JP6552588B2 - Heat recovery power generation facility from combustion exhaust gas and control method thereof - Google Patents

Heat recovery power generation facility from combustion exhaust gas and control method thereof Download PDF

Info

Publication number
JP6552588B2
JP6552588B2 JP2017240784A JP2017240784A JP6552588B2 JP 6552588 B2 JP6552588 B2 JP 6552588B2 JP 2017240784 A JP2017240784 A JP 2017240784A JP 2017240784 A JP2017240784 A JP 2017240784A JP 6552588 B2 JP6552588 B2 JP 6552588B2
Authority
JP
Japan
Prior art keywords
pressure
white smoke
boiler
power generation
smoke prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017240784A
Other languages
Japanese (ja)
Other versions
JP2019108999A (en
Inventor
大祐 鮎川
大祐 鮎川
雅由 叶
雅由 叶
弘敬 土肥
弘敬 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2017240784A priority Critical patent/JP6552588B2/en
Publication of JP2019108999A publication Critical patent/JP2019108999A/en
Application granted granted Critical
Publication of JP6552588B2 publication Critical patent/JP6552588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Description

本発明は、硫黄成分を含む下水汚泥や都市ごみ等の廃棄物を燃焼炉(例えば、焼却炉)で燃焼させ、発生した燃焼排ガスから減圧ボイラで熱回収し、この熱回収した熱をバイナリー発電装置で使用して発電するようにした燃焼排ガスからの熱回収発電設備及びその制御方法に関するものであり、特に、硫黄酸化物(SOx)等の腐食性ガスを含む燃焼排ガスから熱回収して発電するのに適している。   In the present invention, wastes such as sewage sludge containing sulfur components and municipal waste are burned in a combustion furnace (for example, an incinerator), heat is recovered from the generated combustion exhaust gas by a decompression boiler, and the heat recovered is subjected to binary power generation. TECHNICAL FIELD The present invention relates to a heat recovery power generation facility from combustion exhaust gas used for power generation by the apparatus and a control method thereof. Particularly, power generation is performed by recovering heat from combustion exhaust gas containing corrosive gas such as sulfur oxide (SOx). Suitable for doing.

一般に、下水汚泥や都市ごみ等の廃棄物を燃焼処理する燃焼設備においては、焼却炉等の燃焼炉で廃棄物を燃焼し、発生した燃焼排ガスからボイラで熱回収し、ボイラから発生する蒸気を用いて蒸気タービン及び発電機で発電するようにしている。   Generally, in a combustion facility that burns and processes waste such as sewage sludge and municipal waste, waste is burned in a combustion furnace such as an incinerator, heat is recovered from the generated flue gas by a boiler, and steam generated from the boiler is They are used to generate electricity with steam turbines and generators.

しかし、前記燃焼設備においては、ボイラにより水を大気圧以上で蒸発させているため、ボイラ及び蒸気タービンを設置するには、設置者にボイラ・タービン主任技術者が必要となり、運転者に資格が必要になるうえ、設備も発電量からすると、大掛かりな設備となる。   However, in the above-mentioned combustion equipment, the water is evaporated by the boiler at atmospheric pressure or higher, and thus the installer needs a boiler / turbine chief engineer to install the boiler and the steam turbine, and the operator is qualified. In addition to the need for power generation, the facility will be a large facility.

また、前記燃焼設備においては、燃焼排ガスが硫黄酸化物(SOx)を含んでいるため、SOの結露(SOの濃度にもよるが、露点は130℃程度)による硫酸腐食対策が必要である。 Further, in the combustion equipment, the combustion exhaust gas contains sulfur oxides (SOx), (depending on the concentration of SO 3, the dew point is about 130 ° C.) condensation of SO 3 is required sulfate corrosion protection by is there.

一方、本件出願人は、ボイラ・タービン主任技術者等の資格が不要になると共に、腐食性の燃焼排ガスから熱回収しても腐食を引き起こさないようにした燃焼排ガスからの熱回収発電設備を開発した(特許文献1参照)。   On the other hand, the applicant has developed a heat recovery power generation facility from flue gas that does not require qualification as a boiler / turbine chief engineer etc. and does not cause corrosion even if heat is recovered from corrosive flue gas. (See Patent Document 1).

即ち、前記燃焼排ガスからの熱回収発電設備は、図示していないが、燃焼炉内で発生した燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧力が大気圧以下に保持された減圧ボイラと、減圧ボイラにより低沸点の液状の冷媒を加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置と、を備えており、前記減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSOガスの露点以上となる水溶液(臭化リチウム水溶液)とし、また、前記バイナリー発電装置の蒸発部を減圧ボイラの減圧蒸気室に設置し、減圧蒸気室内の蒸気でバイナリー発電装置の蒸発部内の冷媒を気化させるようにしたものである。 That is, although the heat recovery power generation facility from the combustion exhaust gas is not shown, it is installed in a flue through which the combustion exhaust gas generated in the combustion furnace flows, and heat recovery from the combustion exhaust gas through the combustion exhaust gas, A decompression boiler in which the internal pressure to generate steam by heating is maintained below atmospheric pressure, a binary power generation apparatus that heats and evaporates a low-boiling liquid refrigerant by the decompression boiler, and rotates the turbine with the steam to generate electricity; The heating medium water of the decompression boiler is an aqueous solution (lithium bromide aqueous solution) having a boiling point or higher and a dew point of SO 3 gas contained in the combustion exhaust gas at atmospheric pressure or lower, and the binary power generation The evaporation section of the apparatus is installed in a decompression steam chamber of a decompression boiler, and the refrigerant in the evaporation section of the binary power generation apparatus is vaporized by the steam in the decompression steam chamber.

前記燃焼排ガスからの熱回収発電設備は、内部圧力が大気圧以下に保持されて内部の熱媒水が大気圧以下で蒸発する減圧ボイラにより熱回収し、減圧ボイラの沸点がSOガスの露点以上となる熱媒水を用いて燃焼排ガスから熱回収するようにしているため、ボイラ・タービン主任技術者等の資格が不要になると共に、減圧ボイラの熱吸収部での硫酸腐食を防止できる等の利点を有する。 The heat recovery power generation facility from the combustion exhaust gas recovers heat with a reduced pressure boiler in which the internal pressure is kept below atmospheric pressure and the internal heat transfer water evaporates below atmospheric pressure, and the boiling point of the reduced pressure boiler is the dew point of SO 3 gas Since heat is recovered from the combustion exhaust gas using the heat transfer water as described above, qualifications such as a boiler / turbine chief engineer become unnecessary and sulfuric acid corrosion at the heat absorption part of the decompression boiler can be prevented, etc. Have the advantages of

尚、ボイラ・タービン主任技術者等の資格が不要になる減圧ボイラとしては、上述した減圧ボイラの他に、特開57−33701号公報(特許文献2参照)に記載された低圧ボイラが知られている。   In addition to the above-described decompression boiler, a low-pressure boiler described in Japanese Patent Application Laid-Open No. 57-33701 (see Patent Document 2) is known as a decompression boiler that does not require qualification by a boiler / turbine chief engineer or the like. ing.

前記低圧ボイラは、熱媒水に臭化リチウム水溶液を使用し、大気圧以下の運転圧力で沸点がSOの結露温度(130℃)以上となるようにしている。また、この低圧ボイラは、低圧ボイラ内に予熱器及びこれに接続された熱交換器を設け、予熱器内及び熱交換器内を流れる作動流体(冷媒)を予熱、沸騰させるランキンサイクルを採用している。 The low-pressure boiler uses an aqueous lithium bromide solution as heat transfer water, and has a boiling point equal to or higher than the condensation temperature (130 ° C.) of SO 3 at an operating pressure of atmospheric pressure or lower. In addition, this low pressure boiler employs a Rankine cycle in which a preheater and a heat exchanger connected thereto are provided in the low pressure boiler, and the working fluid (refrigerant) flowing in the preheater and the heat exchanger is preheated and boiled. ing.

しかし、前記低圧ボイラは、上述した燃焼排ガスからの熱回収発電設備のように下水汚泥等の廃棄物の燃焼により発生した燃焼排ガスから熱回収発電するものではなく、バーナによる燃焼排ガスからの熱回収発電であり、燃焼排ガスの量や温度が変動した場合の減圧ボイラ内の圧力維持、温度維持については全く記載されていない。   However, the low pressure boiler does not perform heat recovery power generation from combustion exhaust gas generated by combustion of wastes such as sewage sludge as in the above-described heat recovery power generation equipment from combustion exhaust gas, and heat recovery from combustion exhaust gas by burner It is power generation, and there is no description at all regarding the pressure maintenance and temperature maintenance in the pressure reduction boiler when the amount and temperature of the flue gas fluctuate.

また、低温の熱源から熱を回収して発電を行うバイナリー発電装置としては、例えば、特開2013-181398号公報(特許文献3参照)に記載されたバイナリー発電装置が知られている。   Further, as a binary power generation apparatus that recovers heat from a low-temperature heat source to generate electric power, for example, a binary power generation apparatus described in Japanese Patent Application Laid-Open No. 2013-181398 (see Patent Document 3) is known.

前記バイナリー発電装置は、温水を熱源とし、蒸発器から排出される温水の温度を所定の温度に調整した上で発電量を最大にするようにしたものである。   The binary power generation device uses hot water as a heat source, adjusts the temperature of the hot water discharged from the evaporator to a predetermined temperature, and maximizes the amount of power generation.

しかし、前記バイナリー発電装置は、このバイナリー発電装置を上述した燃焼排ガスからの熱回収発電設備に用いると、燃焼排ガスの量や温度が急激に変化した場合に、冷媒の循環量の制御だけでは減圧ボイラの圧力、温度を許容範囲内に収めることができない。   However, when the binary power generation device is used in the heat recovery power generation facility from the combustion exhaust gas described above, if the amount or temperature of the combustion exhaust gas changes abruptly, the binary power generation device is reduced only by controlling the circulation amount of the refrigerant. The pressure and temperature of the boiler cannot be within the allowable range.

一方、上述した燃焼排ガスからの熱回収発電設備においては、燃焼炉に投入する廃棄物の量やカロリーの変化により燃焼排ガスの量や温度が変動した場合、第1の吸熱側である減圧ボイラの圧力と温度が変動し、この変動を第2の吸熱側であるバイナリー発電装置が吸収する方向に作動するようになっている。   On the other hand, in the above-described heat recovery power generation facility from combustion exhaust gas, if the amount and temperature of the combustion exhaust gas fluctuate due to changes in the amount and waste calories of the waste introduced into the combustion furnace, The pressure and temperature fluctuate, and the second heat absorption side binary power generator operates to absorb the fluctuation.

しかしながら、前記燃焼排ガスからの熱回収発電設備は、バイナリー発電装置の応答が敏速でないので、燃焼排ガスの量や温度の変動が大きい場合やバイナリー発電装置の発電機が定格点(定格出力)に達した場合、対応できないと言う問題があった。   However, the heat recovery power generation equipment from the combustion exhaust gas does not have a quick response of the binary power generator, so that the fluctuation of the amount or temperature of the combustion exhaust gas is large or the generator of the binary power generator reaches the rated point (rated output). In such a case, there was a problem that it could not be handled.

例えば、燃焼排ガスの量と温度が急激に増える方に変動した場合、減圧ボイラの内部圧力が上がり、熱媒水の温度と蒸発水の温度が上がる。このとき、バイナリー発電装置側で冷媒の循環量を上げて吸熱量を増やすようにしている。   For example, when the amount and temperature of combustion exhaust gas fluctuate rapidly, the internal pressure of the decompression boiler rises, and the temperature of the heat transfer water and the temperature of the evaporating water rise. At this time, the amount of heat absorption is increased by increasing the circulating amount of the refrigerant on the side of the binary power generation device.

ところが、バイナリー発電装置の応答が遅いので、減圧ボイラの内部圧力が上がり、最後は最大使用圧力(大気圧よりもやや小さい圧力)に設定された安全装置(安全弁等)が作動し、減圧ボイラの内部が大気と連通状態となり、大気が減圧ボイラ内に流入して減圧ボイラの内部圧力が大気と同じ圧力になる。   However, since the response of the binary power generator is slow, the internal pressure of the decompression boiler rises. Finally, the safety device (safety valve, etc.) set to the maximum operating pressure (a pressure slightly lower than the atmospheric pressure) is activated. The inside is in communication with the atmosphere, the atmosphere flows into the pressure reducing boiler, and the internal pressure of the pressure reducing boiler becomes the same pressure as the atmosphere.

このように、安全装置が作動すると、一旦熱回収発電設備の運転を停止し、減圧ボイラの内部を真空ポンプにより所定の真空になるまで吸引しなくてはならず、再運転するまでに時間がかかり、運転効率や発電効率が著しく低下すると言う問題がある。   In this way, once the safety device is activated, the operation of the heat recovery power generation facility must be stopped once, and the inside of the decompression boiler must be sucked by the vacuum pump until it reaches a predetermined vacuum. Therefore, there is a problem that operation efficiency and power generation efficiency are remarkably lowered.

更に、従来技術では、廃熱ボイラや減圧ボイラ等の熱回収器の後段に白煙防止用空気予熱器が設置されている(特許文献4及び特許文献5参照)。   Furthermore, in the prior art, an air preheater for preventing white smoke is installed after the heat recovery unit such as a waste heat boiler or a decompression boiler (see Patent Document 4 and Patent Document 5).

図7は減圧ボイラの後段に白煙防止用空気予熱器を設置した従来の燃焼設備を示し、当該燃焼設備は、下水汚泥等の廃棄物を燃焼炉40(焼却炉)により燃焼処理し、燃焼炉40から排出された燃焼排ガスGを燃焼用空気予熱器41、減圧ボイラ42(熱回収器)、白煙防止用空気予熱器43、バグフィルター44、洗煙装置45、誘引ファン46及び煙突47の順に流すようにしたものである。   FIG. 7 shows a conventional combustion facility in which an air preheater for preventing white smoke is installed downstream of a decompression boiler, which burns and processes waste such as sewage sludge with a combustion furnace 40 (incinerator) Combustion exhaust gas G discharged from the furnace 40 is converted into a combustion air preheater 41, a decompression boiler 42 (heat recovery device), a white smoke prevention air preheater 43, a bag filter 44, a smoke cleaning device 45, an induction fan 46 and a chimney 47. It is made to flow in the order of.

即ち、燃焼炉40から排出された燃焼排ガスGは、先ず燃焼用空気予熱器41で熱回収されて約560℃となり、次に減圧ボイラ42により熱吸収されて約210℃まで減温されて白煙防止用空気予熱器43に送られ、ここで白煙防止用空気Aを約80℃まで加熱し、約180℃の温度になってバグフィルター44に送られる。バグフィルター44では、燃焼排ガスGに含まれる煤塵が除去される。煤塵が除去された燃焼排ガスGは、洗煙装置45に送られ、ここで水噴霧により燃焼排ガスGに含まれる酸性ガスが除去された後、誘引ファン46に送られ、白煙防止用空気ファン48により送られて来て白煙防止用空気予熱器43を通過した白煙防止用空気Aと合流して煙突47から大気中へ排出される。   That is, the combustion exhaust gas G discharged from the combustion furnace 40 is first recovered by the combustion air preheater 41 to reach about 560 ° C., and then is absorbed by the decompression boiler 42 to be reduced to about 210 ° C. Smoke prevention air preheater 43 is sent, where the white smoke prevention air A is heated to about 80 ° C., reaches a temperature of about 180 ° C., and sent to bag filter 44. In the bag filter 44, dust contained in the combustion exhaust gas G is removed. The flue gas G from which the soot and dust have been removed is sent to the smoke cleaning device 45, where acid gas contained in the flue gas G is removed by water spray and then sent to the attraction fan 46 to produce an air fan for preventing white smoke. The air is combined with the white smoke preventing air A which has been sent by the H.48 and passed through the white smoke preventing air preheater 43 and discharged from the chimney 47 to the atmosphere.

図7に示す燃焼設備では、減圧ボイラ42(熱回収器)での吸収熱量は、燃焼排ガスGの入口温度(560℃)から出口温度(210℃)の温度差分(350℃)となる。   In the combustion facility shown in FIG. 7, the heat absorbed by the decompression boiler 42 (heat recovery unit) is a temperature difference (350 ° C.) between the inlet temperature (560 ° C.) of the combustion exhaust gas G and the outlet temperature (210 ° C.).

また、図7に示す燃焼設備では、白煙防止用空気予熱器43に導かれる白煙防止用空気Aが低温なので硫酸腐食防止対策が講じられている。この防止対策としては、白煙防止用空気予熱器43に流入する白煙防止用空気Aの温度を上げ、白煙防止用空気予熱器43の燃焼排ガスGの入口温度を高めに設定し、白煙防止用空気予熱器43の燃焼排ガスGとの接触面の温度を硫酸露点温度以上として来た。   In the combustion facility shown in FIG. 7, since the white smoke prevention air A led to the white smoke prevention air preheater 43 is low in temperature, measures for preventing sulfuric acid corrosion are taken. As the prevention measures, the temperature of the white smoke preventing air A flowing into the white smoke preventing air preheater 43 is raised, and the inlet temperature of the combustion exhaust gas G of the white smoke preventing air preheater 43 is set high. The temperature of the contact surface of the smoke preventing air preheater 43 with the flue gas G has been made higher than the sulfuric acid dew point temperature.

即ち、白煙防止用空気予熱器43の燃焼排ガスGとの接触面の温度を硫酸露点温度以上にするため、白煙防止用空気予熱器43へ流入する白煙防止用空気Aは、白煙防止用空気予熱器43で加熱された白煙防止用空気Aの一部を循環させて白煙防止用空気予熱器43の入口温度を約50℃に上げ、白煙防止用空気予熱器43の出口温度を約80℃としている。また、燃焼排ガスGは、白煙防止用空気予熱器43(並流式)の入口温度を約210℃、白煙防止用空気予熱器43の出口温度を約180℃として燃焼排ガスGとの接触面の温度をそれぞれの平均値130℃としている。   That is, in order to make the temperature of the contact surface of the white smoke prevention air preheater 43 with the combustion exhaust gas G equal to or higher than the sulfuric acid dew point temperature, the white smoke prevention air A flowing into the white smoke prevention air preheater 43 is white smoke. A part of the white smoke prevention air A heated by the prevention air preheater 43 is circulated to raise the inlet temperature of the white smoke prevention air preheater 43 to about 50 ° C. The outlet temperature is about 80 ° C. Further, the combustion exhaust gas G is brought into contact with the combustion exhaust gas G by setting the inlet temperature of the white smoke prevention air preheater 43 (parallel flow type) to about 210 ° C. and the outlet temperature of the white smoke prevention air preheater 43 to about 180 ° C. The surface temperature is an average value of 130 ° C. for each.

従って、上述した燃焼排ガスGからの熱回収発電設備においては、白煙防止用空気予熱器43を減圧ボイラ42(熱回収器)の後段に設置した場合、白煙防止用空気予熱器43の出口側の燃焼排ガスGの温度は、約180℃もあり、減圧ボイラ42(熱回収器)の内部温度約130℃と比較しても、約50℃も高くなっており、十分な熱回収が行われないと言う問題がある。   Therefore, in the above-described heat recovery power generation equipment from flue gas G, when the white smoke prevention air preheater 43 is installed at the rear stage of the pressure reducing boiler 42 (heat recovery unit), the outlet of the white smoke prevention air preheater 43 The temperature of the side combustion exhaust gas G is about 180 ° C., which is about 50 ° C. higher than the internal temperature of about 130 ° C. of the decompression boiler 42 (heat recovery unit), and sufficient heat recovery is performed. There is a problem of not being told.

また、白煙防止用空気予熱器43の硫酸腐食防止対策として白煙防止用空気予熱器42に流入する白煙防止用空気Aは、加熱された後に一部循環させており、そのために白煙防止用空気Aを循環させるための循環ファン(図示省略)が必要になり、白煙防止用空気ファン48と合わせてファンの動力が過大なものとなっている。   Further, the white smoke preventing air A flowing into the white smoke preventing air preheater 42 as a measure to prevent sulfuric acid corrosion of the white smoke preventing air preheater 43 is partially circulated after being heated, and therefore white smoke A circulation fan (not shown) for circulating the prevention air A is required, and the power of the fan is excessive when combined with the white smoke prevention air fan 48.

特許第6009009号公報Japanese Patent No. 6009009 特開昭57−33701号公報JP 57-33701 A 特開2013-181398号公報JP 2013-181398 A 特開平11-63458号公報Japanese Patent Laid-Open No. 11-63458 特開2006−189195号公報JP 2006-189195 A

本発明は、このような問題点に鑑みて為されたものであり、その目的は、減圧ボイラに流入する燃焼排ガスの量が増大したり、燃焼排ガスの温度が上昇したりした場合でも、減圧ボイラが最大使用圧力を超えることがなく、安定した状態で連続運転できるようにし、また、熱回収量が増加して発電量を増加できるようにした燃焼排ガスからの熱回収発電設備及びその制御方法を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to reduce the pressure even when the amount of the flue gas flowing into the pressure reducing boiler is increased or the temperature of the flue gas is increased. Heat recovery power generation equipment from combustion exhaust gas that allows the boiler to continuously operate in a stable state without exceeding the maximum working pressure, and to increase the amount of power generation by increasing the heat recovery amount, and its control method Is to provide.

上記目的を達成するために、本発明の第1の発明は、燃焼炉から排出されて煙道内を流れる腐食成分を含む燃焼排ガスから熱回収して発電するようにした燃焼排ガスからの熱回収発電設備であって、燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧力が大気圧以下に保持された減圧ボイラと、減圧ボイラにより低沸点の液状の冷媒を加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置と、減圧ボイラの熱媒水の温度又は減圧ボイラの内部圧力をそれぞれ検出する温度検出器又は圧力検出器と、減圧ボイラの熱媒水を貯留する缶体の少なくとも一部をケーシングで囲って缶体との間に白煙防止用空気が流れるジャケット空間を形成する白煙防止用空気予熱器と、白煙防止用空気予熱器に接続された白煙防止用空気供給路と、白煙防止用空気供給路に接続された白煙防止用空気ファンと、白煙防止用空気供給路に介設されたダンパーと、を備えており、前記温度検出器又は圧力検出器からの検出信号に基づいてバイナリー発電装置の冷媒を循環させる冷媒循環ポンプを制御すると共に、前記減圧ボイラ内の圧力が設定値を超えたときに、ダンパーを所定の開度以上に開放制御する構成としたことに特徴がある。   In order to achieve the above object, according to a first aspect of the present invention, heat recovery power generation from combustion exhaust gas is performed such that heat is recovered from combustion exhaust gas containing a corrosive component discharged from a combustion furnace and flowing in a flue. A decompression boiler installed in a flue through which combustion exhaust gas flows, heat is recovered from the combustion exhaust gas through the combustion exhaust gas, and the internal pressure for heating the heat transfer water to generate steam is maintained below atmospheric pressure Low-pressure boiler heats and evaporates low-boiling liquid refrigerant and turns the turbine with that steam to generate a binary power generator and temperature detection for detecting the temperature of heat transfer water of the low-pressure boiler or the internal pressure of the low-pressure boiler A jacket space in which white smoke prevention air flows is formed between the container and the pressure detector and at least a part of the can body storing the heat transfer water of the decompression boiler with a casing. A smoke preventing air preheater, a white smoke preventing air supply path connected to the white smoke preventing air preheater, a white smoke preventing air fan connected to the white smoke preventing air supply path, and white smoke preventing A damper interposed in the air supply path, and controlling a refrigerant circulation pump for circulating the refrigerant of the binary power generation device based on a detection signal from the temperature detector or the pressure detector, and reducing the pressure When the pressure in the boiler exceeds a set value, the damper is controlled to open at a predetermined opening or more.

本発明の第2の発明は、燃焼炉から排出されて煙道内を流れる腐食成分を含む燃焼排ガスから熱回収して発電するようにした燃焼排ガスからの熱回収発電設備であって、燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧力が大気圧以下に保持された減圧ボイラと、減圧ボイラにより低沸点の液状の冷媒を加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置と、減圧ボイラの熱媒水の温度又は減圧ボイラの内部圧力をそれぞれ検出する温度検出器又は圧力検出器と、減圧ボイラの熱媒水を貯留する缶体の少なくとも一部をケーシングで囲って缶体との間に白煙防止用空気が流れるジャケット空間を形成する二つの白煙防止用空気予熱器と、一方の白煙防止用空気予熱器に接続された白煙防止用空気供給路と、白煙防止用空気供給路に接続された白煙防止用空気ファンと、白煙防止用空気供給路に介設されたダンパーと、二つの白煙防止用空気予熱器のジャケット空間同士を接続する連絡通路と、連絡通路に介設された第2ダンパーと、備えており、前記温度検出器又は圧力検出器からの検出信号に基づいてバイナリー発電装置の冷媒を循環させる冷媒循環ポンプを制御すると共に、前記減圧ボイラ内の圧力が設定値を超えたときに、第2ダンパーを開放制御する構成としたことに特徴がある。   According to a second aspect of the present invention, there is provided a heat recovery power generation facility from a combustion exhaust gas that recovers heat from a combustion exhaust gas containing a corrosive component that is discharged from a combustion furnace and flows in a flue, and generates the combustion exhaust gas. A low-pressure boiler installed in a flowing flue, which recovers heat from the combustion exhaust gas through the combustion exhaust gas and maintains the internal pressure for heating the heat transfer water to generate steam below atmospheric pressure, and a liquid with a low boiling point And a temperature detector or pressure detector for detecting the temperature of the heat transfer water of the pressure reduction boiler or the internal pressure of the pressure reduction boiler, and the pressure reduction, and Two white smoke preventing air preheaters that enclose at least a part of the boiler heat transfer water reservoir with a casing to form a jacket space through which white smoke preventing air flows between the can and the can The white smoke prevention air supply path connected to one of the white smoke prevention air preheaters, the white smoke prevention air fan connected to the white smoke prevention air supply path, and the white smoke prevention air supply path The temperature sensor or the pressure detection, comprising: an interposed damper; a communication passage connecting the jacket spaces of the two white smoke preventing air preheaters; and a second damper interposed in the communication passage The refrigerant circulation pump for circulating the refrigerant of the binary power generation system is controlled based on the detection signal from the compressor, and the second damper is opened and controlled when the pressure in the decompression boiler exceeds a set value. It is characterized by

本発明の第3の発明は、前記第1の発明において、前記減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSOガスの露点以上となる水溶液とし、また、前記白煙防止用空気を、常温空気としたことに特徴がある。
本発明の第4の発明は、前記第2の発明において、前記減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSO ガスの露点以上となる水溶液とし、また、前記白煙防止用空気を、常温空気としたことに特徴がある。
According to a third aspect of the present invention, in the first aspect, the heat transfer water of the decompression boiler is an aqueous solution whose boiling point is equal to or higher than the dew point of SO 3 gas contained in the combustion exhaust gas under atmospheric pressure. In addition, the white smoke preventing air is a normal temperature air.
According to a fourth aspect of the present invention, in the second aspect, the heat transfer water of the decompression boiler is an aqueous solution whose boiling point is equal to or higher than the dew point of SO 3 gas contained in the combustion exhaust gas under atmospheric pressure . In addition, the white smoke preventing air is a normal temperature air.

本発明の第5の発明は、前記第1の発明において、前記白煙防止用空気予熱器は、減圧ボイラの熱媒水を貯留する缶体を円筒状のケーシングで囲って缶体との間に円筒形状のジャケット空間を形成したジャケット構造の白煙防止用空気予熱器とし、前記ケーシングに、白煙防止用空気供給路に接続されてジャケット空間へ白煙防止用空気を吹き込むための空気入口ダクトをケーシングの接線方向に接続したことに特徴がある。 According to a fifth aspect of the present invention, in the first aspect, the air preheater for preventing white smoke includes a cylindrical casing that surrounds a can body for storing heat transfer water of a decompression boiler. A white smoke prevention air preheater having a jacket structure in which a cylindrical jacket space is formed, and an air inlet for blowing white smoke prevention air into the jacket space connected to the white smoke prevention air supply path in the casing It is characterized in that the duct is connected in the tangential direction of the casing.

本発明の第6の発明は、前記第2の発明において、前記二つの白煙防止用空気予熱器は、何れも減圧ボイラの熱媒水を貯留する缶体を円筒状のケーシングで囲って缶体との間に円筒形状のジャケット空間を形成したジャケット構造の白煙防止用空気予熱器とし、一方の白煙防止用空気予熱器のケーシングに、白煙防止用空気供給路に接続されて一方の白煙防止用空気予熱器のジャケット空間へ白煙防止用空気を吹き込むための空気入口ダクトをケーシングの接線方向に接続したことに特徴がある。 According to a sixth aspect of the present invention, in the second aspect, each of the two white smoke preventing air preheaters includes a cylindrical casing which surrounds a can body for storing heat transfer water of a decompression boiler. An air preheater for white smoke prevention with a jacket structure in which a cylindrical jacket space is formed between the body and the casing, one white smoke prevention air preheater is connected to the white smoke prevention air supply passage. This is characterized in that an air inlet duct for blowing white smoke prevention air into the jacket space of the white smoke prevention air preheater is connected in the tangential direction of the casing.

本発明の第7の発明は、前記第1の発明、第3の発明又は第5の発明の何れかに記載の燃焼排ガスからの熱回収発電設備の制御方法であって、圧力検出器により減圧ボイラ内の圧力を検出し、減圧ボイラ内の圧力が設定値を超えたときに、ダンパーを所定の開度以上に開放して白煙防止用空気予熱器へより多くの白煙防止用空気を供給し、減圧ボイラ内の圧力を低下させるようにしたことに特徴がある。 A seventh aspect of the present invention is a method for controlling a heat recovery power generation facility from combustion exhaust gas according to any one of the first aspect, the third aspect or the fifth aspect , wherein the pressure is reduced by a pressure detector. The pressure in the boiler is detected, and when the pressure in the pressure reduction boiler exceeds the set value, the damper is opened to a predetermined opening or more to send more white smoke prevention air to the white smoke prevention air preheater. It is characterized in that the pressure in the pressure reducing boiler is reduced by supplying the pressure.

本発明の第8の発明は、前記第2の発明、第4の発明又は第6の発明の何れかに記載の燃焼排ガスからの熱回収発電設備の制御方法であって、圧力検出器により減圧ボイラ内の圧力を検出し、減圧ボイラ内の圧力が設定値を超えたときに、第2ダンパーを開放して一方の白煙防止用空気予熱器から他方の白煙防止用空気予熱器へ白煙防止用空気を供給し、減圧ボイラ内の圧力を低下させるようにしたことに特徴がある。 An eighth aspect of the present invention is a method for controlling a heat recovery power generation facility from combustion exhaust gas according to any one of the second, fourth and sixth aspects, wherein the pressure is reduced by a pressure detector. The pressure in the boiler is detected, and when the pressure in the pressure reduction boiler exceeds the set value, the second damper is opened, and one white smoke prevention air preheater to the other white smoke prevention air preheater. It is characterized in that the smoke prevention air is supplied to reduce the pressure in the pressure reducing boiler.

本発明の第9の発明は、前記第7の発明において、減圧ボイラ内の圧力が設定圧力以下になれば、ダンパーを所定の開度まで徐々に閉めて行くようにしたことに特徴がある。 The ninth aspect of the present invention is characterized in that, in the seventh aspect , the damper is gradually closed to a predetermined opening degree when the pressure in the decompression boiler becomes equal to or lower than the set pressure.

本発明の第10の発明は、前記第8の発明において、減圧ボイラ内の圧力が設定圧力以下になれば、第2ダンパーを閉鎖位置まで徐々に閉めて行くようにしたことに特徴がある。 A tenth aspect of the present invention is characterized in that, in the eighth aspect , the second damper is gradually closed to the closed position when the pressure in the decompression boiler becomes equal to or lower than the set pressure.

本発明によれば、減圧ボイラに白煙防止用空気予熱器を付設し、減圧ボイラの熱媒水により白煙防止用空気予熱器内を流れる白煙防止用空気を加熱すると共に、減圧ボイラ内の圧力が設定値を超えたときに、白煙防止用空気予熱器に流入する白煙防止用空気を流量制御するようにしているため、減圧ボイラに流入する燃焼排ガスの量が大幅に増大したり、燃焼排ガスの温度が急激に上昇したりした場合でも、減圧ボイラが最大使用圧力を超えることがなく、安定した状態で連続運転することができる。   According to the present invention, the white smoke prevention air preheater is attached to the decompression boiler, and the white smoke prevention air flowing in the white smoke prevention air preheater is heated by the heat transfer water of the decompression boiler. Since the flow control of the white smoke preventing air flowing into the white smoke preventing air preheater is performed when the pressure of the pressure exceeds the set value, the amount of combustion exhaust gas flowing into the pressure reducing boiler is significantly increased. Even when the temperature of the combustion exhaust gas rises rapidly, the decompression boiler does not exceed the maximum operating pressure and can be continuously operated in a stable state.

また、本発明によれば、腐食性のない減圧ボイラに白煙防止用空気予熱器を付設しているため、減圧ボイラの後段に白煙防止用空気予熱気を設置したものと比較した場合、減圧ボイラの燃焼排ガスの出口温度を150℃程度まで下げることができ、熱回収量が増加すると共に、バイナリー発電装置による発電量も増加することになる。   In addition, according to the present invention, since a white smoke prevention air preheater is attached to a non-corrosive decompression boiler, when compared with a white smoke prevention air preheater installed after the decompression boiler, The outlet temperature of the combustion exhaust gas of the decompression boiler can be lowered to about 150 ° C., and the amount of heat recovery increases and the amount of power generated by the binary power generator also increases.

更に、本発明によれば、白煙防止用空気予熱器に流入した白煙防止用空気が腐食性のない減圧ボイラにより加熱されるため、白煙防止用空気予熱器の硫酸腐食防止対策が不要になる。その結果、従来必要であった加熱された白煙防止用空気を循環させるための循環ファンが不要になり、白煙防止用空気ファンのみの動力で済む。   Furthermore, according to the present invention, since the white smoke preventing air flowing into the white smoke preventing air preheater is heated by the non-corrosive decompression boiler, the sulfuric acid corrosion prevention measures of the white smoke preventing air preheater are unnecessary. become. As a result, it becomes unnecessary to use a circulating fan for circulating the heated white smoke preventing air, which is conventionally required, and only the power of the white smoke preventing air fan can be used.

更に、本発明によれば、白煙防止用空気予熱器の円筒状のケーシングに空気入口ダクトをケーシングの接線方向に沿って接続しているため、白煙防止用空気が白煙防止用空気予熱器の円筒形状のジャケット空間内に接線方向へ吹き込まれ、ジャケット空間内を旋回しながら空気出口から排出される。そのため、白煙防止用空気は、ジャケット空間内を片寄った状態で流れることがなく、缶体を通して熱媒水から確実且つ良好に受熱することになる。   Furthermore, according to the present invention, since the air inlet duct is connected to the cylindrical casing of the white smoke prevention air preheater along the tangential direction of the casing, the white smoke prevention air is the white smoke prevention air preheating. The air is blown tangentially into the cylindrical jacket space of the vessel and exhausted from the air outlet while swirling in the jacket space. Therefore, the white smoke preventing air does not flow in a staggered manner in the jacket space, and receives heat from the heat medium water reliably and favorably through the can body.

本発明の一実施形態に係る燃焼排ガスからの熱回収発電設備を設置した燃焼設備の概略系統図である。It is a schematic system diagram of the combustion equipment which installed the heat recovery power generation equipment from the combustion exhaust gas concerning one embodiment of the present invention. 図1に示す燃焼排ガスからの熱回収発電設備の拡大概略系統図である。It is an expansion schematic system diagram of the heat recovery power generation equipment from the combustion exhaust gas shown in FIG. 白煙防止用空気予熱器を付設した減圧ボイラの概略縦断側面図である。It is a schematic longitudinal cross-sectional side view of the decompression boiler which attached the air preheater for white smoke prevention. 図2に示す熱回収発電設備の制御フロー図である。FIG. 3 is a control flow diagram of the heat recovery power generation facility shown in FIG. 2. 燃焼排ガスからの熱回収発電設備の他の例を示す拡大概略系統図である。It is an expansion schematic system diagram which shows the other example of the heat recovery power generation equipment from combustion exhaust gas. 図5に示す熱回収発電設備の制御フロー図である。FIG. 6 is a control flow diagram of the heat recovery power generation facility shown in FIG. 5. 減圧ボイラの後段に白煙防止用空気予熱器を設置した従来の燃焼設備の概略系統図である。It is a schematic system diagram of the conventional combustion equipment which installed the air preheater for white smoke prevention in the back | latter stage of a decompression boiler.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。
図1は本発明の一実施形態に係る燃焼排ガスGからの熱回収発電設備を設置した燃焼設備を示し、当該燃焼設備は、下水汚泥等の廃棄物を燃焼炉1(焼却炉)により燃焼処理し、燃焼炉1から排出された燃焼排ガスGを燃焼用空気予熱器2、白煙防止用空気予熱器3付きの減圧ボイラ4、バグフィルター5、洗煙装置6の順に流すようにしたものである。
Hereinafter, an embodiment of the present invention will be described in detail based on the drawings.
FIG. 1 shows a combustion facility provided with a heat recovery power generation facility from combustion exhaust gas G according to an embodiment of the present invention, wherein the combustion facility burns wastes such as sewage sludge with the combustion furnace 1 (incinerator) The combustion exhaust gas G discharged from the combustion furnace 1 is made to flow in the order of a combustion air preheater 2, a decompression boiler 4 with a white smoke prevention air preheater 3, a bag filter 5, and a smoke washing device 6. is there.

即ち、燃焼炉1から排出された燃焼排ガスGは、先ず燃焼用空気予熱器2で熱回収されて約560℃となり、次に白煙防止用空気予熱器3を付設した減圧ボイラ4により熱回収されて150℃まで減温されてバグフィルター5に送られる。バグフィルター5では、燃焼排ガスGに含まれる煤塵が除去される。煤塵が除去された燃焼排ガスGは、洗煙装置6に送られ、ここで水噴霧により燃焼排ガスGに含まれる酸性ガスが除去された後、誘引ファン7に送られ、白煙防止用空気ファン8により送られて白煙防止用空気予熱器3を通過した白煙防止用空気Aと合流して煙突9から大気中へ排出される。   That is, the combustion exhaust gas G discharged from the combustion furnace 1 is first recovered by the combustion air preheater 2 to about 560 ° C., and then recovered by the decompression boiler 4 provided with the white smoke prevention air preheater 3. The temperature is reduced to 150 ° C. and sent to the bag filter 5. In the bag filter 5, the dust contained in the combustion exhaust gas G is removed. The flue gas G from which the soot and dust have been removed is sent to the smoke cleaning device 6, where acid gas contained in the flue gas G is removed by water spraying, and then sent to the attraction fan 7, and an air fan for preventing white smoke Then, the white smoke preventing air A which has been sent by the white smoke preventing air preheater 3 passes through the chimney 9 and is discharged to the atmosphere from the chimney 9.

図2は本発明の一実施形態に係る燃焼排ガスGからの熱回収発電設備を示し、当該熱回収発電設備は、燃焼炉1からの燃焼排ガスGを流す煙道10(燃焼用空気予熱器2とバグフィルター5との間の煙道10)に設置され、燃焼排ガスGを通して燃焼排ガスGから熱回収すると共に、熱媒水Hを加熱して蒸気を発生させる内部圧力が大気圧以下に保持された減圧ボイラ4と、減圧ボイラ4により低沸点の液状の冷媒Rを加熱、蒸発させてその蒸気でタービン22を回して発電するバイナリー発電装置11と、減圧ボイラ4の熱媒水Hの温度又は減圧ボイラ4の内部圧力P1(減圧蒸気室18内の圧力P1)をそれぞれ検出する温度検出器12又は圧力検出器13と、減圧ボイラ4の熱媒水Hを貯留する缶体の少なくとも一部をケーシング28で囲って缶体16との間に白煙防止用空気Aが流れるジャケット空間29を形成するジャケット構造の白煙防止用空気予熱器3と、白煙防止用空気予熱器3に接続されて白煙防止用空気Aを供給する白煙防止用空気供給路14と、白煙防止用空気供給路14に接続された白煙防止用空気ファン8と、白煙防止用空気供給路14に介設されたダンパー15と、を備えており、前記温度検出器12又は圧力検出器13からの検出信号に基づいて減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18の圧力P1が所定の温度又は圧力に保たれるようにバイナリー発電装置11の低沸点の冷媒Rを循環させる冷媒循環ポンプ25を制御して発電量を制御すると共に、前記減圧ボイラ4の内部圧力P1が設定値Paを超えたときに、圧力検出器13からの検出信号に基づいてダンパー15を所定の開度以上に開放して白煙防止用空気予熱器3へより多くの白煙防止用空気Aを供給し、減圧ボイラ4内の圧力を低下させる構成としたものである。   FIG. 2 shows a heat recovery power generation facility from the combustion exhaust gas G according to one embodiment of the present invention, the heat recovery power generation facility concerned is a flue 10 (flowing air preheater 2 for combustion) through which the combustion exhaust gas G from the combustion furnace 1 flows. Installed in the flue 10) between the two and the bag filter 5, and heat is recovered from the combustion exhaust gas G through the combustion exhaust gas G, and the internal pressure for heating the heat transfer water H to generate steam is kept below atmospheric pressure. The temperature of the heat transfer water H of the reduced pressure boiler 4 and the binary power generator 11 which heats and evaporates the low boiling point liquid refrigerant R by the reduced pressure boiler 4 and turns the turbine 22 with the steam to generate electric power Temperature detector 12 or pressure detector 13 for detecting the internal pressure P1 of pressure reduction boiler 4 (pressure P1 in pressure reduction steam chamber 18), and at least a part of the can for storing heat transfer water H of pressure reduction boiler 4 Casing 28 A white smoke preventing air preheater 3 having a jacket structure forming a jacket space 29 in which the white smoke preventing air A flows between the can 16 and the can 16 and the white smoke preventing air preheater 3 are connected to white smoke The white smoke prevention air supply path 14 for supplying the prevention air A, the white smoke prevention air fan 8 connected to the white smoke prevention air supply path 14, and the white smoke prevention air supply path 14 are provided. The temperature of the heat transfer water H of the pressure reduction boiler 4 or the pressure P1 of the pressure reduction steam chamber 18 is a predetermined temperature or the pressure damper 15 based on the detection signal from the temperature detector 12 or the pressure detector 13. The amount of power generation is controlled by controlling the refrigerant circulation pump 25 that circulates the low boiling point refrigerant R of the binary power generation device 11 so as to be maintained at pressure, and the internal pressure P1 of the decompression boiler 4 exceeds the set value Pa Sometimes from the pressure detector 13 Based on the output signal, the damper 15 is opened to a predetermined opening degree or more to supply more white smoke preventing air A to the white smoke preventing air preheater 3 and to reduce the pressure in the pressure reducing boiler 4 It is

具体的には、前記減圧ボイラ4は、図2に示す如く、煙道10に接続され、内部圧力が大気圧以下に保持されて熱媒水Hを貯留した金属製の缶体16と、缶体16の熱媒水Hを貯留した部分に貫通状に架設され、煙道10内の燃焼排ガスGが通過する複数の煙管17と、缶体16内の上部側空間に形成された減圧蒸気室18と、熱媒水Hの温度を検出する温度検出器12と、減圧蒸気室18内の圧力P1を検出する圧力検出器13と、減圧蒸気室18内の圧力P1が最大使用圧力(大気圧よりもやや小さい圧力)も高くなったときに減圧蒸気室18を大気に開放する安全装置19(例えば、安全弁)等を備えており、缶体16内の熱媒水Hを複数の煙管17内を通過する燃焼排ガスGとの間接熱交換により加熱して蒸発させ、発生した水蒸気を減圧蒸気室18に設置したバイナリー発電装置11の冷媒予熱部20に接触させて凝縮液化させると共に、冷媒予熱部20の冷媒予熱管21a内を流れる冷媒Rに熱を与えるようにしている。   Specifically, as shown in FIG. 2, the decompression boiler 4 is connected to the flue 10, and is made of metal can 16 in which the internal pressure is maintained below the atmospheric pressure and the heat transfer water H is stored; A plurality of smoke pipes 17 pierced in the portion of the body 16 where the heat transfer water H is stored, through which the combustion exhaust gas G in the flue 10 passes, and a vacuum steam chamber formed in the upper space in the can body 16 18, a temperature detector 12 for detecting the temperature of the heat transfer water H, a pressure detector 13 for detecting the pressure P1 in the decompression steam chamber 18, and a pressure P1 in the decompression steam chamber 18 are the maximum operating pressure (atmospheric pressure). A safety device 19 (for example, a safety valve) or the like that opens the depressurized steam chamber 18 to the atmosphere when the pressure slightly higher than that (the pressure slightly smaller than the pressure) also increases. Generated by indirect heat exchange with the combustion exhaust gas G passing through the Together it is condensed by contact with the refrigerant preheating section 20 of the binary power generation device 11 installed in vacuum vapor chamber 18, so that heat is applied to the refrigerant R flowing in the refrigerant preheating pipe 21a of the refrigerant preheating unit 20.

尚、缶体16は、円筒状の上部缶体16aと同じく円筒状の下部缶体16bとを連結管16cを介して連通状に接続した構造であり、下部缶体16b内に熱媒水Hが貯留されていると共に、下部缶体16bに煙管17が架設され、また、上部缶体16a内の空間と下部缶体16b内の上部空間と連結管16c内の空間とが減圧蒸気室18となっている。   The can body 16 has a structure in which the cylindrical upper can body 16a and the cylindrical lower can body 16b are connected in a communicating manner via the connecting pipe 16c, and the heat medium water H is contained in the lower can body 16b. Is stored in the lower can 16b, and the space in the upper can 16a, the upper space in the lower can 16b, and the space in the connecting pipe 16c are reduced pressure steam chamber 18 and It has become.

また、熱媒水Hには、大気圧以下で100℃以上の沸点を持つ水溶液が使用されている。この水溶液の沸点は、燃焼排ガスG中に含まれているSOが通過する煙管17内部で結露しない温度としている。この実施形態においては、SOの露点が130℃程度であるので、水溶液の沸点を130℃とし、55Wt%の臭化リチウム水溶液を熱媒水Hとして使用している。 Further, as the heat transfer water H, an aqueous solution having a boiling point of 100 ° C. or higher at atmospheric pressure or lower is used. The boiling point of the aqueous solution is a temperature at which condensation does not occur inside the smoke pipe 17 through which SO 3 contained in the flue gas G passes. In this embodiment, since the dew point of SO 3 is about 130 ° C., the boiling point of the aqueous solution is 130 ° C., and a 55 Wt% lithium bromide aqueous solution is used as the heat transfer water H.

前記バイナリー発電装置11は、図2に示す如く、冷媒予熱部20、冷媒蒸発部21、タービン22、発電機23、凝縮部24、冷媒循環ポンプ25、冷媒循環用配管26及び制御盤27等を備えており、前記冷媒予熱部20、冷媒蒸発部21、タービン22、凝縮部24及び冷媒循環ポンプ25を冷媒循環用配管26により閉ループ状に接続し、閉ループ内で低沸点の冷媒R(例えば、ペンタンやアンモニア等)を冷媒予熱部20、冷媒蒸発部21、タービン22、凝縮部24、冷媒循環ポンプ25の順に循環させて冷媒予熱部20に戻すようにしている。   As shown in FIG. 2, the binary power generation system 11 includes a refrigerant preheating unit 20, a refrigerant evaporation unit 21, a turbine 22, a generator 22, a condensing unit 24, a refrigerant circulation pump 25, a refrigerant circulation pipe 26, a control panel 27 and the like. The refrigerant preheating unit 20, the refrigerant evaporating unit 21, the turbine 22, the condensing unit 24, and the refrigerant circulating pump 25 are connected in a closed loop by the refrigerant circulating pipe 26, and a low boiling point refrigerant R (for example, Pentane, ammonia, etc.) are circulated in the order of the refrigerant preheating unit 20, the refrigerant evaporation unit 21, the turbine 22, the condensing unit 24, and the refrigerant circulation pump 25 to return to the refrigerant preheating unit 20.

このバイナリー発電装置11は、冷媒予熱部20が減圧ボイラ4の減圧蒸気室18に配設されていると共に、冷媒蒸発部21が熱媒水H内に配設されており、減圧蒸気室18内の90℃の蒸気により冷媒予熱部20内の低沸点の液状の冷媒Rに熱を与え、熱を与えられた冷媒Rを冷媒蒸発部21に導いてここで130℃の熱媒水Hにより更に過熱して蒸気とし、この蒸気でタービン22を回して発電機23で発電するようになっている。タービン22を回した蒸気は、凝縮部24で冷却されて液状の冷媒Rとなって冷媒予熱部20に戻る。冷媒予熱部20に戻った液状の冷媒Rは、ここで減圧蒸気室18内の蒸気により再び予熱され、引き続き冷媒蒸発部21に流入してここで熱媒水Hにより更に過熱されて蒸気となった後、タービン22に供給されてタービン22を回す。   In the binary power generation device 11, the refrigerant preheating unit 20 is disposed in the depressurized steam chamber 18 of the depressurizing boiler 4, and the refrigerant evaporation unit 21 is disposed in the heat medium water H. Heat of the low boiling point liquid refrigerant R in the refrigerant preheating unit 20 by the 90.degree. C. vapor of the refrigerant, and the heated refrigerant R is led to the refrigerant evaporation unit 21 where it is further heated to 130.degree. The steam is superheated to generate steam, and the steam is rotated by the turbine 22 to generate power with the generator 23. The steam that has rotated the turbine 22 is cooled by the condenser 24 and becomes liquid refrigerant R and returns to the refrigerant preheating unit 20. Here, the liquid refrigerant R returned to the refrigerant preheating unit 20 is preheated again by the vapor in the depressurized steam chamber 18, and subsequently flows into the refrigerant evaporation unit 21 where it is further superheated by the heat transfer water H to become a vapor. After that, the turbine 22 is supplied to the turbine 22 to rotate.

このように、前記バイナリー発電装置11では、タービン22を回す役目を果たす冷媒Rが蒸気と液化を繰り返しながら閉ループ内を循環するようになっている。   As described above, in the binary power generation apparatus 11, the refrigerant R, which plays the role of turning the turbine 22, circulates in the closed loop while repeating vaporization and liquefaction.

尚、前記冷媒予熱部20は、折り曲げ形成した冷媒予熱管20aを減圧蒸気室18に配設することにより構成され、前記冷媒蒸発部21は、折り曲げ形成した冷媒蒸発管21aを熱媒水H内に配設することにより構成されている。   The refrigerant preheating unit 20 is configured by disposing the bent refrigerant preheating pipe 20a in the depressurized steam chamber 18, and the refrigerant evaporating unit 21 includes the bent refrigerant evaporation pipe 21a in the heat medium water H. It is comprised by arrange | positioning.

また、前記バイナリー発電装置11は、減圧ボイラ4に設けた温度検出器12又は圧力検出器13により減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18内の圧力P1をそれぞれ検出し、これらの検出信号に基づいて減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18内の圧力P1が所定の温度又は圧力に保たれるように制御盤27により低沸点の冷媒Rを循環させる冷媒循環ポンプ25を制御し、発電量を制御するように構成されている。   The binary power generator 11 detects the temperature of the heat transfer water H in the decompression boiler 4 or the pressure P1 in the decompression steam chamber 18 by the temperature detector 12 or the pressure detector 13 provided in the decompression boiler 4, respectively. The low-boiling refrigerant R is circulated by the control panel 27 so that the temperature of the heat transfer water H of the decompression boiler 4 or the pressure P1 in the decompression steam chamber 18 is maintained at a predetermined temperature or pressure based on the detection signal of The circulation pump 25 is controlled to control the power generation amount.

前記白煙防止用空気予熱器3は、減圧ボイラ4の熱媒水Hを貯留する円筒状の下部缶体16bを金属製の円筒状のケーシング28で囲って下部缶体16bの外周面とケーシング28の内周面との間に白煙防止用空気Aが流れる円筒形状のジャケット空間29を形成したジャケット構造を呈しており、ジャケット空間29に白煙防止用空気Aを流し、下部缶体16b内の熱媒水Hにより予熱するようにしたものである。   The white smoke preventing air preheater 3 encloses the cylindrical lower can 16b for storing the heat transfer water H of the depressurizing boiler 4 with the cylindrical casing 28 made of metal, and the outer peripheral surface of the lower can 16b and the casing The jacket structure has a cylindrical jacket space 29 in which the white smoke preventing air A flows with the inner circumferential surface of the housing 28. The white smoke preventing air A flows in the jacket space 29 to form the lower can 16b. This is preheated by the heat medium water H inside.

また、白煙防止用空気予熱器3のケーシング28の上部には、白煙防止用空気Aをジャケット空間29内へ吹き込むための白煙防止用空気入口30aを形成する空気入口ダクト30が設けられ、ケーシング28の下部には、ジャケット空間29内の白煙防止用空気Aを流出させるための白煙防止用空気出口31aを形成する空気出口ダクト31が設けられている(図3参照)。これら空気入口ダクト30及び空気出口ダクト31は、何れも円筒形状のケーシング28にその接線方向に接続されており、空気入口ダクト30は、ケーシング28の一端部(上流側端部)に、空気出口ダクト31は、ケーシング28の他端部(下流側端部)にそれぞれ配置されている。   Further, an air inlet duct 30 forming a white smoke preventing air inlet 30 a for blowing the white smoke preventing air A into the jacket space 29 is provided on the upper portion of the casing 28 of the white smoke preventing air preheater 3. The lower portion of the casing 28 is provided with an air outlet duct 31 that forms a white smoke prevention air outlet 31a for allowing the white smoke prevention air A in the jacket space 29 to flow out (see FIG. 3). Both the air inlet duct 30 and the air outlet duct 31 are tangentially connected to the cylindrical casing 28, and the air inlet duct 30 is an air outlet at one end (upstream end) of the casing 28. The ducts 31 are respectively disposed at the other end portion (downstream end portion) of the casing 28.

更に、白煙防止用空気予熱器3の空気入口ダクト30には、白煙防止用空気予熱器3へ白煙防止用空気Aを供給し得る白煙防止用空気供給路14が接続されている。尚、白煙防止用空気Aには、常温空気が使用されている。ここで常温空気とは、外部常温空気を意味している。   Furthermore, a white smoke preventing air supply passage 14 capable of supplying the white smoke preventing air A to the white smoke preventing air preheater 3 is connected to the air inlet duct 30 of the white smoke preventing air preheater 3. . Note that room temperature air is used as the air A for preventing white smoke. Here, room temperature air means outside room temperature air.

前記白煙防止用空気供給路14には、白煙防止用空気ファン8が接続されていると共に、白煙防止用空気Aの流量を制御するモータ15a付きのダンパー15が介設されている。   A white smoke preventing air fan 8 is connected to the white smoke preventing air supply path 14, and a damper 15 with a motor 15 a for controlling the flow rate of the white smoke preventing air A is interposed.

前記モータ15a付きのダンパー15は、減圧ボイラ4内の温度又は圧力が所定の温度又は圧力に保たれているときには、所定の開度に保たれており、白煙防止用空気ファン8及び白煙防止用空気供給路14により所定量の白煙防止用空気Aが白煙防止用空気予熱器3のジャケット空間29内に供給されている。ここで、ダンパー15の所定の開度とは、煙突9から排出される燃焼排ガスGに白煙を生じさせない量及び温度の白煙防止用空気Aを白煙防止用空気予熱器3へ供給できる開度を言う。   The damper 15 with the motor 15a is maintained at a predetermined opening degree when the temperature or pressure in the decompression boiler 4 is maintained at a predetermined temperature or pressure, and the white smoke preventing air fan 8 and the white smoke are maintained. A predetermined amount of white smoke preventing air A is supplied into the jacket space 29 of the white smoke preventing air preheater 3 by the prevention air supply passage 14. Here, the white smoke preventing air A can be supplied to the white smoke preventing air preheater 3 so that the predetermined opening degree of the damper 15 does not produce white smoke in the flue gas G discharged from the chimney 9 and the temperature. I say the opening degree.

また、モータ15a付きのダンパー15は、減圧ボイラ4の内部圧力P1が設定値Pa(最大使用圧力と常用使用圧力の中間値)を超えたときに、圧力検出器13からの検出信号に基づいて制御盤27によりダンパー15を所定の開度以上に開放制御されるようになっている。これにより、白煙防止用空気予熱器3へより多くの白煙防止用空気Aが供給されることになり、減圧ボイラ4内の圧力P1を安全装置19が作動しない圧力まで低下させる。   Further, the damper 15 with the motor 15a is based on the detection signal from the pressure detector 13 when the internal pressure P1 of the pressure reducing boiler 4 exceeds the set value Pa (the intermediate value between the maximum working pressure and the normal working pressure). The damper 15 is controlled to be opened to a predetermined opening or more by the control panel 27. As a result, more white smoke prevention air A is supplied to the white smoke prevention air preheater 3, and the pressure P1 in the decompression boiler 4 is reduced to a pressure at which the safety device 19 does not operate.

次に、上述した燃焼排ガスGからの熱回収発電設備の減圧ボイラ4での熱交換及びバイナリー発電装置11による発電について説明する。   Next, heat exchange in the decompression boiler 4 of the heat recovery power generation facility from the combustion exhaust gas G described above and power generation by the binary power generation device 11 will be described.

燃焼用空気予熱器2により熱回収された燃焼排ガスGは、約560℃の温度で白煙防止用空気予熱器3を付設した減圧ボイラ4に流入し、ここで更に熱回収されて約150℃の温度になり、バグフィルター5へ送られる。   The combustion exhaust gas G recovered by the combustion air preheater 2 flows into the decompression boiler 4 provided with the white smoke prevention air preheater 3 at a temperature of about 560 ° C., where the heat is further recovered and about 150 ° C. Is sent to the bag filter 5.

前記減圧ボイラ4内は、大気圧以下に保たれており、熱媒水Hが満たされている。この熱媒水Hは、大気圧以下で100℃以上の沸点を持っており、燃焼排ガスG中に含まれているSOが通過する減圧ボイラ4の煙管17内部で結露しない温度としている。この実施形態においては、SOの露点が130℃であるので、熱媒水Hの沸点を130℃としている。また、熱媒水Hを55Wt%の臭化リチウム水溶液としている。このときの減圧ボイラ4の煙管17の表面温度は、約140℃となり、腐食が防止される。 The inside of the pressure reducing boiler 4 is maintained at atmospheric pressure or less, and is filled with heat medium water H. The heat transfer water H has a boiling point of 100 ° C. or higher below the atmospheric pressure, and is a temperature at which condensation does not occur in the smoke pipe 17 of the decompression boiler 4 through which SO 3 contained in the combustion exhaust gas G passes. In this embodiment, since the dew point of SO 3 is 130 ° C., the boiling point of the heat medium water H is 130 ° C. Further, the heat medium water H is a 55 wt% lithium bromide aqueous solution. The surface temperature of the smoke pipe 17 of the decompression boiler 4 at this time is about 140 ° C., and corrosion is prevented.

また、減圧ボイラ4内では、燃焼排ガスGから受熱した熱媒水Hが沸騰し、90℃の水蒸気を発生する。発生した減圧水蒸気は、減圧ボイラ4の減圧蒸気室18に配設した冷媒予熱部20の冷媒予熱管20aに接触して凝縮し、冷媒予熱管20a内を流れる冷媒Rに熱を与える。尚、冷媒予熱管20aでの熱交換により凝縮したドレン水は、下部缶体16bに貯留されている熱媒水H側へ流下する。   Further, in the pressure reducing boiler 4, the heat transfer water H received from the combustion exhaust gas G is boiled to generate steam at 90 ° C. The depressurized steam thus generated contacts the refrigerant preheating pipe 20a of the refrigerant preheating unit 20 disposed in the depressurized steam chamber 18 of the decompression boiler 4, condenses, and gives heat to the refrigerant R flowing in the refrigerant preheating pipe 20a. The drain water condensed by heat exchange in the refrigerant preheating pipe 20a flows down to the heat transfer water H side stored in the lower can body 16b.

熱を与えられた冷媒Rは、減圧ボイラ4の熱媒水H内に配設した冷媒蒸発部21の冷媒蒸発管21aに送られ、ここで130℃の熱媒水Hにより受熱して蒸発する。気化した冷媒気体は、タービン22に送られ、タービン22羽根を回転させて発電機23で発電させる。   The heat-supplied refrigerant R is sent to the refrigerant evaporation pipe 21a of the refrigerant evaporation unit 21 disposed in the heat medium water H of the decompression boiler 4, where the heat medium water H of 130 ° C. receives heat and evaporates. . The vaporized refrigerant gas is sent to the turbine 22, rotates the blades of the turbine 22, and causes the generator 23 to generate power.

タービン22から排出された気化した冷媒気体は、凝縮部24に送られてここで冷却水により冷却されて液状の冷媒Rとなり、冷媒循環ポンプ25により冷媒予熱部20へ戻る。   The vaporized refrigerant gas discharged from the turbine 22 is sent to the condenser 24, where it is cooled by the cooling water to become a liquid refrigerant R, and returns to the refrigerant preheating unit 20 by the refrigerant circulation pump 25.

このように、減圧ボイラ4での熱交換及びバイナリー発電装置11による発電については、上述したサイクルを繰り返す。   Thus, the cycle described above is repeated for the heat exchange in the pressure reducing boiler 4 and the power generation by the binary power generator 11.

一方、前記減圧ボイラ4に付設した白煙防止用空気予熱器3では、白煙防止用空気ファン8から白煙防止用空気供給路14及び所定の開度に保持されたダンパー15を介して送られて来た白煙防止用空気Aが空気入口ダクト30から白煙防止用空気予熱器3のジャケット空間29内に吹き込まれ、ここで減圧ボイラ4の熱媒水Hにより予熱された後、空気出口ダクト31から排出される。予熱された白煙防止用空気Aは、洗煙装置6により洗浄された燃焼排ガスGに混合されて煙突9から排出される。このとき、白煙防止用空気Aには、加熱側となる減圧ボイラ4の熱媒水Hに腐食成分が含まれていないので、常温空気(例えば、20℃)が使用されており、常温のままで白煙防止用空気予熱器3に供給されている。また、白煙防止用空気Aは、空気入口ダクト30が円筒状のケーシング28にその接線方向に接続されているため、白煙防止用空気予熱器3のジャケット空間29内に接線方向へ吹き込まれ、ジャケット空間29内を旋回してから白煙防止用空気出口31aから排出される。そのため、白煙防止用空気Aは、ジャケット空間29内を片寄った状態で流れることがなく、下部缶体16bを通して熱媒水Hから確実且つ良好に受熱することになる。   On the other hand, the white smoke preventing air preheater 3 attached to the decompression boiler 4 is fed from the white smoke preventing air fan 8 through the white smoke preventing air supply passage 14 and the damper 15 held at a predetermined opening degree. The white smoke preventing air A is blown into the jacket space 29 of the white smoke preventing air preheater 3 from the air inlet duct 30 and is preheated by the heat transfer water H of the pressure reducing boiler 4 and then the air. It is discharged from the outlet duct 31. The preheated white smoke preventing air A is mixed with the flue gas G cleaned by the smoke cleaning device 6 and discharged from the chimney 9. At this time, since the corrosive component is not contained in the heat medium water H of the pressure reducing boiler 4 on the heating side, the white smoke preventing air A uses normal temperature air (for example, 20 ° C.). The white smoke prevention air preheater 3 is supplied as it is. Further, the white smoke preventing air A is blown into the jacket space 29 of the white smoke preventing air preheater 3 in the tangential direction because the air inlet duct 30 is connected to the cylindrical casing 28 in the tangential direction. Then, after turning in the jacket space 29, the air is discharged from the air outlet 31a for preventing white smoke. For this reason, the white smoke prevention air A does not flow in a state of being offset in the jacket space 29 and receives heat reliably and well from the heat transfer water H through the lower can body 16b.

次に、熱回収発電設備の減圧ボイラ4の制御について説明する。   Next, control of the decompression boiler 4 of the heat recovery power generation facility will be described.

下水汚泥の燃焼量や発熱量が低下したときには、減圧ボイラ4の入口温度と燃焼排ガスGの流量が低下するので、減圧ボイラ4での吸収熱量も低下する。そのとき減圧ボイラ4の内部圧力P1(減圧蒸気室18の圧力)も低下する。減圧ボイラ4の内部圧力P1が低下すると、熱媒水Hの飽和温度も低下するので減圧ボイラ4の煙管17内部の温度が低下する。そのため、煙管17内部の温度がSOの露点以下となる。その結果、減圧ボイラ4の煙管17がSOの結露による硫酸腐食を引き起こすことがある。 When the combustion amount and heat generation amount of the sewage sludge are reduced, the inlet temperature of the decompression boiler 4 and the flow rate of the combustion exhaust gas G are lowered, so that the amount of heat absorbed by the decompression boiler 4 is also reduced. At this time, the internal pressure P1 of the pressure reducing boiler 4 (the pressure of the pressure reducing steam chamber 18) also decreases. When the internal pressure P1 of the pressure reducing boiler 4 decreases, the saturation temperature of the heat medium water H also decreases, so the temperature inside the smoke pipe 17 of the pressure reducing boiler 4 decreases. Therefore, the temperature inside the smoke pipe 17 falls below the dew point of SO 3 . As a result, the smoke pipe 17 of the decompression boiler 4 may cause sulfuric acid corrosion due to condensation of SO 3 .

この現象(煙管17の硫酸腐食)を防止するため、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18内の圧力P1を温度検出器12又は圧力検出器13によりそれぞれ検出し、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18内の圧力P1が設定値Pa以下になると、温度検出器12又は圧力検出器13からの検出信号がバイナリー発電装置11の制御盤27に送られて発電量を下げる。発電量を下げるには、制御盤27により冷媒循環ポンプ25の回転数を下げて冷媒Rの循環量を落とす。冷媒Rの循環量が下がると、冷媒蒸発部21での吸収熱量が下がり、その後減圧ボイラ4内の圧力P1は、設定値Paに戻る。   In order to prevent this phenomenon (sulfuric acid corrosion of the smoke pipe 17), the temperature of the heat medium water H of the pressure reducing boiler 4 or the pressure P1 in the pressure reducing steam chamber 18 is detected by the temperature detector 12 or 13 respectively. When the temperature of the heat transfer water H or the pressure P1 in the decompression steam chamber 18 becomes equal to or less than the set value Pa, a detection signal from the temperature detector 12 or the pressure detector 13 is sent to the control panel 27 of the binary power generator 11. Reduce power generation. In order to reduce the power generation amount, the control board 27 reduces the rotational speed of the refrigerant circulation pump 25 to reduce the circulation amount of the refrigerant R. When the circulating amount of the refrigerant R decreases, the amount of heat absorbed by the refrigerant evaporating unit 21 decreases, and thereafter, the pressure P1 in the pressure reducing boiler 4 returns to the set value Pa.

反対に、下水汚泥の燃焼量や発熱量が上昇したときには、減圧ボイラ4の入口温度と燃焼排ガスGの流量が上昇するので、減圧ボイラ4の吸収熱量も上昇する。そのとき減圧ボイラ4内の圧力P1(減圧蒸気室18の圧力)も上昇する。   On the contrary, when the combustion amount and the heat generation amount of the sewage sludge rise, the inlet temperature of the decompression boiler 4 and the flow rate of the combustion exhaust gas G rise, so the amount of heat absorbed by the decompression boiler 4 also rises. At that time, the pressure P1 in the decompression boiler 4 (pressure in the decompression steam chamber 18) also increases.

減圧ボイラ4内の圧力P1が上昇して設定圧力以上になると、安全装置19(安全弁)が開く方向に作動して減圧ボイラ4内の圧力を逃がし、大気圧と減圧ボイラ4内の圧力P1が同じになる。   When the pressure P1 in the pressure reduction boiler 4 rises and becomes equal to or higher than the set pressure, the safety device 19 (safety valve) operates in the opening direction to release the pressure in the pressure reduction boiler 4 and the atmospheric pressure and the pressure P1 in the pressure reduction boiler 4 It will be the same.

しかし、この場合、減圧ボイラ4の再起動時に減圧ボイラ4の内部を減圧して大気圧以下にするために真空ポンプ(図示省略)が必要になる。   However, in this case, a vacuum pump (not shown) is required to reduce the pressure in the pressure reducing boiler 4 to the atmospheric pressure or less when the pressure reducing boiler 4 is restarted.

このような作業や手間をかけると、費用と立上げの時間がかかるので出来るだけ安全装置19の作動を避けたい。この現象を防止するために、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18内の圧力P1を温度検出器12又は圧力検出器13によりそれぞれ検出し、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18内の圧力P1が設定値Pa以上になると、温度検出器12又は圧力検出器13からの検出信号がバイナリー発電装置11の制御盤27に送られて発電量を上げる。発電量を上げるには、制御盤27により冷媒循環ポンプ25の回転数を上げて冷媒Rの循環量を増やす。冷媒Rの循環量が増えると、冷媒蒸発部21での吸収熱量が上がり、減圧ボイラ4内の圧力P1は、設定値Paに戻る。   Since it takes time and cost to start up if such work and time are taken, it is desirable to avoid activating the safety device 19 as much as possible. In order to prevent this phenomenon, the temperature of the heat medium water H of the pressure reducing boiler 4 or the pressure P1 in the pressure reducing steam chamber 18 is detected by the temperature detector 12 or the pressure sensor 13 respectively, and the heat medium water H of the pressure reducing boiler 4 When the pressure P1 in the reduced pressure steam chamber 18 becomes equal to or higher than the set value Pa, a detection signal from the temperature detector 12 or the pressure detector 13 is sent to the control panel 27 of the binary power generator 11 to increase the power generation amount. In order to increase the power generation amount, the control board 27 increases the rotational speed of the refrigerant circulation pump 25 to increase the circulation amount of the refrigerant R. When the circulation amount of the refrigerant R increases, the amount of heat absorbed by the refrigerant evaporation unit 21 increases, and the pressure P1 in the decompression boiler 4 returns to the set value Pa.

このように、下水汚泥の燃焼量や発熱量が変化した場合、バイナリー発電装置11の冷媒Rの循環量による制御は、バイナリー発電装置11側の受熱速度が減圧ボイラ4側の受熱速度と同等か又はそれ以上の場合に成り立つものであり、減圧ボイラ4側の受熱速度が速い場合には、減圧ボイラ4の内部圧力P1が上昇することになる。また、燃焼排ガスGの量や温度の変動が大きい場合には、減圧ボイラ4の内部圧力P1が最大使用圧力(大気圧よりやや小さい圧力)を超える場合がある。その結果、安全装置19が作動することになる。   As described above, when the amount of combustion and the amount of heat generation of the sewage sludge change, whether the control of the binary power generation device 11 by the circulation amount of the refrigerant R is the same as the heat reception rate on the side of the pressure reduction boiler 4 Or, it is established in the case of more than that, and when the heat receiving speed on the decompression boiler 4 side is fast, the internal pressure P1 of the decompression boiler 4 increases. Moreover, when the fluctuation | variation of the quantity and temperature of combustion exhaust gas G is large, the internal pressure P1 of the decompression boiler 4 may exceed the maximum use pressure (pressure slightly smaller than atmospheric pressure). As a result, the safety device 19 is activated.

そこで、燃焼排ガスGの量や温度の変動が大きい場合、即ち、燃焼排ガスGの量が増大したり、燃焼排ガスGの温度が上昇したりした場合、減圧ボイラ4に付設した白煙防止用空気予熱器3及びダンパー15等を制御し、白煙防止用空気予熱器3への白煙防止用空気Aの量を制御して減圧ボイラ4の安全制御を行う。   Therefore, when the fluctuation of the amount and temperature of the combustion exhaust gas G is large, that is, the amount of the combustion exhaust gas G increases and the temperature of the combustion exhaust gas G rises, the air for preventing white smoke attached to the pressure reducing boiler 4 The preheater 3 and the damper 15 are controlled to control the amount of white smoke prevention air A to the white smoke prevention air preheater 3 to perform safety control of the decompression boiler 4.

燃焼排ガスGの量や温度が変動して減圧ボイラ4内の圧力P1が設定値Ps(最大使用圧力と常用使用圧力の中間値)を超えた場合、圧力検出器13からの検出信号が制御盤27に入力され、制御盤27により白煙防止用空気供給路14に介設したダンパー15が所定の開度以上になるように開放制御される。   When the amount and temperature of the combustion exhaust gas G fluctuate and the pressure P1 in the pressure reducing boiler 4 exceeds the set value Ps (intermediate value between the maximum working pressure and the normal working pressure), the detection signal from the pressure detector 13 indicates the control panel 27 is controlled by the control panel 27 so that the damper 15 interposed in the white smoke preventing air supply path 14 is controlled to a predetermined opening degree or more.

これにより、多くの白煙防止用空気Aが白煙防止用空気供給路14及びダンパー15を通って白煙防止用空気予熱器3のジャケット空間29内に流入し、減圧ボイラ4内の熱媒水Hから受熱して減圧蒸気室18内の温度を下げると共に、減圧ボイラ4の内部圧力P1を安全装置19が作動しない圧力(P1=Ps)まで低下させる。このとき、白煙防止用空気Aに常温空気を使用しているため、熱媒水Hとの温度差を大きく取れ、白煙防止用空気Aは早く受熱することができる。   As a result, a large amount of white smoke preventing air A flows into the jacket space 29 of the white smoke preventing air preheater 3 through the white smoke preventing air supply path 14 and the damper 15, and the heat medium in the pressure reducing boiler 4 While receiving heat from the water H, the temperature in the decompression steam chamber 18 is lowered, and the internal pressure P1 of the decompression boiler 4 is lowered to a pressure at which the safety device 19 does not operate (P1 = Ps). At this time, since normal temperature air is used as the white smoke prevention air A, a temperature difference from the heat transfer water H can be made large, and the white smoke prevention air A can receive heat quickly.

減圧ボイラ4に付設した白煙防止用空気予熱器3により受熱し、減圧ボイラ4の内部圧力P1が設定圧力以下になれば、制御盤27により白煙防止用空気供給路14に介設したダンパー15を所定の開度まで徐々に閉めて行く。このとき、ダンパー15を徐々に閉じて行くので、バイナリー発電装置11側の冷媒循環ポンプ25による冷媒Rの循環量制御が追い付き、減圧ボイラ4内の圧力P1は常用圧力で運転されることになる(図4参照)。   Damper installed in the air supply path 14 for preventing white smoke by the control panel 27 when receiving heat by the air preheater 3 for preventing white smoke attached to the decompression boiler 4 and the internal pressure P1 of the decompression boiler 4 becomes lower than the set pressure. Gradually close 15 to a predetermined opening. At this time, since the damper 15 is gradually closed, the control of the amount of circulation of the refrigerant R by the refrigerant circulation pump 25 on the side of the binary power generation device 11 catches up, and the pressure P1 in the decompression boiler 4 is operated at the normal pressure. (See Figure 4).

このように、上述した熱回収発電設備によれば、減圧ボイラ4に白煙防止用空気予熱器3を付設しているため、減圧ボイラ4の内部圧力P1が設定値Pa(最大使用圧力と常用使用圧力の中間値)を超えたときに、白煙防止用空気予熱器3に供給する白煙防止用空気Aの量を制御し、減圧ボイラ4内の圧力P1を低下させることが出来る。その結果、減圧ボイラ4に流入する燃焼排ガスGの量が大幅に増大したり、或いは、燃焼排ガスGの温度が急激に上昇したりした場合でも、減圧ボイラ4が最大使用圧力を超えることがなく、安定した状態で連続運転することができる。   As described above, according to the above-described heat recovery power generation facility, since the white smoke preventing air preheater 3 is attached to the decompression boiler 4, the internal pressure P1 of the decompression boiler 4 is the set value Pa (maximum working pressure The amount of white smoke prevention air A supplied to the white smoke prevention air preheater 3 can be controlled to reduce the pressure P1 in the decompression boiler 4 when the working pressure exceeds the intermediate value). As a result, even when the amount of combustion exhaust gas G flowing into the pressure reducing boiler 4 increases significantly or the temperature of the combustion exhaust gas G sharply rises, the pressure reducing boiler 4 does not exceed the maximum working pressure. , Can be operated continuously in a stable state.

また、前記熱回収発電設備によれば、腐食性のない減圧ボイラ4に白煙防止用空気予熱器3を付設しているため、減圧ボイラ42の後段に白煙防止用空気予熱気43を設置した従来のものと比較した場合、減圧ボイラ4の燃焼排ガスGの出口温度を150℃程度まで下げることができ、熱回収量が増加すると共に、バイナリー発電装置11による発電量も増加することになる。   Further, according to the heat recovery power generation facility, since the white smoke preventing air preheater 3 is attached to the non-corrosive pressure reducing boiler 4, the white smoke preventing air preheater 43 is installed at the rear stage of the pressure reducing boiler 42. When compared with the conventional one, the outlet temperature of the combustion exhaust gas G of the pressure reducing boiler 4 can be lowered to about 150.degree. C., the amount of heat recovery increases, and the amount of power generation by the binary power generator 11 also increases. .

即ち、従来のように減圧ボイラ42の後段に白煙防止用空気予熱器43を設置した場合、減圧ボイラ42の吸収熱量は、減圧ボイラ42の入口温度560℃と出口温度210℃の温度差分(350℃)となる。
これに対して、減圧ボイラ4に白煙防止用空気予熱器3を付設した場合、減圧ボイラ4の吸収熱量は、減圧ボイラ4の入口温度560℃と出口温度150℃の温度差分から白煙防止用空気予熱器3が吸収する温度差分30℃分を引いた温度差(560℃−150℃−30℃=380℃)となり、減圧ボイラ42の後段に白煙防止用空気予熱器43を設置した場合に比較して約8.6%増加できる。この分をバイナリー発電装置11が吸収するので、発電量も約8.6%増加することになる。
That is, when the air preheater 43 for preventing white smoke is installed in the subsequent stage of the decompression boiler 42 as in the prior art, the amount of heat absorbed by the decompression boiler 42 is the temperature difference between the inlet temperature 560 ° C. of the decompression boiler 42 and the outlet temperature 210 ° C. 350 ° C.).
On the other hand, when the white smoke prevention air preheater 3 is attached to the decompression boiler 4, the absorbed heat amount of the decompression boiler 4 is the white smoke prevention from the temperature difference between the inlet temperature 560 ° C and the outlet temperature 150 ° C of the decompression boiler 4 The temperature difference (560 ° C-150 ° C-30 ° C = 380 ° C) obtained by subtracting the temperature difference of 30 ° C absorbed by the air preheater 3 is set, and the white smoke prevention air preheater 43 is installed downstream of the pressure reduction boiler 42 It can be increased by about 8.6% compared to the case. Since this amount is absorbed by the binary power generator 11, the amount of power generation is also increased by about 8.6%.

更に、前記熱回収発電設備によれば、白煙防止用空気Aが腐食性のない減圧ボイラ4から受熱するため、白煙防止用空気予熱器3の硫酸腐食防止対策が不要になる。その結果、従来必要であった加熱された白煙防止用空気Aを循環させるための循環ファンが不要になり、白煙防止用空気ファン8のみの動力で済む。   Further, according to the heat recovery power generation facility, the white smoke prevention air A receives heat from the decompression boiler 4 that is not corrosive, and therefore, the white smoke prevention air preheater 3 does not need to be protected against sulfuric acid corrosion. As a result, a circulation fan for circulating the heated white smoke prevention air A, which has been conventionally required, becomes unnecessary, and only the white smoke prevention air fan 8 needs to be powered.

図5は本発明の他の実施形態に係る燃焼排ガスGからの熱回収発電設備を示し、当該熱回収発電設備は、燃焼排ガスGを流す煙道10に設置され、燃焼排ガスGを通して燃焼排ガスGから熱回収すると共に、熱媒水Hを加熱して蒸気を発生させる内部圧力が大気圧以下に保持された減圧ボイラ4と、減圧ボイラ4により低沸点の液状の冷媒Rを加熱、蒸発させてその蒸気でタービン22を回して発電するバイナリー発電装置11と、減圧ボイラ4の熱媒水Hの温度又は減圧ボイラ4の減圧蒸気室18の内部圧力P1をそれぞれ検出する温度検出器12又は圧力検出器13と、減圧ボイラ4の熱媒水Hを貯留する缶体16の少なくとも一部をケーシング28で囲って缶体16との間に白煙防止用空気Aが流れるジャケット空間29を形成する二つのジャケット構造の白煙防止用空気予熱器3,3′と、一方の白煙防止用空気予熱器3に接続されて白煙防止用空気Aを供給する白煙防止用空気供給路14と、白煙防止用空気供給路14に接続された白煙防止用空気ファン8と、白煙防止用空気供給路14に介設されたダンパー15と、二つの白煙防止用空気予熱器3,3′同士を連通状に接続する連絡通路32と、連絡通路32に介設された第2ダンパー33と、備えており、前記温度検出器12又は圧力検出器13からの検出信号に基づいて減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18内の圧力P1が所定の温度又は圧力に保たれるようにバイナリー発電装置11の低沸点の冷媒Rを循環させる冷媒循環ポンプ25を制御して発電量を制御すると共に、前記減圧ボイラ4の内部圧力P1が設定値Paを超えたときに、圧力検出器13からの検出信号に基づいて第2ダンパー33を閉鎖位置から開放制御して白煙防止用空気予熱器3′へ白煙防止用空気Aを供給し、減圧ボイラ4内の圧力P1を低下させる構成としたものである。   FIG. 5 shows a heat recovery power generation facility from flue gas G according to another embodiment of the present invention, the heat recovery power generation facility is installed in a flue 10 for flowing the flue gas G, and the flue gas G through the flue gas G is shown. The heat-recovered water H is heated and evaporated, and the low-boiling liquid refrigerant R is heated and evaporated by the pressure-reducing boiler 4 in which the internal pressure for generating steam by heating the heat transfer water H is kept below atmospheric pressure. Temperature detector 12 or pressure detection that detects the temperature of heat transfer water H of decompression boiler 4 or the internal pressure P1 of decompression steam chamber 18 of decompression boiler 4 respectively by the binary power generation device 11 that generates electric power by rotating the turbine 22 with the steam The casing 13 and at least a part of the can 16 storing the heat transfer water H of the decompression boiler 4 with the casing 28 to form a jacket space 29 between the can 16 and the white smoke preventing air A A white smoke preventing air preheater 3, 3 'having a jacket structure, and a white smoke preventing air supply passage 14 connected to one of the white smoke preventing air preheaters 3 for supplying white smoke preventing air A; A white smoke prevention air fan 8 connected to the white smoke prevention air supply path 14, a damper 15 interposed in the white smoke prevention air supply path 14, and two white smoke prevention air preheaters 3 and 3 And a second damper 33 interposed in the communication passage 32, and a decompression boiler based on a detection signal from the temperature detector 12 or the pressure detector 13. The refrigerant circulation pump 25 for circulating the low boiling point refrigerant R of the binary power generation device 11 is controlled so that the temperature of the heat medium water H or the pressure P1 in the reduced pressure steam chamber 18 is maintained at a predetermined temperature or pressure. While controlling the power generation amount, the inside of the decompression boiler 4 When the force P1 exceeds the set value Pa, the second damper 33 is controlled to be opened from the closed position based on the detection signal from the pressure detector 13, and the white smoke prevention air preheater 3 'is controlled. A is supplied to reduce the pressure P <b> 1 in the decompression boiler 4.

前記熱回収発電設備は、減圧ボイラ4に二つのジャケット構造の白煙防止用空気予熱器3,3′を付設したものであり、その他の構成は、図2に示す熱回収発電設備と同様構造に構成されており、図2に示す熱回収発電設備と同じ部位・部材には、同一の参照番号を付し、その詳細な説明を省略する。   The heat recovery power generation facility is the decompression boiler 4 with two jacket-structured white smoke preventing air preheaters 3, 3 'attached, and the other configuration is the same as the heat recovery power generation facility shown in FIG. The same reference numerals are attached to the same parts and members as those of the heat recovery power generation facility shown in FIG. 2 and the detailed description thereof is omitted.

前記二つの白煙防止用空気予熱器3,3′は、何れも減圧ボイラ4の熱媒水Hを貯留する円筒状の下部缶体16bを金属製の円筒状のケーシング28で囲って下部缶体16bの外周面とケーシング28の内周面との間に白煙防止用空気Aが流れる円筒形状のジャケット空間29を形成したジャケット構造を呈しており、前記ジャケット空間29をジャケット空間29内に配設した仕切り壁34により上流側ジャケット空間29aと下流側ジャケット空間29bとに区画することにより二つの白煙防止用空気予熱器3,3′(上流側の白煙防止用空気予熱器3と下流側の白煙防止用空気予熱器3′)に構成されている。   The two white smoke preventing air preheaters 3 and 3 'each have a cylindrical lower can 16b for storing the heat transfer water H of the pressure reducing boiler 4 surrounded by a metal cylindrical casing 28 to be a lower can. It has a jacket structure in which a cylindrical jacket space 29 through which the white smoke preventing air A flows is formed between the outer peripheral surface of the body 16 b and the inner peripheral surface of the casing 28. Two white smoke preventing air preheaters 3, 3 '(the upstream white smoke preventing air preheater 3 and three white smoke preventing air preheaters 3 and 3') by partitioning into an upstream jacket space 29a and a downstream jacket space 29b by the partition wall 34 disposed. It is comprised in the air preheater 3 ') for white smoke prevention in the downstream.

また、上流側の白煙防止用空気予熱器3の上流側ジャケット空間29aと下流側の白煙防止用空気予熱器3′の下流側ジャケット空間29bとは、連絡通路32により連通状に接続されている。この連絡通路32には、上流側ジャケット空間29aから下流側ジャケット空間29bに流入する白煙防止用空気Aを流量制御するモータ33a付きの第2ダンパー33が介設されている。   Further, the upstream jacket space 29a of the upstream white smoke prevention air preheater 3 and the downstream jacket space 29b of the downstream white smoke prevention air preheater 3 'are connected in communication by the communication passage 32. ing. The communication passage 32 is provided with a second damper 33 with a motor 33a for controlling the flow rate of the white smoke prevention air A flowing into the downstream jacket space 29b from the upstream jacket space 29a.

前記第2ダンパー33は、減圧ボイラ4内の温度又は圧力が所定の温度又は圧力に保たれているときには、閉鎖状態に保たれており、減圧ボイラ4の内部圧力P1が設定値Pa(最大使用圧力と常用使用圧力の中間値)を超えたときに、圧力検出器13からの検出信号に基づいて制御盤27により第2ダンパー33が開放制御されるようになっている。   The second damper 33 is kept closed when the temperature or pressure in the pressure reducing boiler 4 is maintained at a predetermined temperature or pressure, and the internal pressure P1 of the pressure reducing boiler 4 is at the set value Pa (maximum use The second damper 33 is controlled to be opened by the control panel 27 based on a detection signal from the pressure detector 13 when the pressure exceeds the intermediate value between the pressure and the normal working pressure.

更に、減圧ボイラ4の上流側の白煙防止用空気予熱器3のケーシング28の上部には、白煙防止用空気Aを上流側ジャケット空間29内へ吹き込むための白煙防止用空気入口30aを形成する空気入口ダクト30が設けられている。この空気入口ダクト30は、円筒状のケーシング28にその接線方向に接続されており、当該空気入口ダクト30には、白煙防止用空気供給路14が接続されている。   Furthermore, a white smoke preventing air inlet 30 a for blowing white smoke preventing air A into the upstream jacket space 29 is provided at the upper part of the casing 28 of the white smoke preventing air preheater 3 on the upstream side of the decompression boiler 4. An air inlet duct 30 is provided. The air inlet duct 30 is connected to a cylindrical casing 28 in the tangential direction, and the air inlet duct 30 is connected to the air supply path 14 for preventing white smoke.

更に、二つの白煙防止用空気予熱器3,3′のケーシング28の下部には、上流側ジャケット空間29a内及び下流側ジャケット空間29b内の白煙防止用空気Aを流出させるための白煙防止用空気出口31aを形成する空気出口ダクト31がそれぞれ設けられている。   Furthermore, white smoke for letting out the white smoke preventing air A in the upstream jacket space 29a and the downstream jacket space 29b in the lower part of the casing 28 of the two white smoke preventing air preheaters 3, 3 '. Air outlet ducts 31 that form prevention air outlets 31a are respectively provided.

前記熱回収発電設備によれば、下水汚泥の燃焼量や発熱量が低下したときや上昇したときには、温度検出器12又は圧力検出器13からの検出信号に基づいて減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室18内の圧力P1が所定の温度又は圧力に保たれるようにバイナリー発電装置11の低沸点の冷媒Rを循環させる冷媒循環ポンプ25を制御して発電量を制御している。このとき、白煙防止用空気供給路14に介設したダンパー15は、所定の開度に保たれている。また、連絡通路32に介設した第2ダンパー33は、閉鎖状態に保持されている。   According to the heat recovery power generation facility, the heat medium water H of the pressure reducing boiler 4 based on the detection signal from the temperature detector 12 or the pressure detector 13 when the combustion amount or the calorific value of the sewage sludge decreases or rises. Control the amount of power generation by controlling the refrigerant circulation pump 25 for circulating the low boiling point refrigerant R of the binary power generation device 11 so that the pressure P1 in the reduced pressure steam chamber 18 is maintained at a predetermined temperature or pressure. There is. At this time, the damper 15 interposed in the white smoke preventing air supply path 14 is maintained at a predetermined opening degree. Further, the second damper 33 interposed in the communication passage 32 is held in a closed state.

そして、燃焼排ガスGの量や温度の変動が大きい場合、即ち、燃焼排ガスGの量が増大したり、燃焼排ガスGの温度が上昇したりした場合、減圧ボイラ4に付設した下流側の白煙防止用空気予熱器3′及び第2ダンパー33等を制御して減圧ボイラ4の安全制御を行う。   And when the fluctuation | variation of the quantity and temperature of combustion exhaust gas G is large, ie, the quantity of combustion exhaust gas G increases, or the temperature of combustion exhaust gas G rises, the white smoke of the downstream side attached to the pressure reduction boiler 4 The prevention air preheater 3 ′ and the second damper 33 are controlled to perform safety control of the decompression boiler 4.

燃焼排ガスGの量や温度が変動して減圧ボイラ4の内部圧力P1が設定値Ps(最大使用圧力と常用使用圧力の中間値)を超えた場合、圧力検出器13からの検出信号が制御盤27に入力され、制御盤27により連絡通路32に介設した第2ダンパー33が開放制御される。   When the amount and temperature of the combustion exhaust gas G fluctuate and the internal pressure P1 of the pressure reducing boiler 4 exceeds the set value Ps (intermediate value between the maximum working pressure and the normal working pressure), the detection signal from the pressure detector 13 indicates the control panel 27, the second damper 33 interposed in the communication passage 32 is controlled to be opened by the control panel 27.

そうすると、白煙防止用空気供給路14から上流側の白煙防止用空気予熱器3の上流側ジャケット空間29aに流入した白煙防止用空気Aの一部が連絡通路32を通って下流側の白煙防止用空気予熱器3′の下流側ジャケット空間29bにも流入し、ここで白煙防止用空気Aが減圧ボイラ4の熱媒水Hから受熱して減圧蒸気室18内の温度を下げると共に、減圧ボイラ4内の圧力P1を安全装置19が作動しない圧力P1(P1=Ps)まで低下させる。   Then, a part of the white smoke preventing air A which has flowed from the white smoke preventing air supply passage 14 into the upstream jacket space 29 a of the upstream white smoke preventing air preheater 3 passes through the communication passage 32 to the downstream side. It also flows into the downstream jacket space 29b of the white smoke prevention air preheater 3 ', where the white smoke prevention air A receives heat from the heat transfer water H of the decompression boiler 4 to lower the temperature in the decompression steam chamber 18 At the same time, the pressure P1 in the decompression boiler 4 is reduced to a pressure P1 (P1 = Ps) at which the safety device 19 does not operate.

減圧ボイラ4に付設した白煙防止用空気予熱器3,3′により受熱し、減圧ボイラ4内の圧力P1が設定圧力以下になれば、制御盤27により連絡通路32に介設した第2ダンパー33を徐々に閉めて行く。このとき、第2ダンパー33を徐々に閉じて行くので、バイナリー発電装置11側の冷媒循環ポンプ25による冷媒Rの循環量制御が追い付き、減圧ボイラ44の内部の圧力P1は常用圧力で運転されることになる(図6参照)。   A second damper is received by the control panel 27 when the pressure P1 in the pressure reducing boiler 4 becomes lower than the set pressure by receiving heat by the white smoke preventing air preheaters 3, 3 'attached to the pressure reducing boiler 4 Gradually close 33. At this time, since the second damper 33 is gradually closed, the control of the amount of circulation of the refrigerant R by the refrigerant circulation pump 25 on the side of the binary power generation device 11 catches up, and the pressure P1 inside the pressure reducing boiler 44 is operated at the normal pressure. (See FIG. 6).

上述した図5に示す熱回収発電設備も、図2に示す熱回収発電設備と同様の作用効果を奏することができる。   The heat recovery power generation facility shown in FIG. 5 described above can also achieve the same effects as the heat recovery power generation facility shown in FIG. 2.

尚、上記の実施形態においては、上流側の白煙防止用空気予熱器3のケーシング28と下流側の白煙防止用空気予熱器3′のケーシング28とを兼用させたが、他の実施形態においては、図示していないが、二つの白煙防止用空気予熱器3,3′のケーシング28を別々に形成しても良い。   In the above-described embodiment, the casing 28 of the upstream white smoke prevention air preheater 3 and the downstream side white smoke prevention air preheater 3 ′ are combined, but other embodiments are used. Although not shown, the casings 28 of the two white smoke preventing air preheaters 3, 3 'may be formed separately.

1は燃焼炉、2は燃焼用空気予熱器、3は白煙防止用空気予熱器、3′は白煙防止用空気予熱器、4は減圧ボイラ、5はバグフィルター、6は洗煙装置、7は誘引ファン、8は白煙防止用空気ファン、9は煙突、10は煙道、11はバイナリー発電装置、12は温度検出器、13は圧力検出器、14は白煙防止用空気供給路、15はダンパー、15aはモータ、16は缶体、16aは上部缶体、16bは下部缶体、16cは連結管、17は煙管、18は減圧蒸気室、19は安全装置、20は冷媒予熱部、20aは冷媒予熱管、21は冷媒蒸発部、21aは冷媒蒸発管、22はタービン、23は発電機、24は凝縮部、25は冷媒循環ポンプ、26は冷媒循環用配管、27は制御盤、28はケーシング、29はジャケット空間、29aは上流側ジャケット空間、29bは下流側ジャケット空間、30は空気入口ダクト、30aは白煙防止用空気入口、31は空気出口ダクト、31aは白煙防止用空気出口、32は連絡通路、33は第2ダンパー、33aはモータ、34は仕切り壁、Aは白煙防止用空気、Gは燃焼排ガス、Hは熱媒水、Paは設定値(最大使用圧力と常用使用圧力の中間値)、P1は減圧ボイラ内の圧力、Psは常用使用圧力、Rは冷媒、Tは熱媒水の温度。   1 is a combustion furnace, 2 is an air preheater for combustion, 3 is an air preheater for preventing white smoke, 3 'is an air preheater for preventing white smoke, 4 is a decompression boiler, 5 is a bag filter, 6 is a smoke cleaner, 7 is an induction fan, 8 is an air fan for preventing white smoke, 9 is a chimney, 10 is a flue, 11 is a binary power generator, 12 is a temperature detector, 13 is a pressure detector, 14 is an air supply path for preventing white smoke Reference numeral 15 is a damper, 15a is a motor, 16 is a can, 16a is an upper can, 16b is a lower can, 16c is a connecting pipe, 17 is a smoke pipe, 18 is a reduced pressure steam chamber, 19 is a safety device, and 20 is refrigerant preheating. The reference numeral 20a is a refrigerant preheating pipe, 21 is a refrigerant evaporation part, 21a is a refrigerant evaporation pipe, 22 is a turbine, 23 is a generator, 24 is a condenser, 25 is a refrigerant circulation pump, 26 is a refrigerant circulation pipe, 27 is a control Panel, 28 is casing, 29 is jacket space, 29a is upstream side Jacket space, 29b is a downstream jacket space, 30 is an air inlet duct, 30a is a white smoke preventing air inlet, 31 is an air outlet duct, 31a is a white smoke preventing air outlet, 32 is a communication passage, and 33 is a second damper , 33a: motor, 34: partition wall, A: white smoke preventing air, G: combustion exhaust gas, H: heat transfer water, Pa: setting value (intermediate value between maximum working pressure and normal working pressure), P1: decompression boiler Pressure, Ps is the normal working pressure, R is the refrigerant, and T is the temperature of the heat transfer water.

Claims (10)

燃焼炉から排出されて煙道内を流れる腐食成分を含む燃焼排ガスから熱回収して発電するようにした燃焼排ガスからの熱回収発電設備であって、燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧力が大気圧以下に保持された減圧ボイラと、減圧ボイラにより低沸点の液状の冷媒を加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置と、減圧ボイラの熱媒水の温度又は減圧ボイラの内部圧力をそれぞれ検出する温度検出器又は圧力検出器と、減圧ボイラの熱媒水を貯留する缶体の少なくとも一部をケーシングで囲って缶体との間に白煙防止用空気が流れるジャケット空間を形成する白煙防止用空気予熱器と、白煙防止用空気予熱器に接続された白煙防止用空気供給路と、白煙防止用空気供給路に接続された白煙防止用空気ファンと、白煙防止用空気供給路に介設されたダンパーと、を備えており、前記温度検出器又は圧力検出器からの検出信号に基づいてバイナリー発電装置の冷媒を循環させる冷媒循環ポンプを制御すると共に、前記減圧ボイラ内の圧力が設定値を超えたときに、ダンパーを所定の開度以上に開放制御する構成としたことを特徴とする燃焼排ガスからの熱回収発電設備。   A heat recovery power generation facility from flue gas that recovers heat from flue gas containing corrosive components discharged from a combustion furnace and flows in the flue to generate power, and is installed in the flue where flue gas flows, the flue gas The low pressure boiler whose internal pressure to keep heat below the atmospheric pressure by heating the heat transfer water to generate steam while recovering the heat from the combustion exhaust gas through, and the low boiling point liquid refrigerant are heated and evaporated by the low pressure boiler A binary power generation device that generates power by turning a turbine with steam, a temperature detector or pressure detector that detects the temperature of the heat transfer water of the reduced pressure boiler or the internal pressure of the reduced pressure boiler, and a can that stores the heat transfer water of the reduced pressure boiler A white smoke prevention air preheater that surrounds at least a part of the body with a casing and forms a jacket space in which white smoke prevention air flows between the can body and the white smoke prevention air preheater. The white smoke prevention air supply path, the white smoke prevention air fan connected to the white smoke prevention air supply path, and a damper interposed in the white smoke prevention air supply path, The refrigerant circulation pump for circulating the refrigerant of the binary power generation system is controlled based on the detection signal from the temperature detector or pressure detector, and the damper is set to a predetermined pressure when the pressure in the decompression boiler exceeds a set value. A heat recovery power generation facility from combustion exhaust gas, characterized in that it is configured to open control beyond the opening. 燃焼炉から排出されて煙道内を流れる腐食成分を含む燃焼排ガスから熱回収して発電するようにした燃焼排ガスからの熱回収発電設備であって、燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧力が大気圧以下に保持された減圧ボイラと、減圧ボイラにより低沸点の液状の冷媒を加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置と、減圧ボイラの熱媒水の温度又は減圧ボイラの内部圧力をそれぞれ検出する温度検出器又は圧力検出器と、減圧ボイラの熱媒水を貯留する缶体の少なくとも一部をケーシングで囲って缶体との間に白煙防止用空気が流れるジャケット空間を形成する二つの白煙防止用空気予熱器と、一方の白煙防止用空気予熱器に接続された白煙防止用空気供給路と、白煙防止用空気供給路に接続された白煙防止用空気ファンと、白煙防止用空気供給路に介設されたダンパーと、二つの白煙防止用空気予熱器のジャケット空間同士を接続する連絡通路と、連絡通路に介設された第2ダンパーと、備えており、前記温度検出器又は圧力検出器からの検出信号に基づいてバイナリー発電装置の冷媒を循環させる冷媒循環ポンプを制御すると共に、前記減圧ボイラ内の圧力が設定値を超えたときに、第2ダンパーを開放制御する構成としたことを特徴とする燃焼排ガスからの熱回収発電設備。   A heat recovery power generation facility from flue gas that recovers heat from flue gas containing corrosive components discharged from a combustion furnace and flows in the flue to generate power, and is installed in the flue where flue gas flows, the flue gas The low pressure boiler whose internal pressure to keep heat below the atmospheric pressure by heating the heat transfer water to generate steam while recovering the heat from the combustion exhaust gas through, and the low boiling point liquid refrigerant are heated and evaporated by the low pressure boiler A binary power generator that generates electricity by turning a turbine with steam, a temperature sensor or pressure detector that detects the temperature of heat transfer water of a pressure reduction boiler or the internal pressure of the pressure reduction boiler, and a can that stores heat transfer water of the pressure reduction boiler Two white smoke prevention air preheaters that form a jacket space through which at least a part of the body is surrounded by a casing and in which white smoke prevention air flows between the can body and one white smoke prevention air A white smoke prevention air supply path connected to the preheater, a white smoke prevention air fan connected to the white smoke prevention air supply path, a damper interposed in the white smoke prevention air supply path, A communication passage connecting jacket spaces of two white smoke preventing air preheaters, and a second damper interposed in the communication passage, comprising: a detection signal from the temperature sensor or the pressure sensor While controlling the refrigerant circulation pump for circulating the refrigerant of the binary power generation apparatus, the second damper is controlled to open when the pressure in the decompression boiler exceeds the set value, and the combustion exhaust gas from the combustion exhaust gas is used. Heat recovery power plant. 前記減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSOガスの露点以上となる水溶液とし、また、前記白煙防止用空気を、常温空気としたことを特徴とする請求項1に記載の燃焼排ガスからの熱回収発電設備。 The heat transfer water of the decompression boiler is an aqueous solution having a boiling point of not more than atmospheric pressure and a boiling point of the SO 3 gas contained in the combustion exhaust gas, and the white smoke prevention air is normal temperature air. A heat recovery power generation facility from flue gas according to claim 1 , characterized in that. 前記減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSO ガスの露点以上となる水溶液とし、また、前記白煙防止用空気を、常温空気としたことを特徴とする請求項2に記載の燃焼排ガスからの熱回収発電設備。 The heat transfer water of the decompression boiler is an aqueous solution having a boiling point of not more than atmospheric pressure and a boiling point of the SO 3 gas contained in the combustion exhaust gas, and the white smoke prevention air is normal temperature air. The heat recovery power generation facility from the flue gas according to claim 2 characterized by the above. 前記白煙防止用空気予熱器は、減圧ボイラの熱媒水を貯留する缶体を円筒状のケーシングで囲って缶体との間に円筒形状のジャケット空間を形成したジャケット構造の白煙防止用空気予熱器とし、前記ケーシングに、白煙防止用空気供給路に接続されてジャケット空間へ白煙防止用空気を吹き込むための空気入口ダクトをケーシングの接線方向に接続したことを特徴とする請求項1に記載の燃焼排ガスからの熱回収発電設備。 The air preheater for preventing white smoke is for preventing white smoke having a jacket structure in which a can body for storing heat transfer water of a decompression boiler is surrounded by a cylindrical casing and a cylindrical jacket space is formed between the can body and the can body. An air preheater, wherein the casing is connected to an air inlet duct connected to a white smoke prevention air supply passage and blown into the jacket space for white smoke prevention air in a tangential direction of the casing. Heat recovery power generation equipment from flue gas according to 1 . 前記二つの白煙防止用空気予熱器は、何れも減圧ボイラの熱媒水を貯留する缶体を円筒状のケーシングで囲って缶体との間に円筒形状のジャケット空間を形成したジャケット構造の白煙防止用空気予熱器とし、一方の白煙防止用空気予熱器のケーシングに、白煙防止用空気供給路に接続されて一方の白煙防止用空気予熱器のジャケット空間へ白煙防止用空気を吹き込むための空気入口ダクトをケーシングの接線方向に接続したことを特徴とする請求項2に記載の燃焼排ガスからの熱回収発電設備。 Each of the two air preheaters for preventing white smoke has a jacket structure in which a can body for storing heat transfer water of a decompression boiler is surrounded by a cylindrical casing to form a cylindrical jacket space between the can body. A white smoke prevention air preheater, connected to the white smoke prevention air supply path to the casing of one white smoke prevention air preheater, to the jacket space of one white smoke prevention air preheater, for white smoke prevention The heat recovery power generation facility from combustion exhaust gas according to claim 2 , wherein an air inlet duct for blowing air is connected in a tangential direction of the casing . 前記請求項1、請求項3又は請求項5の何れかに記載の燃焼排ガスからの熱回収発電設備の制御方法であって、圧力検出器により減圧ボイラ内の圧力を検出し、減圧ボイラ内の圧力が設定値を超えたときに、ダンパーを所定の開度以上に開放して白煙防止用空気予熱器へより多くの白煙防止用空気を供給し、減圧ボイラ内の圧力を低下させるようにしたことを特徴とする燃焼排ガスからの熱回収発電設備の制御方法。 The control method of heat recovery power generation equipment from flue gas according to any one of claim 1, claim 3 or claim 5, wherein the pressure in the pressure reduction boiler is detected by a pressure detector, When the pressure exceeds the set value, the damper is opened to a predetermined opening or more to supply more white smoke preventing air to the white smoke preventing air preheater, thereby reducing the pressure in the pressure reducing boiler control method for the heat recovery power plant from flue gas, characterized in that the. 前記請求項2、請求項4又は請求項6の何れかに記載の燃焼排ガスからの熱回収発電設備の制御方法であって、圧力検出器により減圧ボイラ内の圧力を検出し、減圧ボイラ内の圧力が設定値を超えたときに、第2ダンパーを開放して一方の白煙防止用空気予熱器から他方の白煙防止用空気予熱器へ白煙防止用空気を供給し、減圧ボイラ内の圧力を低下させるようにしたことを特徴とする燃焼排ガスからの熱回収発電設備の制御方法。 The control method of heat recovery power generation equipment from flue gas according to any one of claim 2, claim 4 or claim 6, wherein the pressure in the pressure reduction boiler is detected by a pressure detector, When the pressure exceeds the set value, the second damper is opened to supply white smoke preventing air from one white smoke preventing air preheater to the other white smoke preventing air preheater, and A control method of heat recovery power generation equipment from flue gas characterized by reducing pressure . 減圧ボイラ内の圧力が設定圧力以下になれば、ダンパーを所定の開度まで徐々に閉めて行くようにしたことを特徴とする請求項7に記載の燃焼排ガスからの熱回収発電設備の制御方法。 8. The method for controlling a heat recovery power generation facility from combustion exhaust gas according to claim 7, wherein when the pressure in the decompression boiler becomes equal to or lower than a set pressure, the damper is gradually closed to a predetermined opening degree. . 減圧ボイラ内の圧力が設定圧力以下になれば、第2ダンパーを閉鎖位置まで徐々に閉めて行くようにしたことを特徴とする請求項8に記載の燃焼排ガスからの熱回収発電設備の制御方法。9. The method for controlling a heat recovery power generation facility from combustion exhaust gas according to claim 8, wherein the second damper is gradually closed to a closed position when the pressure in the decompression boiler becomes equal to or lower than a set pressure. .
JP2017240784A 2017-12-15 2017-12-15 Heat recovery power generation facility from combustion exhaust gas and control method thereof Active JP6552588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240784A JP6552588B2 (en) 2017-12-15 2017-12-15 Heat recovery power generation facility from combustion exhaust gas and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240784A JP6552588B2 (en) 2017-12-15 2017-12-15 Heat recovery power generation facility from combustion exhaust gas and control method thereof

Publications (2)

Publication Number Publication Date
JP2019108999A JP2019108999A (en) 2019-07-04
JP6552588B2 true JP6552588B2 (en) 2019-07-31

Family

ID=67179516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240784A Active JP6552588B2 (en) 2017-12-15 2017-12-15 Heat recovery power generation facility from combustion exhaust gas and control method thereof

Country Status (1)

Country Link
JP (1) JP6552588B2 (en)

Also Published As

Publication number Publication date
JP2019108999A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6009009B2 (en) Heat recovery power generation facility from combustion exhaust gas
RU2502880C2 (en) Organic rankine cycle of direct heating
RU2480591C2 (en) Operation method of thermodynamic circuit, and thermodynamic circuit itself
EP2504532B1 (en) Direct evaporator apparatus and energy recovery system
JP3119718B2 (en) Low voltage power generation method and device
US5603218A (en) Conversion of waste heat to power
US8739510B2 (en) Heat exchanger for a combined cycle power plant
KR101647117B1 (en) Method of generating electricity by burning waste and waste burning facility
CA2679811C (en) High efficiency feedwater heater
JP6522085B1 (en) Heat recovery power generation equipment from flue gas and control method thereof
RU2539943C2 (en) Method for removing entrapped gas in power production system with combined cycle
JP2008101521A (en) Power generation system by exhaust heat
CN105736081A (en) Thermal electric power generator
JP2014009877A (en) Flue gas treatment equipment and method
WO2012090517A1 (en) Heat recovery and utilization system
US10844753B2 (en) Boiler, steam-generating plant provided with same, and method for operating boiler
JP3836199B2 (en) Multistage pressure waste heat boiler and its operation method
WO2003062704A1 (en) Feedwater heater
JP2014009624A (en) Waste heat utilization method, waste heat utilization system and treatment method of boiler exhaust gas
JP2593197B2 (en) Thermal energy recovery method and thermal energy recovery device
JP6552588B2 (en) Heat recovery power generation facility from combustion exhaust gas and control method thereof
JP2019086271A (en) Waste heat recovery power generation system of small capacity incinerator
KR20190039152A (en) Closed circuits that function in accordance with Rankine cycles with devices for emergency stop of closed circuits and methods of using such circuits
JP2018189276A (en) Power generation plant and method for operating the same
JP5137598B2 (en) Ventilation system in steam power generation facilities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190702

R150 Certificate of patent or registration of utility model

Ref document number: 6552588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250