JP6541059B2 - Fuel gas supply system for liquefied gas carrier - Google Patents

Fuel gas supply system for liquefied gas carrier Download PDF

Info

Publication number
JP6541059B2
JP6541059B2 JP2015080941A JP2015080941A JP6541059B2 JP 6541059 B2 JP6541059 B2 JP 6541059B2 JP 2015080941 A JP2015080941 A JP 2015080941A JP 2015080941 A JP2015080941 A JP 2015080941A JP 6541059 B2 JP6541059 B2 JP 6541059B2
Authority
JP
Japan
Prior art keywords
gas
fuel gas
fuel
gas supply
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080941A
Other languages
Japanese (ja)
Other versions
JP2016200068A (en
Inventor
伸哉 湯浅
伸哉 湯浅
貴士 渡邉
貴士 渡邉
林 弘能
弘能 林
康之 辻
辻  康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui E&S Shipbuilding Co Ltd
Original Assignee
Mitsui E&S Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui E&S Shipbuilding Co Ltd filed Critical Mitsui E&S Shipbuilding Co Ltd
Priority to JP2015080941A priority Critical patent/JP6541059B2/en
Priority to PCT/JP2016/060999 priority patent/WO2016163332A1/en
Priority to CN201680020243.9A priority patent/CN107614858B/en
Priority to KR1020177028575A priority patent/KR102562868B1/en
Publication of JP2016200068A publication Critical patent/JP2016200068A/en
Application granted granted Critical
Publication of JP6541059B2 publication Critical patent/JP6541059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/12Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
    • F02M31/125Fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、ガス焚きが可能な低速ディーゼル機関を主機関として搭載した液化ガス運搬船に適用される燃料ガス供給システムに関する。   The present invention relates to a fuel gas supply system applied to a liquefied gas carrier equipped with a low-speed diesel engine capable of generating gas as a main engine.

環境負荷の低減やエネルギー消費改善の観点から、近年ではLNG運搬船の主機関にガス焚き低速ディーゼル機関を採用し、LNGカーゴタンク内で自然に発生するボイルオフガス(NATURAL BOG)を主機関の燃料として利用する構成が知られている。しかし、ガス焚き低速ディーゼル機関へは30MPa程度の圧力を持つ燃料ガスを供給する必要がある。そのためボイルオフガスを燃料に用いる場合、このボイルオフガスを高圧ガスコンプレッサにより30MPa程度まで圧縮する必要があるが、高圧ガスコンプレッサを用いた方式は消費電力が大きいと言う問題がある。一方、低い消費電力で高圧燃料ガスを生成する方法として、液化天然ガスを高圧液ポンプで加圧し、これを加熱して30MPa程度の高圧ガスとする構成が知られている(特許文献1)。   In order to reduce environmental impact and improve energy consumption, in recent years a gas-fired low-speed diesel engine has been adopted as the main engine of an LNG carrier, and boil-off gas (NATURAL BOG) naturally generated in the LNG cargo tank is used as the main engine fuel. The configuration to use is known. However, it is necessary to supply a fuel gas having a pressure of about 30 MPa to a gas-fired low-speed diesel engine. Therefore, when using boil-off gas as fuel, it is necessary to compress the boil-off gas to about 30 MPa by a high-pressure gas compressor, but the method using the high-pressure gas compressor has a problem that power consumption is large. On the other hand, as a method of generating a high pressure fuel gas with low power consumption, a configuration is known in which liquefied natural gas is pressurized by a high pressure liquid pump and heated to a high pressure gas of about 30 MPa (Patent Document 1).

特開2012−177333号公報JP 2012-177333 A

高圧液ポンプを通してカーゴタンク内の液化ガスを高圧ガスにする場合、ボイルオフガスが燃料として消費されないため、ボイルオフガスの発生によるカーゴタンクの圧力上昇を防止するには、ボイルオフガスを強制的に燃焼するガス燃焼装置やボイルオフガスを液に戻すための再液化装置を用意する必要がある。しかし、ボイルオフガスを燃焼させると環境負荷を増大させ、液化ガス運搬船全体のエネルギー効率も低下させる。また再液化装置の運転には、一般的に高圧ガスコンプレッサの運転よりも大きなエネルギーを必要とする。   When liquefied gas in the cargo tank is made high pressure gas through high pressure liquid pump, boil off gas is not consumed as fuel, and boil off gas is forcedly burned to prevent pressure increase of cargo tank due to generation of boil off gas It is necessary to prepare a gas combustion device and a reliquefaction device for returning boil off gas to liquid. However, burning the boil-off gas increases the environmental load and reduces the energy efficiency of the entire liquefied gas carrier. Also, the operation of the reliquefaction system generally requires more energy than the operation of the high pressure gas compressor.

本発明は、液化ガス運搬船において、高圧ガスコンプレッサおよび高圧液ポンプを併用して、液化ガス運搬船の運航状態に合わせ、ボイルオフガスの処理、エネルギー消費を最適化することを目的としている。   An object of the present invention is to optimize boil-off gas processing and energy consumption according to the operation state of a liquefied gas carrier by using a high pressure gas compressor and a high pressure liquid pump in combination in a liquefied gas carrier.

本発明の液化ガス運搬船用燃料ガス供給システムは、主機関として用いられるガス焚き可能な低速ディーゼル機関と、液化ガスを貯蔵するタンクと、タンク内で発生するボイルオフガスを圧縮する高圧ガスコンプレッサと、タンク内からの液化ガスを加圧する高圧液ポンプと、高圧ガスコンプレッサを通してタンクから低速ディーゼル機関へ燃料ガスを供給する第1燃料ガス供給ラインと、高圧液ポンプを通してタンクから低速ディーゼル機関へ燃料ガスを供給する第2燃料ガス供給ラインと、第1燃料ガス供給ラインおよび第2燃料ガス供給ラインを通して燃料ガスを低速ディーゼル機関に供給する第1運転モードとを備え、第1運転モードでは、第1燃料ガス供給ラインによる燃料ガスの供給量をタンクの圧力に基づいて制御し、第2燃料ガス供給ラインによる燃料ガスの供給量を低速ディーゼル機関の燃料ガス要求圧力に基づいて制御することを特徴としている。   The fuel gas supply system for a liquefied gas carrier according to the present invention comprises: a low-gasable low-speed diesel engine used as a main engine; a tank for storing liquefied gas; and a high pressure gas compressor for compressing boil off gas generated in the tank. A high pressure liquid pump for pressurizing liquefied gas from inside the tank, a first fuel gas supply line for supplying fuel gas from the tank to the low speed diesel engine through the high pressure gas compressor, fuel gas from the tank to the low speed diesel engine through the high pressure liquid pump The fuel cell system includes a second fuel gas supply line for supplying fuel and a first operation mode for supplying fuel gas to the low speed diesel engine through the first fuel gas supply line and the second fuel gas supply line, and in the first operation mode, the first fuel The amount of fuel gas supplied by the gas supply line is controlled based on the pressure of the tank, and It is characterized by controlling on the basis of the amount of fuel gas supplied by the gas supply line to the fuel gas required pressure of the low-speed diesel engine.

液化ガス積載時の運航において、低速ディーゼル機関の燃料消費量がボイルオフガス発生量よりも多いときに第1運転モードが選択され、第1燃料ガス供給ラインを通してボイルオフガスを低速ディーゼル機関へ燃料ガスとして供給し、不足する分の燃料ガスとして第2燃料ガス供給ラインを通してタンク内の液化ガスを低速ディーゼル機関へ供給する。また、液化ガス積載時の運航において、低速ディーゼル機関の燃料消費量がボイルオフガス発生量以下のときには、第1燃料ガス供給ラインのみを通して燃料ガスを低速ディーゼル機関へ供給する第2運転モードが選択され、高圧ガスコンプレッサからの燃料ガス供給量は、低速ディーゼル機関の燃料ガス要求圧力に基づいて制御される。   In the operation at the time of liquefied gas loading, the first operation mode is selected when the fuel consumption of the low speed diesel engine is larger than the boil off gas generation amount, and boil off gas is used as fuel gas to the low speed diesel engine through the first fuel gas supply line. The liquefied gas in the tank is supplied to the low speed diesel engine through the second fuel gas supply line as a supply and a shortage of fuel gas. In addition, in the operation at the time of liquefied gas loading, when the fuel consumption of the low speed diesel engine is less than the boil-off gas generation amount, the second operation mode in which the fuel gas is supplied to the low speed diesel engine only through the first fuel gas supply line is selected The amount of fuel gas supplied from the high pressure gas compressor is controlled based on the fuel gas required pressure of the low speed diesel engine.

液化ガス空荷時の運航において、スプレー作業(液化ガスをカーゴタンクに受け入れる際に、急激な温度差によるカーゴタンクの破損を防止するために、カーゴタンク内に残した液化ガスをカーゴタンク内に噴霧し液化ガスの気化熱によってカーゴタンクを予冷する作業)を行わないときには、第2燃料ガス供給ラインのみを通してカーゴタンク内の液化ガスを低速ディーゼル機関へ燃料ガスとして供給する第3運転モードが選択され、高圧液ポンプの吐出圧力は、低速ディーゼル機関の燃料ガス要求圧力に基づいて制御される。また、液化ガス空荷時の運航において、スプレー作業を行うときには、第1または第2運転モードの何れかが、低速ディーゼル機関の燃料消費量とボイルオフガス発生量との関係から選択される。   In the operation at the time of liquefied gas emptying, in order to prevent the damage of the cargo tank due to the rapid temperature difference when the spray operation (the liquefied gas is received in the cargo tank, the liquefied gas left in the cargo tank is contained in the cargo tank The third operation mode is selected in which the liquefied gas in the cargo tank is supplied as the fuel gas to the low-speed diesel engine only through the second fuel gas supply line when the spray tank is not performed to precool the cargo tank by the heat of vaporization of the liquefied gas. The discharge pressure of the high pressure liquid pump is controlled based on the fuel gas required pressure of the low speed diesel engine. Further, in the operation at the time of liquefied gas emptying, when performing the spray work, either the first or second operation mode is selected from the relationship between the fuel consumption of the low speed diesel engine and the boil off gas generation amount.

更に、高圧ガスコンプレッサの最終段には、吐出側から吸込み側へと燃料ガスを循環させる第1循環ラインが設けられることが好ましく、第1運転モードにおいて、カーゴタンクの圧力を一定に維持するように第1循環ラインに設けた第1弁を制御して循環される燃料ガスの量を制御することが好ましい。また、高圧液ポンプの吐出側から上流側へと液化ガスを循環させる第2循環ラインが設けられることが好ましく、第3運転モードにおいて、低速ディーゼル機関の負荷が低いときに、高圧液ポンプを最少容量で駆動しつつ第2循環ラインに設けた第2弁を制御して液化ガスを上流側へと循環させることが可能であることが好ましい。   Furthermore, it is preferable that a first circulation line for circulating the fuel gas from the discharge side to the suction side is preferably provided in the final stage of the high pressure gas compressor, and in the first operation mode, the pressure of the cargo tank is maintained constant. Preferably, the amount of fuel gas circulated is controlled by controlling a first valve provided in the first circulation line. In addition, it is preferable to provide a second circulation line for circulating the liquefied gas from the discharge side of the high pressure liquid pump to the upstream side, and in the third operation mode, when the load of the low speed diesel engine is low, the high pressure liquid pump is minimized. Preferably, it is possible to circulate the liquefied gas upstream by controlling the second valve provided in the second circulation line while driving by volume.

また、第2燃料ガス供給ラインは、高圧液ポンプの上流側に設けられるサクションドラムと下流側に設けられるガスヒータとを備える。高圧ガスコンプレッサは、低圧段と最終段とを備える多段コンプレッサであり、低圧段から余剰ガスをボイルオフガス処理装置へと送出する分岐ラインを備えることが好ましい。   The second fuel gas supply line also includes a suction drum provided on the upstream side of the high pressure liquid pump and a gas heater provided on the downstream side. The high pressure gas compressor is preferably a multistage compressor comprising a low pressure stage and a final stage, and preferably comprises a branch line for delivering the surplus gas from the low pressure stage to the boil-off gas processing device.

本発明の液化ガス運搬船は、上記液化ガス運搬船用燃料ガス供給システムを備えたことを特徴としている。   A liquefied gas carrier according to the present invention is characterized by including the fuel gas supply system for the liquefied gas carrier.

本発明によれば、液化ガス運搬船において、高圧ガスコンプレッサおよび高圧液ポンプを併用して、液化ガス運搬船の運航状態に合わせ、ボイルオフガスの処理、エネルギー消費を最適化することができる。   According to the present invention, in the liquefied gas carrier, the high-pressure gas compressor and the high-pressure liquid pump can be used in combination to optimize the processing of boil-off gas and the energy consumption according to the operation state of the liquefied gas carrier.

本発明の一実施形態である燃料ガス供給システムの構成を示すブロック図である。It is a block diagram showing composition of a fuel gas supply system which is one embodiment of the present invention. 本発明の一実施形態における(a)液化ガス積載時、(b)液化ガス空荷時(スプレー作業有)、(c)液化ガス空荷時(スプレー作業無し)の運航形態おける運航速度と使用燃料消費量の関係を示すグラフである。Operating speed and use in operating mode (a) with liquefied gas loaded, (b) with liquefied gas empty (with spray operation), (c) With liquefied gas empty (without spray operation) in one embodiment of the present invention It is a graph which shows the relationship of the fuel consumption.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明の一実施形態である燃料ガス供給システムの構成を示すブロック図である。
Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
FIG. 1 is a block diagram showing the configuration of a fuel gas supply system according to an embodiment of the present invention.

本実施形態の燃料ガス供給システム10は、天然ガスなどの液化ガスを運搬する船舶に適用され、液化ガス(本実施形態ではLNG)は船体内に設けられたカーゴタンク11に積載される。主機関12は、ガス焚き可能な低速ディーゼル機関であり、主機関12には高圧ガスコンプレッサ13を含む第1燃料ガス供給ライン14を通してカーゴタンク11内で自然発生するボイルオフガス(NATURAL BOG)を供給することが可能である。   The fuel gas supply system 10 of the present embodiment is applied to a ship carrying liquefied gas such as natural gas, and the liquefied gas (in the present embodiment, LNG) is loaded on a cargo tank 11 provided in the hull. The main engine 12 is a low-gasable low-speed diesel engine, and the main engine 12 is supplied with naturally occurring boil-off gas (NATURAL BOG) in the cargo tank 11 through the first fuel gas supply line 14 including the high pressure gas compressor 13. It is possible.

カーゴタンク11内で発生するボイルオフガスは、第1燃料ガス供給ライン14の上流側ラインを通して高圧ガスコンプレッサ13へ送られ、高圧ガスコンプレッサ13において圧縮される。そして圧縮されたボイルオフガスは「高圧ガス」として、下流側の第1燃料ガス供給ライン14を通して主機関12へと送出される。高圧ガスコンプレッサ13は例えば多段コンプレッサであり、上流側の低圧段13Aと下流側の最終段13Bを備える。例えば低圧段13Aからは、分岐ライン15を通して相対的に圧力が低い「低圧ガス」として燃料ガスを送出可能で、ガス焚き発電機エンジンに燃料ガスを供給可能である。また、主機関12や発電機エンジンで消費しきれない余剰BOGについても、分岐ライン15を通してBOG処理装置(ボイラ、ガス燃焼装置、再液化装置)に燃料ガスとして供給する。また、余剰ガスをBOG処理装置へ送出するラインは、高圧ガスコンプレッサ13の最終段13Bの吐出側からBOG処理装置の要求圧力まで減圧して供給するように構成しても良い。なお、本実施形態では、低圧段から高圧段までを一つの多段高圧ガスコンプレッサとして記載するが、低圧段を別のコンプレッサとして低圧ガスコンプレッサと高圧ガスコンプレッサを直列に設置する構成としてもよい。   Boil-off gas generated in the cargo tank 11 is sent to the high pressure gas compressor 13 through the upstream line of the first fuel gas supply line 14 and compressed in the high pressure gas compressor 13. Then, the compressed boil-off gas is delivered to the main engine 12 through the downstream first fuel gas supply line 14 as "high pressure gas". The high pressure gas compressor 13 is, for example, a multistage compressor, and includes an upstream low pressure stage 13A and a downstream final stage 13B. For example, from the low pressure stage 13A, the fuel gas can be delivered as a "low pressure gas" having a relatively low pressure through the branch line 15, and the fuel gas can be supplied to the gas-fired generator engine. Further, the surplus BOG which can not be consumed by the main engine 12 or the generator engine is also supplied as a fuel gas to the BOG processing device (boiler, gas combustion device, reliquefaction device) through the branch line 15. In addition, the line for delivering the surplus gas to the BOG processing apparatus may be configured to be decompressed from the discharge side of the final stage 13B of the high pressure gas compressor 13 to the required pressure of the BOG processing apparatus and supplied. In the present embodiment, although the low pressure stage to the high pressure stage are described as one multistage high pressure gas compressor, the low pressure stage may be another compressor, and the low pressure gas compressor and the high pressure gas compressor may be installed in series.

高圧ガスコンプレッサ13において最終段13Bの吐出側には、最終段13Bの吸込み側へと燃料ガスを還流するための第1循環ライン16が設けられる。第1循環ライン16には、還流されるガス流量を制御するための第1弁16Vが設けられ、第1弁16Vの開度は、第1制御器17により制御される。また最終段13Bの吐出側には、圧力センサ18が設けられ、主機関12へ供給される燃料ガスの吐出側における圧力値PV1が測定される。一方、第1燃料ガス供給ライン14の上流側には、カーゴタンク11内のボイルオフガスの圧力PV2を測定するための圧力センサ19が設けられる。なお、カーゴタンク11は船体内に複数設けられているが、本実施形態では圧力PV2を複数のカーゴタンク11の共通管における1点で計測している。しかし複数箇所で圧力を計測しその平均を圧力PV2としてもよい。   On the discharge side of the final stage 13B in the high pressure gas compressor 13, a first circulation line 16 for returning the fuel gas to the suction side of the final stage 13B is provided. The first circulation line 16 is provided with a first valve 16V for controlling the flow rate of the recirculated gas, and the opening degree of the first valve 16V is controlled by the first controller 17. A pressure sensor 18 is provided on the discharge side of the final stage 13B, and a pressure value PV1 on the discharge side of the fuel gas supplied to the main engine 12 is measured. On the other hand, on the upstream side of the first fuel gas supply line 14, a pressure sensor 19 for measuring the pressure PV2 of the boil-off gas in the cargo tank 11 is provided. Although a plurality of cargo tanks 11 are provided in the hull, in the present embodiment, the pressure PV2 is measured at one point in the common pipe of the plurality of cargo tanks 11. However, the pressure may be measured at a plurality of locations and the average thereof may be used as the pressure PV2.

第1制御器17には、これらの測定された圧力値PV1、PV2が入力されるとともに、主機コントローラ20から主機関12の燃料ガス要求圧力SP1、およびオペレータにより設定されるカーゴタンク11内の圧力設定値SP2などが入力される。第1制御器17は、後述するようにこれらの値に基づき第1循環ライン16の第1弁16Vの開度調整を行い、第1燃料ガス供給ライン14から主機関12へ供給されるボイルオフガスの供給量を制御する。   The measured pressure values PV1 and PV2 are input to the first controller 17, and the fuel gas required pressure SP1 of the main engine 12 from the main machine controller 20 and the pressure in the cargo tank 11 set by the operator The set value SP2 or the like is input. The first controller 17 adjusts the opening degree of the first valve 16V of the first circulation line 16 based on these values as described later, and the boil-off gas supplied from the first fuel gas supply line 14 to the main engine 12 Control the supply of

本実施形態の燃料ガス供給システム10には、更に第2燃料ガス供給ライン21を備える。第2燃料ガス供給ライン21は、カーゴタンク11内の底付近に配置されるポンプ22を備え、後述する運転モードに応じて、カーゴタンク11内の液化ガスはポンプ22により汲み上げる。第2燃料ガス供給ライン21では、汲み上げられた液化ガスは、サクションドラム23に一時的に貯留される。そしてサクションドラム23の下流側には高圧液ポンプ24が接続され、サクションドラム23内の液化ガスが加圧されてガスヒータ25へと送り出される。ガスヒータ25では、高圧液ポンプ24により加圧された液化ガスが加熱・気化され、高圧ガスとして主機関12へと供給される。また、第1燃料ガス供給ライン14が使用されない場合においても、液化ガスをガス焚き発電機エンジンの燃料に使用するために、ガスヒータ25の下流にガス焚き発電機エンジンへ燃料ガスを供給するラインを設けるか、サクションドラム23の前からガス焚き発電機エンジンにガスを供給するためのラインを分岐させてもよい。   The fuel gas supply system 10 of the present embodiment further includes a second fuel gas supply line 21. The second fuel gas supply line 21 includes a pump 22 disposed near the bottom in the cargo tank 11, and the liquefied gas in the cargo tank 11 is pumped up by the pump 22 according to an operation mode described later. In the second fuel gas supply line 21, the liquefied gas pumped up is temporarily stored in the suction drum 23. The high pressure liquid pump 24 is connected to the downstream side of the suction drum 23, and the liquefied gas in the suction drum 23 is pressurized and sent out to the gas heater 25. In the gas heater 25, the liquefied gas pressurized by the high pressure liquid pump 24 is heated and vaporized, and is supplied to the main engine 12 as a high pressure gas. In addition, even when the first fuel gas supply line 14 is not used, a line for supplying fuel gas to the gas fired generator engine downstream of the gas heater 25 is used to use liquefied gas as fuel for the gas fired generator engine. Alternatively, a line for supplying gas to the gas-fired generator engine may be branched from the front of the suction drum 23.

高圧液ポンプ24は、モータ26により駆動され、モータ26はインバータ27を通して第2制御器28によって駆動制御される。高圧液ポンプ24の下流側には、液化ガスをサクションドラム23へ還流するための第2循環ライン29が設けられ、第2循環ライン29には還流される液化ガス流量を制御するための第2弁29Vが設けられる。第2制御器28には、主機コントローラ20から燃料ガス要求圧力SP1が入力されるとともに、第2燃料ガス供給ライン21の高圧液ポンプ24とガスヒータ25の間に設けられる圧力センサ30で測定された圧力値PV3が入力される。第2制御器28は、後述するように、運転モードや運転状態に応じて、第2弁29Vの開度調整を行うとともに、モータ26の駆動を制御する。また、モータ26は油圧駆動モータとしてもよく、その場合、インバータ27ではなく、油圧駆動源を通して油圧駆動モータの駆動を制御する。また、本実施形態では第2循環ライン29はサクションドラム23に導かれているが、カーゴタンク11へと導かれてもよい。   The high pressure liquid pump 24 is driven by the motor 26, and the motor 26 is driven and controlled by the second controller 28 through the inverter 27. A second circulation line 29 for returning the liquefied gas to the suction drum 23 is provided downstream of the high pressure liquid pump 24, and a second circulation line 29 is used to control the flow rate of the liquefied gas that is returned. A valve 29V is provided. The second controller 28 receives the required fuel gas pressure SP1 from the main unit controller 20, and is measured by the pressure sensor 30 provided between the high pressure liquid pump 24 and the gas heater 25 of the second fuel gas supply line 21. The pressure value PV3 is input. The second controller 28 adjusts the opening degree of the second valve 29V and controls the drive of the motor 26 in accordance with the operation mode and the operation state, as described later. The motor 26 may be a hydraulic drive motor, in which case the drive of the hydraulic drive motor is controlled not through the inverter 27 but through a hydraulic drive source. Further, in the present embodiment, the second circulation line 29 is led to the suction drum 23, but may be led to the cargo tank 11.

なお、サクションドラム23には、ドラム内のボイルオフガスを第1燃料ガス供給ライン14の上流側(カーゴタンク11側)へと還流するための第3循環ライン31が設けられ、第3循環ライン31には、第3弁31Vが設けられる。また、第2燃料ガス供給ライン21のカーゴタンク11を出た直ぐのところには、ポンプの負荷を一定に保つための第4弁21Vが設けられるとともに、その直ぐ下流側には高圧液ポンプ24へ供給する液化ガスの供給圧力を調整するための分岐ライン32が設けられ、分岐ライン32は、第5弁32Vを備える。   The suction drum 23 is provided with a third circulation line 31 for returning the boil-off gas in the drum to the upstream side (the cargo tank 11 side) of the first fuel gas supply line 14, and a third circulation line 31. Is provided with a third valve 31V. Further, immediately after leaving the cargo tank 11 of the second fuel gas supply line 21, a fourth valve 21V for keeping the load of the pump constant is provided, and the high pressure liquid pump 24 is provided immediately downstream thereof. A branch line 32 is provided to adjust the supply pressure of the liquefied gas to be supplied to, and the branch line 32 is provided with a fifth valve 32V.

また、サクションドラム23を設置しなくても高圧液ポンプ24のNPSH(有効吸込みヘッド)が十分確保され、カーゴタンク11と高圧液ポンプ24との間で気化したガスをガス抜きするサクションドラム23に代わる手段が設けられる場合には、サクションドラム23を必ずしも設けなくともよく、その場合、第3循環ライン31も設けず、第2循環ライン29はカーゴタンク11に導かれる。   Moreover, even if the suction drum 23 is not installed, NPSH (effective suction head) of the high pressure liquid pump 24 is sufficiently secured, and the suction drum 23 degasses the gas vaporized between the cargo tank 11 and the high pressure liquid pump 24. If an alternative means is provided, the suction drum 23 may not necessarily be provided, in which case the third circulation line 31 is not provided and the second circulation line 29 is led to the cargo tank 11.

なお、本実施形態において、分岐ライン15を通した余剰BOGのBOG処理装置(ボイラ、ガス燃焼装置、再液化装置)への供給は、分岐ライン15に設けられた第6弁15Vの開度を第3制御器33により調整することにより制御される。第3制御器33には、カーゴタンク圧力値PV2と、オペレータにより設定される圧力設定値SP2が入力され、これらの値に基づき第6弁15Vの開度を調整し、余剰BOGをBOG処理装置へと供給する。   In the present embodiment, supply of surplus BOG to the BOG processing apparatus (boiler, gas combustion apparatus, reliquefaction apparatus) through the branch line 15 is performed by setting the opening degree of the sixth valve 15V provided in the branch line 15 It is controlled by adjusting by the third controller 33. Cargo tank pressure value PV2 and pressure set value SP2 set by the operator are input to the third controller 33, and the opening of the sixth valve 15V is adjusted based on these values, and the surplus BOG is processed by the BOG processing device To supply.

次に図1、図2を参照して、本実施形態の燃料ガス供給システム10の第1、第2燃料ガス供給ライン14、21を用いた第1〜第3運転モードにおける主機関12への燃料ガス供給の態様について説明する。   Next, referring to FIG. 1 and FIG. 2, to the main engine 12 in the first to third operation modes using the first and second fuel gas supply lines 14 and 21 of the fuel gas supply system 10 of the present embodiment. An aspect of fuel gas supply will be described.

図2(a)〜図2(c)は、それぞれ(a)液化ガス積載時の運航速度と使用燃料消費量の関係、(b)液化ガス空荷時の運航においてスプレー作業を行っているときの運航速度と使用燃料消費量の関係、(c)液化ガス空荷時の運航においてスプレー作業を行っていないときの運航速度と使用燃料消費量の関係を示すグラフである。なお図2(a)〜図2(c)において横軸は船の運航速度、縦軸は燃料消費量である。   2 (a) to 2 (c) respectively show the relationship between (a) the operating speed at the time of loading liquefied gas and the amount of fuel consumption used, and (b) when the spraying operation is carried out at the time of empty loading of liquefied gas It is a graph which shows the relationship between the operation speed at the time of not working spray operation in the operation at the time of liquefied gas empty operation, and the used fuel consumption. In FIGS. 2 (a) to 2 (c), the horizontal axis represents the operating speed of the ship, and the vertical axis represents the fuel consumption.

図2(a)〜図2(c)において、曲線Sは、船速と燃料消費量(燃料ガス供給量/単位時)の関係を示す曲線であり、燃料消費量は略船速の3乗に比例する。図2(a)の直線L(NATURAL BOG)は、カーゴタンク11内の液化ガス(天然ガス)が自然蒸発し、ボイルオフガスとなる単位時間当たりの量である。   In FIG. 2 (a)-FIG.2 (c), the curve S is a curve which shows the relationship between ship speed and fuel consumption (fuel gas supply / unit time), and fuel consumption is about the cube of ship speed. Proportional to The straight line L (NATURAL BOG) in FIG. 2A is an amount per unit time at which the liquefied gas (natural gas) in the cargo tank 11 is naturally evaporated to become a boil-off gas.

すなわち図2(a)において、ボイルオフガスのみ、かつその全てを主機関12及びガス焚き発電機エンジンの燃料として利用すると、曲線Sと直線Lの交点Pに対応する船速が得られる。一方、運転点Pよりも高速側では、曲線Sと直線Lの差が、追加する必要のある燃料量となり、運転点Pよりも低速側では、直線Lと曲線Sの差が余剰ボイルオフガスとなる。   That is, in FIG. 2A, using only the boil-off gas and all of it as fuel for the main engine 12 and the gas-fired generator engine, a boat speed corresponding to the intersection P of the curve S and the straight line L is obtained. On the other hand, the difference between the curve S and the straight line L is the amount of fuel that needs to be added on the higher speed side than the operating point P, and the difference between the straight line L and the curve S on the lower speed side than the operating point P Become.

本実施形態では、液化ガスが積載された状態で運転点P(NATURAL BOG100%速度)よりも高速側(高速運転領域)で運航されるときには、第1運転モード(ハイブリッドモード)が選択される。第1運転モードでは、第1燃料ガス供給ライン14を通して高圧ガスコンプレッサ13で圧縮したボイルオフガスを主機関12へ供給するとともに、第2燃料ガス供給ライン21を通して足りない分の燃料を供給する。すなわち、第1運転モードでは、ポンプ22、高圧液ポンプ24、およびガスヒータ25が駆動されカーゴタンク11内の液化ガスから高圧ガスを生成し、高圧ガスコンプレッサ13で圧縮されたボイルオフガスと共に主機関12へ供給する。   In the present embodiment, the first operation mode (hybrid mode) is selected when operating on the higher speed side (high speed operation area) than the operating point P (NATURAL BOG 100% speed) with the liquefied gas loaded. In the first operation mode, the boil-off gas compressed by the high pressure gas compressor 13 is supplied to the main engine 12 through the first fuel gas supply line 14, and the insufficient fuel is supplied through the second fuel gas supply line 21. That is, in the first operation mode, the pump 22, the high pressure liquid pump 24, and the gas heater 25 are driven to generate high pressure gas from the liquefied gas in the cargo tank 11, and the main engine 12 together with the boil off gas compressed by the high pressure gas compressor 13. Supply to.

第1運転モードでは、第1制御器17は、カーゴタンク11側の測定圧力値PV2がオペレータにて設定された圧力SP2となるように高圧ガスコンプレッサ13の第1弁16Vを制御する。そして第2制御器28は、第2燃料ガス供給ライン21の吐出圧が、主機関12の燃料ガス要求圧力SP1となるように、高圧液ポンプ24の吐出側圧力値PV3をモニタして高圧液ポンプ24の駆動を制御する。   In the first operation mode, the first controller 17 controls the first valve 16V of the high pressure gas compressor 13 such that the measured pressure value PV2 on the cargo tank 11 side becomes the pressure SP2 set by the operator. Then, the second controller 28 monitors the discharge side pressure value PV3 of the high pressure liquid pump 24 so that the discharge pressure of the second fuel gas supply line 21 becomes the fuel gas required pressure SP1 of the main engine 12, The drive of the pump 24 is controlled.

また、液化ガスが積載された状態で運転点P、または運転点Pよりも低速側(減速運転領域)で運航されるときには、第2運転モード(コンプレッサモード)が選択され、高圧ガスコンプレッサ13を用いる第1燃料ガス供給ライン14のみを使用する。すなわち、ボイルオフガスのみを用いて主機関12の運転が行われ、余剰ガスがある場合は、分岐ライン15を通してBOG処理装置(ボイラ、ガス燃焼装置、再液化装置)へガスを供給する。   When the liquefied gas is loaded and operated at the operating point P or at a lower speed side (deceleration operating area) than the operating point P, the second operation mode (compressor mode) is selected, and the high pressure gas compressor 13 is Only the first fuel gas supply line 14 used is used. That is, the main engine 12 is operated using only the boil-off gas, and if there is an excess gas, the gas is supplied to the BOG processing apparatus (boiler, gas combustion apparatus, reliquefaction apparatus) through the branch line 15.

第2運転モードでは、第1制御器17は、第1燃料ガス供給ライン14の吐出圧が、主機関12の燃料ガス要求圧力SP1となるように、吐出側の圧力値PV1をモニタして高圧ガスコンプレッサ13の第1弁16Vを制御する。   In the second operation mode, the first controller 17 monitors the pressure value PV1 on the discharge side so that the discharge pressure of the first fuel gas supply line 14 becomes the fuel gas required pressure SP1 of the main engine 12 The first valve 16V of the gas compressor 13 is controlled.

図2(b)には、液化ガス空荷時の運航においてスプレー作業が行われるときの運航形態が示される。図2(b)において、直線Lsは、スプレー作業で発生する単位時間当たりのボイルオフガスの量であり、スプレー作業で使用する液の量により上下に変化する。曲線Sと直線Lsの交点Psは、スプレー作業によるボイルオフガス発生量と船速が釣り合う点である。図2(a)のときと同様に、運転点Psよりも高速側では第1運転モード(ハイブリッドモード)が選択され、運転点Ps、または運転点Psよりも低速側では、第2運転モード(コンプレッサモード)が選択される。すなわち、第1または第2運転モードの何れかが、低速ディーゼル機関の燃料消費量とボイルオフガス発生量との関係から選択される。   FIG. 2 (b) shows the operation mode when the spray operation is performed in the operation with the liquefied gas empty. In FIG. 2 (b), the straight line Ls is the amount of boil-off gas generated per unit time in the spray operation, and changes up and down depending on the amount of liquid used in the spray operation. The intersection point Ps of the curve S and the straight line Ls is a point at which the amount of boil-off gas generation by the spray operation and the ship speed are balanced. As in the case of FIG. 2A, the first operation mode (hybrid mode) is selected on the side higher than the operating point Ps, and the second operation mode (on the side lower than the operating point Ps or the operating point Ps). Compressor mode is selected. That is, either the first or second operation mode is selected from the relationship between the fuel consumption of the low speed diesel engine and the boil-off gas generation amount.

また、スプレー作業により発生するボイルオフガス量が、主機関12及び発電機エンジンによる消費量を上回るときには、図2(a)のときと同様に、分岐ライン15を通して余剰ボイルオフガスをBOG処理装置(ボイラ、ガス燃焼装置、再液化装置)へ供給する。なお、液化ガス空荷時の運航であっても、液化ガスをカーゴタンク冷却用のスプレー液として、また主機関の燃料として使用するために、幾らかの液化ガスが貯蔵されており、全てのカーゴタンク11が完全に空にされているわけではない。   Also, when the amount of boil-off gas generated by the spray operation exceeds the consumption by the main engine 12 and the generator engine, as in the case of FIG. , Gas burners, reliquefaction devices). It should be noted that some liquefied gas is stored for use as a spray liquid for cooling the cargo tank and as a fuel for the main engine even when the liquefied gas is in operation with no load. The cargo tank 11 is not completely emptied.

図2(c)は、液化ガス空荷時の運航においてスプレー作業が行われないときの運航形態に対応するグラフである。この運航形態では、第3運転モード(ポンプモード)が選択され、第2燃料ガス供給ラインのみを通して燃料ガスが主機関12へと供給される。すなわち、ポンプ22、高圧液ポンプ24、およびガスヒータ25を使用してカーゴタンク11内の液化ガスから高圧ガスが生成され主機関12へ供給される。そして第1燃料ガス供給ライン14は使用されず、高圧ガスコンプレッサ13はオフされる。   FIG.2 (c) is a graph corresponding to the operation form when spray operation is not performed in the operation at the time of liquefied gas emptying. In this mode of operation, the third operation mode (pump mode) is selected, and fuel gas is supplied to the main engine 12 only through the second fuel gas supply line. That is, the high pressure gas is generated from the liquefied gas in the cargo tank 11 using the pump 22, the high pressure liquid pump 24 and the gas heater 25 and supplied to the main engine 12. Then, the first fuel gas supply line 14 is not used, and the high pressure gas compressor 13 is turned off.

第3運転モードにおいて、第2制御器28は、第1運転モードのときと同様に、第2燃料ガス供給ライン21の吐出圧が、主機関12の燃料ガス要求圧力SP1となるように、高圧液ポンプ24の吐出側圧力値PV3をモニタして高圧液ポンプ24の駆動を制御する。また、第3運転モードにおいて、高圧液ポンプ24の運転可能な最少容量(モータ26の最少回転数)における燃料ガス供給量よりも低い供給量で主機関12へ燃料ガスを供給する必要がある場合、第2制御器28は、高圧液ポンプ24を運転可能な最少容量で駆動するとともに、第2弁29Vを開いて高圧液ポンプ24から吐出される余剰な燃料をサクションドラム23に第2循環ライン29を通して還流する。   In the third operation mode, the second controller 28 sets the high pressure so that the discharge pressure of the second fuel gas supply line 21 becomes the fuel gas required pressure SP1 of the main engine 12 as in the first operation mode. The discharge side pressure value PV3 of the liquid pump 24 is monitored to control the driving of the high pressure liquid pump 24. Further, in the third operation mode, when it is necessary to supply the fuel gas to the main engine 12 at a supply amount lower than the fuel gas supply amount at the minimum operable capacity of the high pressure liquid pump 24 (minimum rotation speed of the motor 26). The second controller 28 drives the high pressure liquid pump 24 with the minimum capacity that can be operated, opens the second valve 29V, and discharges excess fuel discharged from the high pressure liquid pump 24 to the suction drum 23 as a second circulation line. Reflux through 29.

なお、船の巡航速度は、運転点P、あるいはそれよりも僅かに低い速度に設定され、船舶は、殆どの時間を巡航速度で航行するので、例えば図2(a)の運転点P付近で運転される。すなわち、液化ガス積載時には、略高圧ガスコンプレッサ13のみが駆動され、ボイルオフガスの殆どが、主機関12の燃料として消費される。そして高速運転領域での運転が必要な場合のみ、高圧液ポンプ24が駆動され液化ガスから直接的に高圧ガスが生成される。また、液化ガス空荷時の運航において殆どの時間は、スプレー作業が行われているわけではないので、殆ど図2(c)の運航形態がとられ、高圧ガスコンプレッサ13を運転することなく、高圧液ポンプ24により燃料ガス供給がなされる。一方、スプレー作業が行われ、ボイルオフガスが発生する場合には、高圧ガスコンプレッサ13が駆動され、ボイルオフガスは略全て主機関12の燃料として利用される。   In addition, since the cruising speed of the ship is set to the operating point P or a speed slightly lower than that, and the ship travels at the cruising speed for most of the time, for example, around the operating point P in FIG. It is driven. That is, when the liquefied gas is loaded, only the substantially high pressure gas compressor 13 is driven, and most of the boil-off gas is consumed as fuel for the main engine 12. Then, only when the operation in the high speed operation region is required, the high pressure liquid pump 24 is driven to generate the high pressure gas directly from the liquefied gas. In addition, since the spray operation is not performed during most of the operation when the liquefied gas is empty, the operation mode shown in FIG. 2 (c) is taken, and the high pressure gas compressor 13 is not operated. Fuel gas is supplied by the high pressure liquid pump 24. On the other hand, when a spray operation is performed and boil-off gas is generated, the high pressure gas compressor 13 is driven, and almost all the boil-off gas is used as fuel for the main engine 12.

以上のように、本実施形態によれば、高圧ガスコンプレッサおよび高圧液ポンプを併用して、液化ガス運搬船の運航状態に合わせ、ボイルオフガスの処理、エネルギー消費を最適化することができる。   As described above, according to the present embodiment, the high-pressure gas compressor and the high-pressure liquid pump can be used in combination to optimize the treatment of the boil-off gas and the energy consumption according to the operation state of the liquefied gas carrier.

また、本実施形態では、第1燃料ガス供給ラインの高圧ガスコンプレッサと第2燃料ガス供給ラインの高圧液ポンプを同時に駆動する第1運転モードにおいて、高圧ガスコンプレッサからの吐出量は、カーゴタンク圧力を一定値とするように制御し、高圧液ポンプからの吐出量のみ主機関の要求圧力となるように制御しているので、制御対象パラメータが高圧ガスコンプレッサと高圧液ポンプとで異なることになり、高圧ガスコンプレッサの吐出量が優先して供給され(ボイルオフガスの消費が優先され)、両者の制御が互いに干渉することが防止される。そして、不足分のみ高圧液ポンプで供給される。   In the first embodiment, in the first operation mode in which the high pressure gas compressor of the first fuel gas supply line and the high pressure liquid pump of the second fuel gas supply line are simultaneously driven, the discharge amount from the high pressure gas compressor is the cargo tank pressure. The control target parameters are different between the high-pressure gas compressor and the high-pressure liquid pump because the discharge pressure from the high-pressure liquid pump is controlled to be the required pressure of the main engine. The discharge amount of the high-pressure gas compressor is supplied with priority (the consumption of the boil-off gas is given priority), and the control of the both is prevented from interfering with each other. Then, only the shortfall is supplied by the high pressure liquid pump.

なお、主機関はガス専燃の低速ディーゼル機関であってもよいが、オイル燃料との2元燃料焚き低速ディーゼル機関であってもよく、その場合には例えば高速運転領域においてオイルを追加燃料として利用してもよい。また、本実施形態ではメタンを主成分とするLNGを運ぶ液化ガス運搬船を対象に記載したが、LNG以外の貨物を運ぶ液化ガス運搬船についても適用可能である。使用する燃料ガス(例えばエタンなど)の性状により、低速ディーゼル機関が要求する機関入口のガス圧力は様々であり、LNGを燃料として使用する場合よりも高い圧力が必要となる場合がある(例えば40MPa〜60MPa)が、メタンを主成分とした実施形態と同様に適用できる。   The main engine may be a low-speed diesel engine with gas combustion, but it may be a low-speed diesel engine fueled with oil fuel. In that case, for example, oil is used as an additional fuel in the high-speed operation range You may use it. Moreover, although the liquefied gas carrier carrying LNG which has methane as a main component was described in this embodiment, it is applicable also to the liquefied gas carrier carrying cargos other than LNG. Depending on the properties of the fuel gas used (eg ethane etc.), the gas pressure at the engine inlet required by low-speed diesel engines varies, and a higher pressure may be required than when using LNG as fuel (eg 40 MPa Can be applied in the same manner as the embodiment in which methane is the main component.

10 燃料ガス供給システム
11 カーゴタンク
12 主機関
13 高圧ガスコンプレッサ
13A 低圧段
13B 最終段
14 第1燃料ガス供給ライン
16 第1循環ライン
16V 第1弁
17 第1制御器
18、19、30 圧力センサ
20 主機コントローラ
21 第2燃料ガス供給ライン
22 ポンプ
23 サクションドラム
24 高圧液ポンプ
25 ガスヒータ
28 第2制御器
29 第2循環ライン
29V 第2弁
DESCRIPTION OF SYMBOLS 10 Fuel gas supply system 11 Cargo tank 12 Main engine 13 High pressure gas compressor 13A Low pressure stage 13B Final stage 14 1st fuel gas supply line 16 1st circulation line 16V 1st valve 17 1st controller 18, 19, 30 Pressure sensor 20 Master controller 21 Second fuel gas supply line 22 Pump 23 Suction drum 24 High pressure liquid pump 25 Gas heater 28 Second controller 29 Second circulation line 29V Second valve

Claims (10)

主機関として用いられるガス焚き可能な低速ディーゼル機関と、
液化ガスを貯蔵するタンクと、
前記タンク内で発生するボイルオフガスを圧縮する高圧ガスコンプレッサと、
前記タンク内からの液化ガスを加圧する高圧液ポンプと、
前記高圧ガスコンプレッサを通して前記タンクから前記低速ディーゼル機関へ燃料ガスを供給する第1燃料ガス供給ラインと、
前記高圧液ポンプを通して前記タンクから前記低速ディーゼル機関へ燃料ガスを供給する第2燃料ガス供給ラインと、
前記第1燃料ガス供給ラインおよび前記第2燃料ガス供給ラインを通して燃料ガスを前記低速ディーゼル機関に供給する第1運転モードとを備え、
前記第1運転モードでは、前記第1燃料ガス供給ラインによる燃料ガスの供給量を前記タンクの圧力に基づいて制御し、前記第2燃料ガス供給ラインによる燃料ガスの供給量を前記低速ディーゼル機関の燃料ガス要求圧力に基づいて制御する
ことを特徴とする液化ガス運搬船用燃料ガス供給システム。
A gas-fireable low-speed diesel engine used as the main engine,
A tank for storing liquefied gas,
A high pressure gas compressor for compressing boil off gas generated in the tank;
A high pressure liquid pump for pressurizing liquefied gas from the inside of the tank;
A first fuel gas supply line for supplying fuel gas from the tank to the low speed diesel engine through the high pressure gas compressor;
A second fuel gas supply line for supplying fuel gas from the tank to the low speed diesel engine through the high pressure liquid pump;
A first operation mode for supplying a fuel gas to the low speed diesel engine through the first fuel gas supply line and the second fuel gas supply line;
In the first operation mode, the amount of fuel gas supplied by the first fuel gas supply line is controlled based on the pressure of the tank, and the amount of fuel gas supplied by the second fuel gas supply line is controlled by the low speed diesel engine. A fuel gas supply system for a liquefied gas carrier, which is controlled based on a fuel gas required pressure.
液化ガス積載時の運航において、前記低速ディーゼル機関の燃料消費量がボイルオフガス発生量よりも多いときに前記第1運転モードが選択され、前記第1燃料ガス供給ラインを通してボイルオフガスを前記低速ディーゼル機関へ燃料ガスとして供給し、不足する分の燃料ガスとして前記第2燃料ガス供給ラインを通して前記タンク内の液化ガスを前記低速ディーゼル機関へ供給することを特徴とする請求項1に記載の液化ガス運搬船用燃料ガス供給システム。   In the operation at the time of loading liquefied gas, the first operation mode is selected when the fuel consumption of the low speed diesel engine is larger than the amount of boil off gas generation, and the low speed diesel engine receives the boil off gas through the first fuel gas supply line. The liquefied gas carrier according to claim 1, wherein the liquefied gas in the tank is supplied to the low-speed diesel engine through the second fuel gas supply line as the fuel gas supplied to the fuel gas as a shortage of fuel gas. Fuel gas supply system. 液化ガス積載時の運航において、前記低速ディーゼル機関の燃料消費量がボイルオフガス発生量以下のときには、前記第1燃料ガス供給ラインのみを通して燃料ガスを前記低速ディーゼル機関へ供給する第2運転モードが選択され、前記高圧ガスコンプレッサからの燃料ガス供給量は、前記低速ディーゼル機関の燃料ガス要求圧力に基づいて制御されることを特徴とする請求項1または請求項2に記載の液化ガス運搬船用燃料ガス供給システム。   In the operation at the time of liquefied gas loading, when the fuel consumption of the low speed diesel engine is less than the boil-off gas generation amount, the second operation mode is selected in which the fuel gas is supplied to the low speed diesel engine only through the first fuel gas supply line. The fuel gas for a liquefied gas carrier according to claim 1 or 2, wherein the fuel gas supply amount from the high pressure gas compressor is controlled based on a fuel gas required pressure of the low speed diesel engine. Supply system. 液化ガス空荷時の運航において、スプレー作業を行わないときには、前記第2燃料ガス供給ラインのみを通して前記タンク内の液化ガスを前記低速ディーゼル機関へ燃料ガスとして供給する第3運転モードが選択され、前記高圧液ポンプの吐出圧力は、前記低速ディーゼル機関の燃料ガス要求圧力に基づいて制御されることを特徴とする請求項1〜3の何れか一項に記載の液化ガス運搬船用燃料ガス供給システム。   In the operation at the time of liquefied gas emptying, when the spray operation is not performed, the third operation mode is selected in which the liquefied gas in the tank is supplied as the fuel gas to the low speed diesel engine only through the second fuel gas supply line; The fuel gas supply system for a liquefied gas carrier according to any one of claims 1 to 3, wherein the discharge pressure of the high pressure liquid pump is controlled based on the fuel gas required pressure of the low speed diesel engine. . 液化ガス空荷時の運航において、スプレー作業を行うときには、前記第1または第2運転モードの何れかが、前記低速ディーゼル機関の燃料消費量とボイルオフガス発生量との関係から選択されることを特徴とする請求項3に記載の液化ガス運搬船用燃料ガス供給システム。   In the operation at the time of liquefied gas emptying, when performing the spray operation, either of the first or second operation mode is selected from the relationship between the fuel consumption of the low speed diesel engine and the boil off gas generation amount A fuel gas supply system for a liquefied gas carrier according to claim 3, characterized in that: 前記高圧ガスコンプレッサの最終段には、吐出側から吸込み側へと燃料ガスを循環させる第1循環ラインが設けられ、前記第1運転モードにおいて、前記タンクの圧力を一定に維持するように前記第1循環ラインに設けた第1弁を制御して循環される燃料ガスの量を制御することを特徴とする請求項1〜5の何れか一項に記載の液化ガス運搬船用燃料ガス供給システム。   The final stage of the high pressure gas compressor is provided with a first circulation line for circulating the fuel gas from the discharge side to the suction side, and in the first operation mode, the pressure of the tank is maintained constant. The fuel gas supply system for a liquefied gas carrier according to any one of claims 1 to 5, wherein the amount of fuel gas circulated is controlled by controlling a first valve provided in the circulation line. 前記高圧液ポンプの吐出側から上流側へと液化ガスを循環させる第2循環ラインが設けられ、前記第3運転モードにおいて、前記高圧液ポンプを運転可能な最少容量で駆動しつつ前記第2循環ラインに設けた第2弁を制御して液化ガスを前記上流側へと循環させることが可能であることを特徴とする請求項4に記載の液化ガス運搬船用燃料ガス供給システム。   A second circulation line for circulating the liquefied gas from the discharge side to the upstream side of the high pressure liquid pump is provided, and in the third operation mode, the second circulation is driven while driving the high pressure liquid pump with a minimum operable capacity. 5. The fuel gas supply system for a liquefied gas carrier according to claim 4, wherein it is possible to circulate liquefied gas to the upstream side by controlling a second valve provided in the line. 前記第2燃料ガス供給ラインが、前記高圧液ポンプの上流側に設けられるサクションドラムと下流側に設けられるガスヒータとを備えることを特徴とする請求項1〜7の何れか一項に記載の液化ガス運搬船用燃料ガス供給システム。   The liquefaction according to any one of claims 1 to 7, wherein the second fuel gas supply line comprises a suction drum provided on the upstream side of the high pressure liquid pump and a gas heater provided on the downstream side. Fuel gas supply system for gas carriers. 前記高圧ガスコンプレッサが、低圧段と最終段とを備える多段コンプレッサであり、前記低圧段から余剰ガスをボイルオフガス処理装置へと送出する分岐ラインを備えることを特徴とする請求項1〜8の何れか一項に記載の液化ガス運搬船用燃料ガス供給システム。   The high-pressure gas compressor is a multistage compressor including a low pressure stage and a final stage, and includes a branch line for delivering an excess gas from the low pressure stage to a boil-off gas processing apparatus. A fuel gas supply system for a liquefied gas carrier according to any one of the preceding claims. 請求項1〜9の何れか一項に記載の液化ガス運搬船用燃料ガス供給システムを備えたことを特徴とする液化ガス運搬船。   A liquefied gas carrier comprising the fuel gas supply system for a liquefied gas carrier according to any one of claims 1 to 9.
JP2015080941A 2015-04-10 2015-04-10 Fuel gas supply system for liquefied gas carrier Active JP6541059B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015080941A JP6541059B2 (en) 2015-04-10 2015-04-10 Fuel gas supply system for liquefied gas carrier
PCT/JP2016/060999 WO2016163332A1 (en) 2015-04-10 2016-04-04 Fuel gas supply system for liquefied gas transport vessel
CN201680020243.9A CN107614858B (en) 2015-04-10 2016-04-04 Fuel gas supply system for liquefied gas carrier
KR1020177028575A KR102562868B1 (en) 2015-04-10 2016-04-04 Fuel gas supply system for liquefied gas carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015080941A JP6541059B2 (en) 2015-04-10 2015-04-10 Fuel gas supply system for liquefied gas carrier

Publications (2)

Publication Number Publication Date
JP2016200068A JP2016200068A (en) 2016-12-01
JP6541059B2 true JP6541059B2 (en) 2019-07-10

Family

ID=57071866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080941A Active JP6541059B2 (en) 2015-04-10 2015-04-10 Fuel gas supply system for liquefied gas carrier

Country Status (4)

Country Link
JP (1) JP6541059B2 (en)
KR (1) KR102562868B1 (en)
CN (1) CN107614858B (en)
WO (1) WO2016163332A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959801B2 (en) * 2017-08-31 2021-11-05 川崎重工業株式会社 Spray vaporization rate prediction method and equipment, and operation support method and system for liquefied gas carrier
WO2019045523A1 (en) * 2017-09-01 2019-03-07 삼성중공업 주식회사 Device and method for transporting liquid cargo in pressurization type
CN112413393A (en) * 2020-10-30 2021-02-26 沪东中华造船(集团)有限公司 Automatic control method and system for pressure of liquefied natural gas storage tank of LNG ship
CN117163269B (en) * 2023-11-01 2024-01-23 中海油能源发展股份有限公司采油服务分公司 Fuel management method and fuel management system for LNG carrier

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870206B1 (en) * 2004-05-14 2006-08-04 Alstom Sa INSTALLATION FOR SUPPLYING GASEOUS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL.
FR2879261B1 (en) * 2004-12-10 2007-04-13 Alstom Sa INSTALLATION FOR THE DELIVERY OF GASEOUS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL
KR101076266B1 (en) * 2007-07-19 2011-10-26 대우조선해양 주식회사 System for supplying fuel gas in lng carrier
JP6012140B2 (en) * 2011-02-25 2016-10-25 三菱重工業株式会社 GAS FUEL SUPPLY DEVICE, HIGH PRESSURE GAS INJECTION DIESEL ENGINE, AND LIQUID GAS FUEL SUPPLY METHOD FOR HIGH PRESSURE GAS INJECTION DIESEL ENGINE
EP2685078A4 (en) * 2011-03-11 2014-09-10 Daewoo Shipbuilding & Marine System for supplying fuel to marine structure having re-liquefying device and high-pressure natural gas injection engine
KR20120107831A (en) * 2011-03-22 2012-10-04 대우조선해양 주식회사 System for supplying fuel for high pressure natural gas injection engine having means for consuming excess boil off gas
US20140053600A1 (en) * 2011-03-22 2014-02-27 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means
EP2716542A4 (en) * 2011-05-31 2016-05-04 Daewoo Shipbuilding & Marine Cold heat recovery apparatus using an lng fuel, and liquefied gas carrier including same
KR101386543B1 (en) * 2012-10-24 2014-04-18 대우조선해양 주식회사 System for treating boil-off gas for a ship
JP2014104847A (en) * 2012-11-27 2014-06-09 Mitsubishi Heavy Ind Ltd Cold use device for low-temperature liquefied fuel
KR101334002B1 (en) * 2013-04-24 2013-11-27 현대중공업 주식회사 A treatment system of liquefied natural gas
KR101290430B1 (en) * 2013-04-24 2013-07-26 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas

Also Published As

Publication number Publication date
JP2016200068A (en) 2016-12-01
KR20170142167A (en) 2017-12-27
CN107614858A (en) 2018-01-19
KR102562868B1 (en) 2023-08-04
CN107614858B (en) 2020-01-03
WO2016163332A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
KR20160068780A (en) Fuel gas supply system for liquid gas transportation vessel
US10683831B2 (en) Gas treatment system and vessel including the same
JP6322155B2 (en) Fuel gas supply system for liquefied gas carrier
JP6600247B2 (en) Ship
CN104024619B (en) Fuel combination supply system and method for the engine of ship
JP6541059B2 (en) Fuel gas supply system for liquefied gas carrier
KR20130124549A (en) Gas fuel supply device, high-pressure gas injection diesel engine, and method for supplying liquefied gas fuel for high-pressure gas injection diesel engine
JP6521444B2 (en) Fuel gas supply system for ships
WO2017078155A1 (en) Ship
JP2018103954A (en) Ship
KR102075287B1 (en) Gas treatment system and ship having the same
JP2018135091A (en) Fuel gas supply system for liquefied gas carrier
KR101903763B1 (en) System for supplying fuel gas in ships
JP6239027B2 (en) Fuel gas supply system for liquefied gas carrier
JP6638146B2 (en) Fuel supply system and fuel supply method
KR102179197B1 (en) Gas treatment system and ship having the same
KR102369070B1 (en) Fuel gas supplying system in ships
KR102369064B1 (en) Fuel gas supplying system in ships
JP2015135120A (en) Fuel gas supply system for liquefied gas carrying vessel
JP2016124386A (en) Liquefied gas carrying vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190531

R150 Certificate of patent or registration of utility model

Ref document number: 6541059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350