱器をバイパスして前記ボイラに給水する第3経路とに流通する水量を調整する第2過程と、
前記第1過程で検出される温度が、前記温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように、前記第1経路に流通する水量と、前記第3経路に流通する水量との割合を調整する第3過程と、
前記第1所定温度以上となり、前記第1経路の水量をゼロにし、前記第3経路に給水の全量を流通させる制御をした後、前記第1経路で水が蒸気化されるのに必要な熱量の演算結果と、前記温水加熱器に与えうる熱量の推定結果とに基づいて、前記第1経路の水量と前記第3経路の水量を制御前の状態に戻す第4過程とを有するボイラ給水方法。
A first process of detecting a temperature of flowing water in a second path for supplying water to the boiler from a water supply outlet of the hot water heater;
A second process of adjusting the amount of water flowing through a first path for supplying water to the hot water heater, and a third path for branching from the first path and bypassing the hot water heater to supply water to the boiler;
The amount of water flowing through the first path and the amount of water flowing through the third path so that the temperature detected in the first process is lower than a first predetermined temperature below the evaporation temperature of water in the hot water heater And the third process of adjusting the ratio of
The amount of heat required for the water to be vaporized in the first path after the first predetermined temperature is reached, the amount of water in the first path is made zero, and control is made to circulate the entire amount of water supply in the third path. A boiler water supply method having a fourth step of returning the amount of water in the first path and the amount of water in the third path to a state before control based on the calculation result of and the estimation result of the heat quantity that can be given to the hot water heater .
温水加熱器の給水出口からボイラに給水する第2経路において、流通する水の温度を検出する第1過程と、
前記温水加熱器に給水する第1経路と、前記第1経路から分岐して前記温水加熱器をバイパスして前記ボイラに給水する第3経路とに流通する水量を調整する第2過程と、
前記第1過程で検出される温度が、前記温水加熱器における水の蒸発温度を下回る第1所定温度より小さくなるように、前記第1経路に流通する水量と、前記第3経路に流通する水量との割合を調整する第3過程と、
火炉が硫黄化物等の腐食成分を含まない燃料を用いる場合に前記温度検出手段で検出された温度が前記第1所定温度以上の場合は、給水の温度を制御して、前記腐食成分を含む燃料を用い給水の温度を制御しない場合の前記第1経路の給水温度より低温の水を前記第1経路に給水する第4過程と、を有するボイラ給水方法。
A first process of detecting a temperature of flowing water in a second path for supplying water to the boiler from a water supply outlet of the hot water heater;
A second process of adjusting the amount of water flowing through a first path for supplying water to the hot water heater, and a third path for branching from the first path and bypassing the hot water heater to supply water to the boiler;
The amount of water flowing through the first path and the amount of water flowing through the third path so that the temperature detected in the first process is lower than a first predetermined temperature below the evaporation temperature of water in the hot water heater And the third process of adjusting the ratio of
If the temperature detected by the temperature detection means is higher than the first predetermined temperature when the furnace uses a fuel that does not contain a corrosive component such as a sulfide , the temperature of the feed water is controlled to control the fuel containing the corrosive component A fourth step of supplying water having a temperature lower than the feed water temperature of the first path when the temperature of the feed water is not controlled using the
JP2015023977A 2015-02-10 2015-02-10 Boiler water supply system, boiler equipped with the same, and boiler water supply method Active JP6552833B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015023977A JP6552833B2 (en) 2015-02-10 2015-02-10 Boiler water supply system, boiler equipped with the same, and boiler water supply method
CN201680009182.6A CN107250666B (en) 2015-02-10 2016-01-28 The feed water system of boiler and have the boiler of the feed water system of boiler, boiler feedwater method
KR1020187025619A KR102197740B1 (en) 2015-02-10 2016-01-28 Boiler feed-water system, boiler provided with said system, and boiler feed-water method
KR1020177020327A KR101959154B1 (en) 2015-02-10 2016-01-28 Boiler feed-water system, boiler provided with said system, and boiler feed-water method
PCT/JP2016/052449 WO2016129395A1 (en) 2015-02-10 2016-01-28 Boiler feed-water system, boiler provided with said system, and boiler feed-water method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023977A JP6552833B2 (en) 2015-02-10 2015-02-10 Boiler water supply system, boiler equipped with the same, and boiler water supply method

Publications (3)

Publication Number Publication Date
JP2016148468A JP2016148468A (en) 2016-08-18
JP2016148468A5 JP2016148468A5 (en) 2017-12-28
JP6552833B2 true JP6552833B2 (en) 2019-07-31

Family

ID=56614283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023977A Active JP6552833B2 (en) 2015-02-10 2015-02-10 Boiler water supply system, boiler equipped with the same, and boiler water supply method

Country Status (4)

Country Link
JP (1) JP6552833B2 (en)
KR (2) KR101959154B1 (en)
CN (1) CN107250666B (en)
WO (1) WO2016129395A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349946B2 (en) * 2014-05-14 2018-07-04 三浦工業株式会社 Boiler system
CN107859985A (en) * 2017-12-11 2018-03-30 中煤科工清洁能源股份有限公司 A kind of feed water system of boiler
JP2019152357A (en) 2018-03-01 2019-09-12 三菱重工エンジニアリング株式会社 Exhaust gas cooler
JP7319769B2 (en) * 2018-10-03 2023-08-02 三菱重工マリンマシナリ株式会社 Exhaust heat recovery system, ship, and exhaust heat recovery device operating method
CN109869710A (en) * 2019-03-14 2019-06-11 东方菱日锅炉有限公司 Waste heat boiler tail portion deoxygenation heating system
JP7311990B2 (en) * 2019-03-22 2023-07-20 荏原環境プラント株式会社 Exhaust heat recovery boiler and method for controlling temperature of heat transfer tube of exhaust heat recovery boiler
KR102256414B1 (en) * 2019-09-02 2021-05-26 비에이치아이(주) Heat recovery boiler system
KR102435061B1 (en) * 2020-12-15 2022-08-23 대림로얄이앤피(주) Boiler to increase exhaust heat recovery efficiency through complex heat exchanger
US20220275936A1 (en) * 2021-02-26 2022-09-01 Outokumpu Stainless USA. LLC Cooling system for steel production system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131908U (en) * 1983-02-25 1984-09-04 株式会社東芝 Combined cycle power plant
JPS6081401U (en) * 1983-11-10 1985-06-06 宇部興産株式会社 waste heat boiler
JPS61186579A (en) * 1985-02-07 1986-08-20 東レ株式会社 Production of creped fabric
JPS6390703U (en) * 1986-12-03 1988-06-13
JPH0275802A (en) 1988-09-13 1990-03-15 Toshiba Corp Waste heat recovery boiler
JP2918453B2 (en) * 1994-07-14 1999-07-12 日立造船株式会社 Method and apparatus for controlling exhaust gas temperature at startup in refuse incinerator
JPH08327001A (en) 1995-06-06 1996-12-10 Babcock Hitachi Kk Waste heat recovery boiler and operating method therefor
JPH09126409A (en) * 1995-11-01 1997-05-16 Babcock Hitachi Kk Method and device for temperature control of feed-water heater
JP5040413B2 (en) * 2007-04-19 2012-10-03 三浦工業株式会社 Auxiliary boiler
JP5128624B2 (en) * 2010-03-23 2013-01-23 株式会社新来島どっく Exhaust gas economizer circulating water system
CN202166043U (en) * 2011-06-17 2012-03-14 中国石油天然气股份有限公司 Device for improving efficiency of waste heat boiler and boiler
CN103256644B (en) * 2013-04-11 2015-07-08 杭州锅炉集团股份有限公司 Low-pressure expanded economizer system
CN103939885B (en) * 2014-03-28 2016-03-09 上海发电设备成套设计研究院 A kind of feedwater displaced type economizer system put into operation for denitration device whole process

Also Published As

Publication number Publication date
KR20170098287A (en) 2017-08-29
KR20180101635A (en) 2018-09-12
KR101959154B1 (en) 2019-07-02
JP2016148468A (en) 2016-08-18
WO2016129395A1 (en) 2016-08-18
KR102197740B1 (en) 2021-01-04
CN107250666A (en) 2017-10-13
CN107250666B (en) 2019-06-28

Similar Documents

Publication Publication Date Title
JP6552833B2 (en) Boiler water supply system, boiler equipped with the same, and boiler water supply method
JP6053839B2 (en) Boiler water supply system, boiler equipped with the same, and control method for boiler water supply system
JP5117197B2 (en) Waste heat recovery boiler unit
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
JP4526558B2 (en) Steam temperature control method and control device for marine boiler
JP5725913B2 (en) Combined cycle plant
JP5128624B2 (en) Exhaust gas economizer circulating water system
JPS6214047B2 (en)
US20170284228A1 (en) Steam turbine plant
KR101982955B1 (en) Boiler, marine steam turbine propulsion system equipped with same, ship equipped with same, and boiler control method
KR101852642B1 (en) Method for operating a steam generator
US11333348B2 (en) Exhaust gas cooler
JP4381242B2 (en) Marine steam turbine plant
JP6975058B2 (en) Pressure drain recovery system
Jackson Vertical tube natural circulation evaporators
JP6691385B2 (en) Drain outlet temperature control system and boiler system
JPS6380104A (en) Exhaust gas economizer
JP2007285220A (en) Combined cycle power generation facility
KR102098420B1 (en) Sea Water Supply System for Liquefied Gas Regasification Apparatus
JP2010053174A (en) Control method of vapor temperature of vapor compressor in upgraded brown coal process
JPS6383802A (en) Process controller
KR20130100148A (en) Fossil-fired steam generator
JP2001355806A (en) Controller for waste heat recovery steam generator
JP2014163531A (en) Anti-icing system of boiler water and method thereof and boiler system for ships
JPS62102003A (en) Feedwater heater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6552833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350