JP6541373B2 - PdRu alloy electrode material and method of manufacturing the same - Google Patents

PdRu alloy electrode material and method of manufacturing the same Download PDF

Info

Publication number
JP6541373B2
JP6541373B2 JP2015039673A JP2015039673A JP6541373B2 JP 6541373 B2 JP6541373 B2 JP 6541373B2 JP 2015039673 A JP2015039673 A JP 2015039673A JP 2015039673 A JP2015039673 A JP 2015039673A JP 6541373 B2 JP6541373 B2 JP 6541373B2
Authority
JP
Japan
Prior art keywords
electrode material
pdru alloy
pdru
alloy electrode
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015039673A
Other languages
Japanese (ja)
Other versions
JP2016160478A (en
Inventor
慶樹 渡邉
慶樹 渡邉
宮嶋 圭太
圭太 宮嶋
北川 宏
宏 北川
康平 草田
康平 草田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Kyoto University
Original Assignee
Noritake Co Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Kyoto University filed Critical Noritake Co Ltd
Priority to JP2015039673A priority Critical patent/JP6541373B2/en
Publication of JP2016160478A publication Critical patent/JP2016160478A/en
Application granted granted Critical
Publication of JP6541373B2 publication Critical patent/JP6541373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、パラジウムPdおよびルテニウムRuが固溶したPdRu合金の微粒子を導電性担体に固定したPdRu合金電極材料の水電解活性および耐久性を高める技術に関する。   The present invention relates to a technique for enhancing the water electrolytic activity and durability of a PdRu alloy electrode material in which fine particles of a PdRu alloy in which palladium Pd and ruthenium Ru are solid-solved are fixed to a conductive support.

一般に、水電解のための電極材料には、たとえば固体高分子形燃料電池PEFCの電極触媒として、或いは水電解電極としての用途が期待されており、そのような用途に好適な、高い水電解活性および高い燃料電池反応活性(HOR、ORR等)が望まれる。   Generally, the electrode material for water electrolysis is expected to be used as an electrode catalyst of, for example, a polymer electrolyte fuel cell PEFC, or as a water electrolysis electrode, and has high water electrolysis activity suitable for such use. And high fuel cell reactivity (HOR, ORR etc) is desired.

例えば特許文献1に示されるように、PdRu合金の微粒子をカーボン粒子のような導電性担体に固定したPdRu合金電極材料が、比較的最近知られるようになった。この電極材料は、触媒として高い活性を示すが、電気化学反応に対する活性など電極材料としての特性については未知である。   For example, as shown in Patent Document 1, a PdRu alloy electrode material in which fine particles of PdRu alloy are fixed to a conductive support such as carbon particles has been known relatively recently. Although this electrode material shows high activity as a catalyst, it is unknown about the characteristic as an electrode material, such as activity to an electrochemical reaction.

国際公開第2014/046107号International Publication No. 2014/046107 特表2013−502682号公報Japanese Patent Application Publication No. 2013-502682

これに対して、特許文献2に示すように、固体高分子形燃料電池PEFCのアノード電極触媒として、イリジウムIrの微粉末を担体に固定したものが提案されている。これによれば、イリジウムIrが比較的高い水分解活性を有するために導電性担体を構成するカーボンの腐食反応が抑制されるとしている。しかしながら、十分な水電解活性を有するものではなく、固体高分子形燃料電池PEFCのアノード電極に対する耐久性の要求に対して満足できるものではなかった。   On the other hand, as shown in Patent Document 2, as an anode electrode catalyst of a polymer electrolyte fuel cell PEFC, one in which fine powder of iridium Ir is fixed to a carrier has been proposed. According to this, it is supposed that the corrosion reaction of carbon constituting the conductive support is suppressed because iridium Ir has relatively high water splitting activity. However, it did not have sufficient water electrolysis activity, and was not satisfactory to the demand for durability to the anode electrode of a polymer electrolyte fuel cell PEFC.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、高い水電解活性とHOR活性を有するPdRu合金電極材料およびその製造方法を提供することにある。   The present invention has been made against the background described above, and an object of the present invention is to provide a PdRu alloy electrode material having high water electrolytic activity and HOR activity, and a method for producing the same.

一般に、固体高分子形燃料電池においてアノードに対する燃料供給が不足した場合には、カソードにおける(1)式に示される酸素還元反応酸(ORR)はそのまま持続するのに対して、(2)式に示されるアノードでの正常な燃料電池反応である水素酸化反応(HOR)はそれ以上持続することができず、(3)式に示される酸素発生反応(OER)または(4)式に示される炭素電気化学的酸化反応が生じて電流が維持される。   In general, when the fuel supply to the anode is insufficient in the polymer electrolyte fuel cell, the oxygen reduction reaction acid (ORR) represented by the formula (1) at the cathode continues as it is, whereas The normal fuel cell reaction at the anode shown, the hydrogen oxidation reaction (HOR), can not be sustained any longer, and the oxygen evolution reaction (OER) shown in equation (3) or the carbon shown in equation (4) An electrochemical oxidation reaction occurs to maintain the current.

1/2O+2H+2e→HO ・・・(1)
→2H+2e ・・・(2)
O→1/2O+2H+2e ・・・(3)
1/2C+HO→1/2CO+2H+2e ・・・(4)
1/2 O 2 +2 H + + 2 e → H 2 O (1)
H 2 → 2 H + + 2 e (2)
H 2 O → 1⁄2 O 2 +2 H + + 2 e (3)
1/2 C + H 2 O → 1/2 CO 2 + 2 H + + 2 e (4)

本発明者は、アノードに対する燃料供給が不足した状態で水素酸化反応(HOR)に替わって、酸素発生反応(OER)および(4)式に示される炭素電気化学的酸化反応のいずれかが行なわれるとき、アノードに用いられる電極材料(触媒)の水電解活性が高いほど、酸素発生反応(OER)が行なわれることに着目し、PdRu合金の微粒子を導電性担体に固定した電極材料において、PdとRuとの割合を所定の範囲内とすることにより、高い水電解活性を得ることができることを見出した。すなわち、本発明者は、PdRu合金の微粒子を導電性担体に固定した電極材料が水電解電極や固体高分子形燃料電池のアノード触媒として適していることを見出した。本発明は、このような知見に基づいて為されたものである。   In the state of insufficient fuel supply to the anode, the inventor of the present invention replaces the hydrogen oxidation reaction (HOR) with either the oxygen evolution reaction (OER) or the carboelectrochemical oxidation reaction represented by formula (4). When focusing on the fact that the oxygen generation reaction (OER) is performed as the water electrolysis activity of the electrode material (catalyst) used for the anode is higher, the electrode material in which fine particles of the PdRu alloy are fixed to the conductive support It has been found that high water electrolytic activity can be obtained by setting the ratio to Ru within a predetermined range. That is, the present inventor has found that an electrode material in which fine particles of a PdRu alloy are fixed to a conductive support is suitable as a water electrolysis electrode or an anode catalyst of a polymer electrolyte fuel cell. The present invention has been made based on such findings.

すなわち、第1発明の要旨とするところは、PdとRuが固溶しているPdRu合金の微粒子を担体の表面に固定したPdRu合金電極材料であって、前記PdRu合金の微粒子は、COパルス法による測定で10(m /g−metal)以上の金属比表面積を有し、且つ前記PdRu合金の微粒子の表面に高分子保護剤が存在しないことにある。
また、第2発明の要旨とするところは、PdとRuが固溶しているPdRu合金の微粒子を導電性の担体の表面に固定したPdRu合金電極材料であって、前記PdRu合金の微粒子は、COパルス法による測定で10(m /g−metal)以上の金属比表面積を有し、且つ前記PdRu合金の微粒子の表面に保護剤が存在しないことにある。
That is, it is an gist of the first invention, a PdRu alloy electrode material fine particles of PdRu alloy fixed on the surface of the responsible body Pd and Ru are dissolved, particulate said PdRu alloy, CO pulse It has a metal specific surface area of 10 (m 2 / g-metal) or more as measured by the method , and there is no polymer protective agent on the surface of the particles of the PdRu alloy .
The second aspect of the present invention is a PdRu alloy electrode material in which fine particles of a PdRu alloy in which Pd and Ru are in solid solution are fixed to the surface of a conductive support, and the fine particles of the PdRu alloy are It has a metal specific surface area of 10 (m 2 / g-metal) or more as measured by the CO pulse method , and there is no protective agent on the surface of the fine particle of the PdRu alloy.

第1発明のPdRu合金電極材料によれば、PdとRuが固溶しているPdRu合金の微粒子を担体の表面に固定したPdRu合金電極材料であって、前記PdRu合金の微粒子は、COパルス法による測定で10(m /g−metal)以上の金属比表面積を有し、且つ前記PdRu合金の微粒子の表面に高分子保護剤が存在しないので、高い水電解活性とHOR活性が得られる。
第2発明のPdRu合金電極材料によれば、PdとRuが固溶しているPdRu合金の微粒子を導電性の担体の表面に固定したPdRu合金電極材料であって、前記PdRu合金の微粒子は、COパルス法による測定で10(m /g−metal)以上の金属比表面積を有し、且つ前記PdRu合金の微粒子の表面に保護剤が存在しないので、高い水電解活性とHOR活性が得られる。
また、好適には、前記PdRu合金電極材料は、前記PdRu合金のPdモル比0.1から0.9の範囲内である組成を有しているので、高い水電解活性とHOR活性が得られる。
また、好適には、前記PdRu合金電極材料は、前記PdRu合金のPdのモル比が0.3から0.7の範囲内である組成を有しているので、高い水電解活性とHOR活性が得られる。
According to the PdRu alloy electrode material of the first invention, it is a PdRu alloy electrode material in which fine particles of a PdRu alloy in which Pd and Ru are solid-solved are fixed on the surface of a carrier, wherein the fine particles of the PdRu alloy are CO pulse method Since it has a metal specific surface area of 10 (m 2 / g-metal) or more as measured by and there is no polymer protective agent on the surface of the particles of the PdRu alloy, high water electrolytic activity and HOR activity can be obtained.
According to the PdRu alloy electrode material of the second invention, it is a PdRu alloy electrode material in which fine particles of PdRu alloy in which Pd and Ru are solid-solved are fixed on the surface of a conductive support, the fine particles of PdRu alloy are High water electrolytic activity and HOR activity can be obtained since it has a metal specific surface area of 10 (m 2 / g-metal) or more as measured by the CO pulse method and there is no protective agent on the surface of the particles of the PdRu alloy .
Also, preferably, the PdRu alloy electrode materials, since the molar ratio of Pd of the PdRu alloy has a composition in the range of 0.1 to 0.9, high water electrolysis activity and HOR activity can get.
In addition, preferably, since the PdRu alloy electrode material has a composition in which the molar ratio of Pd in the PdRu alloy is in the range of 0.3 to 0.7, high water electrolytic activity and HOR activity can be obtained. can get.

ここで、好適には、前記PdRu合金電極材料は、水電解電極(触媒)として用いられるものである。このようにすれば、水電解の効率が高い水電解電極が得られる。   Here, preferably, the PdRu alloy electrode material is used as a water electrolysis electrode (catalyst). In this way, a water electrolysis electrode having high water electrolysis efficiency can be obtained.

また、好適には、前記PdRu合金電極材料は、固体高分子形燃料電池PEFCのアノード電極(触媒)として用いられるものである。このようにすれば、水電解の効率が高い、つまり、耐久性の高い固体高分子形燃料電池PEFCのアノード電極が得られる。従来の固体高分子形燃料電池PEFCのアノード電極において、表面積を拡大するためにナノ粒子化された白金族粒子が導電性担体としてのカーボンに固定されて用いられる場合は、電圧変動などによって白金族粒子の粒子粗大化が発生するという問題、および、カーボンの腐食、劣化によって固体高分子形燃料電池の性能が低下するという問題があったが、上記前記PdRu合金の微粒子を導電性担体の表面に固定した電極材料が固体高分子形燃料電池PEFCのアノード電極(触媒)として用いられることにより、上記の問題の発生が好適に抑制される。   In addition, preferably, the PdRu alloy electrode material is used as an anode electrode (catalyst) of a polymer electrolyte fuel cell PEFC. In this way, the anode electrode of a solid polymer fuel cell PEFC having high water electrolysis efficiency, that is, high durability can be obtained. In the anode electrode of a conventional polymer electrolyte fuel cell PEFC, when platinum group particles nanoparticulated in order to expand the surface area are used by being fixed to carbon as a conductive support, the platinum group group is changed by voltage fluctuation etc. There has been the problem that particle coarsening occurs and that the performance of the polymer electrolyte fuel cell is degraded due to the corrosion and deterioration of carbon, but the fine particles of the PdRu alloy are deposited on the surface of the conductive support. By using the fixed electrode material as the anode electrode (catalyst) of the polymer electrolyte fuel cell PEFC, the occurrence of the above problems is preferably suppressed.

また、好適には、前記担体は、カーボン粒子である。このようにすれば、高い水電解活性によって炭素電気化学的酸化反応が抑制されるので、前記カーボン粒子から成る担体の劣化が好適に抑制される。このカーボン粒子は、たとえば、グラッシーカーボン、グラファイト、カーボンオニオン、コークス、カーボンシャフト、カーボンナノウオール、カーボンナノコイル、カーボンナノチューブ、カーボンナノツイスト、カーボンナノファイバー、カーボンナノホーン、カーボンナノローブ、カーボンブラックなどのいずれかから成る。 Further, preferably, before Ki担 body is carbon particles. Thus, since the carbon electrochemical oxidation reaction by the high water electrolysis activity is suppressed, deterioration of the formed Ru responsible body from the carbon particles can be suitably suppressed. This carbon particle is, for example, any of glassy carbon, graphite, carbon onion, coke, carbon shaft, carbon nanowall, carbon nanocoil, carbon nanotube, carbon nanotwist, carbon nanofiber, carbon nanohorn, carbon nanolobe, carbon black and the like. Consists of.

また、前記PdRu合金の微粒子を担体の表面に固定したPdRu合金電極材料は、好適には、還元剤と、導電性粒子と、パラジウム化合物またはパラジウムイオンと、ルテニウム化合物またはルテニウムイオンと含む溶液を、所定の温度以上の温度に保持して、前記Pdと前記Ruとを合金化させると共に、前記導電性粒子の表面に前記PdRu合金の微粒子を析出させる工程を含む製造工程により製造される。このようにすれば、パラジウムとルテニウムとの合金化と、導電性粒子の表面にその合金の微粒子を導電性担体粒子に析出させる触媒の固定化とが同じ工程内で行なわれるので、工程が簡単となり、製造が容易となる。また、保護剤が無くとも粒子成長を抑えた微粒子を合成でき、さらに、粒子の凝集を少ないままに高濃度で担持可能である。 Further, PdRu alloy electrode material particles were fixed to the surface of the responsible body of the PdRu alloy, preferably, a reducing agent, and conductive particles, and a palladium compound or a palladium ion, a solution containing a ruthenium compound or ruthenium ions and held at a predetermined temperature or higher, the Pd and the said Ru causes alloyed, it is manufactured by a manufacturing process including a step of Ru to precipitate fine particles of the PdRu alloy on the surface of the conductive particles. In this way, since the alloying of palladium and ruthenium and the immobilization of the catalyst for depositing fine particles of the alloy on the conductive carrier particles on the surface of the conductive particles are performed in the same step, the process is simplified. And manufacture becomes easy. In addition, fine particles can be synthesized with reduced particle growth without the need for a protective agent, and can be supported at a high concentration with less particle aggregation.

本発明の一実施例のPdRu合金電極材料の製造工程を説明する工程図である。It is process drawing explaining the manufacturing process of the PdRu alloy electrode material of one Example of this invention. 図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、粉末X線回折結果(XRDパターン)をそれぞれ示す図である。It is a diagram showing seven types obtained by the process of PdRu alloy electrode material of the composition ratio of PdRu FIG 1 (Pd x Ru 1-x / C) for the powder X-ray diffraction results (XRD patterns), respectively. 図1の工程により得られた3種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、高角散乱環状暗視野走査透過顕微鏡法による像(HAADF−STEM像)を上段に、エネルギ分散型X線分析装置EDXによる元素マッピング像を中段および下段に示す図である。High angle scattering annular dark field scanning transmission microscope image (HAADF-STEM image) of PdRu alloy electrode material (Pd x Ru 1-x / C) of composition ratio of three kinds of PdRu obtained by the process of FIG. 1 In the upper part, an element mapping image by the energy dispersive X-ray analyzer EDX is shown in the middle and lower parts. 図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、誘導結合プラズマ発光分光分析装置ICP−AESによる組成分析結果を示す図表である。Chart showing composition analysis result by inductively coupled plasma emission spectrometry ICP-AES on PdRu alloy electrode material (Pd x Ru 1-x / C) of composition ratio of seven kinds of PdRu obtained by the process of FIG. 1 It is. 図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、COパルス法による金属表面積測定装置を用いて測定した結果を示す図表である。A chart showing the results of measurement using a metal surface area measurement apparatus by a CO pulse method on PdRu alloy electrode materials (Pd x Ru 1-x / C) having composition ratios of seven types of PdRu obtained by the process of FIG. 1 It is. 図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、それぞれの水電解活性の測定結果を、走査電位と電流値との二次元座標に示すグラフである。The measurement results of the respective water electrolytic activities of PdRu alloy electrode materials (Pd x Ru 1-x / C) having composition ratios of seven types of PdRu obtained by the process of FIG. It is a graph shown in a two-dimensional coordinate. 図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)とIr電極材料(Ir/C)の合計8種類の電極材料について求められた水電解開始電位EOERをそれぞれ示す図表である。It was determined for a total of eight electrode materials of PdRu alloy electrode material (Pd x Ru 1-x / C) and Ir electrode material (Ir / C) having composition ratios of seven kinds of PdRu obtained by the process of FIG. 1 It is a chart showing water electrolysis starting potential E OER , respectively. 図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)とIr電極材料(Ir/C)の合計8種類の電極材料について求められたHOR活性支配電流Iをそれぞれ示す図表である。It was determined for a total of eight electrode materials of PdRu alloy electrode material (Pd x Ru 1-x / C) and Ir electrode material (Ir / C) having composition ratios of seven kinds of PdRu obtained by the process of FIG. 1 it is a table showing each HOR activity dominant current I k.

以下、本発明の一実施例を図面を参照して詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、PdRu1−x合金微粒子が導電性担体であるカーボン粒子に担持されたPdRu合金電極材料(PdRu1−x/C)の製造工程例を示している。図1において、溶液A調整工程P1では、たとえばキャボット社のVulcan XC−72という品名のカーボンブラック230mgを還元剤として機能するトリエチレングリコール200mlに混合して懸濁液である溶液Aを調整した。また、溶液B調整工程P2では、K[PdCl]とRuCl・nHOとを水50mlに溶解して溶液Bを調整した。このとき、K[PdCl]とRuCl・nHOとのモル比すなわちたとえばPdのモル比xを、PdとRuの合計を1mmolとすることを維持しつつ、0、0.1、0.3、0.5、0.7、0.9、1とに変化させることにより、7種類のPdRuの組成比の溶液Bを調整した。 FIG. 1 shows an example of a production process of a PdRu alloy electrode material (Pd x Ru 1-x / C) in which Pd x Ru 1-x alloy fine particles are supported on carbon particles as a conductive support. In FIG. 1, in the solution A preparation step P1, for example, 230 mg of carbon black of Vulcan XC-72 of Cabot Corp. is mixed with 200 ml of triethylene glycol functioning as a reducing agent to prepare a solution A which is a suspension. Further, in the solution B adjusting step P2, solution B was prepared by dissolving K 2 [PdCl 4 ] and RuCl 3 .nH 2 O in 50 ml of water. At this time, the molar ratio of K 2 [PdCl 4 ] to RuCl 3 .nH 2 O, for example, the molar ratio x of Pd is maintained at 0 mmol, while maintaining the sum of Pd and Ru at 1 mmol. By changing the ratio to 0.3, 0.5, 0.7, 0.9, 1, solutions B of seven different PdRu composition ratios were prepared.

次いで、加熱工程P3において溶液Aが200℃に加熱された後、噴霧工程P4において、所定の噴霧装置を用いて、加熱された溶液Aに溶液Bを噴霧することで混合液Cを得た。噴霧終了後、混合液Cを保温工程P5において200℃に15分間保持し、冷却工程P6において室温まで放置冷却することで、PdとRuとを合金化するとともにPdRu1−x合金微粒子をカーボン粒子の表面或いは内部に析出させた。次いで、分離工程P7において、遠心分離機を用いて、固形分であるPdRu合金電極材料(PdRu1−x/C)を混合液から分離し、得られた固形分を乾燥工程P8において60℃の温度で18時間乾燥後、さらに100℃の温度で2時間真空乾燥することにより粉末化した。加熱工程P3、噴霧工程P4、保温工程P5、冷却工程P6、分離工程P7は、いずれも大気中で行なった。 Subsequently, after the solution A was heated to 200 ° C. in the heating step P3, the mixed solution C was obtained by spraying the solution B onto the heated solution A using a predetermined spraying device in the spraying step P4. After spraying, the liquid mixture C is held at 200 ° C. for 15 minutes in the heat retention step P5, and left cooled to room temperature in the cooling step P6, thereby alloying Pd and Ru with the Pd x Ru 1-x alloy fine particles. It was deposited on the surface or inside of the carbon particles. Next, in the separation step P7, the solid content PdRu alloy electrode material (Pd x Ru 1-x / C) is separated from the liquid mixture using a centrifuge, and the obtained solid content is dried 60 in the drying step P8. After drying at a temperature of ° C. for 18 hours, it was further powdered by vacuum drying at a temperature of 100 ° C. for 2 hours. The heating step P3, the spraying step P4, the heat retention step P5, the cooling step P6, and the separation step P7 were all performed in the air.

図2は、図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、粉末X線回折結果(XRDパターン)を示している。図2におけるピークから、PdとRuが合金化していること、および、パラジウムPdのモル比xが大きくなるにつれて、六方最密充填構造(hcp)から面心立方格子構造(fcc)へ変化することが、示されている。 FIG. 2 shows powder X-ray diffraction results (XRD pattern) of PdRu alloy electrode materials (Pd x Ru 1-x / C) having composition ratios of seven types of PdRu obtained by the process of FIG. 1 . From the peak in FIG. 2, it is found that Pd and Ru are alloyed, and the hexagonal close-packed structure (hcp) changes to a face-centered cubic lattice structure (fcc) as the molar ratio x of palladium Pd increases. It is shown.

図3は、図1の工程により得られた3種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、高角散乱環状暗視野走査透過顕微鏡法による像(HAADF−STEM像)を上段に、エネルギ分散型X線分析装置EDXによる元素マッピング像を中段および下段に示している。図3の上段に示される像は、PdRu合金電極材料(PdRu1−x/C)は、PdRuの組成比に拘わらず粒子形状であることを示し、図3の中段および下段に示される像は、Pd元素およびRu元素は、PdRuの組成比に拘わらずPdRu合金電極材料(PdRu1−x/C)の粒子内に均一に存在していることを示している。 FIG. 3 shows an image (HAADF by high angle scattering annular dark field scanning transmission microscopy) of PdRu alloy electrode material (Pd x Ru 1-x / C) of composition ratio of three kinds of PdRu obtained by the process of FIG. The upper part shows the elemental mapping image by the energy dispersive X-ray analyzer EDX in the upper part and the lower part shows the elemental mapping image. The image shown in the upper part of FIG. 3 shows that the PdRu alloy electrode material (Pd x Ru 1-x / C) has a particle shape regardless of the composition ratio of PdRu, and is shown in the middle and lower parts of FIG. The image shows that the Pd element and the Ru element are uniformly present in the particles of the PdRu alloy electrode material (Pd x Ru 1-x / C) regardless of the composition ratio of PdRu.

図4は、図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、誘導結合プラズマ発光分光分析装置ICP−AES(エスアイアイ・ナノテクノロジー社製 SPS5100)による組成分析結果を示す図表である。なお、ICP−AESにあたっては、試料をアルカリで溶融分解後、溶融物を塩酸、硝酸で溶解し、超純水で定容して検液とした。この結果から得られたPdとRuとのモル比は、PdRu1−yで示されている。図4によれば、ICP−AESによる組成分析結果で示されたPdの組成比(モル比)yは、製造時に調合したPdの組成比(モル比)xと略一致していて、仕込み通りの生成物が得られたことが確認された。 FIG. 4 is an inductively coupled plasma emission spectrometry apparatus ICP-AES (SII) for PdRu alloy electrode material (Pd x Ru 1-x / C) having the composition ratio of seven types of PdRu obtained by the process of FIG. -It is a graph which shows the composition analysis result by Nanotechnology company SPS5100). In ICP-AES, the sample was melted and decomposed with alkali, and then the melt was dissolved with hydrochloric acid and nitric acid, and the volume was adjusted with ultrapure water to prepare a test solution. The molar ratio of Pd to Ru obtained from this result is shown by Pd y Ru 1-y . According to FIG. 4, the composition ratio (molar ratio) y of Pd indicated by the composition analysis result by ICP-AES is substantially identical to the composition ratio (molar ratio) x of Pd prepared at the time of production, as charged It was confirmed that the product of was obtained.

図5は、図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)についての、COパルス法による金属表面積測定装置(日本ベル社製 BEL−METAL)を用いて測定した結果を示す図表である。この測定結果の計算に必要な触媒組成や担持量として、図4に記載のICP−AESによる組成分析結果の値を用いている。このCOパルス法では、試料を100℃で加熱後、吸着ガスとして10%COガスをパルスで送り熱伝導度検出器TCDの時間積分強度から吸着ガス量G(m/g)が求められ、1個の金属原子に1つのCO分子が吸着すると仮定し、次式(5)により金属表面積S(m/g)が求められた。図5によれば、PdRu合金電極材料(PdRu1−x/C)中の金属表面積(m/g−cat)および金属比表面積(m/g−metal)および、これらの計算に用いた金属断面積Aが示されている。 5, for PdRu alloy electrode material of the composition ratio of seven PdRu obtained by the process of FIG. 1 (Pd x Ru 1-x / C), the metal surface area analyzer by CO pulse method (manufactured by Nippon Bell Co. It is a graph which shows the result measured using BEL-METAL). The value of the composition analysis result by ICP-AES described in FIG. 4 is used as the catalyst composition and the loading amount necessary for the calculation of the measurement result. In this CO pulse method, after heating the sample at 100 ° C., 10% CO gas as an adsorption gas is sent in pulses to obtain the adsorption gas amount G (m 3 / g) from the time integral intensity of the thermal conductivity detector TCD, Assuming that one CO molecule is adsorbed to one metal atom, the metal surface area S (m 2 / g) was determined by the following equation (5). According to FIG. 5, the metal surface area (m 2 / g-cat) and metal specific surface area (m 2 / g-metal) in the PdRu alloy electrode material (Pd x Ru 1-x / C), and their calculation The metal cross section A used is shown.

S=(G/22.4×10)×N×A×10−18 ・・・(5)
但し、Nはアボガドロ数、Aは金属断面積である。
S = (G / 22.4 × 10 3 ) × N × A × 10 −18 (5)
However, N is an Avogadro's number, A is a metal cross-sectional area.

(水電解活性評価)
次に、図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)とIr電極材料(Ir/C)の合計8種類の電極材料についての水電解活性評価を、以下の条件で作製した試料を用いて、以下の測定条件で行なった。
[試料作製条件]
18.5mgのPdRu合金電極材料(PdRu1−x/C)に、19.00mlの蒸留水と6.00mlの2−プロパノール(2−プロパノール、精密分析用、和光純薬工業株式会社)と100μlの5%Nafion(登録商標)溶液(5%ナフィオン分散溶液DE21 CSタイプ、和光純薬工業株式会社)を加え、30分間超音波分散してインクとした。このインク2μlをボロンドープドダイヤモンド電極に塗布し、乾燥させて7種類の試料(電極材料PdRu1−x/C)を得た。
また、試料Ir/Cについては、塩化イリジウム(IV)(和光純薬工業製)の100mM水溶液100ml調製し、そこにカーボンブラック(Vulcan XC−72)4.48gを加え、マグネチックスターラーで500rpmで5分間攪拌した。そこに蒸留水を30ml加え、攪拌を継続しながら0.5MのNaBH(Sigma−Aldrich製)水溶液50mlを2分間かけて滴下した。さらに攪拌を2時間継続した後、濾過して粉末を分離した。得られた粉末は80℃で16時間乾燥させた。COパルス法による測定で金属比表面積は127(m/g−metal)であり、ICP−AESによる組成分析によりIrを10.6wt%含むことが分かった。そして、18.5mgのIr/Cに、19.00mlの蒸留水と6.00mlの2−プロパノール(2−プロパノール、精密分析用、和光純薬工業株式会社)と100μlの5%Nafion(登録商標)溶液(5%ナフィオン分散溶液DE21 CSタイプ、和光純薬工業株式会社)を加え、30分間超音波分散してインクとした。このインク2μlをボロンドープドダイヤモンド電極に塗布し、乾燥させて1種類の試料(電極材料Ir/C)を得た。
[水電解活性測定条件]
電流測定装置:ポテンシオスタット(BAS社製 ALS/DY2323)
測定方法:上記の試料(電極)に、3電極式セル(対極:白金線、参照極:可逆水素電極RHE、電解液:0.1Mの過塩素酸、25℃、窒素飽和)を用いて、0.5Vから2V(vs.RHE)まで50mV/sにて電位Eを掃引したときの電流値I(A/m−metal:単位金属表面積当たり)を測定する。この測定方法は、リニアスイープボルタンメトリーLSVと称される。
(Water electrolytic activity evaluation)
Next, about eight kinds of electrode materials in total of PdRu alloy electrode material (Pd x Ru 1-x / C) and Ir electrode material (Ir / C) of composition ratios of seven kinds of PdRu obtained by the process of FIG. 1 The evaluation of water electrolytic activity was carried out under the following conditions using a sample prepared under the following conditions.
[Sample preparation conditions]
19.00 mg of PdRu alloy electrode material (Pd x Ru 1-x / C), 19.00 ml of distilled water and 6.00 ml of 2-propanol (2-propanol, for precision analysis, Wako Pure Chemical Industries, Ltd.) And 100 μl of 5% Nafion (registered trademark) solution (5% Nafion dispersion solution DE21 CS type, Wako Pure Chemical Industries, Ltd.) were added, and ultrasonic dispersion was performed for 30 minutes to obtain an ink. 2 μl of this ink was applied to a boron-doped diamond electrode and dried to obtain seven kinds of samples (electrode material Pd x Ru 1-x / C).
In addition, for sample Ir / C, 100 ml of 100 mM aqueous solution of iridium chloride (IV) (manufactured by Wako Pure Chemical Industries, Ltd.) was prepared, 4.48 g of carbon black (Vulcan XC-72) was added thereto, and the magnetic stirrer was used at 500 rpm. Stir for 5 minutes. Thereto, 30 ml of distilled water was added, and 50 ml of a 0.5 M aqueous solution of NaBH 4 (manufactured by Sigma-Aldrich) was added dropwise over 2 minutes while stirring was continued. Stirring was further continued for 2 hours, and then filtered to separate powder. The obtained powder was dried at 80 ° C. for 16 hours. The metal specific surface area measured by the CO pulse method was 127 (m 2 / g-metal), and composition analysis by ICP-AES showed that it contains 10.6 wt% of Ir. Then, 18.5 mg of Ir / C, 19.00 ml of distilled water, 6.00 ml of 2-propanol (2-propanol, for precision analysis, Wako Pure Chemical Industries, Ltd.) and 100 μl of 5% Nafion (registered trademark) ) Solution (5% Nafion Dispersion Solution DE21 CS Type, Wako Pure Chemical Industries, Ltd.) was added, and ultrasonic dispersion was carried out for 30 minutes to make an ink. 2 μl of this ink was applied to a boron-doped diamond electrode and dried to obtain one sample (electrode material Ir / C).
[Water electrolytic activity measurement conditions]
Current measurement device: Potentiostat (BAS ALS / DY2323)
Measurement method: using the three-electrode cell (counter electrode: platinum wire, reference electrode: reversible hydrogen electrode RHE, electrolyte: 0.1 M perchloric acid , 25 ° C., nitrogen saturation) for the above sample (electrode) A current value I (A / m 2 -metal: per unit metal surface area) when the potential E is swept at 50 mV / s from 0.5 V to 2 V (vs. RHE) is measured. This measurement method is called linear sweep voltammetry LSV.

図6は、上記の水電解活性の測定結果を示す、掃引電位Eに対して増加する単位金属表面積あたりの電流値Iの特性を示している。この特性において、電流値Iの立ち上がり点の電位すなわち電流値Iが5A/m−metalのときの電位を、水電解開始電位EOERと定義し、7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)とIr電極材料(Ir/C)の合計8種類の電極材料の各々についてその水電解開始電位EOERを求めた。図7は、これらの値を示している。この結果、x=0.1〜0.7である例2〜例5は、x=0、0.9〜1の例1、例6、例7およびIr/Cの例8よりも水電解開始電位EOERが低く水電解活性が高いことが明らかとなった。この水電解活性は、式(3)に示す反応式の容易性、換言すれば、式(4)に示す反応式の困難性に対応している。 FIG. 6 shows the characteristics of the current value I per unit metal surface area increasing with respect to the sweep potential E, showing the measurement results of the above-mentioned water electrolysis activity. In this characteristic, the potential at the rising point of the current value I, that is, the potential when the current value I is 5 A / m 2 -metal is defined as the water electrolysis starting potential E OER, and PdRu alloy electrode of 7 kinds of PdRu composition ratio The water electrolysis start potential E OER was determined for each of eight types of electrode materials in total of the material (Pd x Ru 1-x / C) and the Ir electrode material (Ir / C). FIG. 7 shows these values. As a result, Examples 2 to 5 in which x = 0.1 to 0.7 are more water electrolysable than Examples 1 and 6 in Example 1 and Example 7 and x in Ir / C at x = 0 and 0.9 to 1. It was revealed that the onset potential E OER was low and the water electrolysis activity was high. This water electrolysis activity corresponds to the easiness of the reaction formula shown in formula (3), in other words, the difficulty of the reaction formula shown in formula (4).

(HOR活性評価)
次に、図1の工程により得られた7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)とIr電極材料(Ir/C)の合計8種類の電極材料についてのHOR活性評価を、以下の条件で作製した試料を用いて、以下の測定条件で行なった。
[試料作製条件]
18.5mgのPdRu合金電極材料(PdRu1−x/C)またはIr電極材料(Ir/C)に、19.00mlの蒸留水と6.00mlの2−プロパノール(2−プロパノール、精密分析用、和光純薬工業株式会社)と100μlの5%Nafion溶液(5%ナフィオン分散溶液DE21 CSタイプ、和光純薬工業株式会社)を加え、30分間超音波分散してインクとした。このインク10μlを直径5mmのグラッシーカーボン電極に塗布し、乾燥させて8種類の試料(電極)を得た。
[HOR活性測定条件]
電流測定装置:ポテンシオスタット(北斗電工株式会社製 HZ5000)
測定方法:上記の試料(電極)に、3電極式セル(対極:白金線、参照極:可逆水素電極RHE、電解液:0.1Mの過塩素酸、25℃、H飽和)を用いて、対流ボルタンメトリーを行なった。ここでいう対流ボルタンメトリーとは、電極回転数1600、1200、800、400rpmのそれぞれにおいて、0Vから0.5V(vs.RHE)まで10mV/sで電位Eを掃引したときの電流値を測定することである。そして、縦軸および横軸から成る二次元座標において、得られた対流ボルタモグラムの0.05Vにおける電流値の逆数を、電極回転角速度の(−1/2)乗の値を示す横軸に対してプロットすることでKoutechy−Levichプロットを作成した。次に、Koutechy−Levichプロットを最小自乗法で直線近似した直線の縦軸との切片の値をHOR活性支配電流の逆数I −1とし、7種類のPdRuの組成比のPdRu合金電極材料(PdRu1−x/C)とIr電極材料(Ir/C)の合計8種類の電極材料の各々についてそのHOR活性支配電流Iの値を求めた。図8はそれらの単位金属表面積あたりのHOR活性支配電流Iを示している。この結果、x=0.3〜0.9である例3〜例6のHOR活性は、x=0〜0.1、1の例1、例2、例7およびIr/Cの例8よりも高いことが明らかとなった。このHOR活性は、式(2)に示す反応式の速度に対応している。
(HOR activity evaluation)
Next, about eight kinds of electrode materials in total of PdRu alloy electrode material (Pd x Ru 1-x / C) and Ir electrode material (Ir / C) of composition ratios of seven kinds of PdRu obtained by the process of FIG. 1 The HOR activity evaluation of was carried out under the following measurement conditions using a sample prepared under the following conditions.
[Sample preparation conditions]
19.00 mg of PdRu alloy electrode material (Pd x Ru 1-x / C) or Ir electrode material (Ir / C), 19.00 ml of distilled water and 6.00 ml of 2-propanol (2-propanol, precision analysis For example, Wako Pure Chemical Industries, Ltd. and 100 μl of 5% Nafion solution (5% Nafion Dispersion Solution DE21 CS type, Wako Pure Chemical Industries, Ltd.) were added, and ultrasonically dispersed for 30 minutes to prepare an ink. 10 μl of this ink was applied to a glassy carbon electrode of 5 mm in diameter and dried to obtain eight samples (electrodes).
[HOR activity measurement conditions]
Current measurement device: Potentiostat (HZ5000 manufactured by Hokuto Denko Co., Ltd.)
Measurement method: using the three-electrode cell (counter electrode: platinum wire, reference electrode: reversible hydrogen electrode RHE, electrolyte: 0.1 M perchloric acid , 25 ° C., H 2 saturation) for the above sample (electrode) Convection voltammetry was performed. Convective voltammetry referred to here is to measure the current value when the potential E is swept at 10 mV / s from 0 V to 0.5 V (vs. RHE) at each of the electrode rotational speeds 1600, 1200, 800 and 400 rpm. It is. Then, in a two-dimensional coordinate consisting of the vertical axis and the horizontal axis, the reciprocal of the current value at 0.05 V of the convective voltammogram obtained with respect to the horizontal axis showing the value of (-1/2) power of the electrode rotational angular velocity The Koutechy-Levich plot was created by plotting. Next, the value of the intercept of the straight line that is obtained by linearly approximating the Koutechy-Levich plot by the least square method is the reciprocal of the HOR activity-dominated current I k −1, and PdRu alloy electrode material of seven PdRu composition ratios ( The value of the HOR active governing current I k was determined for each of eight electrode materials in total: Pd x Ru 1-x / C) and Ir electrode material (Ir / C). FIG. 8 shows the HOR activation dominant current I k per unit metal surface area. As a result, the HOR activity of Examples 3 to 6 in which x = 0.3 to 0.9 is obtained from x = 0 to 0.1, Example 1, Example 2, Example 7 and Example 8 of Ir / C. It also became clear that it was high. The HOR activity corresponds to the rate of the reaction shown in equation (2).

上述のように、本実施例のPdRu合金電極材料(PdRu1−x/C)によれば、PdとRuがモル比で0.1から0.9の範囲内であるので、高い水電解活性とHOR活性が得られる。 As described above, according to the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example, since Pd and Ru are in the range of 0.1 to 0.9 in molar ratio, high water Electrolytic activity and HOR activity are obtained.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)は、水電解電極(触媒)として用いられるものであるので、水電解の効率が高い水電解電極が得られる。 Moreover, since the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example is used as a water electrolysis electrode (catalyst), a water electrolysis electrode having high efficiency of water electrolysis can be obtained.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)は、固体高分子形燃料電池PEFCのアノード電極(触媒)として用いられるものであるので、水電解の効率が高い、つまり、耐久性の高い、そして、HOR活性の高い固体高分子形燃料電池PEFCのアノード電極が得られる。 Further, since the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example is used as an anode electrode (catalyst) of a polymer electrolyte fuel cell PEFC, the efficiency of water electrolysis is high. That is, an anode electrode of a solid polymer fuel cell PEFC having high durability and high HOR activity can be obtained.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)の導電性担体は、カーボン粒子である。このため、高い水電解活性によって炭素電気化学的酸化反応が抑制されるので、前記カーボン粒子から成る導電性担体の劣化が好適に抑制される。 The conductive support of the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example is a carbon particle. For this reason, since carbon electrochemical oxidation reaction is suppressed by high water electrolysis activity, deterioration of the conductive support consisting of the carbon particles is preferably suppressed.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)の導電性担体は、還元剤と、導電性担体粒子と、パラジウム化合物またはパラジウムイオンと、ルテニウム化合物またはルテニウムイオンと含む溶液を、所定の温度以上の温度に保持する保温工程P5を含む製造工程により製造される。このようにすれば、パラジウムとルテニウムとの合金化と、導電性粒子の表面にその合金の微粒子を導電性担体粒子に析出させる触媒の固定化とが同じ保温工程P5内で行なわれるので、工程が簡単となり、製造が容易となる。また、保護剤が無くとも粒子成長を抑えた微粒子を合成でき、さらに、粒子の凝集を少ないままに高濃度に坦持可能である。 In addition, the conductive support of the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example contains a reducing agent, conductive support particles, a palladium compound or palladium ion, a ruthenium compound or ruthenium ion It manufactures by the manufacturing process including the heat retention process P5 hold | maintaining a solution at the temperature more than predetermined | prescribed temperature. In this way, the alloying of palladium and ruthenium and the immobilization of the catalyst for precipitating fine particles of the alloy on the conductive support particles on the surface of the conductive particles are performed in the same heat retention step P5. Is easy and easy to manufacture. In addition, even without the protective agent, it is possible to synthesize fine particles in which the particle growth is suppressed, and furthermore, it is possible to support the particles in a high concentration with little aggregation of particles.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)の導電性担体は、PdRu合金の微粒子が導電性担体であるカーボン粒子に直接析出させられることにより固定されているので、PdRu合金の微粒子がカーボン粒子に高濃度で担持され、同量であれば電極触媒性能が高められ、同じ性能であれば粉体を少なくできて、電極の電気抵抗を低くできる利点がある。 In addition, the conductive support of the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example is fixed by directly depositing fine particles of the PdRu alloy on carbon particles as the conductive support. If fine particles of PdRu alloy are supported on carbon particles in high concentration and the amount is the same, the electrode catalyst performance is enhanced. If the performance is the same, powder can be reduced and the electrical resistance of the electrode can be reduced.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   Note that what has been described above is merely an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

P5:保温工程(工程) P5: Heat retention process (process)

Claims (8)

PdとRuが固溶しているPdRu合金の微粒子を担体の表面に固定したPdRu合金電極材料であって、
前記PdRu合金の微粒子は、COパルス法による測定で10(m /g−metal)以上の金属比表面積を有し、且つ
前記PdRu合金の微粒子の表面に高分子保護剤が存在しない
ことを特徴とするPdRu合金電極材料。
Fine particles of PdRu alloys Pd and Ru are dissolved a PdRu alloy electrode material fixed to the surface of the responsible body,
The particles of the PdRu alloy have a metal specific surface area of 10 (m 2 / g-metal) or more as measured by a CO pulse method , and
A PdRu alloy electrode material characterized in that a polymer protective agent is not present on the surface of the fine particle of the PdRu alloy.
PdとRuが固溶しているPdRu合金の微粒子を導電性担体の表面に固定したPdRu合金電極材料であって、
前記PdRu合金の微粒子は、COパルス法による測定で10(m /g−metal)以上の金属比表面積を有し、且つ
前記PdRu合金の微粒子の表面に保護剤が存在しない
ことを特徴とするPdRu合金電極材料。
A PdRu alloy electrode material in which fine particles of a PdRu alloy in which Pd and Ru are solid-solved are fixed on the surface of a conductive support,
The particles of the PdRu alloy have a metal specific surface area of 10 (m 2 / g-metal) or more as measured by a CO pulse method , and
A PdRu alloy electrode material characterized in that no protective agent is present on the surface of the particles of the PdRu alloy.
前記PdRu合金のPdのモル比が0.1から0.9の範囲内であるThe molar ratio of Pd in the PdRu alloy is in the range of 0.1 to 0.9
ことを特徴とする請求項1又は2のPdRu合金電極材料。The PdRu alloy electrode material of Claim 1 or 2 characterized by the above-mentioned.
前記PdRu合金のPdのモル比が0.3から0.7の範囲内であるThe molar ratio of Pd in the PdRu alloy is in the range of 0.3 to 0.7
ことを特徴とする請求項1又は2のPdRu合金電極材料。The PdRu alloy electrode material of Claim 1 or 2 characterized by the above-mentioned.
前記PdRu合金電極材料は、水電解電極として用いられる
ことを特徴とする請求項1から請求項4のいずれか1のPdRu合金電極材料。
The PdRu alloy electrode material according to any one of claims 1 to 4, wherein the PdRu alloy electrode material is used as a water electrolysis electrode.
前記PdRu合金電極材料は、固体高分子形燃料電池PEFCのアノード電極として用いられる
ことを特徴とする請求項1から請求項4のいずれか1のPdRu合金電極材料。
The PdRu alloy electrode material according to any one of claims 1 to 4, wherein the PdRu alloy electrode material is used as an anode electrode of a polymer electrolyte fuel cell PEFC.
記担体は、カーボン粒子である
ことを特徴とする請求項1から請求項のいずれか1のPdRu合金電極材料。
Before Ki担 body, any one of PdRu alloy electrode material of claims 1 to 6, characterized in that the carbon particles.
請求項1から請求項7のいずれか1のPdRu合金電極材料の製造方法であって、
還元剤と、導電性粒子と、パラジウム化合物またはパラジウムイオンと、ルテニウム化合物またはルテニウムイオンと含む溶液を、所定の温度以上の温度に保持して、前記Pdと前記Ruとを合金化させると共に、前記導電性粒子の表面に前記PdRu合金の微粒子を析出させる工程を含む
ことを特徴とするPdRu合金電極材料の製造方法。
A method of producing the PdRu alloy electrode material according to any one of claims 1 to 7 , wherein
The Pd and the Ru are alloyed by holding a solution containing a reducing agent, a conductive particle, a palladium compound or palladium ion, a ruthenium compound or ruthenium ion at a predetermined temperature or higher, and the step of the surface of the conductive particles Ru to precipitate fine particles of the PdRu alloy, a manufacturing method of PdRu alloy electrode materials, which comprises.
JP2015039673A 2015-02-28 2015-02-28 PdRu alloy electrode material and method of manufacturing the same Active JP6541373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039673A JP6541373B2 (en) 2015-02-28 2015-02-28 PdRu alloy electrode material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039673A JP6541373B2 (en) 2015-02-28 2015-02-28 PdRu alloy electrode material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016160478A JP2016160478A (en) 2016-09-05
JP6541373B2 true JP6541373B2 (en) 2019-07-10

Family

ID=56844394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039673A Active JP6541373B2 (en) 2015-02-28 2015-02-28 PdRu alloy electrode material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6541373B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905231B2 (en) * 2016-03-31 2021-07-21 株式会社ノリタケカンパニーリミテド PdRu alloy material and its manufacturing method
JP6608753B2 (en) * 2016-03-31 2019-11-20 株式会社ノリタケカンパニーリミテド PdRu alloy electrode material and manufacturing method thereof
JP7157456B2 (en) * 2017-03-01 2022-10-20 国立大学法人京都大学 PdRu Solid Solution Nanoparticles, Manufacturing Method and Catalyst Therefor, Method for Controlling Crystal Structure of PtRu Solid Solution Nanoparticles, and AuRu Solid Solution Nanoparticles and Manufacturing Method Therefor
US11511262B2 (en) 2017-12-26 2022-11-29 Kyoto University Anisotropic nanostructure, production method therefor, and catalyst
JP2020019980A (en) * 2018-07-31 2020-02-06 株式会社グラヴィトン Electrolysis device, and method of producing electrode
US11192091B2 (en) * 2019-03-22 2021-12-07 The Hong Kong University Of Science And Technology Palladium-ruthenium alloys for electrolyzers
CN111979443A (en) * 2020-08-19 2020-11-24 中国南方电网有限责任公司超高压输电公司天生桥局 Voltage-sharing electrode of high-voltage direct-current transmission system
CN115109940A (en) * 2022-05-17 2022-09-27 华东理工大学 Method for synthesizing noble metal material by solvothermal method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713910B2 (en) * 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
US9452417B2 (en) * 2012-09-18 2016-09-27 Japan Science And Technology Agency Catalyst using Pd-Ru solid solution alloy fine particles

Also Published As

Publication number Publication date
JP2016160478A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6608753B2 (en) PdRu alloy electrode material and manufacturing method thereof
JP6541373B2 (en) PdRu alloy electrode material and method of manufacturing the same
Wang et al. One-step fabrication of tri-metallic PdCuAu nanothorn assemblies as an efficient catalyst for oxygen reduction reaction
US9385377B2 (en) Method for producing a catalyst for fuel cells
CN1101259C (en) Bimetal supported catalyst based on platinum or silver, its manufacturing process and its use for electrochemical cells
Li et al. Self-supported Pt nanoclusters via galvanic replacement from Cu 2 O nanocubes as efficient electrocatalysts
WO2016161205A1 (en) Bifunctional water splitting catalysts and associated methods
JP2008041253A (en) Electrocatalyst and power generation system using the same
Kim et al. The plasma-assisted formation of Ag@ Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction
JP2008210572A (en) Electrocatalyst and power generation system using it
Dey et al. An easy synthesis of carbon-supported silver–cobalt bimetallic nanoparticles to study the electrocatalytic performance in alkaline borohydride fuel cell
WO2018094321A1 (en) Irru and irpdru alloy catalysts
JP2020145154A (en) Manufacturing method of platinum core-shell catalyst and fuel cell using the same
JP2018528141A (en) Electrode material for electrolytic hydrogen generation
US9972848B2 (en) Method for producing fine catalyst particles and method for producing carbon-supported catalyst
JP2014002981A (en) Method for producing electrode catalyst
JP2019096624A (en) Electrode material
JP2013530039A (en) Metal-free carbon catalyst for oxygen reduction reaction in alkaline electrolyte
US20220143691A1 (en) Method for preparation of a supported noble metal-metal alloy composite, and the obtained supported noble metal-metal alloy composite
JP2020028815A (en) Metal-supported catalyst
JP2014221448A (en) Method for producing core-shell catalyst particle and core-shell catalyst particle
JP6905231B2 (en) PdRu alloy material and its manufacturing method
Balkan et al. Ag/AgCl clusters derived from AgCu alloy nanoparticles as electrocatalysts for the oxygen reduction reaction
JP2015196144A (en) Method for producing core shell catalyst
Kepeniene et al. Comparison of electrocatalytic properties of PtCo/graphene catalysts for ethanol, methanol and borohydride oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190611

R150 Certificate of patent or registration of utility model

Ref document number: 6541373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250