JP6542746B2 - Solid-liquid separation processor - Google Patents

Solid-liquid separation processor Download PDF

Info

Publication number
JP6542746B2
JP6542746B2 JP2016237970A JP2016237970A JP6542746B2 JP 6542746 B2 JP6542746 B2 JP 6542746B2 JP 2016237970 A JP2016237970 A JP 2016237970A JP 2016237970 A JP2016237970 A JP 2016237970A JP 6542746 B2 JP6542746 B2 JP 6542746B2
Authority
JP
Japan
Prior art keywords
pipe
reduction
rainwater
water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016237970A
Other languages
Japanese (ja)
Other versions
JP2018096026A (en
Inventor
孝太郎 石田
孝太郎 石田
良祐 手嶋
良祐 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haneda Zenith Co Ltd
Original Assignee
Haneda Zenith Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haneda Zenith Co Ltd filed Critical Haneda Zenith Co Ltd
Priority to JP2016237970A priority Critical patent/JP6542746B2/en
Publication of JP2018096026A publication Critical patent/JP2018096026A/en
Application granted granted Critical
Publication of JP6542746B2 publication Critical patent/JP6542746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Description

本発明は、液体から混合物を分離する固液分離処理装置に係り、特に、落下する液体から混合物を分離する固液分離処理装置に関する。   The present invention relates to a solid-liquid separation device for separating a mixture from a liquid, and more particularly to a solid-liquid separation device for separating a mixture from a falling liquid.

従来、この種の固液分離処理装置において、流体から比較的大きなゴミを分離するものとして、上部には雨樋が、中央部には開口部が形成されているとともに前記開口部の下部にはガイド部材が、下部には段差部及び排出部が形成されている本体と、前記本体の上部に取り付けられている飾り部と、前記本体の内部に落下した液体たる雨水を受けとめるために傾斜させて取り付けられていて金網及びプレートからなる受け板と、前記開口部の下部に取り付けられている分別板とからなるゴミ侵入防止雨樋(例えば特許文献1)があり、この雨樋では、雨水の大半は、プレートの下方にL字形に形成されている垂下部にガイドされて、ガイド部材と垂下部間に形成されている間隙から流出口側に落下する。   Heretofore, in this type of solid-liquid separation and processing apparatus, as a device for separating relatively large dust from fluid, a rain gutter is formed in the upper part and an opening is formed in the central part and the lower part of the opening The guide member is inclined to receive rainwater, which is a liquid falling inside the main body, a main body having a stepped portion and a discharge portion at the lower portion, a decorative portion attached to the upper portion of the main body, and There is a waste intrusion prevention gutter (for example, Patent Document 1) consisting of a receiving plate attached and made of a wire mesh and a plate, and a sorting plate attached to the lower part of the opening. Is guided to a hanging portion formed in an L-shape below the plate, and drops from the gap formed between the guide member and the hanging portion to the outlet side.

また、雨樋の太さの約3.3倍を要する塩ビ管を使用し、雨水の浸入口には濾過層壁を有し、前記濾過層壁は8mm角のネット板、2mm角のネット板、不織布ポリエステルの三種類が組み合わせられた雨水遮断濾過装置(例えば特許文献2)があり、この濾過装置では、下部に設けた遮断板を開くことにより沈殿物を排出でき、また、上蓋を上げて回すことにより濾過層壁の清掃、交換を可能としている。   In addition, it uses a PVC pipe that requires about 3.3 times the thickness of a gutter, has a filtration bed wall at the stormwater inlet, and the filtration bed wall is an 8 mm square net plate, a 2 mm square net plate There is a rainwater blocking filtration device (for example, Patent Document 2) in which three types of non-woven polyester are combined. In this filtration device, the precipitate can be discharged by opening the blocking plate provided at the lower portion, and the upper lid is raised. By turning it, the filter bed wall can be cleaned and replaced.

上記ゴミ侵入防止雨樋では、金網を設けた受け板を斜設しているが、その金網を通して雨水を十分に分離できないため、下部の開口部から雨水の大半を落下分離しており、開口部からゴミも一緒に流出口に落下する虞もあり、分離効率が劣る。   In the above-mentioned garbage intrusion prevention gutter, although the receiving plate provided with the wire mesh is obliquely installed, the rain water can not be sufficiently separated through the wire mesh, so most of the rain water is dropped and separated from the lower opening. There is also a possibility that dust may fall to the outlet together with it, and the separation efficiency is poor.

また、上記雨水遮断濾過装置では、沈殿物が溜まると、その排出のために遮蔽板を操作する必要があると共に、濾過層壁にゴミが溜まるため、濾過層壁の清掃・交換が必要となり、メンテナンスに手間が掛かるという問題がある。   Moreover, in the above-mentioned rainwater blocking and filtering device, when sediment is accumulated, it is necessary to operate the shielding plate for discharging the sediment, and dust is accumulated on the filtration layer wall, so cleaning and replacement of the filtration layer wall becomes necessary. There is a problem that it takes time for maintenance.

一方、この種の固液分離処理装置において、流体から比較的小さなゴミを分離するものとして、円筒状の外壁と;容器内に液体の低エネルギー渦流を発生させるように前記液体を該容器内へ導入する入口手段と;一端にある基部と;該基部の反対端にある天井壁であって、該液体の流れから該容器内へ分離された浮遊物を含む流れを受けるための軸方向の出口開口を有する天井壁と;該容器内部に設けられ、該外壁から離間した環状開口を該天井壁と共同して形成する流れ変更部材と;該容器の該外壁から離間した環状沈下板であって、浮遊物を含む液体の流れのための間隙を形成するために前記天井壁から離間した上端部を有する沈下板と;該容器から第一次の液体の流れを除去する導管であって、該基部と該天井壁との間の実質的に軸上の位置で該容器内部と連通する導管を有する、該天井壁の該軸方向の出口開口から分離された出口手段とを備え、渦流により、沈殿物と浮遊性を持つ物と分離除去する流体力学的渦流分離機(例えば特許文献3)がある。   On the other hand, in this type of solid-liquid separation processing apparatus, the cylindrical outer wall and the low-energy swirl of the liquid in the container are used to separate relatively small dust from the fluid; Inlet means for introducing; a base at one end; and a ceiling wall at the opposite end of the base, the axial outlet for receiving a flow comprising the float separated into the vessel from the flow of the liquid A ceiling wall having an opening; a flow modifying member provided in the interior of the container and forming an annular opening spaced from the outer wall in cooperation with the ceiling wall; an annular sink plate spaced from the outer wall of the container A sink plate having an upper end spaced from the ceiling wall to form a gap for the flow of liquid including float; a conduit for removing the flow of primary liquid from the container, Substantially axial between the base and the ceiling wall An outlet means separated from the axial outlet opening of the ceiling wall, having a conduit in communication with the interior of the vessel in position, and hydrodynamically separating and removing sediment and floating matter by means of a vortex flow There is a vortex separator (e.g. Patent Document 3).

前記流体力学的渦流分離機では、沈殿した固形物を下部の排水槽から導管を通して外部に排出し、一方、浮遊物を上部の出口から排出するため、固形物と浮遊物を分離する必要がある場合は有効であるが、単に水からゴミを除去する場合は、構造が複雑になるという問題があり、また、より分離効率の良いものが望まれている。   In the hydrodynamic vortex separator, it is necessary to separate the solid and the float in order to discharge the precipitated solid from the lower drainage tank to the outside through the conduit while discharging the float from the upper outlet. Although the case is effective, there is a problem that the structure becomes complicated in the case of simply removing the dust from the water, and a more efficient separation is desired.

特開2015−166522号公報JP, 2015-166522, A 特開2008−190250号公報JP 2008-190250 A 特許第4616484号公報Patent No. 4616484 gazette

解決しようとする課題は、落下する液体から混合物を分離し、混合物を分離した液体を効率よく集めることができる固液分離処理装置を提供することを目的とする。   The problem to be solved is to provide a solid-liquid separation and processing apparatus capable of separating a mixture from a falling liquid and efficiently collecting the liquid from which the mixture is separated.

請求項1の発明は、混合物を含む液体が落下する落下路の下に連結され、下方に向かって縮小する縮小管と、前記縮小管に穿設された複数の孔と、前記縮小管の内面側から前記孔を通過した液体を排出する排出部とを備え、前記縮小管の内面に、該縮小管の長さ方向に交差することを特徴とする。   According to the first aspect of the present invention, there is provided a reduction pipe which is connected below a falling path through which liquid containing the mixture falls and which is reduced downward, a plurality of holes bored in the reduction pipe, and an inner surface of the reduction pipe. And a discharge part for discharging the liquid having passed through the hole from the side, and the inner surface of the reduction pipe is intersected with the length direction of the reduction pipe.

請求項2の発明は、前記突条が螺旋状をなすことを特徴とする。   The invention of claim 2 is characterized in that the ridges form a spiral shape.

請求項3の発明は、複数の前記突条を周方向に間隔を置いて設けたことを特徴とする。   The invention according to claim 3 is characterized in that the plurality of protrusions are provided at intervals in the circumferential direction.

請求項4の発明は、前記落下路が管路であり、この管路の下端と前記縮小管との間に拡大部を設けたことを特徴とする。   The invention according to claim 4 is characterized in that the fall path is a pipe, and an enlarged portion is provided between the lower end of the pipe and the reduction pipe.

請求項1の構成によれば、落下路から縮小管に落下した液体は、縮小管の内面に沿って流れ、孔を通って排出部に流れ、この際、液体は、コアンダ効果により縮小管の内面の突条に沿って流れ、内面側に戻るため、排出部に液体を集めることができる。また、孔を通らない大きさの混合物は縮小管の下端から落下して分離される。   According to the configuration of claim 1, the liquid dropped from the dropping passage into the reduction pipe flows along the inner surface of the reduction pipe and flows through the hole to the discharge part, wherein the liquid is reduced by the Coanda effect. Liquid can be collected at the outlet to flow along the ridges of the inner surface and back to the inner surface. Also, the mixture not passing through the holes is separated from the lower end of the reduction tube by dropping.

請求項2の構成によれば、螺旋状の突条に当たって液体の勢いが抑制されると共に螺旋流となって排出部に流れる液体が増加する。   According to the second aspect of the present invention, the momentum of the liquid is suppressed by hitting the spiral protrusion, and the liquid flowing into the discharge part in a spiral flow is increased.

請求項3の構成によれば、複数の突条により排出部に流れる液体の量が増加する。   According to the structure of Claim 3, the quantity of the liquid which flows into a discharge part increases with several protrusion.

請求項4の構成によれば、拡大部により液体の流れを広げた後、液体が縮小管に落下し、縮小部において、流れ落ちる液体に落下方向と交差方向の遠心力が生じるため、縮小管の外側の排出部に流れる液体の量が増加する。   According to the configuration of claim 4, after the flow of the liquid is expanded by the expanding portion, the liquid falls into the reduction pipe, and in the reduction portion, a centrifugal force is generated in the flow falling direction to the falling liquid. The amount of liquid flowing to the outer discharge increases.

本発明の実施例1を示す全体断面図である。It is a whole sectional view showing Example 1 of the present invention. 同上、取水装置の断面図である。It is a sectional view of an intake system same as the above. 同上、取水装置の平面図である。It is a top view of an intake system same as the above. 同上、突条の拡大断面図である。It is the same as the above, and is an expanded sectional view of a projected rim. 同上、分離装置の断面図である。It is a sectional view of a separation device same as the above. 同上、分離装置の平断面図である。It is a plan sectional view of a separating device same as the above. 同上、実験例と比較例のグラフ図である。It is a graph figure of an experiment example and a comparative example same as the above. 本発明の実施例2を示す分離装置の断面図である。It is sectional drawing of the isolation | separation apparatus which shows Example 2 of this invention.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施例は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. Moreover, not all of the configurations described below are necessarily essential requirements of the present invention.

図1〜図7は実施例1を示しており、処理装置1は、液体から比較的大きな混合物を分離し、この混合物を分離した液体を集める集液装置たる取水装置2と、比較的大きな混合物を分離した液体から比較的小さな混合物を分離する分離装置3と、前記取水装置2と前記分離装置3とを接続する接続部4とを有する。   1 to 7 show a first embodiment, in which the processing apparatus 1 separates a relatively large mixture from the liquid and collects the separated liquid from the mixture to form a water collecting apparatus 2 as a liquid collecting apparatus and a relatively large mixture. A separator 3 for separating a relatively small mixture from the separated liquid, and a connection portion 4 for connecting the water intake device 2 and the separator 3.

この例では、前記液体は雨水であり、前記混合物は雨水に混合したゴミであり、前記取水装置2が固液分離処理装置である。図1に示すように、前記取水装置2は、雨水が落下する雨樋5に連結して設けられる。同図に示すように、屋根6の軒先には前記雨樋5が設けられ、この雨樋5には縦方向の排水路7が接続され、前記雨樋5に溜まった雨水が前記排水路7を通って排水される。   In this example, the liquid is rainwater, the mixture is waste mixed with rain water, and the water intake device 2 is a solid-liquid separation treatment device. As shown in FIG. 1, the water intake device 2 is connected to a gutter 5 from which rain water falls. As shown in the figure, the gutter 5 is provided at the eaves end of the roof 6, and the gutter 5 is connected with the drainage channel 7 in the vertical direction, and the drainage collected in the gutter 5 is the drainage channel 7 Drained through.

前記排水路7の途中に前記取水装置2を配置している。そして、前記取水装置2の位置より上部の前記排水路7が上部排水路7Aであり、その取水装置2の位置より下部の前記排水路7が下部排水路7Bであり、前記排水路7は円形の管からなり、前記上部排水路7Aが落下路である。   The water intake device 2 is disposed in the middle of the drainage channel 7. And, the drainage 7 above the position of the intake device 2 is the upper drainage 7A, the drainage 7 below the position of the intake 2 is the lower drainage 7B, and the drainage 7 is circular. The upper drainage channel 7A is a falling channel.

図2に示すように、取水装置2は、前記上部排水路7Aの下端に拡大管11を接続し、この拡大管11は上方から下方に向かってテーパー状に拡大する拡大部12を有し、この拡大部12の上部には接続上筒部13が設けられ、この接続上筒部13に前記上部排水路7Aの下端を挿入して接続している。また、前記拡大管11の下部には接続下筒部14が設けられている。   As shown in FIG. 2, the water intake system 2 connects an expansion pipe 11 to the lower end of the upper drainage channel 7A, and the expansion pipe 11 has an expansion portion 12 which expands in a tapered shape from the top to the bottom. A connection upper cylindrical portion 13 is provided on the upper portion of the enlarged portion 12, and the lower end of the upper drainage channel 7A is inserted into and connected to the connection upper cylindrical portion 13. Further, a connection lower cylindrical portion 14 is provided at a lower portion of the enlarged tube 11.

前記拡大管11の前記接続下筒部14に、円筒状の外壁部15の上端を挿入して接続し、該拡大管11の内面には、前記外壁部15の上端が当接する当接部16が設けられている。前記外壁部15の下端には、中央側に向かってテーパー状に縮小して低くなる底壁部17が一体に設けられ、この底壁部17の中央には、前記下部排水路7Bに対応した開口部17Kが設けられ、この開口部17Kに下接続部18を下方に向かって設け、この下接続部18は筒状をなす。また、前記下接続部18を挿入接続する受け口19が、前記下部排水路7Bの上端に設けられている。そして、前記底壁部17に、取水排出管20が接続されている。尚、接続上筒部13と前記上部排水路7Aの下端とを着脱可能に接続すると共に、下接続部18と受け口19とを着脱可能に接続することが好ましく、こうすることにより仮に縮小管21にゴミやボールなどが詰まった場合でも取り除くことができる。   The upper end of the cylindrical outer wall portion 15 is inserted and connected to the connection lower cylindrical portion 14 of the enlarged pipe 11, and the contact portion 16 with which the upper end of the outer wall 15 abuts the inner surface of the expanded pipe 11. Is provided. At the lower end of the outer wall portion 15, there is integrally provided a bottom wall portion 17 which is tapered and reduced toward the center side, and the center of the bottom wall portion 17 corresponds to the lower drainage channel 7B. An opening 17K is provided, and a lower connecting portion 18 is provided downward in the opening 17K, and the lower connecting portion 18 has a tubular shape. Further, a receptacle 19 for inserting and connecting the lower connection portion 18 is provided at the upper end of the lower drainage channel 7B. And, the intake pipe 20 is connected to the bottom wall portion 17. In addition, it is preferable to connect the lower connecting portion 18 and the receiving port 19 detachably while connecting the upper connecting cylindrical portion 13 and the lower end of the upper drainage channel 7A in a removable manner. Even if dust or balls get clogged, they can be removed.

前記取水装置2内には縮小管21が配置され、この縮小管21の上端の内径は前記上部排水路7Aの内径より大きく、前記縮小管21の下端の内径D1は前記上部排水路7Aの内径より小さい。また、前記縮小管21には複数の孔22が穿設されている。この例では、直径1mmの孔22を複数有するパンチングメタルを加工して前記縮小管21を形成し、この縮小管21は下方に向かってテーパー状に縮小する。尚、縮小管21の内面21Nとなるパンチングメタルの表面は平滑面になっている。また、後述する取水装置2の構造に対応して、前記孔22の直径は0.5〜1mmとすることが好ましい。このように取水装置2は、孔22により混合物を篩い分ける篩装置でもある。   A reduction pipe 21 is disposed in the water intake device 2. The inner diameter of the upper end of the reduction pipe 21 is larger than the inner diameter of the upper drainage channel 7A, and the inner diameter D1 of the lower end of the reduction pipe 21 is the inner diameter of the upper drainage channel 7A Less than. Further, a plurality of holes 22 are bored in the reduction tube 21. In this example, a punching metal having a plurality of holes 22 with a diameter of 1 mm is processed to form the reduction pipe 21, and the reduction pipe 21 is reduced in a tapered shape downward. The surface of the punching metal which is the inner surface 21N of the reduction tube 21 is a smooth surface. Moreover, it is preferable that the diameter of the said hole 22 shall be 0.5-1 mm corresponding to the structure of the water intake apparatus 2 mentioned later. Thus, the water intake device 2 is also a sieving device that sifts the mixture through the holes 22.

前記拡大管11の内面には、前記縮小管21の上端が係止する係止受け部12Kが斜め内向きに設けられている。また、前記開口部17Kには受け筒部23が設けられ、この受け筒部23は上方に向かってテーパー状に縮小し、その受け筒部23の上端に前記縮小管21の下端を固定する係止受け部24を斜めに突設している。尚、前記外壁部15,底壁部17,受け筒部23及び縮小管21により、液体排出部25を構成している。   The inner surface of the enlarged tube 11 is provided with a lock receiving portion 12K which is locked by the upper end of the reduced tube 21 in a diagonally inward direction. Further, a receiving cylindrical portion 23 is provided in the opening 17K, and the receiving cylindrical portion 23 is tapered downward and is engaged to fix the lower end of the reduction pipe 21 to the upper end of the receiving cylindrical portion 23. The stop receiving portion 24 is provided to be inclined. The outer wall 15, the bottom wall 17, the receiving cylinder 23, and the reduction tube 21 constitute a liquid discharger 25.

そして、前記取水装置2の組立時には、外壁部15と底壁部17と受け筒部23とを組み立てた後、受け筒部23の係止受け部24に縮小管21の下端を溶接や接着などにより固定し、この後、外壁部15の上端と拡大管11の下端を接続することにより、前記縮小管21の上端が前記係止受け部12Kに係止し、該縮小管21の上端が位置決めされる。   Then, when assembling the water intake device 2, after the outer wall portion 15, the bottom wall portion 17, and the receiving cylinder portion 23 are assembled, the lower end of the reduction pipe 21 is welded or adhered to the locking receiving portion 24 of the receiving cylinder portion 23. Then, the upper end of the reduction pipe 21 is engaged with the engagement receiving portion 12K by connecting the upper end of the outer wall portion 15 and the lower end of the expansion pipe 11, and the upper end of the reduction pipe 21 is positioned Be done.

前記拡大部12は、上端の内径が61.4mm、拡大部分の下端である前記係止受け部12K位置の内径が90mm程度である。また、前記排水路7は、外径60.4mm、厚さ1.3mmの塩ビ管を用い、縮小管21は、上端の内径Dが88mm、下端の内径D1が50mm程度である。   The enlarged portion 12 has an inner diameter of 61.4 mm at the upper end, and an inner diameter of about 90 mm at the position of the locking receiving portion 12 K which is the lower end of the enlarged portion. The drainage channel 7 uses a polyvinyl chloride pipe having an outer diameter of 60.4 mm and a thickness of 1.3 mm, and the reduction pipe 21 has an inner diameter D at the upper end of 88 mm and an inner diameter D1 at the lower end of about 50 mm.

そして、上部排水路7Aの一般形状を基に、旋回しながら伝わり落ちてくる雨水を、拡大部12の内径をラッパ状に徐々に広げることにより、雨水の流速を落としつつ、拡大管11の内面に遠心力で張り付いたままの状態で、縮小管21に送り込むために拡大部12が設けられている。従って縮小管21の上部寸法は、拡大部12に対応する。拡大部12の拡大角度が大きいと、雨水はその遠心力が負けて拡大部12の内面から剥離して落下してしまい、縮小管21の内面21Nとの雨水の接触が減ってしまう。これらを考慮して、拡大部12及び縮小管21の中心に対する傾斜角度θKをこの例では20度以下とした。また、下端の内径D1を50mmにしたのは、上部排水路7Aの内径が58mm程度であり、その中を葉っぱなどが夾雑物として混入した場合に、流し出せるために縮径しつつ同程度の内径寸法を必要とするからである。また、縮小管21の径を小さく絞ることで、落下する雨水は徐々に遠心力が増し取水効果を高めることができる。   Then, based on the general shape of the upper drainage channel 7A, while gradually reducing the flow velocity of the rainwater by gradually widening the inner diameter of the expanding portion 12 into a trumpet shape, the inner surface of the expanding pipe 11 An enlargement 12 is provided for feeding into the reduction tube 21 while remaining attached by centrifugal force. The upper dimension of the reduction tube 21 thus corresponds to the enlargement 12. When the expansion angle of the expansion portion 12 is large, the rain water loses its centrifugal force and peels off from the inner surface of the expansion portion 12 and falls, and the contact of the rain water with the inner surface 21N of the reduction pipe 21 is reduced. Taking these into consideration, the inclination angle θK with respect to the centers of the enlargement portion 12 and the reduction tube 21 is set to 20 degrees or less in this example. The inner diameter D1 of the lower end is 50 mm because the inner diameter of the upper drainage channel 7A is about 58 mm, and when the leaves etc. are mixed in as a foreign matter, the diameter is reduced while being reduced, and the same degree This is because an inner diameter is required. Further, by narrowing the diameter of the reduction pipe 21, the falling rain water can gradually increase its centrifugal force and enhance the water intake effect.

一方、取水のために単純に篩形状のものを用いると、取水率は100%となるが、ゴミが皿に残る。本発明では、ゴミを溜めないために縮小管21に孔22を開けることによりり、ゴミを下方へ洗い流し出すことができる。この場合、縮小管21の径を絞らないと取水率が良くないが、全体として上部排水路7Aの大きさに近くないとゴミを排出できない。尚、孔を設けた直管を使用すると、雨水が旋回して遠心力で飛び出す量だけしか取水することしかできない。ゴミを流すために、前記下端の内径D1は上部排水路7Aより10〜20%以下程度小さくする。また、前記上端の内径Dを大きくしないと取水効率が良くならない。そして、拡大部12における拡大によって流速を落とす効果と、縮小管21の内面21Nへの衝突で雨水が乱流に成ることを軽減する効果が得られる。縮小管21内を流れ落ちる雨水量は、縮小管21の上部で多く、取水されて徐々に少なくなるため、雨水量が多い位置の縮小管21の面積(外径)が大きいことで取水率が向上する。   On the other hand, if the sieve shape is simply used for water intake, although the water intake rate will be 100%, the waste remains on the plate. In the present invention, it is possible to wash away the dust downward by opening the hole 22 in the reduction pipe 21 so as not to store the dust. In this case, the water intake rate is not good unless the diameter of the reduction pipe 21 is reduced, but the waste can not be discharged unless the size of the upper drainage channel 7A as a whole is large. In addition, if the straight pipe which provided the hole is used, it can only take in only the quantity which rain water turns and it pops up by a centrifugal force. The inner diameter D1 of the lower end is made smaller by about 10 to 20% or less than the upper drainage channel 7A in order to allow the waste to flow. Further, the water intake efficiency will not be improved unless the inner diameter D at the upper end is increased. And the effect of reducing the flow velocity by the expansion in the expansion part 12 and the effect of reducing that the rain water becomes turbulent by collision with the inner surface 21N of the reduction pipe 21 can be obtained. The amount of rain water flowing down the inside of the reduction pipe 21 is large at the upper part of the reduction pipe 21 and gradually decreases with the intake of water. Therefore, the area (outside diameter) of the reduction pipe 21 at the position where the amount of rain water is large improves the intake rate. Do.

前記縮小管21の内面21Nに沿って、導水壁である螺旋状の突条26を複数設け、この例では3条の突条26,26,26を設けている。また、円周方向に隣り合う突条26,26は、縮小管21の円周方向に120度の角度を置いて配置されている。また、突条26の螺旋角度θは約45度であり、前記突条26の上端26Aに対して突条26の下端26Bは、180度以上、この例では235度回転した位置にある。そして、図3に示すように、隣り合う突条26,26は、縮小管21の中心軸方向(長さ方向)において、略120度の重なり部分27を有する。そして、螺旋状の突条26は、側面視で縮小管21の中心軸方向と交差する方向をなす。尚、3条の突条26,26,26は縮小管21の径方向に略等間隔で設けられている。   A plurality of helical ridges 26 which are water guiding walls are provided along the inner surface 21N of the reduction pipe 21. In this example, three ridges 26, 26 and 26 are provided. The circumferentially adjacent ridges 26 are arranged at an angle of 120 degrees in the circumferential direction of the reduction tube 21. The helical angle θ of the protrusion 26 is about 45 degrees, and the lower end 26B of the protrusion 26 is rotated 180 degrees or more, in this example, 235 degrees with respect to the upper end 26A of the protrusion 26. Then, as shown in FIG. 3, the adjacent ridges 26, 26 have an overlapping portion 27 of approximately 120 degrees in the central axis direction (longitudinal direction) of the reduction tube 21. And the helical protrusion 26 makes a direction which intersects with the central axis direction of the reduction tube 21 in a side view. The three ridges 26, 26, 26 are provided at substantially equal intervals in the radial direction of the reduction tube 21.

図4の断面図に示すように、前記突条26は、平坦な上面部28と、高さ方向中央が上方に凹んだ下湾曲面部30と、先端湾曲面部29とを有し、この先端湾曲面部29は、前記上面部28と前記下湾曲面部30の先端側を連結する。前記上面部28は縮小管21の内面21Nと略直交し、前記突条26の高さHは、略3〜5mm程度である。尚、突条26の螺旋方向は、使用する場所のコリオリの力の方向と同じ方向であり、実験では上から下に向かって反時計回り方向とした。   As shown in the cross-sectional view of FIG. 4, the ridge 26 has a flat upper surface portion 28, a lower curved surface portion 30 in which the center in the height direction is recessed upward, and a distal curved surface portion 29. The surface portion 29 connects the top surface portion 28 and the tip end side of the lower curved surface portion 30. The upper surface portion 28 is substantially orthogonal to the inner surface 21N of the reduction tube 21, and the height H of the protrusion 26 is about 3 to 5 mm. The spiral direction of the ridges 26 is the same as the direction of the Coriolis force at the place of use, and was counterclockwise from top to bottom in the experiment.

雨水の勢いにより上部排水路7Aからの流入水量が多くなると、雨水が突条26の高さを超えて流れるが、突条26により雨水の落下を抑制することができると共に、突条26は先端湾曲面部29を有するためコアンダ効果により突条26を超えた雨水が外側へと導かれ、図4の矢印に示すように、下湾曲面部30により、雨水が縮小管21の内面21Nに沿って流れると共に、孔22から外側に排出される。この場合、上面部28を縮小管21の内面21Nと略直交して設けているのは、突条26において落下する雨水の水厚を確保し、縮小管21の内面21Nを伝わって落下する雨水の勢いを減衰するためである。さらに、突条26に沿って螺旋流となった雨水の一部は突条26を超えるが、先端湾曲面部29の先端から直接落下することなく、コアンダ効果によって先端湾曲面部29と下湾曲面部30に沿って突条26の下部の内面21Nに沿って滑らかに流れ、孔22を通って液体排出部25内に流れ落ちる。   When the amount of inflowing water from the upper drainage channel 7A increases due to the force of rainwater, rainwater flows over the height of the ridges 26, but the ridges 26 can suppress the falling of the rainwater, and the ridges 26 have tips. Since the curved surface portion 29 is provided, the rainwater exceeding the ridge 26 is guided to the outside by the Coanda effect, and the rain water flows along the inner surface 21 N of the reduced tube 21 by the lower curved surface portion 30 as shown by the arrow in FIG. And the holes 22 are discharged to the outside. In this case, providing the upper surface portion 28 substantially orthogonal to the inner surface 21N of the reduction tube 21 ensures the thickness of the rainwater falling on the protrusion 26 and the rainwater falling along the inner surface 21N of the reduction tube 21 To dampen the momentum of Furthermore, although a portion of the rainwater that has become a spiral flow along the ridges 26 exceeds the ridges 26, it does not fall directly from the tip of the tip curved surface portion 29, and the tip curved surface 29 and the lower curved surface 30 by the Coanda effect. Flow smoothly along the inner surface 21 N of the lower part of the ridge 26 and flows down into the liquid discharge portion 25 through the holes 22.

尚、上面部28をその先端側が下向きになるように斜めにすると、突条26の下面側において雨水の流れが乱れ、突条26により形成される水厚(雨水の膜の高さ)が減ることから、落ちようとする雨水を上方へ押し戻す作用が減衰する。これに対して、図4に示した形状では、雨水を上方に戻す作用が得られる。尚、図4の形状を用いた後述する実験において、ゴミが突条26上に引っ掛かる現象は見られなかった。これについては随時に流れる旋回流で回転しながらゴミが下部へ押し流され、螺旋状の突条26により雨水の螺旋流れによる効果であると考えられる。   When the upper surface portion 28 is inclined so that the tip end side is downward, the flow of rainwater is disturbed on the lower surface side of the ridge 26 and the water thickness (height of the rainwater film) formed by the ridge 26 decreases. Thus, the action of pushing rainwater which is going to fall upward is attenuated. On the other hand, in the shape shown in FIG. 4, the action of returning the rainwater to the upper side is obtained. In addition, in the experiment mentioned later using the shape of FIG. 4, the phenomenon in which the refuse caught on the protrusion 26 was not seen. About this, while being rotated by the swirling flow that flows as needed, the dust is pushed down to the lower part, and it is considered that the effect is caused by the spiral flow of rain water by the spiral protrusion 26.

[第1実験例]
第1実験例の取水装置2では、上述したように排水路7は、外径60.4mm、厚さ1.3mmの塩ビ管を用い、縮小管21は、上端の外径が88mm、下端の外径が38mm、長さが70mmで、直径1mmの孔22が複数穿設され、開口率が20%以上のものを用いた。また、前記上部排水路7Aの長さを0.5mとし、その上部排水路7Aから水道水を自由落下させた。この場合、容器に貯めた水道水を上部排水路7Aに注ぐようにして供給した。
[First experimental example]
In the water intake apparatus 2 of the first experimental example, as described above, the drainage channel 7 uses a polyvinyl chloride pipe having an outer diameter of 60.4 mm and a thickness of 1.3 mm, and the reduction pipe 21 has an outer diameter of the upper end of 88 mm and a lower end A plurality of holes 22 each having an outer diameter of 38 mm and a length of 70 mm and a diameter of 1 mm were drilled, and an aperture ratio of 20% or more was used. Further, the length of the upper drainage 7A was 0.5 m, and tap water was allowed to freely fall from the upper drainage 7A. In this case, the tap water stored in the container was supplied to the upper drainage channel 7A as it was poured.

下記の表1において、第1実験例は縮小管21が3条の突条26を有するものであり、比較例は縮小管21に突条26が無いものを示している。また、「流入水量(l/min)」は、1分間に上部排水路7Aの上端から供給した水道水の量(単位リットル)である。さらに、「取水量(l/min)」は、1分間に前記取水排出管20から排出された水道水の量(単位リットル)である。また、「流入水量」に対する「取水量」の割合が「取水率(%)」である。   In Table 1 below, the first test example shows that the reduction pipe 21 has three ridges 26 and the comparative example shows that the reduction pipe 21 has no projection 26. Also, “inflow water amount (l / min)” is the amount (unit liter) of tap water supplied from the upper end of the upper drainage channel 7A in 1 minute. Furthermore, "the amount of water intake (l / min)" is the amount (unit liter) of tap water discharged from the water intake / discharge pipe 20 in one minute. In addition, the ratio of “water intake” to “inflow water” is “water intake rate (%)”.

Figure 0006542746
Figure 0006542746

上記表1から、3条の突条26を設けた実験例は比較例に比べて取水量が大幅に向上することが分かった。具体的に、流入水量が略等しいもの同士を比べると、取水率は、例えば、実験例1が比較例1の2.5倍、実験例3が比較例3の2.4倍、実験例4が比較例4の1.6倍、実験例5が比較例5の1.6倍、実験例7が比較例6の2.3倍である。また、図7は、縦軸が「取水率(%)」、横軸が「流入水量(l/min)」で、実験例と比較例の印を付したグラフである。   From Table 1 above, it was found that the water intake amount was significantly improved in the experimental example in which the three ridges 26 were provided as compared with the comparative example. Specifically, when the inflow rates are substantially equal to each other, the intake rate is, for example, 2.5 times that of Comparative Example 1 in Experimental Example 1, 2.4 times that of Comparative Example 3 in Experimental Example 3, and Experimental Example 4 Is 1.6 times that of Comparative Example 4, Experimental Example 5 is 1.6 times that of Comparative Example 5, and Experimental Example 7 is 2.3 times that of Comparative Example 6. Moreover, FIG. 7 is the graph which attached the mark of an experiment example and a comparative example in a vertical axis | shaft "intake ratio (%)", and a horizontal axis is "inflow water volume (l / min)".

このように第1実験例の取水率が高い理由は、(1)縮小管21の内面21Nに突条26を設けることにより、縮小管21の内面21Nに沿って落下する水が、図4に示すように、コアンダ効果により突条26の外面に沿って外側に戻ること、(2)縮小管21の上部に拡大管11を設けることにより雨水の流れを拡大管11により広げた後、縮小管21に送ること、(3)螺旋状の突条26により雨水の落下を抑制すると共に、流れの一部を螺旋流にして縮小管21における雨水の通過時間を長くすることなどが挙げられる。   The reason why the water intake rate of the first experimental example is high as described above is that (1) water is dropped along the inner surface 21N of the reduced tube 21 by providing the ridges 26 on the inner surface 21N of the reduced tube 21 in FIG. As shown, the Coanda effect is to return to the outside along the outer surface of the protrusion 26, (2) by expanding the flow of rain water by the expansion pipe 11 by providing the expansion pipe 11 at the upper part of the reduction pipe 21, (3) to suppress the falling of the rain water by the spiral ridges 26 and to lengthen the passing time of the rain water in the reduction pipe 21 while making the stream flow a spiral flow.

次に、前記分離装置3について説明する。図5に示すように、前記分離装置3の本体ケース31は、円筒状の側壁部32と、この側壁部32の下部に設けられ、下方に向かってテーパー状に縮小する縮小部33とを一体に有する。前記側壁部32の中央には円筒状の排出管34を縦設し、この排出管34は前記縮小部33の最底部の中央を貫通して設けられ、その貫通箇所は水密に設けられている。   Next, the separation device 3 will be described. As shown in FIG. 5, the main body case 31 of the separation device 3 is integrally formed with a cylindrical side wall portion 32 and a reduction portion 33 provided at the lower portion of the side wall portion 32 and reducing downward in a taper shape. Have to. A cylindrical discharge pipe 34 is vertically provided at the center of the side wall portion 32, and the discharge pipe 34 is provided to penetrate the center of the bottommost portion of the reduced portion 33, and the penetrating portion is provided in a watertight manner. .

前記排出管34の上端は前記側壁部32の上端より僅かに低い位置にあり、該排出管34の上端に蓋体35を設け、この蓋体35に上排出口36を穿設している。また、前記排出管34の下部には、前記本体ケース31内に位置して下排出口37を設け、この下排出口37は前記縮小部33の底部に近接して設けられている。尚、前記上排出口36は前記排出管34の中心で該排出管の中心軸心方向に穿設され、前記下排出口37は前記排出管34の径方向に穿設されている。尚、図5では、別体の蓋体35を、排出管34の上端を塞ぐようにして取り付け、前記蓋体35に上排出口36を穿設しているが、前記排出管34に、該排出管34の上端を塞ぐ蓋部を一体成形し、この蓋部に前記上排出口36を穿設してもよい。   The upper end of the discharge pipe 34 is located slightly lower than the upper end of the side wall 32, and a lid 35 is provided on the upper end of the discharge pipe 34, and an upper discharge port 36 is formed in the lid 35. Further, a lower discharge port 37 is provided at a lower portion of the discharge pipe 34 and located in the main body case 31, and the lower discharge port 37 is provided in the vicinity of the bottom of the reduction portion 33. The upper discharge port 36 is bored in the center axis direction of the discharge pipe at the center of the discharge pipe 34, and the lower discharge port 37 is bored in the radial direction of the discharge pipe 34. In FIG. 5, a separate cover 35 is attached so as to close the upper end of the discharge pipe 34, and the upper discharge port 36 is bored in the cover 35. A lid for closing the upper end of the discharge pipe 34 may be integrally formed, and the upper discharge port 36 may be formed in the lid.

前記本体ケース31内には、前記排出管34の周囲に該排出管34と間隔を置いて、円筒状の中筒部38が設けられ、この中筒部38の下端には、下方に向かってテーパー状に拡大する拡大部39が設けられ、この拡大部39の外周縁39Fと前記縮小部33の内面との間には、所定間隔の隙間Sが設けられている。また、拡大部39の外周縁39Fの外径は、前記外筒部41の内径より小さく、前記外筒部41の下端41Tは前記拡大部39から離れた上方に位置する。   In the main body case 31, a cylindrical middle cylinder portion 38 is provided around the discharge pipe 34 at a distance from the discharge pipe 34, and the lower end of the middle cylinder portion 38 is directed downward. An enlarged portion 39 which expands in a tapered shape is provided, and a gap S having a predetermined interval is provided between the outer peripheral edge 39F of the enlarged portion 39 and the inner surface of the reduced portion 33. Further, the outer diameter of the outer peripheral edge 39F of the enlarged portion 39 is smaller than the inner diameter of the outer cylindrical portion 41, and the lower end 41T of the outer cylindrical portion 41 is positioned above the enlarged portion 39.

前記側壁部32と前記中筒部38との間には、外筒部41が設けられている。また、前記側壁部32の上端と前記中筒部38及び外筒部41の上端の高さは等しく、それら側壁部32と中筒部38と外筒部41の上部開口を塞ぐ蓋体42が設けられ、この蓋体42は、蓋板部43と、この蓋板部43の周囲に設けられた外嵌筒部44とを一体に備え、この外嵌筒部44が前記側壁部32の上部に外嵌した状態で、前記蓋体42が前記側壁部32に固定される。また、排出管34,中筒部38,外筒部41及び側壁部32は、同心円状に設けられている。   An outer cylinder portion 41 is provided between the side wall portion 32 and the middle cylinder portion 38. Further, the height of the upper end of the side wall portion 32 is equal to the height of the upper end of the middle cylinder portion 38 and the outer cylinder portion 41, and the lid 42 closing the upper opening of the side wall portion 32, the middle cylinder portion 38 and the outer cylinder portion 41 The lid 42 is integrally provided with a lid plate 43 and an externally fitted cylindrical portion 44 provided around the lid plate 43. The externally fitted cylindrical portion 44 is an upper portion of the side wall portion 32. The lid 42 is fixed to the side wall portion 32 in a state of being externally fitted. Further, the discharge pipe 34, the middle cylindrical portion 38, the outer cylindrical portion 41, and the side wall portion 32 are provided concentrically.

図5及び図6に示すように、前記側壁部32には、その接線方向に流入部たる流入管46を接続している。また、前記外筒部41には、その直径方向に流出部たる流出管47を接続し、この流出管47は前記側壁部32に穿設した貫通孔32Aを挿通して外部に突出し、前記流出管47は貫通孔32Aに水密に挿通されている。また、流入管46の流入口46Aの高さ位置は外筒部41の高さ範囲にある。即ち、流入管46は外筒部41の上端と下端との間に前記流入口46Aが設けられている。さらに、前記流出管47は、前記流入管46より高い位置にある。また、前記流入管46の流入口46A及び流出管47の流出口47Aは、前記側壁部32の中心軸線と交差方向に配置され、前記流入管46及び流出管47は横方向に向き、排出管34は縦方向に向いている。   As shown in FIGS. 5 and 6, an inflow pipe 46 serving as an inflow portion is connected to the side wall portion 32 in the tangential direction. Further, an outflow pipe 47 serving as an outflow portion is connected to the outer cylindrical portion 41 in the diameter direction, and the outflow pipe 47 is inserted through a through hole 32A drilled in the side wall portion 32 and protrudes to the outside. The pipe 47 is inserted through the through hole 32A in a watertight manner. Further, the height position of the inflow port 46A of the inflow pipe 46 is in the height range of the outer cylindrical portion 41. That is, the inflow pipe 46 is provided with the inflow port 46A between the upper end and the lower end of the outer cylindrical portion 41. Furthermore, the outflow pipe 47 is at a higher position than the inflow pipe 46. Further, the inlet 46A of the inlet pipe 46 and the outlet 47A of the outlet pipe 47 are disposed in a direction intersecting with the central axis of the side wall 32, and the inlet pipe 46 and the outlet pipe 47 face in the lateral direction. 34 are facing in the vertical direction.

また、前記流入管46及び前記流出管47の内径は例えば15mmであり、これに比べて、前記上,下排出口36,37の直径は3mmと小さく、前記上,下排出口36,37の断面積は、流入管46及び前記流出管47の断面積の25分の1である。また、前記排出管34の内径は7mmである。   Further, the inner diameters of the inflow pipe 46 and the outflow pipe 47 are, for example, 15 mm, and the diameters of the upper and lower discharge ports 36, 37 are smaller than 3 mm, and the upper and lower discharge ports 36, 37 The cross-sectional area is 1/25 of the cross-sectional area of the inflow pipe 46 and the outflow pipe 47. The inside diameter of the discharge pipe 34 is 7 mm.

このように前記上,下排出口36,37の断面積と流入管46及び前記流出管47の断面積の比を1:20〜30にしているのは、本体ケース31内の水位を保つと共に、排出管34からのゴミのスムーズな排出を可能にするためである。尚、前記上,下排出口36,37は3mmと小さいが、ゴミを含む雨水は、縮小管21の1mmの孔22を通過しているから、上,下排出口36,37をスムーズに通過することができる。   The reason why the ratio of the cross sectional area of the upper and lower discharge ports 36 and 37 to the cross sectional area of the inflow pipe 46 and the outflow pipe 47 is 1:20 to 30 is that the water level in the main body case 31 is maintained. , To enable smooth discharge of dust from the discharge pipe 34. The upper and lower discharge ports 36 and 37 are as small as 3 mm, but since the rainwater containing dust passes through the 1 mm hole 22 of the reduction pipe 21, it passes smoothly through the upper and lower discharge ports 36 and 37. can do.

また、本体ケース31の水位を満水に保つため、上,下排出口36,37の断面積を排出管34の内径の断面積より小さくし、また、上,下排出口36,37より排出管34の内径の断面積が大きいから、上,下排出口36,37から排出管34内に流れ込むゴミをスムーズに排出することができる。さらに、排出管34の上端は蓋板部43に近接しており、例えば、その間隔は10mm以下、3mm以上、好ましくは5mm以下である。このように排出管34の上端を高い位置にすることにより、上排出口36は下排出口37より水頭圧が高くなるため、浮遊物を含むゴミを、上排出口36から排出管34を通してスムーズに排出することができる。   Further, in order to keep the water level of the main body case 31 full, the cross sectional area of the upper and lower discharge ports 36, 37 is made smaller than the cross sectional area of the inner diameter of the discharge pipe 34. Since the cross-sectional area of the inner diameter of 34 is large, the debris flowing into the discharge pipe 34 from the upper and lower discharge ports 36 and 37 can be smoothly discharged. Furthermore, the upper end of the discharge pipe 34 is close to the lid plate 43, and for example, the distance is 10 mm or less, 3 mm or more, preferably 5 mm or less. By setting the upper end of the discharge pipe 34 to a high position as described above, the upper discharge port 36 has a higher head pressure than the lower discharge port 37, so that the debris including the floating matter is smoothed from the upper discharge port 36 through the discharge pipe 34. Can be discharged.

そして、前記分離装置3は前記取水装置2の下方に配置され、前記取水装置2の前記取水排出管20と前記分離装置3の前記流入管46とがホースなどの前記接続部4により接続されている。   The separation device 3 is disposed below the water intake device 2, and the water intake discharge pipe 20 of the water intake device 2 and the inflow pipe 46 of the separation device 3 are connected by the connection portion 4 such as a hose. There is.

前記分離装置3はスワール効果によりゴミを分離するものであり、次に、その作用について説明する。前記分離装置3には、前記取水装置2により大型のゴミが除去された雨水が供給される。そして、流入管46から側壁部32の接線方向に流入した雨水は、側壁部32と外筒部41の間の円筒状流路49において、旋回流となり、ゴミは、遠心力で外側に送られ、次第に側壁部32の内面に沿って落下する。砂分などの重たいゴミは、縮小部33の傾斜により縮小部33の底部中央に集まり、下排出口37から排出管34を通って少量の雨水と共に排出される。   The separating device 3 separates the dust by the swirl effect, and its operation will be described next. The separation device 3 is supplied with rainwater from which large-sized dust has been removed by the water intake device 2. Then, the rainwater flowing from the inflow pipe 46 in the tangential direction of the side wall portion 32 becomes a swirling flow in the cylindrical flow path 49 between the side wall portion 32 and the outer cylinder portion 41, and the dust is sent to the outside by centrifugal force. Gradually fall along the inner surface of the side wall 32. The heavy dust such as sand is collected at the center of the bottom of the reduced portion 33 by the inclination of the reduced portion 33, and is discharged from the lower discharge port 37 through the discharge pipe 34 together with a small amount of rainwater.

一方、円筒状流路49における旋回流により、中筒部38内は円筒状流路49に比べて圧力が低くなる負圧が発生し、縮小部33の内面に沿って中央側に落下するゴミのうち、軽量なゴミは拡大部39から中筒部38内に上昇する。この際、拡大部39は下方に向かって拡大すると共にその外周縁39Fが縮小部33の内面に近接しているため、軽量なゴミが拡大部39の外側に逃げることを防止し、その軽量なゴミを中筒部38内に集めて上昇せしめることができる。そして、軽量なゴミは、中筒部38の上部に上昇し、この時、中筒部38内は満水であり、流出管47に比べて少量の雨水と共に上排出口36を通って排出管34から排出される。   On the other hand, due to the swirling flow in the cylindrical flow passage 49, a negative pressure is generated in the middle cylinder portion 38 so that the pressure is lower than in the cylindrical flow passage 49, and the dust falling to the center side along the inner surface of the reduction portion 33 Among them, the lightweight wastes rise from the enlarged portion 39 into the middle tube portion 38. At this time, since the enlarged portion 39 is expanded downward and its outer peripheral edge 39F is close to the inner surface of the reduced portion 33, the lightweight dust is prevented from escaping to the outside of the enlarged portion 39. Garbage can be collected in the middle tube portion 38 and raised. Then, the lightweight waste rises to the upper portion of the middle cylinder portion 38. At this time, the inside of the middle cylinder portion 38 is full of water, and the discharge pipe 34 passes through the upper discharge port 36 together with a small amount of rainwater as compared with the outflow pipe 47. Discharged from

また、上述したように螺旋流によりゴミが取り除かれた雨水は、外筒部41の下端から流出管47を通って外部に排出される。   Further, as described above, the rainwater from which the dust has been removed by the spiral flow is discharged from the lower end of the outer cylindrical portion 41 through the outflow pipe 47 to the outside.

図1に示したように、前記排出管34の下部には、斜めの接続管51が接続され、この接続管51の下端は前記下部排水路7Bに接続されている。従って、取水装置2を通過したゴミを含む雨水と共に、取水装置2において取水された後、分離装置3により分離されたゴミを含む雨水は、下部排水路7Bの下端から集水枡(図示せず)などに落下する。   As shown in FIG. 1, an oblique connecting pipe 51 is connected to the lower part of the discharge pipe 34, and the lower end of the connecting pipe 51 is connected to the lower drainage channel 7B. Therefore, the rainwater containing the waste that has passed through the water intake device 2 and the rainwater containing the waste separated by the separation device 3 after being taken in the water intake device 2 is collected from the lower end of the lower drainage channel 7B (not shown) ) Etc.

図1は、2階以上の階のベランダなどの設置場所52を示し、この設置場所52には雨水タンク53が設けられている。この雨水タンク53は、底面部54と上面部55と側面部56とを有し、平面略長方形形状をなす。その雨水タンク53の上面部55に開口部57が設けられ、この開口部57を開閉する開閉蓋58が設けられている。前記分離装置3の前記流出管47にはホースなどの管路59が接続され、この管路59の下部が前記開閉蓋58に挿通した状態で接続され、前記開口部57を開閉蓋58により閉めると、前記管路59の下端が前記雨水タンク53内に臨む。   FIG. 1 shows an installation place 52 such as a veranda on the second floor or more, and a rainwater tank 53 is provided in the installation place 52. As shown in FIG. The rainwater tank 53 has a bottom surface portion 54, an upper surface portion 55, and a side surface portion 56, and has a substantially rectangular planar shape. An opening 57 is provided on the upper surface 55 of the rainwater tank 53, and an open / close lid 58 for opening and closing the opening 57 is provided. A pipe line 59 such as a hose is connected to the outflow pipe 47 of the separation device 3, and a lower portion of the pipe line 59 is connected in a state inserted through the opening and closing lid 58 and the opening 57 is closed by the opening and closing lid 58 The lower end of the pipe line 59 faces the inside of the rainwater tank 53.

前記雨水タンク53内には、雨水を消毒する消毒材である固形塩素61が配置されている。具体的には、整流保持手段たる籠体62を用い、この籠体62は底面部63と網体からなる側面部64とを有する。また、籠体62には、該籠体62を吊るして設置するための吊設部65が設けられ、この吊設部65を雨水タンク53の係止部(図示せず)に着脱可能に係止することにより、開口部57の下方に籠体62を吊設することができる。この場合、開口部57から籠体62を出し入れできるように構成しており、籠体62内への固形塩素61の供給作業が容易に行うことができる。   In the rainwater tank 53, solid chlorine 61, which is a disinfectant for disinfecting rainwater, is disposed. Specifically, a casing 62, which is a flow straightening means, is used, and the casing 62 has a bottom portion 63 and a side portion 64 made of a net. Further, the casing 62 is provided with a hanging portion 65 for hanging and installing the casing 62, and the hanging portion 65 can be detachably engaged with a locking portion (not shown) of the rainwater tank 53. By stopping, the housing 62 can be suspended below the opening 57. In this case, the casing 62 can be taken in and out from the opening 57, and the operation of supplying the solid chlorine 61 into the casing 62 can be easily performed.

尚、吊設部65を開閉蓋58に係止しておけば、開閉蓋58を外すことにより、籠体62を雨水タンク53内から取り出すことができ、籠体62内への固形塩素61の供給作業が容易となる。そして、前記管路59の下端は前記籠体62内に位置し、この籠体62内に固形塩素61が収納される。   In addition, if the hanging portion 65 is locked to the open / close lid 58, the housing 62 can be taken out from the inside of the rain water tank 53 by removing the open / close lid 58. Supplying work becomes easy. The lower end of the pipe line 59 is located in the casing 62, and the solid chlorine 61 is accommodated in the casing 62.

前記雨水タンク53内には、前記開口部57側に堰板66が設けられ、この堰板66により雨水タンク53の内部を仕切っている。また、開口部57の反対側で前記底面部63には供給管67が接続され、この供給管67又は供給管67の下流の管路には開閉弁(図示せず)が設けられている。   In the rainwater tank 53, a weir plate 66 is provided on the side of the opening 57, and the weir plate 66 partitions the inside of the rainwater tank 53. Further, a supply pipe 67 is connected to the bottom surface portion 63 on the opposite side of the opening 57, and a pipe downstream of the supply pipe 67 or the supply pipe 67 is provided with an on-off valve (not shown).

この場合、籠体62側に堰板66が設けられているから、雨水タンク53内の供給管67側の水位が下がっても、籠体62内の固形塩素61は雨水に浸かっているから、消毒効果を維持することができる。   In this case, since the weir plate 66 is provided on the side of the casing 62, the solid chlorine 61 in the casing 62 is immersed in the rainwater even if the water level on the supply pipe 67 side in the rainwater tank 53 drops. It can maintain the disinfecting effect.

そして、取水装置2と分離装置3とによりゴミが取り除かれた雨水は、管路59により籠体62内に流れ落ち、網体からなる複数の孔を有する側面部64を通過することにより整流され、且つ内部の固形塩素61により消毒される。また、所定量の雨水が溜まると、籠体62側の雨水が堰板66を超えて隣りの空間に溜まる。   Then, the rainwater from which the dust has been removed by the water intake device 2 and the separation device 3 flows down into the casing 62 through the pipe line 59, and is rectified by passing through the side portion 64 having a plurality of holes made of mesh. And it is disinfected by the solid chlorine 61 inside. In addition, when a predetermined amount of rainwater is accumulated, the rainwater on the side of the housing 62 passes through the weir plate 66 and is accumulated in the adjacent space.

このようにしてゴミが取り除かれ消毒された雨水を、上の階である2階の雨水タンク53に貯水することにより、動力を用いることなく、その位置エネルギーにより下の階である1階に供給することができ、停電、断水、非常時の生活水として使用することができ、もちろん雨水タンク53の雨水を通常時の生活水としても利用することができる。   By storing rainwater that has been cleaned and disinfected in this way in the rainwater tank 53 on the second floor, which is the upper floor, it is supplied to the first floor, which is the lower floor, by its potential energy without using power. Of course, it can be used as a blackout, water shutoff, and life water at the time of emergency, and of course the rainwater of the rainwater tank 53 can also be used as life water at normal times.

[第2実験例]
取水装置2及び上部排水路7Aは、第1実験例で説明したものを用いた。分離装置3は、実施例で説明した寸法とし、実施例で記載していない寸法は以下の通りとした。側壁部32は、内径120mm、高さ75mm、縮小部33は高さ45mmとした。外筒部41の高さは、70mmで、側壁部32より低く、その下端が前記側壁部32の下端より僅かに上方に位置する。また、外筒部41の内径は67mmとした。中筒部38は、内径27mm、高さ90mmで、拡大部39は、高さ5mm、外周縁39Fの直径50mm、前記隙間Sは6.51mmとした。流出管47は、内径15mm、その中心と側壁部32の上端との高さ間隔が17.5mm、また、流入管46は、内径15mm、その中心と側壁部32の上端との高さ間隔が37.5mmである。そして、図5に示す部材で、蓋体35及び蓋体42以外の厚さは、2mm以下である。
[Second experimental example]
As the water intake device 2 and the upper drainage channel 7A, those described in the first experimental example were used. The separation device 3 had the dimensions described in the example, and the dimensions not described in the example were as follows. The side wall portion 32 had an inner diameter of 120 mm, a height of 75 mm, and the reduced portion 33 had a height of 45 mm. The height of the outer cylindrical portion 41 is 70 mm, which is lower than the side wall 32, and the lower end thereof is positioned slightly above the lower end of the side wall 32. Moreover, the internal diameter of the outer cylinder part 41 was 67 mm. The middle cylindrical portion 38 had an inner diameter of 27 mm and a height of 90 mm, and the enlarged portion 39 had a height of 5 mm, a diameter of 50 mm for the outer peripheral edge 39F, and the gap S of 6.51 mm. The outflow pipe 47 has an inner diameter of 15 mm, the height distance between its center and the upper end of the side wall 32 is 17.5 mm, and the inflow pipe 46 has an inner diameter 15 mm, and the height distance between its center and the upper end of the side wall 32 is It is 37.5 mm. And in the member shown in FIG. 5, the thickness other than the lid 35 and the lid 42 is 2 mm or less.

流入管46から分離装置3の内部への水道水の流入水量が5.7l/minの場合を表2に示し、2.0l/minの場合を表3に示し、水道水に混合する「混合物」として各種の呼び粒径の「硅砂」と「枯葉粉」の場合に分けた。前記「枯葉粉」は枯葉をすりつぶした粉状物を、孔の直径が1mmのパンチングメタルの篩により篩分けし、その篩を通過したものを用いた。また、混合物の「投入量」を変え、実験を行い、分離装置3から流出した水である処理水に含まれる混合物の量を測定し、処理水における混合物の「除去率」を得た。尚、流入量が5.7l/minの場合を例に説明すると、前記接続部4の上流端へ水道水を5.7l/minで流し込むことにより、分離装置3を通って流出管47から2.0l/minの水道水が流れ出し、この状態で水道水に表2の量の混合物を混入させ、流出管47から取水した水道水に残った混合物の量を測定した。尚、表3の場合は表2と流入水量と取水量が相違するが表2の場合と同様に測定した。   Table 2 shows the case where the amount of inflow of tap water from the inflow pipe 46 to the inside of the separator 3 is 5.7 l / min, and the case where it is 2.0 l / min is shown in Table 3 and mixed with tap water It divided into the case of "Borax" and "Boiled leaf powder" of various nominal grain size as "." The "dried leaf powder" was obtained by sieving a powdery substance obtained by grinding dried leaves with a sieve of a punching metal having a hole diameter of 1 mm, and the material which passed through the sieve was used. In addition, the “input amount” of the mixture was changed, the experiment was performed, and the amount of the mixture contained in the treated water which was the water flowing out of the separation device 3 was measured to obtain the “removal rate” of the mixture in the treated water. In the case where the inflow amount is 5.7 l / min, for example, tap water flowing into the upstream end of the connection portion 4 at 5.7 l / min passes through the separation device 3 through the outflow pipe 47. In this condition, the mixture of the amount shown in Table 2 was mixed with the tap water and the amount of the mixture remaining in the tap water withdrawn from the outflow pipe 47 was measured. In addition, in the case of Table 3, although the inflow water volume and the amount of water withdrawal differed from Table 2, it measured similarly to the case of Table 2.

Figure 0006542746
Figure 0006542746

Figure 0006542746
Figure 0006542746

上記表2及び表3の結果から、混合物を効率よく除去することができることが判った。また、混合物である硅砂の呼び粒径は篩い分けにより区分され、値が大きい程、細かい粒子を含むものであり、比較的大きなゴミが硅砂の砂分であり、比較的小さく軽量なゴミが硅砂の微粉末であり、両者をそれぞれ分離できることが判った。例えば、呼び粒径がN80の硅砂は、75μmの篩の通過率が35〜50%である。   From the results of Tables 2 and 3 above, it was found that the mixture can be efficiently removed. In addition, the nominal particle size of borax, which is a mixture, is classified by sieving, and the larger the value is, the smaller the particle size is, the relatively large waste is borax sand, and the relatively small and light waste is borax It was found that it was a fine powder of and could be separated from each other. For example, borax having a nominal particle size of N80 has a passing rate of 35 to 50% for a 75 μm sieve.

ところで、屋根6に降った雨水は、屋根6の汚れなどにより初期の段階ではゴミを多く含み、汚れている。また、降り始めの雨は弱く時間当たりの雨量が少ない。従って初期の汚れを多く含んだ雨水は、再利用に不向きであり、雨水タンク53に貯水するには適さない。これに対して分離装置3は、時間当たりの雨量が少ない場合は、本体ケース31内の水位が上がらず下排出口37から汚れた雨水が排出される。   By the way, the rain water which fell on the roof 6 contains a lot of rubbish at the initial stage due to the dirt of the roof 6 and the like and is dirty. Also, the beginning of the rain is weak and there is little rainfall per hour. Therefore, rainwater containing a large amount of initial dirt is unsuitable for reuse and is not suitable for storing in the rain water tank 53. On the other hand, when the rainfall per unit time of the separation device 3 is small, the water level in the main body case 31 does not rise and the dirty rain water is discharged from the lower discharge port 37.

雨量が増加すると、円筒状流路49において雨水の十分な旋回が発生し、この旋回流によるスワール効果によってゴミの分離が進んだ段階で流出管47から雨水が排出される。そして、前記旋回流により、中心側の中筒部38内は負圧状態(本体ケース31内の外側より圧力が低い状態)となっていて竜巻の中心付近のように軽いゴミを巻き上げるように雨水が動いており、外周側の円筒状流路49では密度の大きい砂粒などが遠心力で密になっており、これら中心側と外側の間に位置する外筒部41と中筒部38との間から、比較的綺麗な中間あたりの雨水を流出管47から排出する。このため流出管47は外筒部41に形成した流出口47Aに接続されている。   When the rainfall increases, sufficient swirling of rainwater occurs in the cylindrical flow path 49, and the swirling effect by the swirling flow discharges the rainwater from the outflow pipe 47 at a stage where separation of the waste proceeds. Then, due to the swirling flow, the inside of the central cylinder portion 38 on the center side is in a negative pressure state (a state in which the pressure is lower than the outer side in the main body case 31), and rain water In the cylindrical flow path 49 on the outer peripheral side, sand grains with high density are dense due to centrifugal force, and the outer cylindrical portion 41 and the middle cylindrical portion 38 located between the central side and the outer side are From the interval, the relatively clean middle rainwater is discharged from the outflow pipe 47. For this reason, the outflow pipe 47 is connected to the outflow port 47A formed in the outer cylindrical portion 41.

また、雨水の降り始めから時間が経過し、雨量が多くなり水位が上がるころには本体ケース31内における雨水の旋回速度も上がり、スワール効果がある状態になっており、ゴミの密度差で、本体ケース31の外周側と中心部へと分離され、上述したように縮小部33の傾斜により中心へ集められ、中心部から上方へ向けて吸い上げられる。   In addition, the time has passed since the beginning of raining, and when the rainfall increases and the water level rises, the swirling speed of the rainwater in the body case 31 is also rising, and a swirl effect is achieved, It is separated into the outer peripheral side and the central portion of the main body case 31, collected to the center by the inclination of the reduction portion 33 as described above, and sucked upward from the central portion.

前記排出管34は、上排出口36と下排出口37を備え、沈む夾雑物と軽い夾雑物を上下に分けて効率よく排出できる。また、排出管34の上端を高い位置にすると共に、上排出口36と下排出口37を小さい孔とすることにより、本体ケース31内の水位を高く保って取水率を良くすることができる。さらに、上排出口36と下排出口37の2箇所を備え、軽量な夾雑物を上排出口36から排出するから、流入管46から流入する雨水が無くなって水位が下がり、軽く浮いていた夾雑物が、最後に下排出口37に集中して詰まることを軽減できる。また、縮小部33の最下部に下排出口37を設けたから、雨水が残ることがなく、本体ケース31を乾燥させることができる。また、上排出口36の中心は上下方向に向いているから、上排出口36は、旋回により上昇する水流の出口として、スムーズな流れが得られる。   The discharge pipe 34 has an upper discharge port 36 and a lower discharge port 37, and can separate the sinking impurities and the light impurities from the upper and lower parts and can efficiently discharge it. Further, by setting the upper end of the discharge pipe 34 to a high position and setting the upper discharge port 36 and the lower discharge port 37 to small holes, the water level in the main body case 31 can be maintained high to improve the intake rate. Furthermore, since it is equipped with two places, the upper discharge port 36 and the lower discharge port 37, and lightweight impurities are discharged from the upper discharge port 36, the rainwater flowing in from the inflow pipe 46 is eliminated, the water level falls, and the dirt floats lightly. It is possible to prevent the object from being concentrated and clogged in the lower outlet 37 at the end. Further, since the lower discharge port 37 is provided at the lowermost portion of the reduction portion 33, the main body case 31 can be dried without leaving rain water. Further, since the center of the upper discharge port 36 is directed in the vertical direction, the upper discharge port 36 can obtain a smooth flow as an outlet of the water flow rising by turning.

また、中筒部38も、本体ケース31内において水位が下がって行くときに、流入水域である円筒状流路49と中筒部38の内部と仕切ることで外側を旋回する夾雑物が流出管47へ流れ込むことを軽減できる。   Further, also when the water level of the middle cylinder portion 38 is lowered in the main body case 31, by separating the cylindrical flow passage 49 which is the inflowing water area and the inside of the middle cylinder portion 38, the foreign matter which swirls outside flows out It can reduce flowing into 47.

前記本体ケース31に縮小部33を設け、本体ケース31の下部をすり鉢状にすることで、雨水の旋回スピードが上がり、夾雑物を集める効果が得られると共に、流入管46からの流入水量が少ない場合でも夾雑物を最下部へ導くことができる。また、一般住宅などの雨樋5から落下する雨水に用いる場合、流入水量などから、本体ケース31の直径が大き過ぎると雨水が旋回するスピードが遅くなり、分離する力が低下するため、本体ケース31の直径は、80〜160mm程度が適当であり、実験では120mmのものを用いた。さらに、本体ケース31は、全体を直径に比べ細長い円錐状とすると、内部における雨水の旋回速度が速すぎて流出口47Aのところで乱流が発生する。一方、取水する為には旋回する水流の直径がある程度必要である。従って、本体ケース31を、円柱部である側壁部32と円錐部である縮小部33の組み合わせとすることが有効である。   By providing the reduced portion 33 in the main body case 31 and making the lower part of the main body case 31 into a mortar shape, the turning speed of rain water is increased, and the effect of collecting foreign matter is obtained, and the amount of inflowing water from the inflow pipe 46 is small. Even in the case of foreign matter, it can lead to the bottom. In addition, when it is used for rainwater falling from rain gutters 5 such as ordinary houses, if the diameter of the main body case 31 is too large, the speed at which the rain water turns becomes slow and the separating force is reduced. The diameter of 31 is suitably about 80 to 160 mm, and 120 mm was used in the experiment. Furthermore, if the main body case 31 has a conical shape that is elongated as a whole in comparison with the diameter, the swirling speed of the rainwater inside is too fast, and turbulence occurs at the outlet 47A. On the other hand, in order to take in water, the diameter of the swirling water flow is required to some extent. Therefore, it is effective to use the main body case 31 as a combination of the side wall portion 32 which is a cylindrical portion and the reduction portion 33 which is a conical portion.

前記拡大部39は、沈んだ夾雑物のまきあがりを抑える効果を奏する。その拡大部39上は、早い旋回流が生じているが、拡大部39の下は、略静水状態となる。そして、拡大部39内に軽いゴミを捕捉し、ゴミを上昇する流れに乗せることができる。また、前記隙間Sを、5〜10mm程度とすることで、軽いゴミを集め易く、軽いゴミの巻上りなどを押さえて上排出口36への水流をスムーズにすることができる。   The enlarged portion 39 has an effect of suppressing the rising of the sunken foreign matter. A quick swirling flow is generated on the enlarged portion 39, but the lower portion of the enlarged portion 39 is in a substantially static state. Then, light dust can be captured in the enlarged portion 39, and the dust can be put on a rising flow. Further, by setting the gap S to about 5 to 10 mm, it is easy to collect light wastes, and it is possible to smooth the water flow to the upper discharge port 36 by suppressing the winding up of the light wastes and the like.

分離装置3の構造として、本体ケース31に蓋体42を着脱可能に設ける。また、分離装置3を分解可能に構成し、具体的には、本体ケース31,排出管34及び流入管46を一体に設け、中筒部38,外筒部41及び流出管47を一体に設ける。前記貫通孔32Aは側壁部32の上端が開口する縦溝状とし、流出管47を貫通孔32Aに挿通配置した後、貫通孔32Aの縦溝部分を閉塞部材(図示せず)により閉塞すると共に、貫通孔32Aと流出管47の間を水密部材(図示せず)により水密にする。この構造では、蓋体35を外して点検することができ、また、分解して清掃することもできる。   As a structure of the separation device 3, a lid 42 is detachably provided to the main body case 31. Further, the separating device 3 is configured to be disassembled, and more specifically, the main body case 31, the discharge pipe 34 and the inflow pipe 46 are integrally provided, and the middle cylindrical portion 38, the outer cylindrical portion 41 and the outflow pipe 47 are integrally provided. . The through hole 32A is in the form of a vertical groove in which the upper end of the side wall portion 32 opens, and after the outlet pipe 47 is inserted through the through hole 32A, the vertical groove portion of the through hole 32A is closed by a closing member (not shown). The space between the through hole 32A and the outflow pipe 47 is made watertight by a watertight member (not shown). In this structure, the lid 35 can be removed and checked, or it can be disassembled and cleaned.

このように本実施例では、請求項1に対応して、混合物たるゴミを含む液体たる雨水が落下する落下路たる上部排水路7Aの下に連結され、下方に向かって縮小する縮小管21と、縮小管21に穿設された複数の孔22と、縮小管21の内面側から孔22を通過した雨水を排出する排出部たる液体排出部25とを備え、縮小管21の内面21Nに、該縮小管21の長さ方向に交差する突条26を設けたから、上部排水路7Aから縮小管21に落下した雨水は、縮小管21の内面21Nに沿って流れ、孔22を通って液体排出部25に流れ、この際、雨水は、コアンダ効果により縮小管21の内面21Nの突条26に沿って流れ、内面側に戻るため、液体排出部25に液体を集めることができる。また、孔22を通らない大きさのゴミは縮小管21の下端から落下して分離される。   As described above, in this embodiment, according to claim 1, the reduced pipe 21 is connected under the upper drainage channel 7A, which is a falling channel to which rain water, which is a liquid containing mixed garbage, falls and is contracted downward. A plurality of holes 22 bored in the reduction pipe 21 and a liquid discharge part 25 serving as a discharge part for discharging rain water which has passed through the holes 22 from the inner surface side of the reduction pipe 21; Since the ridges 26 intersecting the length direction of the reduction pipe 21 are provided, the rainwater dropped from the upper drainage channel 7A to the reduction pipe 21 flows along the inner surface 21N of the reduction pipe 21 and is discharged through the holes 22. At this time, the rainwater flows along the ridges 26 of the inner surface 21N of the reduction tube 21 by the Coanda effect and returns to the inner surface side, so that the liquid can be collected in the liquid discharge unit 25. In addition, dust of a size not passing through the holes 22 falls from the lower end of the reduction tube 21 and is separated.

このように本実施例では、請求項2に対応して、突条26が螺旋状をなすから、螺旋状の突条26に当たって液体の勢いが抑制されると共に流体が螺旋流となって液体排出部25に流れる液体が増加する。   As described above, in the present embodiment, since the ridge 26 has a spiral shape corresponding to the second aspect, the momentum of the liquid is suppressed by hitting the spiral ridge 26 and the fluid becomes a spiral flow and the liquid is discharged. The liquid flowing to the part 25 increases.

このように本実施例では、請求項3に対応して、複数の突条26を周方向に間隔を置いて設けたから、複数の突条26により液体排出部25に流れる液体の量が増加する。   As described above, in the present embodiment, since the plurality of protrusions 26 are provided at intervals in the circumferential direction corresponding to the third aspect, the amount of liquid flowing to the liquid discharge portion 25 is increased by the plurality of protrusions 26. .

このように本実施例では、請求項4に対応して、落下路たる上部排水路7Aが管路であり、この管路の下端と縮小管21との間に拡大部12を設けたから、拡大部12により液体の流れを広げた後、液体が縮小管21に落下し、縮小管21において、流れ落ちる液体に落下方向と交差方向の遠心力が生じるため、縮小管21の外側の液体排出部25に流れる液体の量が増加する。   As described above, in the present embodiment, the upper drainage channel 7A, which is the falling channel, is a pipe corresponding to the fourth aspect, and the enlarged portion 12 is provided between the lower end of the pipe and the reduction pipe 21. After the flow of the liquid is expanded by the part 12, the liquid falls into the reduction pipe 21, and in the reduction pipe 21, the falling liquid produces a centrifugal force in the cross direction with the falling direction. The amount of liquid flowing to the

以下、実施例上の効果として、流体が屋根6から落下する雨水であるから、雨水の有効利用を図ることができる。また、突条26の断面形状は、平坦な上面部28と、高さ方向中央が上方に凹んだ下湾曲面部30と、これら上面部28と下湾曲面部30の先端側を連結する先端湾曲面部29とを有するから、内面21Nを伝わる雨水を突条26の下の内面21Nにスムーズに流すことができる。さらに、また、周方向に隣り合う突条26,26は、縮小管21の長さ方向において並んだ重なり部分27を有するから、雨水の落下速度を低減して取水率を向上することができる。また、拡大部39の外周縁39Fの直径は中筒部38の内径の1.7倍以上であるから、縮小部33から上昇する軽量なゴミを中筒部38に効率よく集めることができる。また、外周縁39Fの直径より外筒部41の内径が大きいから、ゴミが取り除かれた雨水が外筒部41から流出管47へと送られる。さらに、下排出口37を1個のみ設けたから、雨水の流出を絞りつつ、ゴミを排出することができる。また、縮小管21の下部には、非通水性の内面部材たる受け筒部23を設けたから、排出部25に溜まった雨水が再び内側に零れることを防止できる。   Hereinafter, as an effect of the embodiment, since the fluid is rainwater falling from the roof 6, effective use of the rainwater can be achieved. Further, the sectional shape of the protrusion 26 is a flat upper surface portion 28, a lower curved surface portion 30 in which the center in the height direction is recessed upward, and a distal end curved surface portion connecting the upper surface portion 28 and the lower curved surface portion 30 As it has 29 and 29, the rain water which transmits inner side 21N can be flowed smoothly to inner side 21N under projection 26. Furthermore, since the protruding ridges 26 26 adjacent in the circumferential direction have overlapping portions 27 aligned in the length direction of the reduction pipe 21, it is possible to reduce the falling speed of rainwater and improve the water intake rate. Further, since the diameter of the outer peripheral edge 39F of the enlarged portion 39 is 1.7 times or more of the inner diameter of the middle cylinder portion 38, it is possible to efficiently collect the lightweight dust rising from the reduced portion 33 in the middle cylinder portion 38. Further, since the inner diameter of the outer cylindrical portion 41 is larger than the diameter of the outer peripheral edge 39F, the rainwater from which the dust has been removed is sent from the outer cylindrical portion 41 to the outflow pipe 47. Furthermore, since only one lower discharge port 37 is provided, waste can be discharged while squeezing the outflow of rain water. Moreover, since the receiving cylinder part 23 which is a non-water-permeable inner surface member is provided in the lower part of the shrinking | reduction pipe | tube 21, it can prevent that the rainwater collected in the discharge part 25 spills inward again.

また、雨樋5に接続した上部排水路7Aに取水装置2を接続し、この取水装置2より低い位置に分離装置3を接続し、この分離装置3より低い位置で上の階に雨水タンク53を設けたから、動力を用いることなく、雨水タンク53に貯めた雨水を、下の階に供給することができる。また、取水装置2は孔22に篩い分けする篩装置であり、この取水装置2と遠心力により混合物を分離する分離装置3とを組み合わせることにより、混合物を効率よく分離することができる。   Also, the intake system 2 is connected to the upper drainage channel 7A connected to the rain gutter 5, the separation unit 3 is connected to a position lower than the intake system 2, and the rainwater tank 53 on the upper floor at a position lower than the separation unit 3 Therefore, the rainwater stored in the rainwater tank 53 can be supplied to the lower floor without using power. Further, the water intake device 2 is a sieving device for sieving in the holes 22. The combination of the water intake device 2 and the separation device 3 for separating the mixture by centrifugal force can separate the mixture efficiently.

図8は本発明の実施例2を示し、上記実施例1と同一部分に同一符号を付し、その説明を省略して詳述すると、この例では、実施例1に比べて、側壁部32の高さを60mmにして短く形成し、側壁部32の中心軸に対する縮小部33の傾斜角度θSを40度以下にし、側壁部32の下端が前記外筒部41の下端41Tより上方に位置している。また、実施例1に比べて、前記拡大部39の外周縁39Fの外径を小さくすると共に、拡大部39の傾斜角度を40度以下に設定している。   FIG. 8 shows a second embodiment of the present invention, in which the same reference numerals are given to the same parts as the first embodiment, and the description thereof is omitted and described in detail. Has a height of 60 mm and is short, the inclination angle .theta.S of the reduced portion 33 with respect to the central axis of the side wall 32 is 40 degrees or less, and the lower end of the side wall 32 is positioned above the lower end 41T of the outer cylindrical portion 41. ing. In addition, the outer diameter of the outer peripheral edge 39F of the enlarged portion 39 is smaller than that of the first embodiment, and the inclination angle of the enlarged portion 39 is set to 40 degrees or less.

また、前記排出管34に、該排出管34の上部を上方に向かって直径が小さくなるように絞った絞り部40を設け、この絞り部40の上端開口により前記上排出口36を構成している。尚、この場合の上排出口36の内径も実施例1と同様に3mmである。   Further, the discharge pipe 34 is provided with a throttling portion 40 in which the upper portion of the discharge pipe 34 is squeezed so that the diameter becomes smaller toward the upper side, and the upper discharge port 36 is configured by the upper end opening of the throttling portion 40 There is. In this case, the inner diameter of the upper discharge port 36 is also 3 mm as in the first embodiment.

このように本実施例においても、上記実施例1と同様な作用・効果を奏する。また、この例では、拡大部39の水平に対する角度を大きく設定したから、拡大部39上に細かい砂粒などが溜まることを防止できる。即ち、拡大部39上に落ちたゴミはその傾斜により下方に落下する。また、この例では、絞り部40のプレスなどの塑性加工により、上排出口36を形成したから、蓋体の取付作業や上排出口の穿設工程が不要となる。   As described above, also in the present embodiment, the same operation and effect as the first embodiment can be obtained. Moreover, in this example, since the angle with respect to the horizontal of the expansion part 39 is set large, it can prevent that a fine sand particle etc. are accumulated on the expansion part 39. FIG. That is, the dust that has fallen on the enlarged portion 39 falls downward due to its inclination. Further, in this example, since the upper discharge port 36 is formed by plastic working such as pressing of the narrowed portion 40, the operation of attaching the lid and the process of forming the upper discharge port become unnecessary.

尚、本発明は以上の実施例に限定されるものではなく、発明の要旨の範囲内で種々の変形実施が可能である。例えば、突条26の断面形状は実施例に限定されず、三角形や半円形などでもよい。また、混合物が混ざった液体は、浚渫泥土や漬物などでもよい。さらに、突条を縮小管の長さ方向と直交方向に設けてもよく、この場合は、1条の突条は同一高さ位置となり、この同一高さ位置の突条を縮小管の長さ方向に間隔を置いて複数設けてもよい。また、実施例では、1条の突条が縮小管21の上端から下端まで連続する螺旋状のものを示したが、螺旋状の突条を部分的に設けるようにしてもよい。さらに、実施例の寸法は実験に用いた一例を示すものであり、これに限定されるものではない。   The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the invention. For example, the cross-sectional shape of the protrusion 26 is not limited to the embodiment, and may be triangular or semicircular. In addition, the liquid in which the mixture is mixed may be clay mud or pickles. Furthermore, the ridges may be provided in the direction perpendicular to the length direction of the reduction tube, in which case one ridge is at the same height position, and the ridges of this same height position are reduced in length A plurality may be provided at intervals in the direction. Further, in the embodiment, one ridge is shown as a continuous spiral from the upper end to the lower end of the reduction tube 21. However, the spiral ridge may be partially provided. Furthermore, the dimensions of the examples show one example used for the experiment, and are not limited thereto.

1 処理装置
2 取水装置(固液分離処理装置・集液装置・篩装置)
3 分離装置
4 接続部
7A 上部排水路(落下路)
12 拡大部
22 孔
25 液体排出部(排出部)
26 突条
31 本体ケース
32 側壁部(円筒部)
33 縮小部
34 排出管
36 上排出口
37 下排出口
38 中筒部
39 拡大部
41 外筒部
43 蓋板部(閉塞部)
46 流入管(流入部)
47 流出管(流出部)
1 Treatment device 2 Water intake device (solid-liquid separation treatment device, liquid collection device, sieve device)
3 Separator 4 Connection 7A Upper drainage channel (dropping channel)
12 enlargement part 22 hole 25 liquid discharge part (discharge part)
26 projection 31 body case 32 side wall portion (cylindrical portion)
33 reduction part 34 discharge pipe 36 upper discharge port 37 lower discharge port 38 middle cylinder part 39 enlarged part 41 outer cylinder part 43 cover plate part (closed part)
46 inflow pipe (inflow section)
47 outlet pipe (outlet)

Claims (4)

混合物を含む液体が落下する落下路の下に連結され、下方に向かって縮小する縮小管と、前記縮小管に穿設された複数の孔と、前記縮小管の内面側から前記孔を通過した液体を排出する排出部とを備え、前記縮小管の内面に、該縮小管の長さ方向に交差する突条を設けたことを特徴とする固液分離処理装置。 A reduction pipe connected below the falling path through which the liquid containing the mixture falls and reduced downward, a plurality of holes drilled in the reduction pipe, and the holes passed from the inner surface side of the reduction pipe A solid-liquid separation processing device comprising: a discharge part for discharging a liquid; and a protrusion intersecting the length direction of the reduction pipe provided on an inner surface of the reduction pipe. 前記突条が螺旋状をなすことを特徴とする請求項1記載の固液分離処理装置。 The solid-liquid separation and treatment apparatus according to claim 1, wherein the protrusion has a spiral shape. 複数の前記突条を周方向に間隔を置いて設けたことを特徴とする請求項2記載の固液分離処理装置。 The solid-liquid separation and treatment apparatus according to claim 2, wherein the plurality of protrusions are provided at intervals in the circumferential direction. 前記落下路が管路であり、この管路の下端と前記縮小管との間に拡大部を設けたことを特徴とする請求項1〜3のいずれか1項に記載の固液分離処理装置。 The solid-liquid separation and treatment apparatus according to any one of claims 1 to 3, wherein the fall path is a pipe line, and an enlarged portion is provided between a lower end of the pipe line and the reduction pipe. .
JP2016237970A 2016-12-07 2016-12-07 Solid-liquid separation processor Active JP6542746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237970A JP6542746B2 (en) 2016-12-07 2016-12-07 Solid-liquid separation processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237970A JP6542746B2 (en) 2016-12-07 2016-12-07 Solid-liquid separation processor

Publications (2)

Publication Number Publication Date
JP2018096026A JP2018096026A (en) 2018-06-21
JP6542746B2 true JP6542746B2 (en) 2019-07-10

Family

ID=62632613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237970A Active JP6542746B2 (en) 2016-12-07 2016-12-07 Solid-liquid separation processor

Country Status (1)

Country Link
JP (1) JP6542746B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186022A (en) * 1989-01-13 1990-07-20 Masuji Oi Diversion device
JPH115039A (en) * 1997-06-16 1999-01-12 Taisei Corp Separation method for sand and heavy oil lump and device therefor
JP3634152B2 (en) * 1998-06-18 2005-03-30 積水化学工業株式会社 Drainage vertical pipe
US6270663B1 (en) * 2000-07-17 2001-08-07 Henry Happel Storm drain filter system
JP4741322B2 (en) * 2005-09-01 2011-08-03 株式会社日立プラントテクノロジー Sand separation and cleaning equipment
JP5296347B2 (en) * 2007-08-17 2013-09-25 テラル株式会社 Rainwater purification guidance device
JP4729589B2 (en) * 2008-02-04 2011-07-20 株式会社ハネックス Separation device
JP2009293293A (en) * 2008-06-05 2009-12-17 Kubota-Ci Co Vortex flow type diversion device and rainwater storage system using it
JP4932963B1 (en) * 2011-11-16 2012-05-16 綱夫 米道 Rainwater use device
JP6038717B2 (en) * 2013-04-15 2016-12-07 株式会社丸島アクアシステム Sand settling device

Also Published As

Publication number Publication date
JP2018096026A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US6951619B2 (en) Apparatus for trapping floating and non-floating particulate matter
KR20070070212A (en) Flowing-down rainwater filtration device and rainwater storage device using the same
KR100998514B1 (en) Apparatus for Treatment of First Flush Rainfall
KR100814063B1 (en) Storm water treatment device
KR20110106103A (en) Element-less filter device
US4816156A (en) Hydro-dynamic separator
JP2009185454A (en) Separating device
JP4668290B2 (en) Separation device
JP2008284425A (en) Drainage separator
JP6542746B2 (en) Solid-liquid separation processor
JP6526616B2 (en) Solid-liquid separation processor
JP5944682B2 (en) Oil separation tank
US20090211963A1 (en) Particle Interceptor
JP5193151B2 (en) Solid-liquid separation device and water treatment device
JP6999914B2 (en) Separator
JP6475902B1 (en) Liquid collecting device in liquid tank and upward filtration device provided with the same
JP2005332810A (en) Reservoir tank
JP5296347B2 (en) Rainwater purification guidance device
JP2009293294A (en) Rainwater storage system
JP2010203167A (en) Bathroom draining device
WO2014146178A1 (en) Solids separator
KR102677940B1 (en) continuous separating and discharge apparatus of floated dludge and sedimentation sludge
AU2003212066B2 (en) Self-Cleaning Water Tank
JP2006028954A (en) Rainwater filtration storage device
JPS6327064B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190613

R150 Certificate of patent or registration of utility model

Ref document number: 6542746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250