JP6529285B2 - Joint tube and method for manufacturing the same - Google Patents

Joint tube and method for manufacturing the same Download PDF

Info

Publication number
JP6529285B2
JP6529285B2 JP2015045790A JP2015045790A JP6529285B2 JP 6529285 B2 JP6529285 B2 JP 6529285B2 JP 2015045790 A JP2015045790 A JP 2015045790A JP 2015045790 A JP2015045790 A JP 2015045790A JP 6529285 B2 JP6529285 B2 JP 6529285B2
Authority
JP
Japan
Prior art keywords
metal pipe
pipe
caulking groove
caulking
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015045790A
Other languages
Japanese (ja)
Other versions
JP2016032837A (en
Inventor
直樹 武田
直樹 武田
進之助 西島
進之助 西島
西尾 克秀
克秀 西尾
冨村 宏紀
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2015045790A priority Critical patent/JP6529285B2/en
Publication of JP2016032837A publication Critical patent/JP2016032837A/en
Application granted granted Critical
Publication of JP6529285B2 publication Critical patent/JP6529285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Description

本発明は、接合管体及びその製造方法に関する。より詳しくは、本発明は、引張強度が異なる異種金属管を接合した接合管体及び当該接合管体の製造方法に関する。   The present invention relates to a joined tube and a method of manufacturing the same. More particularly, the present invention relates to a joined pipe body in which dissimilar metal pipes having different tensile strengths are joined and a method of manufacturing the joined pipe body.

一般に、給湯器や空調機、冷凍機等には熱交換器が用いられている。熱交換器は、主として、屋外機に組み込まれることから、熱交換器の配管は、耐食性が高い材料であることが求められる。また、熱交換器は、コンプレッサーから供給される冷媒ガスのガス圧に耐えられるだけの耐圧性、熱交換効率を高めるための伝熱性、及び配管同士の接合性が高い材料であることも求められる。耐食性、耐圧性、伝熱性及び接合性等を考慮し、熱交換器の配管として、銅管が多く用いられる。   Generally, a heat exchanger is used for a water heater, an air conditioner, a refrigerator, and the like. Since the heat exchanger is mainly incorporated into an outdoor unit, the piping of the heat exchanger is required to be a material having high corrosion resistance. In addition, the heat exchanger is also required to be a material having high pressure resistance to withstand the gas pressure of the refrigerant gas supplied from the compressor, high heat conductivity to improve heat exchange efficiency, and high bondability between pipes. . In consideration of corrosion resistance, pressure resistance, heat conductivity, bondability, etc., a copper pipe is often used as a heat exchanger piping.

ところで、近年、銅の価格が高騰しており、銅に代わる材料を熱交換器の配管材料にすることが求められている。銅に代わる材料の一例として、アルミニウムが挙げられる。しかしながら、アルミニウム管は、屋外環境での耐食性の面で課題を有する。そこで、近年、銅に代わる材料として、ステンレス鋼を用いる試みがなされている。   By the way, in recent years, the price of copper has risen, and it has been required to use a material replacing copper as a piping material for a heat exchanger. Aluminum is an example of a material alternative to copper. However, aluminum tubes have problems in terms of corrosion resistance in an outdoor environment. Therefore, in recent years, attempts have been made to use stainless steel as a material to replace copper.

しかしながら、一般的に、熱交換器で使用される全ての銅管がステンレス鋼管に代替されるケースは少ないため、銅管とステンレス鋼管とを連結する接合部が多く発生することとなる。接合部における高い気密性と接合強度を有するようにするため、図32に示すように、内側金属管101と外側金属管102とを端部同士で重ね、接続体100’を形成した後、接続体100’をローラー支軸200に載せ、内側金属管101と外側金属管102との重なり部110’に、刃先を丸くさせた刃201を押し当て、接続体100’の管軸1を回転軸として接続体100’を回転させながら内側金属管101と外側金属管102とをかしめる加工を施し、接合体を得ることが提案されている(特許文献1)。また、コンプレッサーから供給される冷媒ガスのガス圧が高い場合、内圧による接合構造体の変形を抑えるため、外側金属管102をステンレス鋼管にし、変形抵抗の小さい銅管を内側金属管にするのが好ましいことが示されている(特許文献2)。   However, in general, there are few cases where all copper tubes used in the heat exchanger are replaced with stainless steel pipes, so many joints connecting the copper pipes and the stainless steel pipes are generated. In order to have high airtightness and joint strength at the joint, as shown in FIG. 32, after the inner metal pipe 101 and the outer metal pipe 102 are overlapped at the end portions to form a connected body 100 ′, connection is performed. The body 100 'is placed on the roller support shaft 200, and the blade 201 having a rounded cutting edge is pressed against the overlapping portion 110' of the inner metal tube 101 and the outer metal tube 102 to rotate the tube axis 1 of the connector 100 '. It is proposed that a jointed body be obtained by caulking the inner metal pipe 101 and the outer metal pipe 102 while rotating the connection body 100 ′ as described above (Patent Document 1). In addition, when the gas pressure of the refrigerant gas supplied from the compressor is high, in order to suppress the deformation of the joined structure due to the internal pressure, the outer metal pipe 102 is a stainless steel pipe and the copper pipe having a small deformation resistance is an inner metal pipe. It is shown that it is preferable (patent document 2).

特開2013−066911号公報JP, 2013-066911, A 特開2013−151013号公報JP, 2013-151013, A

しかしながら、銅管からなる内側金属管101と、ステンレス鋼管からなる外側金属管102とを有する接続体100’の重なり部110’にかしめ加工を施して接合する際、外側金属管102は、大きな板厚減少が起きやすい。特に、外側金属管102のステンレス鋼は、加工硬化し易い性質を有することから、かしめ溝が深くなると、板厚減少の程度によっては外側金属管102のビード位置(かしめ加工された凹凸部の位置)で割れを生じる可能性がある。一方で、ステンレス鋼管の割れを避けるためにかしめ溝を浅くすると、
内側金属管101と外側金属管102とを十分にかしめ固定ができず、金属管同士の接合強度が良好な接合体が得られない。
However, when caulking is performed on the overlapping portion 110 ′ of the connector 100 ′ having the inner metal pipe 101 made of a copper pipe and the outer metal pipe 102 made of a stainless steel pipe, the outer metal pipe 102 is a large plate Thickness reduction is likely to occur. In particular, the stainless steel of the outer metal tube 102 has the property of being easily work-hardened, so if the caulking groove becomes deeper, the bead position of the outer metal tube 102 (the position of the crimped uneven portion depending on the degree of thickness reduction) May cause cracking. On the other hand, if the caulking groove is made shallow to avoid cracking of the stainless steel pipe,
The inner metal tube 101 and the outer metal tube 102 can not be sufficiently crimped and fixed, and a joined body with good bonding strength between metal tubes can not be obtained.

このように、接合構造体の変形を抑えるために、外側金属管をステンレス鋼にし、内側金属管を銅管にしようとすると、金属管同士の重なり部におけるかしめ固定が困難であるという問題があった。   As described above, when the outer metal pipe is made of stainless steel and the inner metal pipe is made of a copper pipe in order to suppress the deformation of the joined structure, there is a problem that caulking and fixing at the overlapping portions of the metal pipes are difficult. The

本発明は、以上のような課題を解決するために、管内部を通る流体が高圧であっても管の変形を抑えることができ、かつ、良好な接合強度を有する接合管体の提供を目的とする。また、引張強度の異なる金属管同士を接合しても接合部に割れが発生することがなく、接合管体を安定的に量産する製造方法の提供を目的とする。   In order to solve the problems as described above, it is an object of the present invention to provide a joined pipe body capable of suppressing deformation of the pipe even if the fluid passing through the inside of the pipe is at high pressure, and having good joint strength. I assume. In addition, even when metal pipes having different tensile strengths are joined, no crack occurs in the joint, and it is an object of the present invention to provide a manufacturing method for mass-producing a jointed pipe stably.

本発明者らは、上記のような課題を解決するために鋭意研究を重ねた。その結果、まず、外側金属管に比べて低い引張強度の金属材料からなる内側金属管に内側かしめ加工用溝を形成し、次いで、外側金属管と内側金属管とを、内側かしめ加工用溝が外側金属管の内面と重なる位置に配した後、外側金属管の外面のうち、内側かしめ加工用溝と重なる位置でかしめ溝を形成し、外側金属管と内側金属管とをかしめる加工を施すことで、上記の課題を解決できることを見出し、本発明の完成に至った。具体的に、本発明は以下のものを提供する。   The present inventors have intensively researched in order to solve the above-mentioned problems. As a result, first, an inner crimping groove is formed in the inner metal tube made of a metal material having a lower tensile strength than the outer metal tube, and then the outer crimping groove and the inner metal groove are formed. After arranging at a position overlapping with the inner surface of the outer metal pipe, a caulking groove is formed at a position overlapping the inner caulking groove on the outer surface of the outer metal pipe, and the outer metal pipe and the inner metal pipe are caulked It has been found that the above-mentioned problems can be solved, and the present invention has been completed. Specifically, the present invention provides the following.

(1)本発明は、外側金属管と、前記外側金属管に比べて低い引張強度の金属材料からなり前記外側金属管の内側に挿入された内側金属管とがかしめられて接合された接合管体であって、前記内側金属管は、外面上に、管径方向の深さが0.5mm以上である内側かしめ溝を有する接合管体である。   (1) The present invention is a joined pipe formed by caulking and joining an outer metal pipe and a metal material having a lower tensile strength than the outer metal pipe and inserted into the outer metal pipe. It is a body, and said inner metal tube is a joined tube body which has an inside crimp groove whose depth of a pipe diameter direction is 0.5 mm or more on the outer surface.

(2)本発明は、前記外側金属管がステンレス鋼管であり、前記内側金属管が銅管である、上記(1)に記載の接合管体である。   (2) The present invention is the joined tube body according to the above (1), wherein the outer metal pipe is a stainless steel pipe, and the inner metal pipe is a copper pipe.

(3)本発明は、前記外側金属管の少なくとも一方の端部に、内径が前記内側金属管の外径と略同じである拡管部が形成され、前記拡管部の基端と、前記内側金属管の一端とが接しており、前記外側金属管の外面のうち、前記内側かしめ溝と重なる位置に外側かしめ溝が形成されている、上記(1)又は(2)に記載の接合管体である。   (3) In the present invention, at least one end of the outer metal pipe is provided with an expanded pipe portion whose inner diameter is substantially the same as the outer diameter of the inner metal pipe, and a base end of the expanded pipe portion and the inner metal The joined tube body according to the above (1) or (2), wherein an outer crimp groove is formed at a position overlapping with the inner crimp groove on the outer surface of the outer metal tube, which is in contact with one end of the tube. is there.

(4)本発明は、上記(1)から(3)のいずれかに記載の接合管体を備える熱交換器である。   (4) The present invention is a heat exchanger provided with the junction tube according to any one of the above (1) to (3).

(5)本発明は、外側金属管に比べて低い引張強度の金属材料からなる内側金属管に内側かしめ加工用溝を形成する内側かしめ加工用溝形成工程と、前記内側かしめ加工用溝形成工程の後、前記外側金属管と前記内側金属管とを前記内側かしめ加工用溝が前記外側金属管の内面と重なる位置に配する配置工程と、前記外側金属管の外面のうち、前記内側かしめ加工用溝と重なる位置でかしめ溝を形成し、前記外側金属管と前記内側金属管とをかしめる加工を施すかしめ加工工程とを含む接合管体の製造方法である。   (5) In the present invention, an inner caulking groove forming process for forming an inner caulking groove in an inner metal pipe made of a metal material having a lower tensile strength than an outer metal pipe, and the inner caulking groove forming process Placing the outer metal pipe and the inner metal pipe at a position where the inner caulking groove overlaps the inner surface of the outer metal pipe, the inner caulking process among the outer surfaces of the outer metal pipe A caulking groove is formed in the position which overlaps with a gutter, and it is a manufacturing method of a joined pipe body including a caulking process which performs processing which caulks the outside metal pipe and the inside metal pipe.

(6)本発明は、前記外側金属管の外面上であって、前記配置工程で前記内側金属管と重ねたときに前記内側かしめ加工用溝と重なる位置に目印を表示する目印表示工程をさらに含み、前記かしめ加工工程は、前記目印にしたがって前記かしめ溝を形成する工程である、上記(5)に記載の接合管体の製造方法である。   (6) The present invention further includes a mark display step of displaying a mark on the outer surface of the outer metal pipe, at a position overlapping the inner crimp groove when overlapping the inner metal pipe in the disposing step. It is a manufacturing method of the joined tube body as described in said (5) which is a process of forming the said caulking groove | channel according to the said mark including the said caulking process process.

(7)本発明は、前記外側金属管の少なくとも一方の端部に、内径が前記内側金属管の外径と略同じである拡管部が形成されており、前記配置工程は、前記内側金属管を前記拡管部に挿入し、前記内側金属管の一端を前記拡管部の基端に突き当てる工程であり、前記かしめ加工工程は、前記拡管部の外面のうち、前記内側金属管の一端を前記拡管部の基端に突き当てたときに前記内側かしめ加工用溝と重なる位置でかしめ溝を形成し、前記外側金属管と前記内側金属管とをかしめる加工を施す工程である、上記(5)に記載の接合管体の製造方法である。   (7) In the present invention, at least one end of the outer metal pipe is formed with an expanded pipe portion whose inner diameter is substantially the same as the outer diameter of the inner metal pipe, and the arranging step includes the inner metal pipe And inserting one end of the inner metal pipe against the proximal end of the expanded pipe part, and the caulking step includes the one end of the inner metal pipe of the outer surface of the expanded pipe part. Forming a caulking groove at a position overlapping the inward caulking groove when abutting against the proximal end of the expanded portion, and caulking the outer metal pipe and the inner metal pipe; It is a manufacturing method of a junction tube body given in a.

(8)本発明は、前記配置工程に先立ち、前記外側金属管に対し、前記配置工程で前記内側金属管と重ねたときに前記内側かしめ加工用溝と重なる位置に外側かしめ加工用溝を形成する外側かしめ加工用溝形成工程をさらに含み、前記配置工程は、前記内側かしめ加工用溝と前記外側かしめ加工用溝とを重ねる工程であり、前記かしめ加工工程は、前記内側かしめ加工用溝と前記外側かしめ加工用溝とが重なる位置でかしめ溝を形成する工程である、上記(5)に記載の接合管体の製造方法である。   (8) In the present invention, prior to the disposing step, an outer crimping groove is formed in the outer metal tube at a position overlapping the inner crimping groove when overlapping the inner metal tube in the disposing step. The method further includes the step of forming an outer crimping groove, and the arranging step is a step of overlapping the inner crimping groove and the outer crimping groove, and the crimping step includes the inner crimping groove and the inner crimping groove. It is a manufacturing method of a joined tube body given in the above (5) which is a process of forming a caulking slot in a position which overlaps with a groove for the above-mentioned outside caulking.

(9)本発明は、前記外側金属管がステンレス鋼管であり、前記内側金属管が銅管である、上記(5)から(8)のいずれかに記載の接合管体の製造方法である。   (9) The present invention is the method for producing a joined pipe body according to any one of (5) to (8), wherein the outer metal pipe is a stainless steel pipe and the inner metal pipe is a copper pipe.

(10)本発明は、前記かしめ加工工程の後の前記内側金属管は、管径方向の深さが0.5mm以上である内側かしめ溝を有する、上記(5)から(9)のいずれかに記載の接合管体の製造方法である。   (10) The present invention relates to any one of the above (5) to (9), wherein the inner metal pipe after the caulking process has an inner caulking groove having a depth in a radial direction of 0.5 mm or more. It is a manufacturing method of the junction pipe body as described in these.

本発明によると、管内部を通る流体が高圧であっても管の変形を抑えることができ、かつ、高い接合強度を有する接合管体が得られる。また、引張強度の異なる金属管同士を接合しても接合部に割れが発生することがなく、接合管体を安定的に量産することができる。耐食性、耐圧性、伝熱性等が求められる熱交換器等の用途に適用できる。   According to the present invention, even when the fluid passing through the inside of the tube is at high pressure, deformation of the tube can be suppressed, and a joined tube having high bonding strength can be obtained. In addition, even when metal pipes having different tensile strengths are joined, no crack occurs in the joint, and the joined pipe can be stably mass-produced. It can be applied to applications such as a heat exchanger where corrosion resistance, pressure resistance, heat conductivity and the like are required.

本発明の接合管体を説明する図である。It is a figure explaining the joined tube body of the present invention. 本発明の製造方法における内側かしめ加工用溝形成工程を説明する図である。It is a figure explaining the groove | channel formation process for inside crimping in the manufacturing method of this invention. 図2の工程に続く内側かしめ加工用溝形成工程を説明する図である。It is a figure explaining the groove | channel formation process of the inside crimping process following the process of FIG. 本発明の製造方法における配置工程を説明する図である。It is a figure explaining the arrangement | positioning process in the manufacturing method of this invention. 本発明の製造方法におけるかしめ加工工程を説明する図である。It is a figure explaining the caulking process process in the manufacturing method of this invention. 本発明の製造方法における外側かしめ加工用溝形成工程を説明する図である。It is a figure explaining the groove | channel formation process for outside crimping in the manufacturing method of this invention. 図6の工程に続く外側かしめ加工用溝形成工程を説明する図である。It is a figure explaining the groove | channel formation process of the outside crimping process following the process of FIG. 実施例1に関して外側金属管の拡管加工を説明する図である。FIG. 8 is a view for explaining the process of expanding the outer metal pipe in relation to Example 1; 実施例1に関して外側金属管の外側かしめ加工用溝を説明する図である。It is a figure explaining the groove | channel for the outside crimping process of an outer side metal pipe regarding Example 1. FIG. 実施例1に関して内側金属管の内側かしめ加工用溝を説明する図である。It is a figure explaining the groove | channel for inside crimping of an inner side metal pipe regarding Example 1. FIG. 実施例1に関して内側金属管と外側金属管との挿入嵌合を説明する図である。FIG. 5 is a view for explaining insertion and fitting between an inner metal pipe and an outer metal pipe in relation to a first embodiment. 実施例1に関して外側金属管と内側金属管とのかしめ加工を説明する図である。It is a figure explaining the caulking process with an outer side metal pipe and an inner side metal pipe regarding Example 1. FIG. 比較例1に関して内側金属管と外側金属管との挿入嵌合を説明する図である。It is a figure explaining the insertion fitting with an inner side metal pipe | tube and an outer side metal pipe | tube regarding the comparative example 1. FIG. 引張試験において内側金属管(銅管)をチャックにより掴むために用いた冶具を説明する図である。It is a figure explaining the jig used in order to grasp an inner metal pipe (copper pipe) with a chuck in a tension test. 引張試験において外側金属管(ステンレス鋼管)をチャックにより掴むために用いた冶具を説明する図である。It is a figure explaining the jig used in order to grasp an outer side metal pipe (stainless steel pipe) with a chuck in a tension test. 実施例1に関して接合管体の断面形状を示す図である。FIG. 7 is a view showing a cross-sectional shape of a joined tubular body in Example 1; 比較例1に関して接合管体の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a joining pipe body regarding Comparative Example 1. FIG. 比較例1に関して接合管体の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a joining pipe body regarding Comparative Example 1. FIG. 実施例1に関して本発明の接合管体の変形挙動を説明する模式図である。It is a schematic diagram explaining the deformation | transformation behavior of the joining pipe body of this invention regarding Example 1. FIG. 比較例1に関して接合管体の変形挙動を説明する模式図である。It is a schematic diagram explaining the deformation | transformation behavior of a joining pipe body regarding the comparative example 1. FIG. 実施例2に関して外側金属管の拡管加工を説明する図である。It is a figure explaining the pipe-expansion processing of an outer side metal pipe regarding Example 2. FIG. 実施例2に関して外側金属管の外側かしめ加工用溝を説明する図である。It is a figure explaining the groove | channel for the outside crimping process of an outer side metal pipe regarding Example 2. FIG. 実施例2に関して内側金属管の内側かしめ加工用溝を説明する図である。It is a figure explaining the groove | channel for inside crimping of an inner side metal pipe regarding Example 2. FIG. 比較例2に関し、異種ステンレス鋼管の組合せでは溶接部で割れが生じることを示す写真である。It is a photograph which shows that a crack arises in a welding part in the combination of dissimilar stainless steel pipes regarding Comparative Example 2. FIG. 実施例2及び比較例2での引張試験の態様を説明する図である。It is a figure explaining the aspect of the tension test in Example 2 and Comparative Example 2. 実施例2及び比較例2での引張試験の結果を示す図である。It is a figure which shows the result of the tension test in Example 2 and Comparative Example 2. 実施例2に関して接合管体の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a joining tube body regarding Example 2. FIG. 比較例2に関して接合管体の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a joining tube body regarding comparative example 2. FIG. 比較例2に関して接合管体の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a joining tube body regarding comparative example 2. FIG. 実施例2に関して本発明の接合管体の変形挙動を説明する模式図である。It is a schematic diagram explaining the deformation | transformation behavior of the joining pipe body of this invention regarding Example 2. FIG. 比較例2に関して接合管体の変形挙動を説明する模式図である。It is a schematic diagram explaining the deformation | transformation behavior of a joining pipe body regarding the comparative example 2. FIG. 従来の製造方法を説明する図である。It is a figure explaining the conventional manufacturing method.

以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, although specific embodiments of the present invention will be described in detail, the present invention is not limited to the following embodiments in any way, and appropriate modifications may be made within the scope of the object of the present invention. can do.

<接合管体>
図1は、本発明に係る接合管体1を説明するための概略模式図である。接合管体1は、外側金属管2と、この外側金属管2の内側に挿入された内側金属管3とを備え、外側金属管2及び内側金属管3は、互いにかしめられて接合されている。そして、内側金属管3は、外側金属管に比べて低い引張強度の金属材料からなり、外面上に、管径方向の深さが0.5mm以上である内側かしめ溝31を有する。本明細書において、「引張強度」とは、外側金属管と内側金属管のそれぞれについて、JIS Z2241により規定される「引張強さ」をいうものとする。
<Joint tube>
FIG. 1 is a schematic view for explaining a joint tube 1 according to the present invention. The joint tube 1 includes an outer metal pipe 2 and an inner metal pipe 3 inserted inside the outer metal pipe 2. The outer metal pipe 2 and the inner metal pipe 3 are crimped to each other and joined. . The inner metal pipe 3 is made of a metal material having a lower tensile strength than the outer metal pipe, and has an inner caulking groove 31 having a depth in the radial direction of 0.5 mm or more on the outer surface. In the present specification, “tensile strength” refers to “tensile strength” defined by JIS Z2241 for each of the outer metal tube and the inner metal tube.

<外側金属管>
外側金属管2の材質は、内側金属管3に比べて高い引張強度を有するものであれば特に限定されるものでなく、容易に入手でき、屋外環境での耐食性に優れることから、外側金属管2の材質は、ステンレス鋼であることが好ましい。
<External metal pipe>
The material of the outer metal pipe 2 is not particularly limited as long as it has a higher tensile strength than the inner metal pipe 3, and it can be easily obtained and has excellent corrosion resistance in an outdoor environment. The material of 2 is preferably stainless steel.

外側金属管2の形状は特に限定されるものでないが、内側金属管3の一端が突き当たるまで内側金属管3を挿入し、基端22から所定の長さを計測するだけで、内側かしめ溝31と重なる位置を容易に特定できることから、外側金属管2の少なくとも一方の端部に、内径が内側金属管3の外径と略同じである拡管部2Cが形成されていることが好ましい。拡管部2Cが形成されている場合、拡管部2Cの基端22と、内側金属管3の一端32とが接しており、外側金属管2の外面のうち、内側かしめ溝31と重なる位置に外側かしめ溝21が形成されている。   The shape of the outer metal pipe 2 is not particularly limited, but the inner metal pipe 3 is inserted until one end of the inner metal pipe 3 abuts, and the inner caulking groove 31 is measured simply by measuring a predetermined length from the base end 22. It is preferable that at least one end of the outer metal pipe 2 be formed with an expanded pipe portion 2C whose inner diameter is substantially the same as the outer diameter of the inner metal pipe 3 because the overlapping position can be easily specified. When the expanded portion 2C is formed, the proximal end 22 of the expanded portion 2C is in contact with one end 32 of the inner metal pipe 3 and the outer surface of the outer metal pipe 2 is overlapped with the inner caulking groove 31. The caulking groove 21 is formed.

外側金属管2が拡管部2Cを有する場合、拡管部2Cの長手方向の長さは特に限定されるものでないが、拡管部2Cの長手方向の長さは10mm以上100mm以下であることが好ましく、20mm以上40mm以下であることがより好ましい。   When the outer metal pipe 2 has the expanded portion 2C, the length in the longitudinal direction of the expanded portion 2C is not particularly limited, but the length in the longitudinal direction of the expanded portion 2C is preferably 10 mm or more and 100 mm or less, More preferably, it is 20 mm or more and 40 mm or less.

外側金属管2の外管本体2Aと拡管部2Cとの間に形成される傾斜部2Bにおいて、外管本体2Aに対するテーパー角度θは特に限定されるものでないが、該テーパー角度θは10°以上80°以下であることが好ましく、30°以上60°以下であることがより好ましい。   The taper angle θ with respect to the outer pipe main body 2A is not particularly limited in the inclined portion 2B formed between the outer pipe main body 2A and the expanded pipe portion 2C of the outer metal pipe 2, but the taper angle θ is 10 ° or more The angle is preferably 80 ° or less, and more preferably 30 ° or more and 60 ° or less.

外管本体2Aの外径は特に限定されるものでないが、外管本体2Aの外径は4mm以上90mm以下であることが好ましく、10mm以上70mm以下であることがより好ましい。   The outer diameter of the outer tube main body 2A is not particularly limited, but the outer diameter of the outer tube main body 2A is preferably 4 mm or more and 90 mm or less, and more preferably 10 mm or more and 70 mm or less.

外管本体2Aの内径は特に限定されるものでないが、外管本体2Aの内径は3mm以上88mm以下であることが好ましく、8mm以上60mm以下であることがより好ましい。   The inner diameter of the outer tube main body 2A is not particularly limited, but the inner diameter of the outer tube main body 2A is preferably 3 mm or more and 88 mm or less, and more preferably 8 mm or more and 60 mm or less.

拡管部2Cの外径は特に限定されるものでないが、拡管部2Cの外径は6mm以上150mm以下であることが好ましく、15mm以上100mm以下であることがより好ましい。   The outer diameter of the expanded tube portion 2C is not particularly limited, but the outer diameter of the expanded tube portion 2C is preferably 6 mm or more and 150 mm or less, and more preferably 15 mm or more and 100 mm or less.

拡管部2Cの内径は、内側金属管3の外径と略同じであれば特に限定されるものでないが、拡管部2Cの内径は5mm以上140mm以下であることが好ましく、12mm以上90mm以下であることがより好ましい。   The inner diameter of the expanded portion 2C is not particularly limited as long as it is substantially the same as the outer diameter of the inner metal pipe 3, but the inner diameter of the expanded portion 2C is preferably 5 mm or more and 140 mm or less, and 12 mm or more and 90 mm or less Is more preferred.

外側金属管2の肉厚は特に限定されるものでないが、外側金属管2の肉厚は0.1mm以上10mm以下であることが好ましく、0.3mm以上3mm以下であることがより好ましい。   The thickness of the outer metal pipe 2 is not particularly limited, but the thickness of the outer metal pipe 2 is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.3 mm or more and 3 mm or less.

外側かしめ溝21の深さは特に限定されるものでないが、0.1mm以上1mm以下であることが好ましく、0.3mm以上0.5mm以下であることがより好ましい。外側かしめ溝21が浅すぎると、外側金属管2と内側金属管3とを十分なかしめ固定をすることができず、良好な接合強度を得られない可能性がある。外側かしめ溝21が深すぎると、外側金属管2の変形が過多になり、金属材料の加工硬化に起因して、外側金属管2の外側かしめ溝21が形成されたビード位置で割れを生じる可能性がある。   The depth of the outer caulking groove 21 is not particularly limited, but is preferably 0.1 mm or more and 1 mm or less, and more preferably 0.3 mm or more and 0.5 mm or less. If the outer caulking groove 21 is too shallow, the outer metal pipe 2 and the inner metal pipe 3 can not be caulked sufficiently and there is a possibility that a good bonding strength can not be obtained. If the outer crimped groove 21 is too deep, deformation of the outer metal tube 2 becomes excessive, and cracking may occur at the bead position where the outer crimped groove 21 of the outer metal tube 2 is formed due to work hardening of the metal material There is sex.

<内側金属管>
内側金属管3の材質は、外側金属管2に比べて低い引張強度を有するものであれば特に限定されるものでなく、銅、アルミニウム、及びこれらの合金等が挙げられる。屋外環境での耐食性、内側金属管3の管内を通過する冷媒ガスのガス圧に耐えられるだけの耐圧性、熱交換効率を高めるための伝熱性、及び配管同士の接合性に優れることから、内側金属管3の材質は、銅又は銅合金であることが好ましい。
<Inner metal pipe>
The material of the inner metal pipe 3 is not particularly limited as long as it has a tensile strength lower than that of the outer metal pipe 2, and copper, aluminum, and alloys of these may be mentioned. Corrosion resistance in an outdoor environment, pressure resistance to withstand the gas pressure of the refrigerant gas passing through the inner metal pipe 3, heat conductivity for enhancing heat exchange efficiency, and jointability between pipes, the inner side The material of the metal tube 3 is preferably copper or a copper alloy.

内側金属管3の形状は特に限定されるものでなく、図示は省略するが、外側金属管2への挿入を行いやすくするため、少なくとも一方の端部において、外径が外側金属管2の内径と略同じである縮径部が形成されたものであってもよい。   The shape of the inner metal pipe 3 is not particularly limited, and although not shown, the outer diameter of the inner metal pipe 2 is at least at one end to facilitate insertion into the outer metal pipe 2. The reduced diameter portion which is substantially the same as that in the above may be formed.

内側金属管3の外径は、外側金属管2と重なる重なり部における外側金属管2の内径と略同じであれば特に限定されるものでないが、内側金属管3の外径は4mm以上139mm以下であることが好ましく、11mm以上89mm以下であることがより好ましい。   The outer diameter of the inner metal tube 3 is not particularly limited as long as it is substantially the same as the inner diameter of the outer metal tube 2 in the overlapping portion overlapping the outer metal tube 2, but the outer diameter of the inner metal tube 3 is 4 mm or more and 139 mm or less Is preferably, and more preferably 11 mm or more and 89 mm or less.

内側金属管3の内径は、特に限定されるものでないが、内側金属管3の内径は3mm以上137mm以下であることが好ましく、8mm以上60mm以下であることがより好ましい。   The inner diameter of the inner metal tube 3 is not particularly limited, but the inner diameter of the inner metal tube 3 is preferably 3 mm or more and 137 mm or less, and more preferably 8 mm or more and 60 mm or less.

内側金属管3の肉厚は、特に限定されるものでないが、内側金属管3の肉厚は0.1mm以上10mm以下であることが好ましく、0.3mm以上3mm以下であることがより好ましい。   The thickness of the inner metal tube 3 is not particularly limited, but the thickness of the inner metal tube 3 is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.3 mm or more and 3 mm or less.

内側金属管3は、外面上に内側かしめ溝31を有する。内側かしめ溝31の管径方向の深さは、0.5mm以上であり、0.6mm以上であることが好ましく、0.8mm以上であることがより好ましい。内側かしめ溝31の管径方向の深さが浅過ぎ0.5mm未満であると、外側金属管2と内側金属管3とを十分にかしめ固定することができず、良好な接合強度を得られない可能性があるため、好ましくない。   The inner metal tube 3 has an inner crimp groove 31 on the outer surface. The depth of the inner crimp groove 31 in the pipe radial direction is 0.5 mm or more, preferably 0.6 mm or more, and more preferably 0.8 mm or more. If the depth in the radial direction of the inner caulking groove 31 is too shallow and less than 0.5 mm, the outer metal pipe 2 and the inner metal pipe 3 can not be caulked sufficiently sufficiently, and good joint strength is obtained. It is not preferable because there is no possibility.

内側かしめ溝31の深さの上限は、特に限定されないが、溝が深すぎると、外側金属管2の変形量が過多になり、内側かしめ溝31が形成されたビード位置での割れを招く可能性がある。そのため、内側かしめ溝31の深さは、5mm以下であることが好ましく、4mm以下であることがより好ましい。   The upper limit of the depth of the inner caulking groove 31 is not particularly limited, but if the groove is too deep, the amount of deformation of the outer metal pipe 2 becomes excessive, which may lead to cracking at the bead position where the inner caulking groove 31 is formed. There is sex. Therefore, the depth of the inner caulking groove 31 is preferably 5 mm or less, and more preferably 4 mm or less.

ところで、以下の製造方法で説明するとおり、本発明の接合管体1は、あらかじめ、内側金属管3に内側かしめ加工用溝(図3の符号31’)を形成されている。次いで、外側金属管2と内側金属管3とを、内側かしめ加工用溝31’が外側金属管2の内面と重なる位置に配した後、外側金属管2の外面のうち、内側かしめ加工用溝31’と重なる位置でかしめ溝を形成し、外側金属管2と内側金属管3とをかしめる加工を施すことによって両方の金属管同士が接合されたものである。
それに対し、従来のように、単に外側金属管2と内側金属管3とを挿入嵌合し、かしめ加工を施すと、かしめ工具と内側金属管3とで挟持されて拘束状態にある外側金属管3は、圧延加工を受けるような変形挙動によって板厚減少が生じる。かしめ溝21が深くなりすぎると、外側金属管2のビード位置で割れを生じる場合がある。そのため、従来の接合管体、例えば、外側金属管と、この外側金属管に比べて低い引張強度の金属材料からなり外側金属管の内側に挿入された内側金属管とが、かしめられて接合した接合管体は、内側かしめ溝の深さが0.5mm未満のように浅い凹溝を呈することになる。
By the way, as demonstrated by the following manufacturing method, the joining pipe body 1 of this invention has formed the groove | channel (code | symbol 31 'of FIG. 3) of an inside crimping process in the inner metal pipe 3 previously. Next, after the outer metal pipe 2 and the inner metal pipe 3 are disposed at a position where the inner caulking groove 31 ′ overlaps the inner surface of the outer metal pipe 2, the inner caulking groove among the outer surfaces of the outer metal pipe 2 Both metal pipes are joined together by forming a caulking groove at a position overlapping with 31 'and performing a process of caulking the outer metal pipe 2 and the inner metal pipe 3.
On the other hand, when the outer metal pipe 2 and the inner metal pipe 3 are simply inserted and fitted and caulking is performed as in the conventional case, the outer metal pipe held in a constrained state by the caulking tool and the inner metal pipe 3 In No. 3, the reduction in thickness occurs due to the deformation behavior to be subjected to the rolling process. If the caulking groove 21 becomes too deep, cracking may occur at the bead position of the outer metal pipe 2. Therefore, a conventional joint tube, for example, an outer metal pipe and an inner metal pipe made of a metal material having a lower tensile strength than the outer metal pipe and inserted inside the outer metal pipe are crimped and joined. The joined tube will exhibit a shallow groove such that the depth of the inner crimp groove is less than 0.5 mm.

<熱交換器>
本発明の熱交換器は、上記の接合管体1を備えるので、耐食性、耐圧性、伝熱性及び接合性に優れた熱交換器を提供できる。
<Heat exchanger>
Since the heat exchanger of the present invention is provided with the above-mentioned joined tube 1, it can provide a heat exchanger excellent in corrosion resistance, pressure resistance, heat conductivity and joining property.

<接合管体の製造方法>
以下、図2〜図7を参照しながら、本発明に係る接合管体1の製造方法について説明する。本発明に係る製造方法は、外側金属管2に比べて低い引張強度の金属材料からなる内側金属管3に内側かしめ加工用溝31’を形成する内側かしめ加工用溝形成工程(図2及び図3)と、この内側かしめ加工用溝形成工程の後、外側金属管2と内側金属管3とを内側かしめ加工用溝31’が外側金属管2の内面と重なる位置に配する配置工程(図4)と、外側金属管2の外面のうち、内側かしめ加工用溝31’と重なる位置Pでかしめ溝(図1の外側かしめ溝21及び内側かしめ溝31)を形成し、外側金属管2と内側金属管3とをかしめる加工を施すかしめ加工工程(図5)とを含む。
<Method of manufacturing joined tube>
Hereinafter, with reference to FIGS. 2-7, the manufacturing method of the joining pipe body 1 which concerns on this invention is demonstrated. In the manufacturing method according to the present invention, an inner caulking groove forming step of forming an inner caulking groove 31 ′ in the inner metal pipe 3 made of a metal material having a lower tensile strength than the outer metal pipe 2 (FIGS. 3) and an arrangement step of arranging the outer metal pipe 2 and the inner metal pipe 3 at the position where the inner caulking groove 31 ′ overlaps the inner surface of the outer metal pipe 2 after the inner caulking groove forming process (FIG. 4) and the outer metal pipe 2 at a position P overlapping the inner caulking groove 31 ', forming a caulking groove (the outer caulking groove 21 and the inner caulking groove 31 in FIG. 1) And a caulking process (FIG. 5) for caulking the inner metal pipe 3.

<内側かしめ加工用溝形成工程>
図2及び図3は、上記内側かしめ加工用溝形成工程を説明するための概略断面図である。内側かしめ加工用溝形成工程は、内側金属管3に内側かしめ加工用溝31’を形成する工程である。
<Step of forming grooves for internal caulking>
FIG.2 and FIG.3 is a schematic sectional drawing for demonstrating the said groove | channel formation process for inside crimping. The inner crimping groove forming step is a step of forming the inner crimping groove 31 ′ in the inner metal pipe 3.

内側かしめ加工用溝31’を形成する手法は、特に限定されないが、例えば、転造法等が挙げられる。転造法は、ロール支軸40に内側金属管3を載置し、刃先を丸くした刃50を内側金属管3の外面に押し当てて、内側金属管3を管軸方向に回転させながら内側かしめ加工用溝31’を形成する手法である。   Although the method in particular of forming the groove | channel 31 'for an inside crimping process is not limited, For example, the rolling method etc. are mentioned. In the rolling method, the inner metal pipe 3 is placed on the roll support shaft 40, and the blade 50 whose edge is rounded is pressed against the outer surface of the inner metal pipe 3 to rotate the inner metal pipe 3 in the axial direction. This is a method of forming the caulking groove 31 '.

内側かしめ加工用溝31’の管径方向の深さは、特に限定されるものでないが、0.5mm以上5mm以下であることが好ましく、0.8mm以上2mm以下であることがより好ましい。内側かしめ加工用溝31’が浅すぎると、外側金属管2と内側金属管3とを十分にかしめ固定することができず、良好な接合強度を得られない可能性がある。内側かしめ加工用溝31’が深すぎると、外側金属管2のビード位置で割れを生じる可能性がある。   The depth in the tube radial direction of the inner crimping groove 31 'is not particularly limited, but is preferably 0.5 mm or more and 5 mm or less, and more preferably 0.8 mm or more and 2 mm or less. If the inner caulking groove 31 'is too shallow, the outer metal pipe 2 and the inner metal pipe 3 can not be caulked sufficiently and there is a possibility that a good bonding strength can not be obtained. If the inner crimping groove 31 ′ is too deep, cracking may occur at the bead position of the outer metal pipe 2.

内側かしめ加工用溝31’を形成する位置は、特に限定されるものでないが、内側金属管3の端部から5mm以上95mm以下の範囲内にあることが好ましく、10mm以上90mm以下の範囲内にあることがより好ましい。   The position for forming the inner caulking groove 31 ′ is not particularly limited, but is preferably in the range of 5 mm to 95 mm from the end of the inner metal pipe 3, and is in the range of 10 mm to 90 mm. It is more preferable that

<配置工程及びかしめ加工工程>
図4は、上記配置工程を説明するための概略模式図である。配置工程は、内側かしめ加工用溝形成工程の後、外側金属管2と内側金属管3とを内側かしめ加工用溝31’が外側金属管2の内面と重なる位置に配する工程である。
<Placement process and caulking process>
FIG. 4 is a schematic view for explaining the arrangement step. The disposing step is a step of disposing the outer metal pipe 2 and the inner metal pipe 3 at a position where the inward crimping groove 31 ′ overlaps the inner surface of the outer metal pipe 2 after the inward crimping groove forming process.

図5は、上記かしめ加工工程を説明するための概略模式図である。かしめ加工工程は、外側金属管2の外面のうち、内側かしめ加工用溝31’と重なる位置Pでかしめ溝(図1の外側かしめ溝21及び内側かしめ溝31)を形成し、外側金属管2と内側金属管3とをかしめる加工を施す工程である。   FIG. 5 is a schematic view for explaining the above-mentioned caulking process. In the caulking process, a caulking groove (the outer caulking groove 21 and the inner caulking groove 31 in FIG. 1) is formed at a position P of the outer surface of the outer metal pipe 2 overlapping with the inner caulking groove 31 ′. And the inner metal pipe 3 are caulked.

外側金属管2と内側金属管3とをかしめる加工を施す手法として、内側かしめ加工用溝31’を形成する手法と同様の手法が挙げられる。   As a method of caulking the outer metal pipe 2 and the inner metal pipe 3, there is a method similar to the method of forming the inner caulking groove 31 ′.

ところで、本発明では、かしめ加工工程において外側金属管2と内側金属管3とをかしめる加工を施す際、外側金属管2の外面のうち、内側かしめ加工用溝31’と重なる位置Pでかしめ溝を形成することから、位置Pの場所を具体的に特定できるようにする必要がある。このことから、配置工程及びかしめ加工工程の具体的態様として、複数種類の態様が挙げられる。   In the present invention, when the outer metal pipe 2 and the inner metal pipe 3 are caulked in the caulking process, the outer metal pipe 2 is caulked at a position P overlapping the inner caulking groove 31 ′. Since the groove is formed, it is necessary to be able to specify the position of the position P specifically. From this, a plurality of types of modes can be mentioned as specific modes of the placement process and the caulking process.

(第1の態様)
第1の態様は、外側金属管2の外面上であって、配置工程で内側金属管と重ねたときに内側かしめ加工用溝31’と重なる位置に目印を表示する目印表示工程をさらに含む態様である。この態様では、位置Pの場所を目印から特定できるため、かしめ加工工程では、上記目印にしたがってかしめ溝を形成すればよい。
(First aspect)
The first aspect further includes a mark display step of displaying a mark on the outer surface of the outer metal pipe 2 at a position overlapping with the inner crimping groove 31 ′ when overlapping with the inner metal pipe in the arrangement step. It is. In this aspect, since the place of the position P can be specified from the mark, in the caulking process, the caulking groove may be formed according to the mark.

目印を表示する手法は、塗布、印刷またはシール貼付等の手段により位置Pにマーキングして位置Pの場所を特定できる態様であれば、特に限定されるものでない。   The method of displaying the mark is not particularly limited as long as it is an aspect in which the position P can be specified by marking the position P by means such as application, printing, or seal application.

(第2の態様)
第2の態様は、外側金属管2として、少なくとも一方の端部に、内径が内側金属管3の外径と略同じである拡管部2Cが形成されたものを用いる態様である。この態様では、配置工程において、内側金属管3を拡管部2Cに挿入し、内側金属管3の一端を拡管部2Cの基端に突き当てることで、内側金属管3を一意の位置に配置できる。内側金属管3の内側かしめ加工用溝31’の位置は、あらかじめ計測して特定できるので、外側金属管2において拡管部2Cの外面のうち、内側金属管3の一端を拡管部2Cの基端22に突き当てたときに内側かしめ加工用溝31’と重なる位置Pも容易に特定できる。そのため、かしめ加工工程では、位置Pでかしめ溝を形成し、外側金属管2と内側金属管3とをかしめる加工を施せばよい。
(Second aspect)
The second mode is a mode using an outer metal pipe 2 in which an expanded pipe portion 2C whose inner diameter is substantially the same as the outer diameter of the inner metal pipe 3 is formed at at least one end. In this aspect, the inner metal pipe 3 can be arranged at a unique position by inserting the inner metal pipe 3 into the expanded pipe portion 2C and abutting one end of the inner metal pipe 3 against the proximal end of the expanded pipe portion 2C in the arranging step. . Since the position of the inner caulking groove 31 'of the inner metal pipe 3 can be measured and specified in advance, one end of the inner metal pipe 3 in the outer surface of the expanded pipe portion 2C in the outer metal pipe 2 is the proximal end of the expanded pipe portion 2C. The position P overlapping with the inward caulking groove 31 'when abutting against 22 can also be easily identified. Therefore, in the caulking process, a caulking groove may be formed at the position P, and the outer metal pipe 2 and the inner metal pipe 3 may be caulked.

(第3の態様)
図6及び図7は、第3の態様を説明するための概略模式図である。第3の態様は、配置工程に先立ち、外側金属管2に対し、配置工程で内側金属管3と重ねたときに内側かしめ加工用溝31’と重なる位置に外側かしめ加工用溝21’を形成する外側かしめ加工用溝形成工程をさらに含む態様である(図6)。この態様では、配置工程において、外側金属管2内に内側金属管3を挿入して、内側かしめ加工用溝31’と外側かしめ加工用溝21’とが重ねる位置に到達すると、両者の溝が確実に係合する。そのため、かしめ加工工程では、内側かしめ加工用溝31’と外側かしめ加工用溝21’とが重なる位置Pでかしめ溝を形成すればよい(図7)。
(Third aspect)
6 and 7 are schematic views for explaining the third aspect. In the third aspect, prior to the placement step, the outer metal tube 2 is formed with the outer crimping groove 21 ′ at a position overlapping the inner crimping groove 31 ′ when overlapping the inner metal tube 3 in the placement step. It is an aspect further including a groove forming step for forming an outer crimping groove (FIG. 6). In this embodiment, when the inner metal pipe 3 is inserted into the outer metal pipe 2 in the arranging step and the groove for the inner caulking 31 'and the groove for the outer caulking 21' reach the overlapping position, the both grooves are placed. Engage securely. Therefore, in the caulking process, the caulking groove may be formed at a position P where the inward caulking groove 31 ′ and the outer caulking groove 21 ′ overlap (FIG. 7).

外側かしめ加工用溝21’を形成する手法として、内側かしめ加工用溝31’を形成する手法と同様の手法が挙げられる。   A method similar to the method of forming the inside crimping groove 31 'may be mentioned as a method of forming the outside crimping groove 21'.

外側かしめ加工用溝21’の管径方向の深さは、特に限定されるものでないが、0.5mm以上10mm以下であることが好ましく、1mm以上5mm以下であることがより好ましい。外側かしめ加工用溝21’が浅すぎると、外側金属管2と内側金属管3との位置合わせの役割をなさない可能性がある。外側かしめ加工用溝21’が深すぎると、内側金属管3を外側金属管2に嵌め込めない可能性がある。   The depth in the tube radial direction of the outer crimping groove 21 'is not particularly limited, but is preferably 0.5 mm or more and 10 mm or less, and more preferably 1 mm or more and 5 mm or less. If the outer caulking groove 21 'is too shallow, the outer metal pipe 2 and the inner metal pipe 3 may not play a role in alignment. If the outer crimping groove 21 ′ is too deep, the inner metal pipe 3 may not fit into the outer metal pipe 2.

上記第1から第3の態様は、位置Pの場所を具体的に特定できるようにするための例であり、本発明は、これらの態様に何ら限定されるものではない。また、これら第1から第3の態様は、いずれか一の態様を選択してもよいし、複数の態様を選択してもよい。   The first to third aspects are examples for specifically specifying the position of the position P, and the present invention is not limited to these aspects. Moreover, any of the first to third aspects may be selected, or a plurality of aspects may be selected.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

<試験例1>
〔実施例1〕
外側金属管2として、外径32.0mm、板厚1.2mm、長さ100mmのSUS304のステンレス鋼管を用いた。内側金属管3として、外径32.5mm、板厚2.3mm、長さ100mmの銅管を用いた。外側金属管の引張強度は672N/mm、内側金属管の引張強度は210N/mmであった。
<Test Example 1>
Example 1
As the outer metal pipe 2, a SUS304 stainless steel pipe having an outer diameter of 32.0 mm, a plate thickness of 1.2 mm, and a length of 100 mm was used. As the inner metal pipe 3, a copper pipe having an outer diameter of 32.5 mm, a plate thickness of 2.3 mm, and a length of 100 mm was used. The tensile strength of the outer metal pipe was 672 N / mm 2 , and the tensile strength of the inner metal pipe was 210 N / mm 2 .

上述した第3の態様により接合管体を製造した。まず、図8に示すように、外側金属管2の一端から30mmまでの箇所を、外径33.0mm、テーパー角度30°を有する金型でプレスし、拡管加工した。続いて、転造法を用いて、図9に示すように、拡管部2Cの基端22から20mmの位置に、全周にわたって深さ0.2mmの外側かしめ加工用溝21’を設けた。   A joined tube was manufactured according to the third aspect described above. First, as shown in FIG. 8, a portion from the one end of the outer metal pipe 2 to 30 mm was pressed with a die having an outer diameter of 33.0 mm and a taper angle of 30 ° to perform pipe expansion processing. Subsequently, using a rolling method, as shown in FIG. 9, an outer caulking groove 21 'having a depth of 0.2 mm was provided over the entire circumference at a position of 20 mm from the proximal end 22 of the expanded tube portion 2C.

続いて、転造法を用いて、図10に示すように、内側金属管3の一端から20mmの位置に、全周にわたって深さ0.8mmの内側かしめ加工用溝31’を設けた。   Subsequently, using a rolling method, as shown in FIG. 10, an inner caulking groove 31 ′ having a depth of 0.8 mm was provided over the entire circumference at a position of 20 mm from one end of the inner metal pipe 3.

続いて、図11に示すように、内側金属管3を外側金属管2の拡管部2Cに挿入し、外側かしめ加工用溝21’と内側かしめ加工用溝31’とが重なり合う位置に到達すると、両者の溝は確実に係合した。そして、図12に示すように、外側かしめ加工用溝21’に刃先を丸くした刃50を押し当て、外側金属管2と内側金属管3との接続体を管軸方向に回転させながら、外側金属管3のかしめ溝における外径が31mmになるまでかしめ溝を形成することで、外側金属管2と内側金属管3とをかしめる加工を施して、実施例1に係る接合管体1を得た。   Subsequently, as shown in FIG. 11, when the inner metal pipe 3 is inserted into the expanded pipe portion 2C of the outer metal pipe 2 and reaches the overlapping position of the outer crimping groove 21 ′ and the inner crimping groove 31 ′, The two grooves were securely engaged. Then, as shown in FIG. 12, the blade 50 having a rounded cutting edge is pressed against the groove 21 'for outside crimping, and the connection of the outer metal pipe 2 and the inner metal pipe 3 is rotated in the axial direction of the pipe. By forming a caulking groove until the outer diameter in the caulking groove of the metal pipe 3 becomes 31 mm, the outer metal pipe 2 and the inner metal pipe 3 are caulked to form the joined pipe body 1 according to the first embodiment. Obtained.

〔比較例1〕
外側金属管及び内側金属管として、実施例1と同じステンレス鋼管及び銅管を用いた。
Comparative Example 1
The same stainless steel pipe and copper pipe as in Example 1 were used as the outer metal pipe and the inner metal pipe.

まず、図8に示すように、外側金属管2の一端から30mmまでの箇所を、外径33.0mm、テーパー角度30°を有する金型でプレスし、拡管加工した。   First, as shown in FIG. 8, a portion from the one end of the outer metal pipe 2 to 30 mm was pressed with a die having an outer diameter of 33.0 mm and a taper angle of 30 ° to perform pipe expansion processing.

続いて、図13に示すように、内側金属管3を外側金属管2の拡管部に挿入し、内側金属管3の一端を拡管部の基端に突き当てた。そして、拡管部2Cの基端から20mmの位置に刃先を丸くした刃50を押し当て、外側金属管2と内側金属管3との接続体を管軸方向に回転させながら、外側金属管3の外径が31mmになるまでかしめ溝を形成することで、外側金属管2と内側金属管3とをかしめる加工を施して、比較例1に係る接合管体60を得た。   Subsequently, as shown in FIG. 13, the inner metal pipe 3 was inserted into the expanded pipe portion of the outer metal pipe 2, and one end of the inner metal pipe 3 was abutted against the proximal end of the expanded pipe portion. Then, the blade 50 having a rounded cutting edge is pressed at a position of 20 mm from the base end of the expanded tube portion 2C, and the connection of the outer metal tube 2 and the inner metal tube 3 is rotated in the tube axial direction. By forming a caulking groove until the outer diameter becomes 31 mm, a process of caulking the outer metal pipe 2 and the inner metal pipe 3 is performed to obtain a joined pipe body 60 according to Comparative Example 1.

〔評価〕
接合管体の接合強度を評価するため、実施例1と比較例1で製作した接合管体(長さ約170mm)のそれぞれについて引張試験を行った。接合管体のかしめ溝が引張試験機の2つのチャックのほぼ中央となるように配置した。また、引張試験中に接合管体が延びながら楕円形に潰れるのを防止するため、図14及び図15に示す冶具を使用した。図14は、内側金属管3(銅管)を掴むために用いた冶具であり、φ27.8mmの円筒形の曲面を内側金属管3の内面側に差込み、φ32.0mmの円筒形の曲面をチャックで掴んだ。図15は、外側金属管2(ステンレス鋼管)を掴むために用いた冶具であり、φ29.5mmの円筒形の曲面を外側金属管2の内面側に差込み、φ32.0mmの円筒形の曲面をチャックで掴んだ。引張速度は10mm/分とし、荷重−ストローク曲線を計測した。実施例1、比較例1とも、かしめ部の破断時に、荷重がピーク値に達した。このピーク値から接合強度を得た。
[Evaluation]
In order to evaluate the joint strength of the joined tubular body, a tensile test was performed on each of the joined tubular bodies (about 170 mm in length) manufactured in Example 1 and Comparative Example 1. The caulking groove of the joint tube was placed approximately at the center of the two chucks of the tensile tester. In addition, in order to prevent the joint tube from collapsing into an oval while extending during the tensile test, a jig shown in FIGS. 14 and 15 was used. FIG. 14 shows a jig used to hold the inner metal pipe 3 (copper pipe), and a cylindrical curved surface of φ27.8 mm is inserted into the inner surface side of the inner metal pipe 3, and a cylindrical curved surface of φ32.0 mm is I grabbed it with a chuck. FIG. 15 shows a jig used to hold the outer metal pipe 2 (stainless steel pipe), and a cylindrical curved surface of φ29.5 mm is inserted into the inner surface side of the outer metal pipe 2, and the cylindrical curved surface of φ32.0 mm is I grabbed it with a chuck. The tensile speed was 10 mm / min, and a load-stroke curve was measured. In both Example 1 and Comparative Example 1, the load reached the peak value at the time of breakage of the crimped portion. The junction strength was obtained from this peak value.

実施例1の接合管体1は、接合強度が17.32kNであり、比較例1に係る接合管体は、接合強度が15.04kNであった。実施例1の接合管体1は、比較例1の接合管体60に比べて、接合強度が約13%も向上した。このように、実施例1では、内側金属管の外面上に管径方向の深さが0.5mm以上の内側かしめ溝を有することから、外側金属管とのかしめ加工により良好な接合強度を有する接続管体が得られた。また、ビード位置に割れ等の欠陥が生じることなく、かしめ加工を施すことができた。   The joint pipe 1 of Example 1 had a joint strength of 17.32 kN, and the joint pipe according to Comparative Example 1 had a joint strength of 15.04 kN. As compared with the joined tubular body 60 of Comparative Example 1, the joined tubular body 1 of Example 1 is improved in joining strength by about 13%. Thus, in Example 1, since the inner caulking groove having a depth in the radial direction of 0.5 mm or more is provided on the outer surface of the inner metal pipe, caulking with the outer metal pipe has a good bonding strength. A connecting tube was obtained. In addition, it was possible to apply caulking without causing defects such as cracking at the bead position.

上記の実施例1では、第3の態様による接合方法を用いたが、第1の態様または第2の態様によっても、同様に接合強度の向上した接合管体を得られた。内側かしめ加工用溝を形成した内側金属管と、外側金属管とを重ねて、外側金属管の外面に前記内側かしめ加工用溝と重なる位置でかしめ溝を形成するように、両者の金属管をかしめる加工を施すことによって、接合強度に優れた接合管体を製造することができた。   In Example 1 described above, the joining method according to the third aspect was used, but a junction tube having an improved joining strength was also obtained by the first aspect or the second aspect. In order to form a caulking groove on the outer metal pipe at the position where it overlaps with the inner caulking groove, the metal pipe is formed by overlapping the inner metal pipe formed with the inner caulking groove and the outer metal pipe. By applying the caulking process, it was possible to manufacture a jointed pipe excellent in joint strength.

本発明で接合強度が向上した理由を考察するため、実施例1及び比較例1に係る接合管体1及び60において、かしめ溝を含む断面形状を写真撮影した(倍率:10倍)。図16は、その写真に基づいて、実施例1に係る接合管体1の断面形状を示す模式図であり、図17は、同様に、比較例1に係る接合管体60の断面形状を示す模式図であり、図18は、図17に続く模式図である。   In order to consider the reason why the bonding strength is improved in the present invention, the cross-sectional shape including the caulking groove was photographed in the bonding tube 1 and 60 according to Example 1 and Comparative Example 1 (magnification: 10 times). FIG. 16 is a schematic view showing the cross-sectional shape of the joined tubular body 1 according to the first embodiment based on the photograph, and FIG. 17 similarly shows the cross-sectional shape of the joined tubular body 60 according to the comparative example 1. It is a schematic diagram, FIG. 18 is a schematic diagram following FIG.

図16と図17とを比べると、実施例1に係る接合管体1(図16)は、内側金属管3の外面上に形成されている内側かしめ溝31の深さが相対的に深い。一方、比較例1に係る接合管体60(図17)は、内側金属管3の外面上に形成されている内側かしめ溝31’の深さが相対的に浅い。このことから、比較例1に係る接合管体60は、内側金属管3の内側かしめ溝36の深さが浅いため、図18に示すように、比較的早い段階で外側金属管2が破断したものと考えられる。   When FIG. 16 and FIG. 17 are compared, the depth of the inner caulking groove 31 formed on the outer surface of the inner metal pipe 3 is relatively deep in the joined tubular body 1 (FIG. 16) according to the first embodiment. On the other hand, in the joined pipe body 60 (FIG. 17) according to Comparative Example 1, the depth of the inner caulking groove 31 ′ formed on the outer surface of the inner metal pipe 3 is relatively shallow. From this, in the joined pipe body 60 according to Comparative Example 1, since the depth of the inner caulking groove 36 of the inner metal pipe 3 is shallow, as shown in FIG. It is considered to be a thing.

図19は、実施例1に係る接合管体1の変形挙動を説明するための模式図であり、図20は、比較例1に係る接合管体60の変形挙動を説明するための模式図である。図19に示すように、実施例1に係る接合管体1において、外側金属管2のかしめ加工を受ける部位は、内側金属管3の内側かしめ加工用溝31との間に空隙があり、かしめ工具と内側金属管3との間で挟持された拘束状態になく、板厚方向にはかしめ工具による圧縮力(F1)だけを受ける。そのため、かしめ加工時の応力状態としては、張り出し加工よりも曲げ加工の割合が大きくなり、すなわち、外側金属管2は、かしめ加工時には、内側かしめ加工用溝31内で折り曲げ加工を受けるような変形挙動が可能となる。その結果、実施例1の接合管体1では、板厚減少が抑制されたものと考えられる。   FIG. 19 is a schematic view for explaining the deformation behavior of the joined tubular body 1 according to the first embodiment, and FIG. 20 is a schematic view for explaining the deformation behavior of the joined tubular body 60 according to the comparative example 1. is there. As shown in FIG. 19, in the joined tube 1 according to the first embodiment, the portion of the outer metal tube 2 to be crimped has an air gap between itself and the inner crimp groove 31 of the inner metal tube 3. It is not in a constrained state held between the tool and the inner metal pipe 3, and receives only the compression force (F1) by the caulking tool in the thickness direction. Therefore, as the stress state at the time of caulking, the rate of bending is larger than that at the overhanging, that is, the outer metal pipe 2 is deformed so as to be subjected to bending in the inner caulking groove 31 at the time of caulking. Behavior is possible. As a result, in the joined tubular body 1 of the first embodiment, it is considered that the reduction in thickness is suppressed.

それに対し、比較例1に係る接合管体60では、図20に示すように、外側金属管2は、かしめ工具と内側金属管3との間で挟持された拘束状態にあるので、板厚方向にはかしめ工具による圧縮力(F1)と、内側金属管3から受ける圧縮力(F2)との総和が加わり、かしめ加工時の応力状態としては、張出し加工の割合が大きくなる。そのため、外側金属管2は、圧延のような変形挙動を示すことより、大きな板厚減少が生じたものと考えられる。   On the other hand, in the joined pipe body 60 according to Comparative Example 1, as shown in FIG. 20, the outer metal pipe 2 is in a constrained state held between the caulking tool and the inner metal pipe 3, so the plate thickness direction In addition, the sum of the compression force (F1) by the caulking tool and the compression force (F2) received from the inner metal pipe 3 is added, and as a stress state at the time of the caulking process, the ratio of the overhanging process becomes large. Therefore, the outer metal pipe 2 is considered to have a large thickness reduction due to the deformation behavior like rolling.

<試験例2>
〔実施例2〕
次に、供試材として、引張強度が異なる複数の金属管を用いた。表1に示すとおり、供試材は、ステンレス鋼管A〜C(SUS鋼管A〜C)、銅管(Cu管)及びアルミニウム管(Al管)の5種類である。これらの金属管の引張強度は、SUS鋼管Aが最も大きく、次にSUS鋼管Bが大きく、次にSUS鋼管Cが大きく、次にCu管が大きい。そして、Al管の引張強度が最も小さい。また、これらの金属管の外径は12.7mmであり、長さは200mmである。SUS鋼管B(SUS304)、Cu管には、実施例1の金属管とは別の市販材を用いた。
Test Example 2
Example 2
Next, a plurality of metal tubes having different tensile strengths were used as test materials. As shown in Table 1, the test materials are five types of stainless steel pipes A to C (SUS steel pipes A to C), a copper pipe (Cu pipe) and an aluminum pipe (Al pipe). The tensile strength of these metal pipes is the largest in SUS steel pipe A, the second largest in SUS steel pipe B, the second largest in SUS steel pipe C, and the second largest in Cu pipe. And, the tensile strength of the Al pipe is the smallest. Moreover, the outer diameter of these metal tubes is 12.7 mm, and the length is 200 mm. For the SUS steel pipe B (SUS 304) and the Cu pipe, a commercially available material different from the metal pipe of Example 1 was used.

そして、外側金属管2及び内側金属管3の組合せは、表2に示すとおりとした。
The combination of the outer metal pipe 2 and the inner metal pipe 3 was as shown in Table 2.

上述した第3の態様により接合管体を製造した。まず、図21に示すように、外側金属管2の一端から30mmまでの箇所を、外径12.9mm、テーパー角度30°を有する金型でプレスし、拡管加工した。続いて、転造法を用いて、図22に示すように、拡管部2Cの基端22から20mmの位置に、全周にわたって深さ0.2mmの外側かしめ加工用溝21’を設けた。   A joined tube was manufactured according to the third aspect described above. First, as shown in FIG. 21, a portion from the one end of the outer metal pipe 2 to 30 mm was pressed by a die having an outer diameter of 12.9 mm and a taper angle of 30 ° to perform pipe expansion processing. Subsequently, using a rolling method, as shown in FIG. 22, an outer caulking groove 21 'having a depth of 0.2 mm was provided over the entire circumference at a position of 20 mm from the proximal end 22 of the expanded portion 2C.

続いて、転造法を用いて、図22に示すように、内側金属管3の一端から20mmの位置に、全周にわたって深さ0.5mmの内側かしめ加工用溝31’を設けた。   Subsequently, using a rolling method, as shown in FIG. 22, an inner caulking groove 31 ′ having a depth of 0.5 mm was provided over the entire circumference at a position of 20 mm from one end of the inner metal pipe 3.

続いて、図23に示すように、内側金属管3を外側金属管2の拡管部2Cに挿入し、外側かしめ加工用溝21’と内側かしめ加工用溝31’とが重なり合う位置に到達すると、両者の溝は確実に係合した。そして、実施例1と同じ手法にて、外側かしめ加工用溝21’に刃先を丸くした刃50を押し当て、外側金属管2と内側金属管3との接続体を管軸方向に回転させながら、外側金属管3のかしめ溝における外径が12mmになるまでかしめ溝を形成することで、外側金属管2と内側金属管3とをかしめる加工を施して、実施例2に係る接合管体1を得た。   Subsequently, as shown in FIG. 23, when the inner metal pipe 3 is inserted into the expanded pipe portion 2C of the outer metal pipe 2 and reaches the position where the outer caulking groove 21 ′ and the inner caulking groove 31 ′ overlap, The two grooves were securely engaged. Then, in the same manner as in the first embodiment, the blade 50 having a rounded cutting edge is pressed against the groove for outer caulking 21 'and the connection of the outer metal pipe 2 and the inner metal pipe 3 is rotated in the pipe axial direction. By forming a caulking groove until the outer diameter of the caulking groove of the outer metal pipe 3 becomes 12 mm, the outer metal pipe 2 and the inner metal pipe 3 are caulked to form a joined pipe according to the second embodiment. I got one.

〔比較例2〕
外側金属管2及び内側金属管3として、実施例2と同じステンレス鋼管及び銅管を用いた。そして、外側金属管2と内側金属管3との組合せは、実施例2と同様、10通りの組合せとした。
Comparative Example 2
The same stainless steel pipe and copper pipe as in Example 2 were used as the outer metal pipe 2 and the inner metal pipe 3. And the combination of the outer side metal pipe 2 and the inner side metal pipe 3 was made into 10 combinations similarly to Example 2.

まず、図21に示すように、外側金属管2の一端から30mmまでの箇所を、外径12.9mm、テーパー角度30°を有する金型でプレスし、拡管加工した。   First, as shown in FIG. 21, a portion from the one end of the outer metal pipe 2 to 30 mm was pressed by a die having an outer diameter of 12.9 mm and a taper angle of 30 ° to perform pipe expansion processing.

続いて、比較例1と同様の手法にて、内側金属管3を外側金属管2の拡管部に挿入し、内側金属管3の一端を拡管部の基端に突き当てた。そして、拡管部2Cの基端から20mmの位置に刃先を丸くした刃50を押し当て、外側金属管2と内側金属管3との接続体を管軸方向に回転させながら、外側金属管3の外径が12mmになるまでかしめ溝を形成することで、外側金属管2と内側金属管3とをかしめる加工を施した。この際、ステンレス鋼管どうしの組合せであるサンプル2−5については、図24に示すように、溶接部で割れが生じたため、2種の金属管を接合することができなかった。サンプル2−1及び2−2についても同様であった。一方、他のサンプルについては、比較例2に係る接合管体60が得られた。   Subsequently, in the same manner as in Comparative Example 1, the inner metal pipe 3 was inserted into the expanded pipe portion of the outer metal pipe 2, and one end of the inner metal pipe 3 was abutted against the proximal end of the expanded pipe portion. Then, the blade 50 having a rounded cutting edge is pressed at a position of 20 mm from the base end of the expanded tube portion 2C, and the connection of the outer metal tube 2 and the inner metal tube 3 is rotated in the tube axial direction. The outer metal pipe 2 and the inner metal pipe 3 were caulked by forming a caulking groove until the outer diameter became 12 mm. Under the present circumstances, about sample 2-5 which is a combination of stainless steel pipes, as shown in FIG. 24, since a crack arose in the welding part, it was not able to join 2 types of metal pipes. The same applies to samples 2-1 and 2-2. On the other hand, the junction tube 60 according to Comparative Example 2 was obtained for the other samples.

〔評価〕
接合管体の接合強度を評価するため、実施例2と比較例2で製作した接合管体(長さ約370mm)のそれぞれについて引張試験を行った。図25は、引張試験機(符号省略)に接合管体1を配置したときの模式図である。引張試験機は、接合管体1を固定するための油圧チャック55A,55Bを備える。この引張試験機において、接合管体1のかしめ溝21,31を、引張試験機の油圧チャック55A,55Bのほぼ中央となるように配置する。そして、引張試験中に接合管体1が延びながら楕円形に潰れるのを防止するため、外側金属管2と内側金属管3のうち、油圧チャック55によって拘束される部分に、φ10.7×50mmの内金型56を挿入する。この引張試験において、引張速度は10mm/分とし、荷重−ストローク曲線を計測した。実施例2、比較例2とも、かしめ部の破断時に、荷重がピーク値に達した。このピーク値から接合強度を得た。その結果を図26に示す。
[Evaluation]
In order to evaluate the joint strength of the joined tubular body, a tensile test was performed on each of the joined tubular bodies (about 370 mm in length) manufactured in Example 2 and Comparative Example 2. FIG. 25 is a schematic view when the joint tube 1 is disposed in a tensile tester (reference numeral omitted). The tensile tester includes hydraulic chucks 55A and 55B for fixing the joint tube 1. In this tensile tester, the caulking grooves 21 and 31 of the joint tube 1 are disposed substantially at the centers of the hydraulic chucks 55A and 55B of the tensile tester. Then, in order to prevent the joint tube 1 from collapsing into an elliptical shape while extending during the tensile test, a portion of the outer metal tube 2 and the inner metal tube 3 that is restrained by the hydraulic chuck 55 has a diameter of 10.7 × 50 mm. Insert the inner mold 56 of. In this tensile test, the tensile speed was 10 mm / min, and the load-stroke curve was measured. In both Example 2 and Comparative Example 2, the load reached the peak value at the time of breakage of the crimped portion. The junction strength was obtained from this peak value. The results are shown in FIG.

上述したとおり、ステンレス鋼管どうしの組合せであるサンプル2−1,2−2及び2−5については、比較例2のサンプルでは溶接部に割れが生じたため、2種の金属管を接合できず、接合強度を測定しなかった。そのため、図26には、これらの比較例2のサンプルは測定グラフが示されていない。他のサンプルについてはいずれも、図26に示すように、実施例2の接合管体1は、比較例2の接合管体60に比べ、接合強度が20%程度高かった。また、比較例2では接合できなかったステンレス鋼管どうしの接合においても、実施例2ではビード位置に割れ等の欠陥が生じることなく、高い強度を有する接合管体1が得られた(サンプル2−1,2−2及び2−5)。このように、実施例2では、内側金属管3の外面上に管径方向の深さが0.5mm以上の内側かしめ溝31を有することから、外側金属管2とのかしめ加工により良好な接合強度を有する接続管体が得られた。また、ビード位置に割れ等の欠陥が生じることなく、かしめ加工を施すことができた。   As described above, in Samples 2-1, 2-2 and 2-5, which are combinations of stainless steel pipes, in the sample of Comparative Example 2, a crack occurred in the weld, and therefore, two metal pipes can not be joined. The bonding strength was not measured. Therefore, the measurement graph of the sample of Comparative Example 2 is not shown in FIG. As for all the other samples, as shown in FIG. 26, the joined tube 1 of Example 2 had a joining strength higher by about 20% than the joined tube 60 of Comparative Example 2. Further, even in the joining of stainless steel pipes which could not be joined in Comparative Example 2, in Example 2, a junction tube 1 having high strength was obtained without a defect such as a crack being generated at the bead position (Sample 2- 1,2-2 and 2-5). As described above, in the second embodiment, since the inner caulking groove 31 having a depth in the radial direction of 0.5 mm or more is provided on the outer surface of the inner metal pipe 3, good bonding can be achieved by caulking with the outer metal pipe 2. A connecting tube having a strength is obtained. In addition, it was possible to apply caulking without causing defects such as cracking at the bead position.

上述したように、接合管体の接合強度は、破断時の引張荷重から測定されることから、管材の引張強度(TS,単位:N/mm)×管の断面積(単位:mm)の大きさに比例すると考えられる。管の外径が異なっていても、管材の引張強度(TS)は、ほぼ一定であるため、接合強度は、管の断面積に依存するといえる。ここで、図26によると、試験例2の接合強度は、最大でも13kN程度であり、SUS鋼管B(SUS304)と銅管との組み合わせであるサンプル2−6については、実施例2において6kN程度である。それに対し、試験例1のSUS鋼管Bと銅管との組み合わせでは、実施例1の接合強度が17.32kN、比較例1の接合強度が15.04kNである。このように、試験例2の接合強度は、試験例1の接合強度に比べて低い値を示している。これは、試験例2における管の外径が試験例1に比べて細いために、管の断面積が小さいことに起因すると考えられる。 As described above, since the joint strength of the joint tube is measured from the tensile load at break, the tensile strength of the pipe material (TS, unit: N / mm 2 ) × the cross section of the pipe (unit: mm 2 ) It is considered to be proportional to the size of It can be said that the joint strength depends on the cross-sectional area of the pipe since the tensile strength (TS) of the pipe material is almost constant even if the outer diameter of the pipe is different. Here, according to FIG. 26, the bonding strength in Test Example 2 is about 13 kN at maximum, and about 6 kN in Example 2 for Sample 2-6 which is a combination of SUS steel pipe B (SUS 304) and a copper pipe. It is. On the other hand, in the combination of the SUS steel pipe B and the copper pipe of Test Example 1, the joint strength of Example 1 is 17.32 kN, and the joint strength of Comparative Example 1 is 15.04 kN. Thus, the bonding strength of Test Example 2 shows a lower value than the bonding strength of Test Example 1. This is considered to be due to the fact that the cross-sectional area of the tube is small because the outer diameter of the tube in Test Example 2 is smaller than that in Test Example 1.

上記の実施例2では、第3の態様による接合方法を用いたが、第1の態様または第2の態様によっても、同様に接合強度の向上した接合管体を得られた。内側かしめ加工用溝を形成した内側金属管と、外側金属管とを重ねて、外側金属管の外面に前記内側かしめ加工用溝と重なる位置でかしめ溝を形成するように、両者の金属管をかしめる加工を施すことによって、接合強度に優れた接合管体を製造することができた。   In Example 2 described above, the bonding method according to the third aspect was used, but a bonded pipe body having an improved bonding strength was also obtained by the first aspect or the second aspect. In order to form a caulking groove on the outer metal pipe at the position where it overlaps with the inner caulking groove, the metal pipe is formed by overlapping the inner metal pipe formed with the inner caulking groove and the outer metal pipe. By applying the caulking process, it was possible to manufacture a jointed pipe excellent in joint strength.

本発明で接合強度が向上した理由を考察するため、実施例2及び比較例2に係る接合管体1及び60において、かしめ溝を含む断面形状を写真撮影した(倍率:10倍)。図27は、その写真に基づいて、実施例2に係る接合管体1の断面形状を示す模式図であり、図28は、同様に、比較例1に係る接合管体60の断面形状を示す模式図であり、図29は、図28に続く模式図である。   In order to consider the reason why the bonding strength is improved in the present invention, the cross-sectional shape including the caulking groove was photographed in the bonded tube 1 and 60 according to Example 2 and Comparative Example 2 (magnification: 10 times). FIG. 27 is a schematic view showing the cross-sectional shape of the joined tubular body 1 according to the second embodiment based on the photograph, and FIG. 28 similarly shows the cross-sectional shape of the joined tubular body 60 according to the comparative example 1. FIG. 29 is a schematic view following FIG. 28. FIG.

図27と図28とを比べると、実施例2に係る接合管体1(図27)は、内側金属管3の外面上に形成されている内側かしめ溝31の深さが相対的に深く、外側管2のかしめ部の板厚減少が小さい。一方、比較例2に係る接合管体60(図28)は、内側金属管3の外面上に形成されている内側かしめ溝31’の深さが相対的に浅く、外側管2のかしめ部の板厚減少が大きい。このことから、比較例2に係る接合管体60は、図29に示すように、比較的早い段階で外側金属管2が破断したものと考えられる。   When FIG. 27 and FIG. 28 are compared, the joint tube 1 (FIG. 27) which concerns on Example 2 is relatively deep in the depth of the inside caulking groove 31 currently formed on the outer surface of the inner metal pipe 3, The reduction in thickness of the crimped portion of the outer pipe 2 is small. On the other hand, in the joined tubular body 60 (FIG. 28) according to Comparative Example 2, the depth of the inner caulking groove 31 'formed on the outer surface of the inner metal pipe 3 is relatively shallow, and the caulking portion of the outer pipe 2 is The thickness reduction is large. From this, as shown in FIG. 29, it is thought that the outer side metal pipe 2 fracture | ruptured the joining pipe body 60 which concerns on the comparative example 2 relatively early.

図30は、実施例2に係る接合管体1の変形挙動を説明するための模式図であり、図31は、比較例2に係る接合管体60の変形挙動を説明するための模式図である。図30に示すように、実施例2に係る接合管体1において、外側金属管2のかしめ加工を受ける部位は、内側金属管3の内側かしめ加工用溝31との間に空隙があり、かしめ工具と内側金属管3との間で挟持された拘束状態になく、板厚方向にはかしめ工具による圧縮力(F1)だけを受ける。そのため、かしめ加工時の応力状態として、外側金属管2は内側かしめ加工用溝31内で折り曲げ加工を受けるような変形挙動となる。その結果、実施例2の接合管体1では、板厚減少が抑制されたものと考えられる。   FIG. 30 is a schematic view for explaining the deformation behavior of the joined tubular body 1 according to the second embodiment, and FIG. 31 is a schematic view for explaining the deformation behavior of the joined tubular body 60 according to the comparative example 2. is there. As shown in FIG. 30, in the joined tube 1 according to the second embodiment, the portion of the outer metal tube 2 to be crimped has an air gap between it and the inner crimp groove 31 of the inner metal tube 3, and the crimp is performed. It is not in a constrained state held between the tool and the inner metal pipe 3, and receives only the compression force (F1) by the caulking tool in the thickness direction. Therefore, as a stress state at the time of caulking, the outer metal pipe 2 has a deformation behavior such that it is subjected to bending in the inner caulking groove 31. As a result, in the joined tubular body 1 of the second embodiment, it is considered that the reduction in thickness is suppressed.

それに対し、比較例2に係る接合管体60では、図31に示すように、外側金属管2は、かしめ工具と内側金属管3との間で挟持された拘束状態にあるので、板厚方向にはかしめ工具による圧縮力(F1)と、内側金属管3から受ける圧縮力(F2)との総和が加わる。すなわち、かしめ加工時の応力状態としては、圧延加工を受けるような変形挙動となる。その結果、比較例の接合管体60では、大きな板厚減少が生じたものと考えられる。   On the other hand, in the joined tubular body 60 according to Comparative Example 2, as shown in FIG. 31, the outer metal pipe 2 is in the constrained state held between the caulking tool and the inner metal pipe 3, so the plate thickness direction The sum of the compression force (F1) by the caulking tool and the compression force (F2) received from the inner metal pipe 3 is added to the above. That is, as a stress state at the time of caulking, the deformation behavior is such that it is subjected to rolling. As a result, it is considered that a large reduction in plate thickness has occurred in the joined tubular body 60 of the comparative example.

1 接合管体
2 外側金属管
21 外側かしめ溝
22 拡管部基端
3 内側金属管
31 内側かしめ溝
32 一端
40 ロール支軸
50 刃
P 重なる位置
DESCRIPTION OF SYMBOLS 1 joined pipe body 2 outer side metal pipe 21 outer side caulking groove 22 expanded-pipe part base end 3 inner side metal pipe 31 inner side caulking groove 32 one end 40 roll spindle 50 blade P overlapping position

Claims (8)

外側金属管と、前記外側金属管に比べて低い引張強度の金属材料からなり前記外側金属管の内側に挿入された内側金属管とがかしめられて接合された接合管体であって、
前記内側金属管は、外面上に、管径方向の深さが0.5mm以上である内側かしめ溝を有する接合管体であって、
前記外側金属管の少なくとも一方の端部に、内径が前記内側金属管の外径と略同じである拡管部が形成され、
前記拡管部の基端と、前記内側金属管の一端とが接しており、
前記外側金属管の外面のうち、前記内側かしめ溝と重なる位置に外側かしめ溝が形成されている、接合管体
A joined pipe body formed by caulking and joining an outer metal pipe and an inner metal pipe which is made of a metal material having a lower tensile strength than the outer metal pipe and is inserted inside the outer metal pipe,
The inner metal pipe is a joined pipe body having an inner caulking groove having a depth in the radial direction of 0.5 mm or more on the outer surface ,
At least one end of the outer metal pipe is provided with an expanded portion having an inner diameter substantially the same as the outer diameter of the inner metal pipe,
The proximal end of the expanded portion is in contact with one end of the inner metal tube,
The jointed pipe body, wherein an outer caulking groove is formed at a position overlapping with the inner caulking groove among the outer surfaces of the outer metal pipe .
前記外側金属管はステンレス鋼管であり、前記内側金属管は銅管である、請求項1に記載の接合管体。   The joined tube body according to claim 1, wherein the outer metal pipe is a stainless steel pipe, and the inner metal pipe is a copper pipe. 請求項1または2に記載の接合管体を備える熱交換器。 A heat exchanger comprising the joined tube according to claim 1 or 2 . 外側金属管に比べて低い引張強度の金属材料からなる内側金属管に内側かしめ加工用溝を形成する内側かしめ加工用溝形成工程と、
前記内側かしめ加工用溝形成工程の後、前記外側金属管と前記内側金属管とを前記内側かしめ加工用溝が前記外側金属管の内面と重なる位置に配する配置工程と、
前記外側金属管の外面のうち、前記内側かしめ加工用溝と重なる位置でかしめ溝を形成し、前記外側金属管と前記内側金属管とをかしめる加工を施すかしめ加工工程とを含む接合管体の製造方法であって、
前記外側金属管の外面上であって、前記配置工程で前記内側金属管と重ねたときに前記内側かしめ加工用溝と重なる位置に目印を表示する目印表示工程をさらに含み、
前記かしめ加工工程は、前記目印にしたがって前記かしめ溝を形成する工程である、接合管体の製造方法。
An inner caulking groove forming step of forming an inner caulking groove in an inner metal pipe made of a metal material having a lower tensile strength than an outer metal pipe;
Arranging the outer metal pipe and the inner metal pipe at a position where the inner caulking groove overlaps the inner surface of the outer metal pipe after the inner caulking groove forming process;
A joint tube including a caulking step of forming a caulking groove at a position overlapping the inward caulking groove among the outer surfaces of the outer metal pipe, and caulking the outer metal pipe and the inner metal pipe. Manufacturing method of
The method further includes a mark display step of displaying a mark on the outer surface of the outer metal pipe and at an overlapping position with the inner crimping groove when overlapping with the inner metal pipe in the disposing step,
The method of manufacturing a joined tube, wherein the caulking step is a step of forming the caulking groove in accordance with the mark.
外側金属管に比べて低い引張強度の金属材料からなる内側金属管に内側かしめ加工用溝を形成する内側かしめ加工用溝形成工程と、
前記内側かしめ加工用溝形成工程の後、前記外側金属管と前記内側金属管とを前記内側かしめ加工用溝が前記外側金属管の内面と重なる位置に配する配置工程と、
前記外側金属管の外面のうち、前記内側かしめ加工用溝と重なる位置でかしめ溝を形成し、前記外側金属管と前記内側金属管とをかしめる加工を施すかしめ加工工程とを含む接合管体の製造方法であって、
前記外側金属管の少なくとも一方の端部に、内径が前記内側金属管の外径と略同じである拡管部が形成されており、
前記配置工程は、前記内側金属管を前記拡管部に挿入し、前記内側金属管の一端を前記拡管部の基端に突き当てる工程であり、
前記かしめ加工工程は、前記拡管部の外面のうち、前記内側金属管の一端を前記拡管部の基端に突き当てたときに前記内側かしめ加工用溝と重なる位置でかしめ溝を形成し、前記外側金属管と前記内側金属管とをかしめる加工を施す工程である、接合管体の製造方法。
An inner caulking groove forming step of forming an inner caulking groove in an inner metal pipe made of a metal material having a lower tensile strength than an outer metal pipe;
Arranging the outer metal pipe and the inner metal pipe at a position where the inner caulking groove overlaps the inner surface of the outer metal pipe after the inner caulking groove forming process;
A joint tube including a caulking step of forming a caulking groove at a position overlapping the inward caulking groove among the outer surfaces of the outer metal pipe, and caulking the outer metal pipe and the inner metal pipe. Manufacturing method of
At least one end of the outer metal pipe is formed with an expanded portion having an inner diameter substantially the same as the outer diameter of the inner metal pipe,
The disposing step is a step of inserting the inner metal pipe into the expanded pipe portion, and abutting one end of the inner metal pipe against a proximal end of the expanded pipe portion.
In the caulking process step, a caulking groove is formed at a position overlapping with the inward caulking groove when one end of the inner metal pipe abuts on the proximal end of the pipe expansion portion among the outer surface of the pipe expansion portion, The manufacturing method of a joining pipe body which is the process of giving the process which crimps an outer side metal pipe and the said inner side metal pipe.
外側金属管に比べて低い引張強度の金属材料からなる内側金属管に内側かしめ加工用溝を形成する内側かしめ加工用溝形成工程と、
前記内側かしめ加工用溝形成工程の後、前記外側金属管と前記内側金属管とを前記内側かしめ加工用溝が前記外側金属管の内面と重なる位置に配する配置工程と、
前記外側金属管の外面のうち、前記内側かしめ加工用溝と重なる位置でかしめ溝を形成し、前記外側金属管と前記内側金属管とをかしめる加工を施すかしめ加工工程とを含む接合管体の製造方法であって、
前記配置工程に先立ち、前記外側金属管に対し、前記配置工程で前記内側金属管と重ねたときに前記内側かしめ加工用溝と重なる位置に外側かしめ加工用溝を形成する外側かしめ加工用溝形成工程をさらに含み、
前記配置工程は、前記内側かしめ加工用溝と前記外側かしめ加工用溝とを重ねる工程であり、
前記かしめ加工工程は、前記内側かしめ加工用溝と前記外側かしめ加工用溝とが重なる位置でかしめ溝を形成する工程である、接合管体の製造方法。
An inner caulking groove forming step of forming an inner caulking groove in an inner metal pipe made of a metal material having a lower tensile strength than an outer metal pipe;
Arranging the outer metal pipe and the inner metal pipe at a position where the inner caulking groove overlaps the inner surface of the outer metal pipe after the inner caulking groove forming process;
A joint tube including a caulking step of forming a caulking groove at a position overlapping the inward caulking groove among the outer surfaces of the outer metal pipe, and caulking the outer metal pipe and the inner metal pipe. Manufacturing method of
Prior to the disposing step, the outer squeezing groove is formed on the outer metal tube to form an outer squeezing groove at a position overlapping the inner squeezing groove when overlapping the inner metal tube in the disposing step. Further including a process,
The disposing step is a step of overlapping the inner caulking groove and the outer caulking groove,
The method of manufacturing a joined tubular body, wherein the caulking step is a step of forming a caulking groove at a position where the inward caulking groove and the outer caulking groove overlap.
前記外側金属管はステンレス鋼管であり、前記内側金属管は銅管である、請求項4から6のいずれかに記載の接合管体の製造方法。 The method for manufacturing a joined pipe body according to any one of claims 4 to 6 , wherein the outer metal pipe is a stainless steel pipe, and the inner metal pipe is a copper pipe. 前記かしめ加工工程の後の前記内側金属管は、管径方向の深さが0.5mm以上である内側かしめ溝を有する、請求項4から7のいずれかに記載の接合管体の製造方法。 The method for manufacturing a joined pipe body according to any one of claims 4 to 7 , wherein the inner metal pipe after the caulking process has an inner caulking groove having a depth in a radial direction of 0.5 mm or more.
JP2015045790A 2014-07-30 2015-03-09 Joint tube and method for manufacturing the same Active JP6529285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045790A JP6529285B2 (en) 2014-07-30 2015-03-09 Joint tube and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014154930 2014-07-30
JP2014154930 2014-07-30
JP2015045790A JP6529285B2 (en) 2014-07-30 2015-03-09 Joint tube and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016032837A JP2016032837A (en) 2016-03-10
JP6529285B2 true JP6529285B2 (en) 2019-06-12

Family

ID=55452003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045790A Active JP6529285B2 (en) 2014-07-30 2015-03-09 Joint tube and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6529285B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016212862A1 (en) * 2016-07-14 2018-01-18 Robert Bosch Gmbh Power unit for an electric steering system
CN108145023A (en) * 2017-12-22 2018-06-12 安徽吉思特智能装备有限公司 A kind of preparation facilities for the steel-plastics composite pipe for installing stainless steel bushing additional
KR102472734B1 (en) * 2020-08-27 2022-12-01 삼원동관 주식회사 Bonding stainless steel pipe
CN112893658B (en) * 2021-01-13 2022-11-15 宁波汽车软轴软管有限公司 Riveting machine for joint assembly of guide pipe of inhaul cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870931A (en) * 1981-10-23 1983-04-27 Hitachi Ltd Method for joining metallic pipe to metallic pipe
JPS59212134A (en) * 1983-05-18 1984-12-01 Fuaiaaransu Kogyo Kk Connecting method of oxygen lance
JP3044027U (en) * 1997-06-03 1997-12-12 東洋フイツテング株式会社 Connection structure between metal pipe and joint
JP2004036861A (en) * 2002-07-08 2004-02-05 Nichirin Co Ltd Integral connection structure of hose and metal pipe
JP5846934B2 (en) * 2012-01-26 2016-01-20 日新製鋼株式会社 Connection structure of stainless steel pipe and other metal pipe

Also Published As

Publication number Publication date
JP2016032837A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
JP6529285B2 (en) Joint tube and method for manufacturing the same
ES2707002T3 (en) Crimp accessory
US8083268B2 (en) Coupling, joint and method for fixedly and sealingly securing components to one another
US7987690B2 (en) Fluid conduits with integral end fittings and associated methods of manufacture and use
JP2016508207A (en) Fitting for joining pipes and method for joining pipes
JP6489878B2 (en) Manufacturing method of joined tube
US20160061536A1 (en) Heat Exchanger and Method of Assembling the Same
JP6075958B2 (en) Stainless steel pipe brazing method
US20090174182A1 (en) Fluid conduits with integral end fittings and associated methods of manufacture and use
JP2005076915A (en) Composite heat exchanger tube
JP2013066911A (en) Connection body of copper tube and stainless steel pipe and manufacturing method thereof
JP2008073739A (en) Method for forming metal pipe, method for fitting pipe joint to pipe material, and joint method using pipe joint
WO2020054425A1 (en) Joined body of copper tube and aluminum tube, and method for joining same
CN112262278B (en) Kit for connecting to at least one tube
KR20180099771A (en) Manufacturing method of pipe body, pipe and pipe
JP6867642B2 (en) Fittings and how to connect pipes to the fittings
CN113474099B (en) Metal pipe and method for manufacturing metal pipe
WO2016042596A1 (en) Metallic pipe joint structure and joining method
JP6630083B2 (en) Connection method and connection structure of pipe and caulked joint
JP4588370B2 (en) Stainless steel vibration absorbing pipe and stainless-aluminum dissimilar metal joint pipe with joints with aluminum pipes, excellent in joining strength and air tightness
JP7287000B2 (en) Hose fitting manufacturing method
JP2005036942A (en) Press type pipe joint and its joint method and press tool
JP2011202672A (en) Joint body and heat exchanger with the same
EP2853796A1 (en) Method for connecting pipes of refrigerating circuits, particularly domestic refrigerators, and system for obtaining this connection
JP2003172481A (en) Connecting method of copper pipes

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350