JP6528109B2 - Method of manufacturing sand mold for casting - Google Patents

Method of manufacturing sand mold for casting Download PDF

Info

Publication number
JP6528109B2
JP6528109B2 JP2015097496A JP2015097496A JP6528109B2 JP 6528109 B2 JP6528109 B2 JP 6528109B2 JP 2015097496 A JP2015097496 A JP 2015097496A JP 2015097496 A JP2015097496 A JP 2015097496A JP 6528109 B2 JP6528109 B2 JP 6528109B2
Authority
JP
Japan
Prior art keywords
casting
mold
composition
sand
sand mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015097496A
Other languages
Japanese (ja)
Other versions
JP2016209920A (en
Inventor
浩 小野寺
浩 小野寺
基男 須永
基男 須永
龍平 合田
龍平 合田
小菅 勝典
勝典 小菅
利光 岡根
利光 岡根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Fuji Chemical Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Fuji Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Fuji Chemical Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015097496A priority Critical patent/JP6528109B2/en
Publication of JP2016209920A publication Critical patent/JP2016209920A/en
Application granted granted Critical
Publication of JP6528109B2 publication Critical patent/JP6528109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

本発明は鋳物用砂型製造用組成物、鋳物用砂型の製造方法、及び鋳物用砂型に関する。   The present invention relates to a composition for producing a casting sand mold, a method for producing a casting sand mold, and a casting sand mold.

従来、有機系粘結剤を用いた鋳物用砂型が知られている。この鋳物用砂型は、臭気を発生するため、作業環境問題を生じ、また、大気環境汚染問題を生じる。そこで、水ガラス等の無機系粘結剤を用いた鋳物用砂型が検討されている(特許文献1参照)。   DESCRIPTION OF RELATED ART Conventionally, the sand mold for castings which used the organic type binder was known. Since this casting sand mold generates an odor, it causes a working environment problem and also causes an air environment pollution problem. Then, the sand mold for castings using inorganic type caking additives, such as water glass, is examined (refer patent document 1).

特開2015−51446号公報JP, 2015-51446, A

特許文献1記載の技術のように、無機系粘結剤を用いた鋳物用砂型は、崩壊性が十分ではなかった。本発明は以上の点に鑑みなされたものであり、崩壊性を向上させることができる鋳物用砂型製造用組成物、鋳物用砂型の製造方法、及び鋳物用砂型を提供することを目的とする。   As in the technology described in Patent Document 1, the sand mold for casting using an inorganic caking agent has insufficient disintegration. The present invention has been made in view of the above points, and it is an object of the present invention to provide a composition for producing a sand mold for casting, a method for producing a sand mold for casting, and a sand mold for casting that can improve disintegration.

本発明の鋳物用砂型製造用組成物は、
鋳物砂と水ガラスとを含み、下記で定義する圧縮率Sの値が25%以上であることを特徴とする。
The composition for producing a casting sand mold of the present invention is
It is characterized in that it contains casting sand and water glass, and the value of the compression ratio S defined below is 25% or more.

150グラムの前記鋳物用砂型製造用組成物を、内径50mm、縦150mmの中空円筒状容器に入れ、前記鋳物用砂型製造用組成物の表面が均一な高さとなるまで前記中空円筒状容器の側面に振動を与える。次に、前記中空円筒状容器の底面から、前記鋳物用砂型製造用組成物の表面までの高さを3箇所で測定し、その平均値をHbとする。次に、JIS Z 2601に記載された試験片搗き固め機を用い、搗固め重錘重量は6.5Kg、搗固め重錘落下距離は50mm、搗固め回数は3回という条件で、前記鋳物用砂型製造用組成物の表面を搗き固める。次に、前記中空円筒状容器の底面から、前記鋳物用砂型製造用組成物の表面までの高さを3箇所で測定し、その平均値をHaとする。圧縮率Sを以下の式(1)により算出する。   150 grams of the casting composition for castings is placed in a hollow cylindrical container having an inner diameter of 50 mm and a length of 150 mm, and the side surface of the hollow cylindrical container until the surface of the casting composition for castings has a uniform height. Give vibration to Next, the height from the bottom of the hollow cylindrical container to the surface of the composition for producing a casting mold for castings is measured at three points, and the average value is taken as Hb. Next, using the test piece rolling compactor described in JIS Z 2601, the weight of the compacted weight is 6.5 Kg, the dropped weight of the compacted heavy weight is 50 mm, and the number of times of compacting is 3 times. The surface of the composition for producing sand molds is compacted. Next, the height from the bottom of the hollow cylindrical container to the surface of the composition for producing a casting mold for castings is measured at three points, and the average value thereof is taken as Ha. The compression ratio S is calculated by the following equation (1).

式(1) S=((Hb−Ha)/Hb)×100
本発明の鋳物用砂型製造用組成物を用いれば、崩壊性が良好な鋳物用砂型を製造することができる。
Formula (1) S = ((Hb-Ha) / Hb) x 100
By using the composition for producing a sand mold for casting of the present invention, it is possible to produce a sand mold for casting having good disintegration property.

本発明の鋳物用砂型の製造方法は、上述した鋳物用砂型製造用組成物を用いて成形することを特徴とする。本発明の鋳物用砂型の製造方法によれば、崩壊性が良好な鋳物用砂型を製造することができる。
本発明の鋳物用砂型は、上述した鋳物用砂型製造用組成物を用いて製造されたものである。本発明の鋳物用砂型は崩壊性が良好である。
The method for producing a sand mold for casting according to the present invention is characterized by using the above-described composition for producing a sand mold for casting. According to the method for producing a casting sand mold of the present invention, it is possible to produce a casting sand mold having a good collapsibility.
The casting sand mold of the present invention is produced using the above-described casting sand production composition. The foundry sand mold of the present invention has a good collapsibility.

圧縮率Sの測定に用いる中空円筒状容器1の構成を表す斜視図である。FIG. 2 is a perspective view showing the configuration of a hollow cylindrical container 1 used for measurement of the compression rate S. 木型の構成を表す写真である。It is a photograph showing composition of a tree type. 図3aは鋳造物を表す写真であり、図3bは、残留する中子を取除いた後、2分割した鋳造物を表す写真である。Fig. 3a is a photograph representing the casting, and Fig. 3b is a photograph representing the casting divided in two after removing the remaining core. 図4a、図4bは架橋体を表すSEM画像であり、図4c、図4dは架橋体痕跡を表すSEM画像である。FIGS. 4a and 4b are SEM images representing a cross-linked body, and FIGS. 4c and 4d are SEM images representing a cross-linked body trace. 図4のSEM画像で認められる架橋体の構造変化を表す概念図である。It is a conceptual diagram showing the structural change of the bridge | crosslinking body recognized by the SEM image of FIG.

本発明の実施形態を説明する。
本発明で用いる鋳物砂としては、例えば、合成ムライト砂、アルミナ系耐熱性セラミックス粒子等の人工砂を挙げることができる。人工砂の平均粒径は、50〜300μmの範囲が好ましい。この範囲内である場合、鋳物用砂型の成型性が一層向上する。
An embodiment of the present invention will be described.
Examples of casting sand used in the present invention include artificial sand such as synthetic mullite sand and alumina-based heat-resistant ceramic particles. The average particle size of the artificial sand is preferably in the range of 50 to 300 μm. Within this range, the moldability of the casting sand mold is further improved.

人工砂としては、例えば、ルモナス♯60(商品名、KAO製)、ルモナス♯110(商品名、KAO製)、AR SAND♯1000(商品名、群栄化学工業製)、AR SAND♯1500(商品名、群栄化学工業製)等を用いることができる。   As artificial sand, for example, Remonas # 60 (trade name, manufactured by KAO), Remonas # 110 (trade name, manufactured by KAO), AR SAND # 1000 (trade name, manufactured by Gunei Chemical Industry), AR SAND # 1500 (Products Name, manufactured by Gunei Chemical Industry Co., Ltd., etc. can be used.

水ガラス(珪酸ソーダ)は、一般式NaO・nSiOで表される。nは正の数である。水ガラスにおけるナトリウム分とシリカ分とのモル比(前記一般式のnの値)は、2.0〜3.8の範囲が好ましい。この範囲内である場合、鋳物用砂型の成形性が一層向上する。水ガラスのシリカ濃度は、20〜40重量%の範囲が好ましい。この範囲内である場合、鋳物用砂型の成形性が一層向上する。 Water glass (sodium silicate) is represented by the general formula Na 2 O · nSiO 2 . n is a positive number. The molar ratio of sodium to silica in water glass (the value of n in the above general formula) is preferably in the range of 2.0 to 3.8. Within this range, the formability of the casting sand mold is further improved. The silica concentration of water glass is preferably in the range of 20 to 40% by weight. Within this range, the formability of the casting sand mold is further improved.

鋳物用砂型製造用組成物において、鋳物砂100重量部に対し、水ガラスの量は0.8〜3重量部の範囲が好ましい。この範囲内である場合、鋳物用砂型の成型性が一層向上する。   In the composition for manufacturing a sand mold for casting, the amount of water glass is preferably in the range of 0.8 to 3 parts by weight with respect to 100 parts by weight of casting sand. Within this range, the moldability of the casting sand mold is further improved.

鋳物用砂型製造用組成物は、鋳物砂と水ガラスとから成り、他の成分を実質的に含まないものであっても良いし、鋳物砂と水ガラスとに加えて、他の無機化学成分を含むものであっても良い。   The composition for manufacturing casting sand molds may consist of casting sand and water glass, and may be substantially free of other components, and in addition to casting sand and water glass, other inorganic chemical components May be included.

他の無機化学成分としては、例えば、多孔質材料が挙げられる。多孔質材料としては、例えば、多孔質シリカ、活性炭、ゼオライト等が挙げられ、多孔質シリカが特に好ましい。鋳物用砂型製造用組成物が多孔質シリカを含む場合、鋳物用砂型製造用組成物の製造後、圧縮率Sの値が適切な範囲(例えば25%以上)となる時間帯が長くなる。また、原料物質の混合順序は、水ガラスと鋳物砂を混合した後に多孔質シリカを添加しても、あるいは、鋳物砂と多孔質シリカとの混合後に水ガラスを添加しても良い。   Other inorganic chemical components include, for example, porous materials. Examples of the porous material include porous silica, activated carbon, zeolite and the like, and porous silica is particularly preferable. When the composition for sand mold manufacture for castings contains porous silica, after manufacture of the composition for sand mold manufacture for castings, the time slot | zone which becomes the range (for example, 25% or more) becomes appropriate for the value of compression rate S becomes long. In addition, in order of mixing of the raw material, porous silica may be added after mixing the water glass and the molding sand, or water glass may be added after mixing the molding sand and the porous silica.

鋳物用砂型製造用組成物において、鋳物砂100重量部に対し、多孔質材料(例えば多孔質シリカ)の量は、0〜1重量部の範囲が好ましい。この範囲内である場合、圧縮率Sの値が適切な範囲となる時間帯が一層長くなる。多孔質シリカとして、例えば、MB4B、BW−80(いずれも富士シリシア化学株式会社製の商品名)を使用することができる。   In the composition for manufacturing a sand mold for casting, the amount of the porous material (for example, porous silica) is preferably in the range of 0 to 1 part by weight with respect to 100 parts by weight of casting sand. When it is within this range, the time zone in which the value of the compression rate S falls within the appropriate range becomes longer. As porous silica, MB4B and BW-80 (all are brand names made by Fuji Silysia Chemical Ltd.) can be used, for example.

鋳物用砂型の製造方法において用いる成型の方法は公知の方法の中から適宜選択することができる。例えば、鋳物用砂型製造用組成物を型(例えば、木型、金型)に充填し、抜型する方法を用いることができる。鋳物用砂型は、中子であってもよいし、主型であってもよい。   The method of molding used in the method of manufacturing a casting sand mold can be appropriately selected from known methods. For example, it is possible to use a method of filling a mold (for example, a wood mold, a mold) with a sand mold manufacturing composition for casting and then removing the mold. The foundry sand mold may be a core or a main mold.

鋳物用砂型製造用組成物の圧縮率Sは、成型の時点(例えば、鋳物用砂型製造用組成物を型に充填する時点)において、25%以上であることが好ましい。成型の時点における圧縮率Sは、27%以上であることがより好ましく、30%以上であることが特に好ましい。   The compressibility S of the casting sand mold producing composition is preferably 25% or more at the time of molding (for example, when the casting sand mold producing composition is filled in the mold). The compression ratio S at the time of molding is more preferably 27% or more, and particularly preferably 30% or more.

鋳物用砂型製造用組成物の圧縮率Sは、以下の方法で測定される。まず、150グラムの鋳物用砂型製造用組成物2を、図1に示すような、内径dが50mm、縦hが150mmの中空円筒状容器(例えばアクリルモールド)1に入れる。鋳物用砂型製造用組成物2を中空円筒状容器1に入れる際には、ロートを使用して流し込むことができる。   The compression rate S of the composition for sand mold manufacture for castings is measured by the following method. First, 150 grams of the composition 2 for casting sand mold production is placed in a hollow cylindrical container (for example, acrylic mold) 1 having an inner diameter d of 50 mm and a vertical length h of 150 mm as shown in FIG. When putting composition 2 for casting sand mold manufacture into the hollow cylindrical container 1, it can pour using a funnel.

次に、鋳物用砂型製造用組成物2の表面3が均一な高さとなるまで中空円筒状容器1の側面1Aに振動を与える。次に、中空円筒状容器1の底面1Bから、鋳物用砂型製造用組成物2の表面3までの高さを3箇所で測定し、その平均値をHbとする。   Next, vibration is applied to the side surface 1A of the hollow cylindrical container 1 until the surface 3 of the composition 2 for producing a casting sand mold has a uniform height. Next, the height from the bottom surface 1B of the hollow cylindrical container 1 to the surface 3 of the composition 2 for production of a sand mold for casting is measured at three points, and the average value is taken as Hb.

次に、JIS Z 2601に記載された試験片搗き固め機(株式会社ナカヤマ製の鋳物砂搗固機)を用い、搗固め重錘重量は6.5Kg、搗固め重錘落下距離は50mm、搗固め回数は3回という条件で、鋳物用砂型製造用組成物2の表面3を搗き固める。   Next, using a test piece cementing machine (casting sand solidifying machine manufactured by Nakayama Co., Ltd.) described in JIS Z 2601, the weight of the solidifying weight is 6.5 kg, and the falling distance of the solidifying weight is 50 mm, The surface 3 of the composition 2 for producing sand molds for casting is solidified on the condition that the number of times of solidification is 3 times.

次に、中空円筒状容器1の底面1Bから、鋳物用砂型製造用組成物2の表面3までの高さを3箇所で測定し、その平均値をHaとする。圧縮率S(%)を以下の式(1)により算出する。   Next, the height from the bottom surface 1B of the hollow cylindrical container 1 to the surface 3 of the composition 2 for producing a sand mold for casting is measured at three points, and the average value is taken as Ha. The compression ratio S (%) is calculated by the following equation (1).

式(1) S=((Hb−Ha)/Hb)×100
圧縮率Sは、鋳物砂と水ガラスとを混合してからの時間Tに依存して変化する。一般的には、時間Tが長くなるほど、圧縮率Sは小さくなる。よって、時間Tを長くする、あるいは短くすることにより、圧縮率Sを調整することができる。
Formula (1) S = ((Hb-Ha) / Hb) x 100
The compression rate S varies depending on the time T after mixing the foundry sand and the water glass. Generally, the longer the time T, the smaller the compression rate S. Therefore, the compression rate S can be adjusted by lengthening or shortening the time T.

本発明は、粘結剤として無機化合物である水ガラスを使用し、他の添加物として、無機系多孔質材料を使用することができる。本発明では、例えば、有機系粘結剤を実質的に使用しないようにすることができる。この場合、注湯により有害なガスや悪臭を有するガスを発生しにくく、鋳造時の作業環境を汚染しにくい。   In the present invention, water glass which is an inorganic compound is used as a caking agent, and an inorganic porous material can be used as another additive. In the present invention, for example, an organic caking agent can be substantially eliminated. In this case, it is difficult to generate harmful gas and offensive odor gas by pouring the water, and it is difficult to pollute the working environment at the time of casting.

鋳物用砂型製造用組成物中に含まれる水ガラスは鋳物砂の粒子間を連結する架橋体として存在し、注湯によってその架橋体に顕著な構造変化が誘起する。このことは、走査電子顕微鏡(SEM)観察により認められる。この架橋構造の注湯前後における熱履歴に伴う構造変化が、本発明の鋳物用砂型における極めて高い崩壊性を発現させると推測される。 よって、本発明の鋳物用砂型製造用組成物及び鋳物用砂型は、効率的な再生利用が可能であり、環境に優しく且つ省エネプロセスを実現できる。
(実施例1)
1.鋳物用砂型製造用組成物K1の製造
以下の成分を混合することで、鋳物用砂型製造用組成物K1を製造した。
The water glass contained in the casting sand mold producing composition exists as a cross-linked body connecting particles of casting sand, and pouring causes a remarkable structural change in the cross-linked body. This is observed by scanning electron microscope (SEM) observation. It is presumed that the structural change associated with the heat history before and after pouring of this cross-linked structure causes the extremely high disintegration property in the foundry sand mold of the present invention. Therefore, the composition for manufacturing sand molds for casting and the casting sand mold of the present invention can be recycled efficiently, and can be environmentally friendly and realize an energy saving process.
Example 1
1. Production of composition K1 for production of sand mold for casting A composition K1 for production of sand mold for casting was produced by mixing the following components.

人工砂(ルモナス#60):100重量部
水ガラス(富士化学株式会社製、1号珪酸ソーダ(モル比は2.1、シリカ濃度は28.21重量%)):2重量部
多孔質シリカ(富士シリシア株式会社製、MB4B):1重量部
2.鋳物用砂型の製造
上記のように製造した鋳物用砂型製造用組成物K1を、図2に示す木型に手篭めで充填し、15分間放置した。次に、木型から内容物を抜型して鋳物用砂型(中子)を得た。
Artificial sand (Rumonas # 60): 100 parts by weight Water glass (No. 1 sodium silicate (Mole ratio is 2.1, silica concentration is 28.21% by weight) manufactured by Fuji Chemical Co., Ltd.): 2 parts by weight Porous silica ( Fuji Silysia Co., Ltd., MB4B: 1 part by weight. Production of Sand Mold for Casting The composition K1 for producing a sand mold for casting manufactured as described above was hand-filled in a wooden mold shown in FIG. 2 and left for 15 minutes. Next, the contents were punched out of a wooden mold to obtain a casting sand mold (core).

上記の鋳物用砂型の製造を、時間T(鋳物用砂型製造用組成物K1の各成分を混合してから、鋳物用砂型製造用組成物K1を木型に充填するまでの時間)を様々に変えながら、繰り返し行った。以下では、時間Tのみが異なる8種類の製造条件を1a〜1hとする。また、製造条件1a〜1hにおける時間Tを、それぞれ、時間T1a〜T1hとする。
3.圧縮率Sの計測
鋳物用砂型製造用組成物K1について、時間T1a〜T1hの時点での圧縮率Sをそれぞれ計測した。なお、時間Tの時点での圧縮率Sとは、時間Tの時点で中空円筒状容器に鋳物用砂型製造用組成物を入れ、上述した方法で測定した圧縮率Sを意味する。
In the production of the casting sand mold described above, the time T (the time from the mixing of the components of the composition K1 for casting sand mold to the filling of the composition K1 for casting sand mold into the mold) is varied. It went repeatedly while changing. Below, eight types of manufacturing conditions from which only time T differs are set to 1a-1h. Moreover, let time T in manufacturing conditions 1a- 1h be time T1a-T1h, respectively.
3. Measurement of Compression Ratio S The compression ratio S at time T 1a to T 1h was measured for each of the compositions K 1 for producing sand molds for casting. In addition, the compressibility S at the time of time T puts the composition for sand mold manufacture for castings in the hollow cylindrical container at the time of time T, and means the compressibility S measured by the method mentioned above.

時間T1aの時点での圧縮率Sは、製造条件1aにおいて鋳物用砂型製造用組成物を木型に充填した時点(成形の時点)での圧縮率Sである。同様に、時間T1b〜T1hの時点での圧縮率Sは、それぞれ、製造条件1b〜1hにおいて鋳物用砂型製造用組成物を木型に充填した時点(成形の時点)での圧縮率Sである。圧縮率Sの計測結果を表1に示す。また、表1には、圧縮率Sの算出に用いたHb、Haを併せて示す。 The compression rate S at time T 1a is the compression rate S at the time when the sand mold manufacturing composition was filled in a mold under production conditions 1 a (at the time of molding). Similarly, the compression rate S at times T 1b to T 1h is the compression rate S at the time of filling the mold with the sand mold manufacturing composition under production conditions 1b to 1h (at the time of molding), respectively. It is. Table 1 shows the measurement results of the compression rate S. Table 1 also shows Hb and Ha used to calculate the compression ratio S.

4.鋳物用砂型の成形性の評価
製造条件1a〜1hのそれぞれについて、木型から抜型した鋳物用砂型を観察し、鋳物用砂型の成形性を評価した。評価は以下の基準に基づき行った。
4. Evaluation of the Formability of the Foundry Sand Mold For each of the production conditions 1a to 1 h, the formability of the foundry sand mold was evaluated by observing the foundry sand mold that was removed from the wood form. Evaluation was based on the following criteria.

A:脱型された鋳物用砂型に全く損傷がなく、強度も十分高い。
B:脱型された鋳物用砂型に全く損傷はないが、強度がやや不足している。
C:脱型された鋳物用砂型に軽度の損傷が見られる。
A: There is no damage to the cast sand mold that has been removed, and the strength is sufficiently high.
B: There is no damage to the cast sand mold that has been demolded, but the strength is somewhat lacking.
C: Mild damage is observed in the decanted casting sand mold.

D:鋳物用砂型として成形することができない。
成形性の評価結果を上記表1に示す。表1に示されているように、圧縮率Sの値が25%以上であれば、成形性が良好であった。また、本実施例で製造した鋳物用砂型は、使用時に有害なガスを発生しにくい。また、本実施例で製造した鋳物用砂型は崩壊性において優れている。
(実施例2)
1.K2の製造
以下の成分を混合することで、鋳物用砂型製造用組成物K2を製造した。
D: It can not be molded as a casting sand mold.
The evaluation results of formability are shown in Table 1 above. As shown in Table 1, when the value of the compression rate S was 25% or more, the moldability was good. Moreover, the sand mold for castings manufactured in the present Example does not generate | occur | produce harmful | toxic gas easily at the time of use. Moreover, the sand mold for casting manufactured in the present Example is excellent in disintegration.
(Example 2)
1. Production of K2 The following components were mixed to produce a composition K2 for producing a sand mold for casting.

人工砂(ルモナス#110):100重量部
水ガラス(富士化学株式会社製、1号珪酸ソーダ(モル比は2.1、シリカ濃度は28.21重量%)):2重量部
多孔質シリカ(富士シリシア株式会社製、BW−80):1重量部
2.鋳物用砂型の製造
上記のように製造した鋳物用砂型製造用組成物K2を、図2に示す木型に手篭めで充填し、15分間放置した。次に、木型から内容物を抜型して鋳物用砂型(中子)を得た。
Artificial sand (Rumonas # 110): 100 parts by weight Water glass (No. 1 sodium silicate (Mole ratio is 2.1, silica concentration is 28.21% by weight) manufactured by Fuji Chemical Co., Ltd.): 2 parts by weight Porous silica ( Fuji Silysia Co., Ltd., BW-80): 1 part by weight. Production of Sand Mold for Casting The composition K2 for producing a sand mold for casting manufactured as described above was hand-filled in a wooden mold shown in FIG. 2 and left for 15 minutes. Next, the contents were punched out of a wooden mold to obtain a casting sand mold (core).

上記の鋳物用砂型の製造を、時間Tを様々に変えながら、繰り返し行った。以下では、時間Tのみが異なる4種類の製造条件を2a〜2dとする。また、製造条件2a〜2dにおける時間Tを、それぞれ、時間T2a〜T2dとする。
3.圧縮率Sの計測
鋳物用砂型製造用組成物K2について、時間T2a〜T2dの時点での圧縮率Sをそれぞれ計測した。時間T2a〜T2dの時点での圧縮率Sは、それぞれ、製造条件2a〜2dにおいて鋳物用砂型製造用組成物を木型に充填した時点(成形の時点)での圧縮率Sである。圧縮率Sの計測結果を表2に示す。また、表2には、圧縮率Sの算出に用いたHb、Haを併せて示す。
The production of the casting sand mold described above was repeated while changing the time T variously. Below, 4 types of manufacturing conditions from which only time T differs are set to 2a-2d. Moreover, the time T in the manufacturing condition 2 a to 2 d, respectively, and time T 2a through T 2d.
3. For measurement foundry sand mold composition for the preparation K2 compression ratio S, it was measured, respectively the compression ratio S at the time of the time T 2a through T 2d. The compression rate S at times T 2a to T 2d is the compression rate S at the time of filling the mold with the sand mold manufacturing composition for molding under the production conditions 2a to 2d (at the time of molding), respectively. Table 2 shows the measurement results of the compression rate S. Table 2 also shows Hb and Ha used to calculate the compression ratio S.

4.鋳物用砂型の成形性の評価
製造条件2a〜2dのそれぞれについて、前記実施例1と同様に、鋳物用砂型の成形性を評価した。成形性の評価結果を上記表2に示す。表2に示されているように、圧縮率Sの値が25%以上であれば、成形性が良好であった。また、本実施例で製造した鋳物用砂型は、使用時に有害なガスを発生しにくい。また、本実施例で製造した鋳物用砂型は崩壊性において優れている。
(実施例3)
1.鋳物用砂型製造用組成物K3の製造
以下の成分を混合することで、鋳物用砂型製造用組成物K3を製造した。
4. Evaluation of the Formability of the Foundry Sand Mold The formability of the foundry sand mold was evaluated in the same manner as in Example 1 for each of the production conditions 2a to 2d. The evaluation results of formability are shown in Table 2 above. As shown in Table 2, when the value of the compression rate S was 25% or more, the moldability was good. Moreover, the sand mold for castings manufactured in the present Example does not generate | occur | produce harmful | toxic gas easily at the time of use. Moreover, the sand mold for casting manufactured in the present Example is excellent in disintegration.
(Example 3)
1. Production of Composition K3 for Production of Sand Mold for Casting The following components were mixed to produce a composition K3 for production of sand mold for casting.

人工砂(ルモナス#110):100重量部
水ガラス(富士化学株式会社製、1号珪酸ソーダ(モル比は2.1、シリカ濃度は28.21重量%)):2重量部
多孔質シリカ(富士シリシア株式会社製、MB4B):1重量部
2.鋳物用砂型の製造
上記のように製造した鋳物用砂型製造用組成物K3を、図2に示す木型に手篭めで充填し、15分間放置した。次に、木型から内容物を抜型して鋳物用砂型(中子)を得た。
Artificial sand (Rumonas # 110): 100 parts by weight Water glass (No. 1 sodium silicate (Mole ratio is 2.1, silica concentration is 28.21% by weight) manufactured by Fuji Chemical Co., Ltd.): 2 parts by weight Porous silica ( Fuji Silysia Co., Ltd., MB4B: 1 part by weight. Production of sand mold for casting The composition K3 for producing a sand mold for casting manufactured as described above was hand-filled in a wooden mold shown in FIG. 2 and left for 15 minutes. Next, the contents were punched out of a wooden mold to obtain a casting sand mold (core).

上記の鋳物用砂型の製造を、時間Tを様々に変えながら、繰り返し行った。以下では、時間Tのみが異なる4種類の製造条件を3a〜3dとする。また、製造条件3a〜3dにおける時間Tを、それぞれ、時間T3a〜T3dとする。
3.圧縮率Sの計測
鋳物用砂型製造用組成物K3について、時間T3a〜T3dの時点での圧縮率Sをそれぞれ計測した。時間T3a〜T3dの時点での圧縮率Sは、それぞれ、製造条件3a〜3dにおいて鋳物用砂型製造用組成物を木型に充填した時点(成形の時点)での圧縮率Sである。圧縮率Sの計測結果を表3に示す。また、表3には、圧縮率Sの算出に用いたHb、Haを併せて示す。
The production of the casting sand mold described above was repeated while changing the time T variously. Below, 4 types of manufacturing conditions from which only time T differs are set to 3a-3d. Moreover, the time T in the manufacturing condition 3 a to 3 d, respectively, and time T 3a through T 3d.
3. Measurement of Compression Ratio S The compression ratio S at time T 3 a to T 3 d was measured for the composition K 3 for producing sand molds for casting. The compression rate S at times T 3a to T 3d is the compression rate S at the time when the composition for manufacturing a sand mold for casting is filled in a mold under production conditions 3a to 3d (at the time of molding). The measurement results of the compression rate S are shown in Table 3. Table 3 also shows Hb and Ha used to calculate the compression ratio S.

4.鋳物用砂型の成形性の評価
製造条件3a〜3dのそれぞれについて、前記実施例1と同様に、鋳物用砂型の成形性を評価した。成形性の評価結果を上記表3に示す。表3に示されているように、圧縮率Sの値が25%以上であれば、成形性が良好であった。また、本実施例で製造した鋳物用砂型は、使用時に有害なガスを発生しにくい。また、本実施例で製造した鋳物用砂型は崩壊性において優れている。
(実施例4)
1.鋳物用砂型製造用組成物K4の製造
以下の成分を混合することで、鋳物用砂型製造用組成物K4を製造した。
4. Evaluation of the formability of the casting sand mold The formability of the casting sand mold was evaluated in the same manner as in Example 1 for each of the production conditions 3a to 3d. The evaluation results of formability are shown in Table 3 above. As shown in Table 3, when the compression rate S was 25% or more, the moldability was good. Moreover, the sand mold for castings manufactured in the present Example does not generate | occur | produce harmful | toxic gas easily at the time of use. Moreover, the sand mold for casting manufactured in the present Example is excellent in disintegration.
(Example 4)
1. Production of Composition K4 for Production of Sand Mold for Casting The following components were mixed to produce a composition K4 for production of sand mold for casting.

人工砂(AR SAND#1500):100重量部
水ガラス(富士化学株式会社製、1号珪酸ソーダ(モル比は2.1、シリカ濃度は28.21重量%)):2.98重量部
多孔質シリカ(富士シリシア株式会社製、MB4B):1重量部
2.鋳物用砂型の製造
上記のように製造した鋳物用砂型製造用組成物K4を、図2に示す木型に手篭めで充填し、15分間放置した。次に、木型から内容物を抜型して鋳物用砂型(中子)を得た。
Artificial sand (AR SAND # 1500): 100 parts by weight Water glass (Fuji Chemical Co., Ltd., No. 1 sodium silicate (molar ratio is 2.1, silica concentration is 28.21% by weight)): 2.98 parts by weight Quality silica (manufactured by Fuji Silysia Ltd., MB4B): 1 part by weight. Production of sand mold for casting The composition K4 for producing sand mold for casting manufactured as described above was hand-filled in a wooden mold shown in FIG. 2 and left for 15 minutes. Next, the contents were punched out of a wooden mold to obtain a casting sand mold (core).

上記の鋳物用砂型の製造を、時間Tを様々に変えながら、繰り返し行った。以下では、時間Tのみが異なる4種類の製造条件を4a〜4dとする。また、製造条件4a〜4dにおける時間Tを、それぞれ、時間T4a〜T4dとする。
3.圧縮率Sの計測
鋳物用砂型製造用組成物K4について、時間T4a〜T4dの時点での圧縮率Sをそれぞれ計測した。時間T4a〜T4dの時点での圧縮率Sは、それぞれ、製造条件4a〜4dにおいて鋳物用砂型製造用組成物を木型に充填した時点(成形の時点)での圧縮率Sである。圧縮率Sの計測結果を表4に示す。また、表4には、圧縮率Sの算出に用いたHb、Haを併せて示す。
The production of the casting sand mold described above was repeated while changing the time T variously. In the following, four kinds of manufacturing conditions which differ only in time T will be referred to as 4a to 4d. Moreover, let time T in manufacturing condition 4a- 4d be time T4a-T4d, respectively.
3. Measurement of Compression Ratio S The compression ratio S at time T 4 a to T 4 d was measured for each of the compositions K 4 for producing a sand mold for casting. The compression rate S at times T 4a to T 4d is the compression rate S at the time of filling the mold with the sand mold manufacturing composition for molding under the production conditions 4 a to 4 d (at the time of molding), respectively. The measurement results of the compression rate S are shown in Table 4. Table 4 also shows Hb and Ha used to calculate the compression ratio S.

4.鋳物用砂型の成形性の評価
製造条件4a〜4dのそれぞれについて、前記実施例1と同様に、鋳物用砂型の成形性を評価した。成形性の評価結果を上記表4に示す。表4に示されているように、圧縮率Sの値が25%以上であれば、成形性が良好であった。また、本実施例で製造した鋳物用砂型は、使用時に有害なガスを発生しにくい。また、本実施例で製造した鋳物用砂型は崩壊性において優れている。
(実施例5)
1.アルミ鋳造試験後の中子の崩壊性評価
前記実施例1における製造条件1b、前記実施例2における製造条件2b、前記実施例3における製造条件3b、及び前記実施例4における製造条件4bで製造した鋳物用砂型(中子)について、以下のようにして崩壊性を評価した。
4. Evaluation of the formability of the casting sand mold The formability of the casting sand mold was evaluated in the same manner as in Example 1 for each of the production conditions 4a to 4d. The evaluation results of formability are shown in Table 4 above. As shown in Table 4, when the compression ratio S was 25% or more, the moldability was good. Moreover, the sand mold for castings manufactured in the present Example does not generate | occur | produce harmful | toxic gas easily at the time of use. Moreover, the sand mold for casting manufactured in the present Example is excellent in disintegration.
(Example 5)
1. Evaluation of collapsibility of core after aluminum casting test Manufactured under the manufacturing condition 1b in Example 1, the manufacturing condition 2b in Example 2, the manufacturing condition 3b in Example 3, and the manufacturing condition 4b in Example 4 The disintegratability of the foundry sand mold (core) was evaluated as follows.

まず、評価対象である鋳物用砂型を、日瓢珪砂(6.5号)で作製した主型にセットして、鋳型を作成した。次に、溶融アルミニウム(JISH5202:2010 AC2A)を鋳型に注湯した。注湯後、鋳造物が室温付近になるまで冷却し、鋳型から、図3aに示す鋳造物を取り出した。鋳造物から巾木部分を取除いた後、鋳造物を傾け、さらには手で振とうした。このとき、鋳造物から取り除かれた中子の重量(Wn)を測定した。   First, a casting sand mold to be evaluated was set in a main mold made of Nichijo silica sand (No. 6.5) to prepare a mold. Next, molten aluminum (JISH5202: 2010 AC2A) was poured into a mold. After pouring, the casting was cooled to around room temperature, and the casting shown in FIG. 3a was taken out of the mold. After removing the baseboard part from the casting, the casting was tilted and then shaken by hand. At this time, the weight (Wn) of the core removed from the casting was measured.

次に、図3bに示すように、鋳造物を2分割して残留する中子を集め、その重量(Wr)を測定した。そして、以下の式(2)により崩壊率X(%)を算出した。崩壊率Xは崩壊性の指標であり、その値が大きいほど、崩壊性が良好である。   Next, as shown in FIG. 3b, the casting was divided into two and the remaining core was collected, and its weight (Wr) was measured. And collapse rate X (%) was computed by the following formula (2). The disintegration rate X is an index of disintegration, and the larger the value, the better the disintegration.

式(2) X=100xWn/(Wn+Wr)
その結果、前記実施例1における製造条件1b、前記実施例2における製造条件2b、前記実施例3における製造条件3b、及び前記実施例4における製造条件4bで製造した鋳物用砂型は、いずれも崩壊率が顕著に高く、95%以上であった。この高い崩壊率は、機械的装置による型ばらしを要することなく実現された。
Formula (2) X = 100xWn / (Wn + Wr)
As a result, the casting sand mold manufactured under the manufacturing condition 1b in the first embodiment, the manufacturing condition 2b in the second embodiment, the manufacturing condition 3b in the third embodiment, and the manufacturing condition 4b in the fourth embodiment are all collapsed. The rate was noticeably high, above 95%. This high collapse rate has been achieved without the need for mechanical disassembly.

なお、鋳物用砂型の製造に用いた、図2に示す木型は、一般的に、中子の崩壊性が不良となり易いとされる袋状及び波状部分を有し、さらに中子巾木ネック部を絞ることによる中子強度の検証が可能な複雑形状の木型である。   In addition, the wood type shown in FIG. 2 used for the manufacture of the sand mold for castings generally has a bag-like or wave-like portion which is considered to be likely to cause the core to have a poor collapsibility. It is a tree of complex shape that can verify core strength by narrowing the part.

鋳造物を2分割して鋳肌等の評価を行ったところ、上記袋状並びに波状部分に残留する中子がほとんど存在しなかった。そのことから、評価を行った各鋳物用砂型が極めて高い崩壊性を発現することが強く裏付けられた。   When the cast was divided into two and the cast surface and the like were evaluated, almost no core remained in the above-mentioned bag-like and wave-like portions. From that, it was strongly supported that each casting sand mold evaluated has developed extremely high disintegration.

2.各鋳物用砂型が高い崩壊性を示す理由
各鋳物用砂型が高い崩壊性を示す理由は以下のように推測される。図4aに示す走査電子顕微鏡画像は、前記実施例1における製造条件1bで製造した鋳物用砂型を120℃で焼成した焼成物を観察した画像である。この画像中に、鋳物砂の粒子間を連結する架橋体が認められる。
2. The reason why each casting sand mold shows high collapsibility The reason why each casting sand mold shows high collapsibility is presumed as follows. The scanning electron microscope image shown in FIG. 4a is an image obtained by observing a fired product obtained by firing at 120 ° C. the sand mold for casting manufactured under the manufacturing condition 1b in the first embodiment. In this image, a cross-linked body connecting particles of foundry sand is observed.

また、図4bに示す走査電子顕微鏡画像は、前記実施例1における製造条件1bで製造した鋳物用砂型を600℃で焼成した焼成物を観察した画像である。この画像中にも、鋳物砂の粒子間を連結する架橋体が認められる。   Moreover, the scanning electron microscope image shown to FIG. 4 b is an image which observed the baked product which baked at 600 degreeC the sand mold for castings manufactured on the manufacturing conditions 1b in the said Example 1. FIG. Also in this image, a crosslinked body connecting particles of foundry sand is observed.

図4cは、図4aに示す架橋体と同条件で形成された架橋体の痕跡(以下では架橋体痕跡とする)を示す。架橋体痕跡とは、鋳物砂同士が一旦接触し、その後乖離した後に鋳物砂粒子の表面に残される構造体である。架橋体痕跡は、鋳物砂の粒子間の衝突で形成される。SEM観察すると1つの粒子表面に複数の架橋体痕跡が認められる。図4cは、架橋体を輪切りした状態を示す画像であって、粒子表面に垂直な方向から観察した画像である。   FIG. 4 c shows a trace of the cross-linked body formed under the same conditions as the cross-linked body shown in FIG. 4 a (hereinafter referred to as a cross-linked body trace). The crosslinked body trace is a structure which is left on the surface of the foundry sand particles after the foundry sand contacts each other and then separates. Cross-linked body traces are formed by collisions between casting sand particles. In SEM observation, a plurality of cross-linked body traces are observed on one particle surface. FIG. 4 c is an image showing a state in which the crosslinked body is cut in a circle, and is an image observed from the direction perpendicular to the particle surface.

図4dは、図4bに示す架橋体と同条件で形成された架橋体の痕跡(架橋体痕跡)を示す。図4dは、架橋体を輪切りした状態を示す画像であって、粒子表面に垂直な方向から観察した画像である。   FIG. 4 d shows the trace of the cross-linked body formed under the same conditions as the cross-linked body shown in FIG. 4 b (cross-linked body trace). FIG. 4 d is an image showing a state in which the crosslinked body is cut in a circle, and is an image observed from the direction perpendicular to the particle surface.

架橋体痕跡は、加熱温度が低い場合には粒子表面に一見認め難いが(図4a参照)、温度上昇によって明瞭に認められるようになる(図4b参照)。
図5は、図4a、図4bに示す架橋体の加熱に伴う変化を模式的に表したものある。鋳物砂の粒子間を連結する架橋体の長さ(L)は、鋳物用砂型の成型直後から300℃位までの状態(図5a)と比較すると、より高温では顕著に伸張すると同時に、円殻の厚さ(N)が約0.2μmと極めて薄くなることが分かった(図5b)。この熱履歴による架橋体の構造変化、すなわち円筒状架橋体の伸長且つ薄層化によって、粒子間の結合は脆弱化して高い崩壊性が発現すると考えられる。
Cross-linked traces are apparently not visible on the particle surface when the heating temperature is low (see FIG. 4a), but become apparent as the temperature increases (see FIG. 4b).
FIG. 5 schematically shows the change with heating of the cross-linked product shown in FIG. 4 a and FIG. 4 b. The length (L) of the cross-linked body connecting particles of casting sand is significantly expanded at a higher temperature, and at the same time a circular shell as compared with the state from immediately after molding to the 300 ° C. (Fig. 5a). It was found that the thickness (N) of the film was extremely thin at about 0.2 .mu.m (FIG. 5b). It is considered that due to the structural change of the crosslinked body due to the thermal history, that is, the elongation and thinning of the cylindrical crosslinked body, the bond between particles is weakened to develop high disintegration.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく、種々の形態を採り得る。
例えば、無機砂型造型用鋳物砂K1〜K4は、3次元積層造型砂型用の材料とすることができる。
As mentioned above, although embodiment of this invention was described, this invention can take various forms, without being limited to the said embodiment.
For example, the inorganic sand casting sand K1 to K4 can be used as a material for a three-dimensional laminated sand casting.

1…中空円筒状容器、1A…側面、1B…底面、2…鋳物用砂型製造用組成物、3…表面 DESCRIPTION OF SYMBOLS 1 ... Hollow cylindrical container, 1A ... Side surface, 1B ... Bottom face, 2 ... Composition for sand mold manufacture for castings, 3 ... Surface

Claims (1)

鋳物用砂型製造用組成物を型に充填し、抜型することで鋳物用砂型を製造する鋳物用砂型の製造方法であって、
前記鋳物用砂型製造用組成物は、鋳物砂と水ガラスと多孔質シリカとを含み、前記鋳物用砂型製造用組成物を前記型に充填する時点において下記で定義する圧縮率Sの値が25%以上であり、前記鋳物砂は球状の人工砂であることを特徴とする鋳物用砂型製造方法
150グラムの前記鋳物用砂型製造用組成物を、内径50mm、縦150mmの中空円筒状容器に入れ、前記鋳物用砂型製造用組成物の表面が均一な高さとなるまで前記中空円筒状容器の側面に振動を与える。次に、前記中空円筒状容器の底面から、前記鋳物用砂型製造用組成物の表面までの高さを3箇所で測定し、その平均値をHbとする。次に、JIS Z 2601に記載された試験片搗き固め機を用い、搗固め重錘重量は6.5Kg、搗固め重錘落下距離は50mm、搗固め回数は3回という条件で、前記鋳物用砂型製造用組成物の表面を搗き固める。次に、前記中空円筒状容器の底面から、前記鋳物用砂型製造用組成物の表面までの高さを3箇所で測定し、その平均値をHaとする。圧縮率Sを以下の式(1)により算出する。
式(1) S=((Hb−Ha)/Hb)×100
A method for producing a casting sand mold for producing a casting sand mold by filling the casting sand composition for casting mold into a mold and extracting the composition,
The composition for manufacturing a sand mold for casting contains casting sand, water glass and porous silica, and the value of the compression ratio S defined below is 25 when the composition for manufacturing a sand mold for casting is filled in the mold. der least% is, the molding sand production method of foundry sand mold according to claim artificial sand der Rukoto spherical.
150 grams of the casting composition for castings is placed in a hollow cylindrical container having an inner diameter of 50 mm and a length of 150 mm, and the side surface of the hollow cylindrical container until the surface of the casting composition for castings has a uniform height. Give vibration to Next, the height from the bottom of the hollow cylindrical container to the surface of the composition for producing a casting mold for castings is measured at three points, and the average value is taken as Hb. Next, using the test piece rolling compactor described in JIS Z 2601, the weight of the compacted weight is 6.5 Kg, the dropped weight of the compacted heavy weight is 50 mm, and the number of times of compacting is 3 times. The surface of the composition for producing sand molds is compacted. Next, the height from the bottom of the hollow cylindrical container to the surface of the composition for producing a casting mold for castings is measured at three points, and the average value thereof is taken as Ha. The compression ratio S is calculated by the following equation (1).
Formula (1) S = ((Hb-Ha) / Hb) x 100
JP2015097496A 2015-05-12 2015-05-12 Method of manufacturing sand mold for casting Active JP6528109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015097496A JP6528109B2 (en) 2015-05-12 2015-05-12 Method of manufacturing sand mold for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015097496A JP6528109B2 (en) 2015-05-12 2015-05-12 Method of manufacturing sand mold for casting

Publications (2)

Publication Number Publication Date
JP2016209920A JP2016209920A (en) 2016-12-15
JP6528109B2 true JP6528109B2 (en) 2019-06-12

Family

ID=57550895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015097496A Active JP6528109B2 (en) 2015-05-12 2015-05-12 Method of manufacturing sand mold for casting

Country Status (1)

Country Link
JP (1) JP6528109B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352224B2 (en) * 2019-08-19 2023-09-28 富士化学株式会社 Composition for manufacturing sand mold for foundry and method for manufacturing sand mold for foundry

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52810B2 (en) * 1973-11-07 1977-01-11
JP3115518B2 (en) * 1994-12-16 2000-12-11 花王株式会社 Binder composition for mold, mold composition and method for producing mold
JP5971553B2 (en) * 2012-05-10 2016-08-17 富士化学株式会社 Mold and mold manufacturing method

Also Published As

Publication number Publication date
JP2016209920A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP4610679B2 (en) Manufacturing procedures for ferrules for molds, other feeding heads and feeding elements, and compositions for the production of said ferrules and elements
JP5632136B2 (en) Disintegrating mold and manufacturing method thereof
WO2018147419A1 (en) Mold material composition and method for producing mold using same
JP2024020228A (en) Method for making mold and core suited for manufacturing fiber composite or metal or plastic cast component, mold base material and binder used in method, and mold and core to be made by method
RU2608861C2 (en) Sand mold, method of making sand mold and core for casting metal
CN105312485B (en) A kind of die casting molding sand
CN106927798B (en) Water-soluble ceramic core and preparation method thereof
JP5867938B1 (en) Mold and mold manufacturing method
WO2019225039A1 (en) Cylinder liner for cast-covering, and method for manufacturing cylinder block
CN104308156A (en) Composition for three-dimensional print casting and applications thereof
JP2017213599A (en) Casting core and method for manufacturing same
JP6528109B2 (en) Method of manufacturing sand mold for casting
KR102586742B1 (en) Binder composition for molds, aggregate mixture for molds, and molds
JP2017056482A (en) Casting mold set and manufacturing method of frozen mold casting article
JP3847652B2 (en) Disappearance model coating composition
JP7272562B2 (en) Modeling material containing diatomaceous earth and method for producing diatomaceous earth product
JP2014018851A (en) Method of producing core and core
US11110510B2 (en) Expandable aggregate mixture for molds, mold, and method for manufacturing mold
JP2021104544A (en) Method for molding casting mold and core
CN106966755B (en) High-porosity water-soluble ceramic core and preparation method thereof
JP6978846B2 (en) Blotting agent-containing sand for core production with high filling properties
US20150367406A1 (en) Method for the production of core sand and/or molding sand for casting purposes
JP7311965B2 (en) Mold manufacturing method and mold for mold making
JPH0636954B2 (en) Composition for easily disintegrating mold
US10099274B2 (en) Evaporative pattern casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6528109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250