JP6522751B2 - 燃料電池システム、外部管理装置、燃料電池装置及び燃料電池装置の制御方法 - Google Patents

燃料電池システム、外部管理装置、燃料電池装置及び燃料電池装置の制御方法 Download PDF

Info

Publication number
JP6522751B2
JP6522751B2 JP2017524650A JP2017524650A JP6522751B2 JP 6522751 B2 JP6522751 B2 JP 6522751B2 JP 2017524650 A JP2017524650 A JP 2017524650A JP 2017524650 A JP2017524650 A JP 2017524650A JP 6522751 B2 JP6522751 B2 JP 6522751B2
Authority
JP
Japan
Prior art keywords
fuel cell
operating
state
master
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017524650A
Other languages
English (en)
Other versions
JPWO2016208205A1 (ja
Inventor
尚伸 西海
尚伸 西海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2016208205A1 publication Critical patent/JPWO2016208205A1/ja
Application granted granted Critical
Publication of JP6522751B2 publication Critical patent/JP6522751B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04932Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

関連出願の相互参照
本出願は、2015年6月26日に出願された日本国特許出願2015−129162号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
本開示は、複数の燃料電池装置を含む燃料電池システム、外部管理装置、燃料電池装置及び燃料電池装置の制御方法に関するものである。
需要家施設内の負荷に電力を供給する手段として、例えば、燃料電池装置などの出力を調整可能な発電装置が用いられている。発電装置は出力の向上が求められている。1つ方法としては、複数の発電装置を並列運転させる場合がある。
発電装置はそれぞれ対応する制御装置を備えていることが一般的であり、それぞれの制御装置が独自に各発電装置の制御を行なうことが考えられる。しかし、発電装置毎に自装置の制御を行なうことは、複数の発電装置全体の稼働率の向上および各発電装置の寿命の長期化には必ずしも適切ではない。そこで、例えば、特許文献1には、単一の運転制御装置により複数の発電装置の出力を調整することが提案されている。
特開2002−247765号公報
本開示の燃料電池システムは、負荷に電力を供給する複数の燃料電池装置と、外部管理装置とを含む。前記複数の燃料電池装置および前記外部管理装置は、ネットワークに接続され相互に通信可能である。前記複数の燃料電池装置は、自装置を、自装置及び他の燃料電池装置の稼働状態を制御するマスターモードと、他の燃料電池装置により稼働状態の制御を受けるスレーブモードとを含む何れかの動作モードで制御する制御部を有する。前記外部管理装置は、取得部と、情報生成部と、出力部とを含む。前記取得部は、前記負荷の消費電力を取得する。前記情報生成部は、前記消費電力に基づいて、前記複数の燃料電池装置の稼働状態を制御するための制御情報を生成する。前記出力部は、前記マスターモードで動作する燃料電池装置に対して前記制御情報を出力する。前記マスターモードで動作する燃料電池装置は、前記外部管理装置から出力された前記制御情報に基づいて、自装置及び他の燃料電池装置の前記稼働状態を制御する。
また、本開示の外部管理装置は、取得部と情報生成部と出力部とを含む。前記取得部は、負荷の消費電力を取得する。前記情報生成部は、前記消費電力に基づいて、複数の燃料電池装置の稼働状態を制御するための制御情報を生成する。前記複数の燃料電池装置のそれぞれは、ネットワークに接続され相互に通信可能に構成される。前記複数の燃料電池装置のそれぞれは、自装置及び他の燃料電池装置の稼働状態を制御するマスターモード、および、他の燃料電池装置により稼働状態の制御を受けるスレーブモードを含む何れかの動作モードで動作する。前記複数の燃料電池装置のそれぞれは、前記負荷に電力を供給する。前記出力部は前記マスターモードで動作する前記燃料電池装置に対して前記制御情報を出力する。
本開示の燃料電池装置は、発電部と、計時部と、記憶部と、制御部と、送信部と、受信部とを含む。前記発電部は、電力を出力する。前記計時部は、自装置の積算稼働時間を計時する。前記記憶部は、自装置の定格出力値を記憶する。前記制御部は、自装置を、自装置及び他の燃料電池装置の稼働状態を制御するマスターモードと、他の燃料電池装置により稼働状態の制御を受けるスレーブモードとを含む、何れかの動作モードで制御する。前記送信部は、前記スレーブモードで動作するとき、自装置の前記積算稼働時間および自装置の前記定格出力値の少なくとも一方を判別情報として送信する。前記受信部は、前記マスターモードで動作するとき、他の燃料電池装置から前記判別情報を受信する。前記マスターモードで動作するとき、前記送信部は、外部管理装置に自装置および他の燃料電池装置の判別情報を送信する。前記マスターモードで動作するとき、前記受信部は、前記外部管理装置から自装置および他の燃料電池装置に対する稼働状態を制御するための制御情報を受信する。
また、本開示の燃料電池の制御方法は、負荷の消費電力を取得するステップを含む。前記制御方法は、前記消費電力に基づいて、複数の燃料電池装置の稼働状態を制御するための制御情報を生成するステップを含む。前記制御方法は、マスターモードで動作する燃料電池装置に対して前記制御情報を出力するステップを含む。前記制御方法は、前記マスターモードで動作する燃料電池装置が、前記制御情報に基づいて自装置及び他の燃料電池装置の前記稼働状態を制御するステップを含む。前記複数の燃料電池装置は、ネットワークに接続され相互に通信可能に構成される。前記複数の燃料電池装置は、前記負荷に電力を供給する。前記複数の燃料電池装置は、自装置及び他の燃料電池装置の稼働状態を制御する前記マスターモードと、他の燃料電池装置により稼働状態の制御を受けるスレーブモードとを含む複数の動作モードの何れかで動作する。
図1は、第1実施形態に係る燃料電池システムを含む電力供給システムの概略的な構成を示す機能ブロック図である。 図2は、図1の第1〜第3の燃料電池装置の概略的な構成を示す機能ブロック図である 図3は、図1の外部管理装置の概略的な構成を示す機能ブロック図である。 図4は、外部管理装置の制御部が実行する制御をマスターモードで動作する燃料電池装置及びスレーブモードで動作する燃料電池装置における処理とともに示すフローチャートである。 図5は、マスターモードで動作する燃料電池装置の処理のフローチャートである。 図6は、スレーブモードで動作する燃料電池装置の処理のフローチャートである。
以下、本開示の実施の形態について、図面を参照して説明する。
(第1実施形態)
図1において、各機能ブロックを結ぶ実線は、電力の流れを表す。また、図1において、各機能ブロックを結ぶ破線は、制御信号または通信される情報の流れを表す。当該破線による制御信号または通信される情報の流れは、有線および無線の何れによるものでもよい。制御信号または情報の通信には、例えば赤外線通信、ZigBee(登録商標)などの近距離通信方式および電力線搬送通信(PLC;Power Line Communication)などの種々の方式を用いることができる。
電力供給システム10は、分電盤11、燃料電池システム12及びエネルギー管理装置13等を含む。
分電盤11は、燃料電池システム12および系統14から供給される電力を複数の支幹に分岐させて負荷15に分配する。負荷15とは、電力を消費する電力負荷であり、例えば、同一の需要家施設内で使用される空調機器、照明器具、冷蔵機器などの電力を消費する設備である。負荷15は、電力センサを有し、自身の消費電力を示す情報(以下、「消費電力」と呼ぶ)を他の構成機器に送信することができる。
燃料電池システム12は、複数の燃料電池装置、例えば、第1〜第3の燃料電池装置16a〜16cの3つの燃料電池装置と外部管理装置18を含む。以下で、第1〜第3の燃料電池装置16a〜16cを、適宜、燃料電池装置16a〜16cと記載する。これら燃料電池装置16a〜16cは、並列して分電盤11に電力を出力する。燃料電池装置16a〜16cは相互に通信可能であり、また、負荷15との通信およびインターネットなどのネットワーク17を介した外部管理装置18との通信も可能である。燃料電池システム内の燃料電池装置は、3台に限られず、2台または4台以上の燃料電池装置を含んでもよい。
以下の説明において、適宜第1の燃料電池装置16aは、後述するマスターモードで動作し、第2の燃料電池装置16bおよび第3の燃料電池装置16cは、後述するスレーブモードで動作しているものとして説明する。また、適宜前者を「マスター装置16a」と表記し、後者を「スレーブ装置16b、16c」等と表記する。しかし、後述するように、第1〜第3の燃料電池装置16a〜16cの間で、動作モードは切替え可能である。第1の燃料電池装置16aが、スレーブモードで動作し、第2および第3の燃料電池装置16b、16cの何れか一方が、マスターモードで動作することもある。ここで、本願において「動作モード」とは、燃料電池装置の制御方法の違いにより区別される動作の態様を意味する。
外部管理装置18は燃料電池システム12を制御する機器であり、例えば、パソコン、ワークステーション等の汎用のコンピュータに専用の処理プログラムを実装したものでもよく、専用のコンピュータ装置でもよい。また、外部管理装置18は、ネットワーク17を介して燃料電池装置16a〜16cとは離れた場所に配置することができ、燃料電池装置16a〜16cを管理対象とするが、同時に、他の複数の施設内の燃料電池装置を管理することもできる。外部管理装置18は、第1〜第3の燃料電池装置16a〜16cの積算稼働時間等の情報を、マスター装置16aから受信し、特定の燃料電池装置16a〜16cの状態変更指示などを、マスター装置16aに対して送信する。
エネルギー管理装置13は、施設内のエネルギーを管理する装置である。エネルギー管理装置13は、例えば、ECHONET Lite(登録商標)、SEP2.0(Smart Energy Profile 2.0)等の通信規格に基づき、負荷15を構成する設備から消費電力を収集することができる。エネルギー管理装置13は、負荷の消費電力を監視する。また、エネルギー管理装置13は、インテリジェント機能を有する分電盤11から消費電力を収集するようにしてもよい。
第1〜第3の燃料電池装置16a〜16cの構成について、図2を用いて以下に説明する。図2および以下の説明において、第1〜第3の燃料電池装置16a〜16cのうち任意の燃料電池装置を、適宜燃料電池16として表記する。燃料電池装置16は、例えば、固体酸化物形燃料電池装置とすることができるが、常時運転を可能な他の種類の燃料電池装置であってもよい。燃料電池装置16は、停止状態、待機状態、および発電状態のいずれかの稼働状態に切替え可能である。
本願において「稼働状態」は、燃料電池装置の発電に関する状態を意味する。燃料電池装置16の稼働状態の中で、発電状態とは、発電を行っている状態を意味する。また、停止状態とは、発電を停止するとともに発電に関連する周辺機器(補機)までも停止し、外部からの電力もほぼ使用しない状態である。停止状態から発電状態へ移行するには、700°〜1000°まで電池を昇温するための時間を要する。停止状態の場合、燃料電池装置16の外部との通信および装置の制御を行う部分は動作している。待機状態は、発電状態へ停止状態の場合よりも短時間で移行可能なように、一部の周辺機器を動作させた状態である。この場合、燃料電池装置16は、待機状態を維持するために、外部の系統14から電力の供給を受ける。
燃料電池装置16は、発電部19、補機20、通信部21、計時部22、記憶部23、制御部24などを含む。通信部21は、送信部、受信部を含む。
発電部19は、例えば、リフォーマ、セルスタック、インバータを含む。リフォーマは燃料ガスを改質して水素を生成する。セルスタックは水素を用いて直流電力を発電する。インバータは直流電力を交流電力に変換する。発電部19は、インバータにおいて変換した交流電力を分電盤11に出力する。
補機20は、発電部19を動かすために必要な周辺機器であって、空気ブロワ、ヒーター等を含む。補機20には、燃料電池装置16の発電状態のときのみ動作するもの、待機状態と発電状態の双方で動作するもの、待機状態でのみ動作するもの等がある。燃料電池装置16の待機状態においては、燃料電池装置16は補機20を動作させるための電力を必要とする。燃料電池装置16の待機状態において、補機20は、負荷15の一部として作用する。
通信部21は、第1の燃料電池装置16aと外部機器との間で多様な情報の通信、すなわち送信及び受信を行う。例えば、自装置がマスター装置16aの場合、通信部21は、スレーブ装置16b、16cの通信部21から、積算稼働時間を受信する。また、通信部21は、エネルギー管理装置13から、負荷15の消費電力を受信することができる。さらに、通信部21は、外部管理装置18に対して、第1〜第3の燃料電池装置16a〜16cの積算稼働時間および/または負荷15の消費電力を送信することができる。積算稼働時間は、後述する計時部22により計時される時間である。積算稼働時間は、判別情報の一つである。
一方、自装置がスレーブ装置16b、16cであるとき、通信部21は、マスター装置である燃料電池装置16aに対して、積算稼働時間を送信する。
さらに、通信部21は、自装置がマスター装置16aであるときには、外部管理装置18から制御情報を受信し、スレーブ装置16b、16cを制御する制御情報を、スレーブ装置16b、16cに送信する。また、通信部21は、自装置がスレーブ装置16b、16cであるときには、マスター装置16aから、自装置の制御情報を受信する。
計時部22は、例えば、タイマであり、後述する制御部24の制御のもと、自装置すなわち燃料電池装置16が稼働を開始した後、発電状態にある時間を積算した積算稼働時間を計時する。この積算稼働時間は、燃料電池装置16の運用開始後の累積の発電時間を計時するものである。また、計時部22は、燃料電池装置16内の複数の構成要素の稼働時間を、それぞれ個別に管理してもよい。以下の例では、燃料電池装置16ごとに、一つの積算稼働時間が計時されるものとする。
記憶部23は、フラッシュメモリ等の任意の記憶資源を用いて構成される。記憶部23は、自装置の定格出力値などの自装置の特性、スレーブモードで動作するときの同じ燃料電池システム12内のマスター装置の識別情報、マスターモードで動作するときの同じ燃料電池システム12内のスレーブ装置の識別情報、制御部24で実行させるプログラムなどを記憶する。
制御部24は、一つ以上の専用のマイクロプロセッサ、または、特定の機能を実行させるプログラムを読み込んだ汎用のプロセッサを含む。制御部24は、自装置を構成する各部位、および、マスター装置16aにおいては他の燃料電池装置(スレーブ装置16b、16c)を制御する。
制御部24は、自装置を、自装置及び他の燃料電池装置の稼働状態を制御するマスターモードと、他の燃料電池装置により稼働状態の制御を受けるスレーブモードとを含む何れかの動作モードで制御する。例えば、自装置がマスター装置16aのとき、制御部24は、スレーブ装置16bおよび16cの双方または何れかに対して状態変更を指示することができる。また、自装置がスレーブ装置16bまたは16cのとき、制御部24は、マスター装置16aからの状態変更の指示を受けて、自装置の状態変更を行う。
マスターモードおよびスレーブモードの動作モードは、所定の手続きにより切換えが可能であり、第1〜第3の燃料電池装置16a〜16cは、何れも、マスター装置にもスレーブ装置にも成り得る。ただし、マスターモードで動作する燃料電池装置16の切換えのときを除き、マスターモードの処理を行うのは、常に燃料電池システム12内の1台の燃料電池装置とすることができる。ここで、状態変更とは、前述の停止状態、待機状態、および発電状態の間での変更を行うことである。マスターモードの処理を行うとき、制御部24は自装置である燃料電池装置(マスター装置16a)を、常に発電状態に制御する。
マスターモードの処理を行うマスター装置16aの制御部24は、定期的にスレーブモードで動作する他の燃料電池装置(スレーブ装置16b,16c)から、積算稼働時間等の判別情報を取得する。これらの情報の取得は、マスター装置16aの制御部24から通信部21を介して、スレーブ装置16b,16cに対し、順次定期的に情報の送信を要求し、スレーブ装置16b、16cがこれに応答することにより行うことができる。あるいは、スレーブ装置16b、16cが、それぞれ定期的にマスター装置16aに対して、自動的に情報送信を行うようにしてもよい。また、マスター装置16aの制御部24は、定期的にエネルギー管理装置13から負荷15の消費電力を取得する。
さらにマスターモードの制御を行うとき、マスター装置16aの制御部24は、自装置の計時部22から取得した積算稼働時間と、スレーブ装置16bおよび16cから取得したそれぞれの装置の積算稼働時間を、通信部21から外部管理装置18に送信する。制御部24は、これらの積算稼働時間を負荷15の消費電力の情報とともに、外部管理装置18に送信する。
また、制御部24は、外部管理装置18から、「スレーブ状態変更指示」、「マスター変更指示」、及び、「スレーブ停止指示」等の制御情報を受信する。
「スレーブ状態変更指示」を受信したとき、マスター装置16aの制御部24は、外部管理装置18により指定されたスレーブ装置16b、16cに対して、外部管理装置18により指定された状態変更を指示する。
また、「マスター変更指示」を受けたとき、マスター装置16aの制御部24は、外部管理装置18により変更後のマスター装置として指定されたスレーブ装置16bまたは16cに対してマスター交代指示を送信する。その後、マスター装置16aの制御部24は、当該スレーブ装置16bまたは16cによるマスター交代処理の完了を待つ。マスター装置16aの制御部24は、指定されたスレーブ装置16bまたは16cから、マスターモードへの変更が完了した旨を示す「動作モード変更完了通知」を受けると、自らのモードをスレーブモードに変更する。制御部24は、マスター装置の変更指示を受ける際に、自装置への停止指示を併せて受け得る。その場合は、スレーブモードに変更後に、停止状態へ移行する。
「スレーブ停止指示」を受信したとき、マスター装置16aの制御部24は、外部管理装置18により指定されたスレーブ装置16b、16cに対して停止を指示する。
一方、スレーブモードの処理を行うとき、制御部24は、定期的に自装置、例えば、スレーブ装置16bまたは16cの計時部22から積算稼働時間(判別情報)を取得する。制御部24は、これを通信部21からマスター装置16aに送信する。積算稼働時間の送信方法としては、マスター装置16aからの要求を受けて応答する方式と、スレーブモードの処理を行う制御部24から自動的にマスター装置16aに対して情報送信イベントを発生する方式の何れであってもよい。
さらに、スレーブモードの処理を行うとき、制御部24は、マスター装置16aへの定期的な情報送信時以外は、マスター装置16aからの指示を示す制御情報を待ち受ける。マスター装置16aから状態変更指示を受けたときは、指定された状態へ状態を変更する。また、マスター装置16aから、マスター交代指示を受けたときは、スレーブモードからマスターモードへ動作モードの変更を行い、動作モードの変更が完了したら、マスター装置16aに対して動作モード変更完了通知を、通信部21を介して送信する。
次に、外部管理装置18の構成について、図3を用いて以下に説明する。外部管理装置18は、通信部25、制御情報生成部26(以下、情報生成部26)および入力部27を含む。通信部25は、取得部および出力部を兼ねる。
通信部25は、他の機器との間で情報の送受信を行う。例えば、通信部25は、燃料電池システム12のマスター装置16aから第1〜第3の燃料電池装置16a〜16cの積算稼働時間および負荷15の消費電力等の情報を受信する。また、マスター装置16aに対し、スレーブ装置16b、16cの「状態変更指示」、「マスター変更指示」および「スレーブ停止指示」などの制御情報を送信することができる。さらに、通信部25は、必要に応じてエネルギー管理装置13から、マスター装置16aを介さず直接消費電力の情報を取得するようにしてもよい。
情報生成部26は、マスター装置16aから受信した、負荷15の消費電力および第1〜第3の燃料電池装置16a〜16cの積算稼働時間の情報に基づいて、スレーブ装置16bおよび16cの状態の切替えを制御する。
例えば、第1〜第3の燃料電池装置16a〜16cの何れも定格出力値が1kWの場合を想定する。第1〜第3の燃料電池装置16a〜16cの全てが発電状態にあり、消費電力が2kW未満に変化したとき、情報生成部26はスレーブ装置16b、16cのうち積算稼働時間の長い燃料電池装置(例えば、第3の燃料電池装置16cとする)を選定する。そして、選定された第3の燃料電池装置16cに対して、待機状態への状態変更を指示する制御情報を生成し、通信部25からマスター装置16aに対してスレーブ状態変更指示として送信させる。ここで、第3の燃料電池装置16cは、待機状態のときも一部の補機20が稼働して電力を消費するため、負荷15の消費電力には待機状態の燃料電池装置16cの消費電力が考慮されるべきである。
また、マスター装置16aおよびスレーブ装置16bが発電状態であり、スレーブ装置16cが待機状態にあり、消費電力が2kW以上に上昇したときを想定する。このような場合、情報生成部26は、待機状態のスレーブ装置16cに対して発電状態への状態変更を指示する制御情報を生成し、通信部25からマスター装置16aに対してスレーブ状態変更指示として送信させる。
マスター装置16aの積算稼働時間が、予め定められた閾値(所定時間)を超えた場合、情報生成部26は、スレーブ装置16b、16cから、積算稼働時間が短い方の燃料電池(例えば、燃料電池装置16bとする)を新たなマスター装置として選定する。情報生成部26は、新たなマスター装置16bの識別子を含むマスター変更指示を、マスター装置16aに送信する。ここで、各燃料電池装置16の積算稼働時間に対して、複数の閾値が設けられており、積算稼働時間がこれらの閾値を超過する度に、マスター装置を、積算稼働時間が最も短い燃料電池装置と交代する。このようにして、第1〜第3の燃料電池装置16a〜16cの積算稼働時間が極端に偏らないようにすることができる。
マスター装置16aの積算稼働時間が予め定められた閾値を超えない場合でも、マスター停止指示を受けたとき、情報生成部26は、閾値を超えた場合と同様に、新たなマスター装置16bを選定する。情報生成部26は、新たなマスター装置16bの識別子を含むマスター変更指示を、マスター装置16aに送信する。マスター停止指示は、例えば、外部管理装置18において、キーボード、タッチパネルなどの入力部27から入力される。または、マスター停止指示は、マスター装置16aが、自己診断を行った結果停止を決定する場合、マスター装置16aの停止用のボタンが操作された場合等、種々の場合に、マスター装置16aから外部管理装置18に対して送信することもできる。
さらに、スレーブ装置(例えば、燃料電池装置16bとする)について、スレーブ停止指示を受けたとき、情報生成部26は、消費電力を満たすため、他のスレーブ装置(例えば、燃料電池装置16cとする)を、待機状態から発電状態に変更すべきか判断する。情報生成部26は、スレーブ停止指示を受けた燃料電池装置16bについてのスレーブ停止指示を含む制御情報を、マスター装置16aに送信する。情報生成部26は、必要ならば、他のスレーブモードで動作する燃料電池16cについての発電状態への状態変更を示すスレーブ状態変更指示とともに、上記制御情報をマスター装置16aに送信する。情報生成部26に対するスレーブ停止指示も、外部管理装置18の入力部27から入力される場合、または、マスター装置16aから、外部管理装置18に対して送信される場合等があり得る。
次に、外部管理装置18が実行する燃料電池システム12の稼働制御の例について図4〜図6のフローチャートを用いて説明する。図4〜図6に示したフローチャートは一例であり、処理の順序および内容を変更することができる。図4のフローチャートにおいて、マスター装置16aの処理およびスレーブ装置16b、16cの処理は、外部管理装置18と関連する処理を中心に抜き出して記載している。図5及び図6において、同一の処理ステップには、図4のフローチャートに示した処理ステップの番号と同じ番号を用いて処理内容を示している。
[情報収集]
情報生成部26は、所定の周期、例えば1分毎に、負荷15の消費電力および第1〜第3の燃料電池装置16a〜16cの積算稼働時間(判別情報)を受信する(ステップS101)。この消費電力は、ステップS101よりも前にマスター装置16aが、エネルギー管理装置13から取得する(ステップS201)。
また、積算稼働時間については、ステップS101より前に、まず、スレーブ装置16b、16cが、それぞれの計時部22が保持する積算稼働時間を取得して、マスター装置16aに対して送信する(ステップS301)。マスター装置16aは、この積算稼働時間を受信するとともに、自装置の積算稼働時間も計時部22から取得する(ステップS202)。マスター装置16aは、ステップS201で取得した消費電力およびステップS202で取得した各燃料電池装置16a〜16cの積算稼働時間を、外部管理装置18に対して送信する(ステップS203)。
このとき、マスター装置16aは、各燃料電池装置16a〜16cのその時点における稼働状態の情報、すなわち、発電状態、待機状態、停止状態の何れであるかの情報、発電状態の場合の出力、待機状態の場合の消費電力等を取得してよい。マスター装置16aは、これらの取得した情報を併せて外部管理装置18に通知するようにしてもよい。
図5のマスター装置16aの処理のフローチャートにおいて、ステップS201からステップS203の処理は、外部管理装置18の情報生成部26がステップS101で消費電力および積算稼働時間を収集する所定の周期に同期して、繰り返し実行される。ステップS203の完了後、次のステップS201の処理を行うまで、マスター装置16aは、外部管理装置18からの指示を待って待機する(ステップS204)。外部管理装置18からの指示を受信した場合は、その内容に従って各処理を実行する(ステップS205)。
また、図6のスレーブ装置16b、16cの処理を示すフローチャートにおいても、ステップS301の処理は、所定の周期で繰り返し実行される。ステップS301の完了後、次にステップS301の処理を行うまで、スレーブ装置16b、16cは、マスター装置16aからの指示を待って待機する(ステップS302)。マスター装置16aからの指示を受信した場合は、その内容に従って各処理を実行する(ステップS303)。
マスター装置16aは、消費電力と積算稼働時間との両情報を、同時に外部管理装置18に送信するのではなく、個別に送信してもよい。また、これらの情報を個別に受信する場合、消費電力を受信したとき、外部管理装置18は後述するステップS102〜S103の処理を実行することができる。積算稼働時間を受信したとき、外部管理装置18は、後述するステップS104〜S106を実行するようにすることができる。
[スレーブ状態変更]
図4に戻り、外部管理装置18の情報生成部26は、負荷15の消費電力に基づいてスレーブ装置16b、16cの稼働状態の状態変更が必要か判断する(ステップS102)。状態変更が必要と判断すれば、情報生成部26は、状態の変更を指示する制御情報を生成し、通信部25からマスター装置16aに送信する(ステップS103)。ステップS102で状態変更が必要ではないと判断すれば、ステップS104に進む。
稼働している燃料電池装置16a〜16cの発電量に比べ、負荷15の消費電力が小さく、且つ、発電状態の燃料電池装置16a〜16cの数が多いと判断される場合、情報生成部26は状態変更の指示を出す。状態変更の指示は、何れかのスレーブ装置16b、16cを、発電状態から待機状態へ変更する指示を含む。その逆の場合は、待機状態から発電状態へ変更する指示を出す。発電状態から待機状態へ変更するスレーブ装置16b、16cは、積算稼働時間がより長いものを選定する。また、待機状態から発電状態へ変更するスレーブ装置16b、16cが複数の燃料電池から選択できるときは、積算稼働時間が短いものを選定する。そのようにすることによって、第1〜第3の燃料電池装置16a〜16c間の積算稼働時間を平準化することができる。
図4および図5に示すように、外部管理装置18から送信されたスレーブ装置16b、16cの状態変更指示は、マスター装置16aにより受信される(ステップS206)。マスター装置16aは、受信した制御情報に含まれる、状態変更の対象となるスレーブ装置16bまたは16cに対して、外部管理装置18からの指示に従い状態変更指示を送信する(ステップS206)。
図4および図6に示すように、スレーブ装置16b、16cは、マスター装置16aから状態変更指示を受信すると(ステップS304)、その指示に従い、発電状態から待機状態へ、または、待機状態から発電状態へ状態変更を実行する(ステップS305)。また、図4〜図6のフローチャートには記載していないが、状態変更が完了すると、スレーブ装置16b、16cは、マスター装置16aに対して変更完了を通知することができる。変更完了の通知を受けたマスター装置16aは、さらに、外部管理装置18に対してスレーブ状態変更指示の完了を通知するようにしてもよい。これにより、外部管理装置18は、常に、各燃料電池装置16a〜16cの最新の稼働状態を更新して保持することができる。
[マスター変更]
次に、外部管理装置18の情報生成部26は、ステップS101で取得したマスター装置16aの積算稼働時間を所定の稼働時間の閾値と比較する。積算稼働時間が閾値を超えるときは、マスター変更指示の送信(ステップS106)に進む。積算稼働時間が閾値以下の場合は、ステップS105に進む。ステップS105において、情報生成部26は、マスター停止指示を受信しているか否かを判断する。マスター停止指示を受信していれば、マスター変更指示の送信(ステップS106)に進む。マスター停止指示を受信していなければ、ステップS107に進む。
ステップS106において、外部管理装置18の情報生成部26は、マスターの変更を指示する制御情報を生成し、マスター装置16aに送信する。マスター変更指示の制御情報には、変更後の新たなマスター装置および現在のマスター装置の変更後の稼働状態を含む。マスター装置16aの停止を指示するステップS105を経てステップS106を実行する場合、変更後の燃料電池装置16aの稼働状態は停止状態となる。情報生成部26は、変更後の新たなマスター装置として、ステップS101で受信した各燃料電池装置16a〜16cの積算稼働時間から、最も積算稼働時間の短い燃料電池装置16bまたは16cを選定する。
外部管理装置18から送信されたマスター変更指示の制御情報は、マスター装置16aにより受信される(ステップS208)。マスター装置16aは、受信した制御情報に含まれる、変更後の新たなマスター装置となるスレーブ装置16bまたは16cに対して、マスター交代指示の制御情報を送信する(ステップS209)。その後、マスター装置16aは、マスター交代指示を受けたスレーブ装置16bまたは16cからの動作モード変更完了の通知を待つ待機状態となる(ステップS210)。
変更後の新たなマスター装置となるスレーブ装置16bまたは16c(以下、「変更後のマスター装置」とする)は、マスター交代指示の制御情報を受信すると(ステップS306)、以下のように自装置をマスター装置に変更する。まず、変更後のマスター装置となるスレーブ装置16bまたは16cは、稼働状態が発電状態にあることを確認し、稼働状態が停止状態または待機状態のときは、発電状態に状態を変更する。稼働状態が発電状態にあることが確認されると、変更後のマスター装置となるスレーブ装置16bまたは16cは、制御部24の動作モードをマスターモードに切り替える(ステップS307)。その後、変更後のマスター装置は、動作モードの変更が完了したことを示す動作モード変更完了通知を、マスター交代指示を出したマスター装置16a(以下、「変更前のマスター装置」とする)および他のスレーブ装置に送信する(ステップS308)。他のスレーブ装置への通知は、動作モード変更完了通知を受けた、変更前のマスター装置16aが行ってもよい。
変更前のマスター装置は、動作モード変更完了通知を受信すると(ステップS211)、自装置の制御部24の動作モードをスレーブモードに切り替え、マスター変更指示に含まれる変更後の稼働状態の情報に従い、稼働状態を変更する(ステップS212)。図4、5には記載していないが、変更前のマスター装置または変更後のマスター装置は、マスター装置の変更が完了したことを外部管理装置18に通知してもよい。
ステップS212およびステップS307で、マスター装置が変更された場合、第1の燃料電池装置16aはマスターではなくなる。以下の説明では、簡単のために引き続き第1の燃料電池装置16aをマスター装置18aとし、第2および第3の燃料電池装置16b、16cをスレーブ装置16b、16cとして説明する。
[スレーブ停止]
次に、外部管理装置18に対するスレーブ停止指示がある場合(ステップS107)、情報生成部26は、スレーブ停止指示の制御情報を生成しマスター装置16aに送信する(ステップS108)。スレーブ停止指示の制御情報には、停止の対象となるスレーブ装置16bまたは16cの識別情報を含む。
マスター装置16aは、スレーブ停止指示を受信すると(ステップS213)、停止の対象となるスレーブ装置16bまたは16cに対して、停止指示の制御情報を送信する(ステップS214)。
スレーブ装置16bまたは16cは停止指示を受信すると(ステップS309)、稼働状態を発電状態または待機状態から、停止状態へと変更し停止する(ステップS310)。図4〜図6に記載していないが、スレーブ装置16bまたは16cは、停止が完了すると、マスター装置16aに対して、停止完了を通知することができる。また、これを受けてマスター装置16aは、外部管理装置18に対して、スレーブ停止指示が完了したことを通知することができる。
ステップS107でマスター停止指示が無いとき、または、ステップS108の処理が終了した後、外部管理装置18の停止が指示されていない限り(ステップS109)、外部管理装置18は、上記の各処理ステップS101からS108を繰り返し実行する。
複数の発電装置のうち常に同一の発電装置をマスター装置とし、他の発電装置をスレーブ装置として運転した場合、マスター装置が待機状態となっているときに停電が発生すると、燃料電池システム全体が動作できなくなるおそれがある。一方、以上のような構成により、本開示の燃料電池装置システムによれば、並列に設けられた複数台の燃料電池装置載の制御部は、マスターモードとスレーブモードとの何れの動作モードでも動作することができる。これにより、複数の燃料電池装置間でマスター装置を切り替えることができ、マスター装置を常に発電状態としているので、停電の際にマスター装置が動作しなくなることはない。また、マスター装置に障害が発生した時には、マスター装置を他の燃料電池装置に切り替えることができる。外部管理装置がマスター装置とスレーブ装置を切り替えることにより、一台の燃料電池装置のみが常時発電を続けることがなく、燃料電池システム全体の寿命が短くなりにくくなる。また、外部管理装置の制御により、負荷の消費電力に応じて燃料電池装置の稼働状態を制御するので、必要な電力を効率的に発電可能である。
また、マスター装置のメンテナンスのために制御部も含めて停止するときに、マスター装置を変更することにより、他の燃料電池装置を停止する必要が無いので、複数の燃料電池装置全体の稼働率が向上する。さらに、マスター装置として用いられている燃料電池装置は、常時発電状態となっている。このため、仮に系統に停電が発生した場合でも、本燃料電池システムの発電は維持される。
また、マスター装置を介して外部管理装置により各燃料電池装置を制御するので、マスター装置が変更されたり、各燃料電池装置の稼働状態が変更されたりしても、常に同じ外部管理装置を用いて燃料電池システムを安定的に制御することができる。さらに、外部管理装置は、ネットワークを介して遠隔地に配置することもできるので、燃料電池システムの遠隔監視が可能である。また、外部管理装置はマスター装置を介して各燃料電池装置を制御するので、各燃料電池装置と外部管理装置とが、それぞれ個別に通信を行うよりも、通信量を削減することが可能になる。
さらに、本実施形態の燃料電池装置の制御方法によれば、積算稼働時間の最も短い燃料電池装置がマスター装置に選定される。これにより、複数の燃料電池装置それぞれが平均的にマスター装置に選定されることになるので、さらなる稼働率の向上、および寿命縮小の抑制が達成され得る。
さらに、本実施形態の燃料電池装置の制御方法によれば、マスター装置に選定された燃料電池装置の積算稼働時間が閾値を超えるときに、新規なマスター装置の選定を行うので、マスター装置の交替時期が適切化され得る。したがって、マスター装置の急停止などによる稼働率の低下および当該マスター装置の寿命縮小を低減可能である。
(第2実施形態)
次に、第2実施形態について説明する。
上記第1実施形態では、外部管理装置18がステップS106において、変更後の新たなマスター装置となる燃料電池装置を決定するために使用する判別情報として、第1〜第3の燃料電池装置16a〜16cの積算稼働時間を使用した。本実施形態では、判別情報として、各燃料電池装置16a〜16cの定格出力値を使用する。本実施形態は、第1実施の形態と、図1〜図3に示した装置およびシステムの構成、並びに、図4〜6に示した処理のフローチャートに示される処理の範囲では、第1実施形態と共通する。以下では、これらの図を参照しながら、第1実施形態との違いについてのみ説明する。また、同一または対応する構成要素は第1実施形態と同じ構成要素の参照符号を用いる。
第1実施形態において、第1〜第3の燃料電池装置16a〜16cの定格出力値は互いに等しく1kWであった。これに対して、本実施形態では、第1〜第3の燃料電池装置16a〜16cの定格出力値は、表1に示すように異なる。
Figure 0006522751
これらの定格出力値は、第1〜第3の燃料電池装置16a〜16cの記憶部23に予め記憶される。第2および第3の燃料電池装置(スレーブ装置)16b、16cは、ステップS301の判別情報を送信するステップで、判別情報を第1の燃料電池装置(マスター装置)16aに送信する。判別情報は、計時部22から取得した積算稼働時間とともに、記憶部23から取得した定格出力値を含む。
マスター装置16aは、ステップS202でこの判別情報を受信し、ステップS203で、負荷15の消費電力とともに、この判別情報を外部管理装置18に送信する。これにより、外部管理装置18は、ステップS101で定格出力値を含む判別情報を取得する。
外部管理装置18は、定格出力値を以下のように使用する。まず、ステップS102、S103において、負荷15の消費電力および第2および第3の燃料電池装置(スレーブ装置)16b、16cの状態変更が必要か否かを、定格出力値に基づいて判断する。例えば、第1の燃料電池装置(マスター装置)16aと第3の燃料電池装置16cが発電状態で、第2の燃料電池装置16bが、待機状態の場合を仮定する。外部管理装置18は、ステップS101で取得する負荷15の消費電力が、2300Wを超えた場合、あるいは、超えることが予測される場合、ステップS103で第2の燃料電池装置16bについては稼働状態を発電状態に変更する。また、外部管理装置18は、第3の燃料電池装置16cについては稼働状態を待機状態に変更する指示を送信する。このようにすることによって、燃料電池システム12の出力を、負荷15の消費電力に合わせて適切な値に設定することが可能になる。
また、定格出力値の情報は、マスター装置を変更する際の変更後のマスター装置を選定する処理にも使用できる。ステップS106のマスター変更指示の送信ステップにおいて、外部管理装置18は、第2および第3の燃料電池装置(スレーブ装置)16b、16cのうち、定格出力値が最大のものを変更後のマスター装置に選定することができる。このようにすることで、使用可能な燃料電池装置のうち、最大の定格出力値を有するものを、常にマスター装置として使用することができる。
あるいは、外部管理装置18は、変更後のマスター装置として、ステップS101で取得した消費電力よりも大きく、かつ、消費電力に最も近い定格出力値を有する燃料電地装置を選定することもできる。例えば、消費電力が600Wであれば、第2の燃料電池装置16bをマスター装置として選択する。
また、外部管理装置18は、負荷15の消費電力の変動パターンを蓄積して、これを変更後のマスター装置の選定に利用できる。変動のパターンとは、例えば1日間、1週間、1カ月間等の消費電力の変動パターンなどである。ステップS106の変更指示の送信ステップにおいては、変動パターンに対して燃料電池システムの仕様効率が最適になるように、変更後のマスター装置を選定する。例えば、一日の中で消費電力が最低となる時間帯があれば、変更後のマスター装置は、その時間帯の消費電力より大きく、かつ、その消費電力に近い定格出力値を有する燃料電池装置を選択することができる。
このように、本実施の形態によれば、燃料電池装置の定格出力値の違いに応じて、燃料電池システム12の最適な出力が得られるように、稼働状態の状態変更および/または動作モードの変更を行うことができる。
本開示は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。たとえば、負荷を構成する装置は、自身の消費電力をエネルギー管理装置に送信し、この消費電力をエネルギー管理装置がマスター装置に送信するものとしたが、これには限られない。例えば、マスター装置が、直接負荷から消費電力を取得してもよい。エネルギー管理装置が取得した消費電力の情報は、マスター装置を介して、外部管理装置に送信されるものとした。複数の実施形態の一つにおいて、外部管理装置は、消費電力の情報を直接エネルギー管理装置から取得するようにしてもよい。
外部管理装置の情報生成部が行うステップS102におけるスレーブ装置の状態変更は、発電状態と待機状態との間のみで行うものではなく、停止状態と、発電状態または待機状態との間で行うこともできる。例えば、外部管理装置は時計を有し、電力需要の小さい深夜から早朝の時間帯にかけて、待機状態のスレーブ装置を停止状態となるように状態変更することもできる。
燃料電池装置の動作モードとしては、マスターモードとスレーブモードとを挙げたが、動作モードはこれだけに限られない。例えば、燃料電池装置を始めて起動する時は、それぞれの燃料電池装置が、外部管理装置と通信を行うことにより判別情報を送信し、これによって外部管理装置がマスターとなる燃料電池装置を決定するようにすることができる。このように、燃料電池装置は、起動時専用の動作モードを有することができる。また、何らかの理由でマスター装置とスレーブ装置との通信が不通になった場合等に、それぞれの燃料電池装置を独立して動作させることもあり得る。したがって、燃料電池装置はそのようなエラー発生時の単独運転モードを有することができる。
外部管理装置がマスター変更指示を出すのは、マスターモードで動作する燃料電池装置の積算稼働時間が所定時間を超過したとき、および、マスターモードで動作する燃料電池装置に対する停止状態への変更の指示を受けたときに限られない。例えば、燃料電池装置ごとに定格出力値に差異がある場合、外部管理装置は、負荷の消費電力を一定期間継続して監視する。その後、外部管理装置は、常時発電を行うマスターモードで動作する燃料電池装置を、消費電力に対して最適な定格出力値を有するものに変更するため、変更指示を出すようにすることもできる。
外部管理装置は、施設外に配置されネットワークを介して接続された外部管理装置を用いるものとした。複数の実施形態の一つにおいて、外部管理装置はこのような施設外部ではなく、同一の施設内に配置することもできる。
さらに、外部管理装置の上位システムを設けてもよい。上位システムに対して、外部管理システムは、マスター装置から取得した積算稼働時間や消費電力の情報を送信し、上位システムにおいて、各燃料電池装置の稼働時間等を集計し、監視する。これにより、上位システムは、稼働状態の変更指示、マスター装置とスレーブ装置との変更、燃料電池装置の停止等の指示の生成を行う。外部管理装置はこの上位システムから通信部を介してこれらの指示の実行を受付ける。このようにすることによって、上位システムから、複数の燃料電池システムを集中管理することが可能になる。
10 電力供給システム
11 分電盤
12 燃料電池システム
13 エネルギー管理装置
14 系統
15 負荷
16 燃料電池装置
16a 第1の燃料電池装置(マスター装置)
16b 第2の燃料電池装置(スレーブ装置)
16c 第3の燃料電池装置(スレーブ装置)
17 ネットワーク
18 外部管理装置
19 発電部
20 補機
21 通信部(受信部、送信部)
22 計時部
23 記憶部
24 制御部
25 通信部(取得部、出力部)
26 情報生成部
27 入力部

Claims (15)

  1. 負荷に電力を供給する複数の燃料電池装置と、
    外部管理装置と
    を備え、
    前記複数の燃料電池装置および前記外部管理装置は、ネットワークに接続され相互に通信可能であり、
    前記複数の燃料電池装置は、自装置を、自装置及び他の燃料電池装置の稼働状態を制御するマスターモードと、他の燃料電池装置により稼働状態の制御を受けるスレーブモードとを含む何れかの動作モードで制御する制御部を有し、
    前記外部管理装置は、前記負荷の消費電力を取得する取得部と、前記消費電力に基づいて、前記複数の燃料電池装置の稼働状態を制御するための制御情報を生成する情報生成部と、前記マスターモードで動作する燃料電池装置に対して前記制御情報を出力する出力部とを有し、
    前記マスターモードで動作する燃料電池装置は、前記外部管理装置から出力された前記制御情報に基づいて、自装置及び他の燃料電池装置の前記稼働状態を制御する燃料電池システム。
  2. 前記マスターモードで動作する燃料電池装置は、前記消費電力を監視するエネルギー管理装置から前記消費電力を取得し、前記取得部に送信する請求項1に記載の燃料電池システム。
  3. 前記複数の燃料電池装置の前記稼働状態は、発電状態および待機状態を含み、前記情報生成部は、前記消費電力に基づき、前記スレーブモードで動作する燃料電池装置の少なくとも一つを前記発電状態と前記待機状態との間での切り替える制御情報を生成する請求項1または2に記載の燃料電池システム。
  4. 前記複数の燃料電池装置は、それぞれ自装置の積算稼働時間を計時する計時部、及び、自装置の定格出力値を記憶する記憶部の少なくとも一方を備え、
    前記制御部は、
    自装置の前記積算稼働時間及び前記定格出力値の少なくとも何れかを、判別情報として取得し、
    前記スレーブモードで動作するとき、前記判別情報をマスターモードで動作する燃料電池装置に送信し、
    前記マスターモードで動作するとき、自装置から取得した前記判別情報および他の燃料電池装置から受信した前記判別情報を、前記取得部に送信するように構成され、
    前記情報生成部は、所定の条件が満たされたとき、前記マスターモードで動作する燃料電池装置から受信した前記複数の燃料電池装置の前記判別情報に基づいて、前記スレーブモードで動作する燃料電池装置の一つを変更後のマスターモードで動作する燃料電池装置として選定し、マスターモードで動作する燃料電池装置を変更するマスター変更指示を生成する請求項1から3の何れか一項に記載の燃料電池システム。
  5. 前記情報生成部は、前記判別情報が前記積算稼働時間を含み、前記マスターモードで動作する燃料電池装置の前記積算稼働時間が所定時間を超過したとき、または、前記マスターモードで動作する燃料電池装置に対する停止状態への変更の指示を受けたときを、前記所定の条件が満たされたときとし、前記マスター変更指示を生成する請求項4に記載の燃料電池システム。
  6. 前記外部管理装置の前記情報生成部は、前記変更後のマスターモードで動作する燃料電池装置として、前記積算稼働時間が最も短い燃料電池装置を選定する請求項4または5に記載の燃料電池システム。
  7. 前記情報生成部は、前記変更後のマスターモードで動作する燃料電池装置として、前記定格出力値が最大である燃料電池装置を選定する請求項4または5に記載の燃料電池システム。
  8. 前記情報生成部は、前記変更後のマスターモードで動作する燃料電池装置として、前記消費電力よりも大きく、かつ、該消費電力に最も近い定格出力値を有する燃料電地装置を選定する請求項4または5に記載の燃料電池システム。
  9. 負荷の消費電力を取得する取得部と、
    前記消費電力に基づいて、複数の燃料電池装置の稼働状態を制御するための制御情報を生成する情報生成部と、
    出力部と
    を備え、
    前記複数の燃料電池装置のそれぞれは、ネットワークに接続され相互に通信可能であり、自装置及び他の燃料電池装置の稼働状態を制御するマスターモード、および、他の燃料電池装置により稼働状態の制御を受けるスレーブモードを含む何れかの動作モードで動作し、且つ、前記負荷に電力を供給し、
    前記出力部は前記マスターモードで動作する前記燃料電池装置に対して前記制御情報を出力する外部管理装置。
  10. 電力を出力する発電部と、
    自装置の積算稼働時間を計時する計時部と、
    自装置の定格出力値を記憶する記憶部と、
    自装置を、自装置及び他の燃料電池装置の稼働状態を制御するマスターモードと、他の燃料電池装置により稼働状態の制御を受けるスレーブモードとを含む、何れかの動作モードで制御する制御部と、
    前記スレーブモードで動作するとき、自装置の前記積算稼働時間および自装置の前記定格出力値の少なくとも一方を判別情報として送信する送信部と、
    前記マスターモードで動作するとき、他の燃料電池装置から前記判別情報を受信する受信部と
    を備え、
    前記マスターモードで動作するとき、前記送信部は、外部管理装置に自装置および他の燃料電池装置の判別情報を送信し、前記受信部は、前記外部管理装置から自装置および他の燃料電池装置に対する稼働状態を制御するための制御情報を受信する燃料電池装置。
  11. 前記マスターモードで動作するとき、前記受信部は、負荷の消費電力を監視するエネルギー管理装置から前記消費電力を取得し、前記送信部は、前記外部管理装置に送信する請求項10に記載の燃料電池装置。
  12. 前記自装置および前記他の燃料電池装置の前記稼働状態は、発電状態および待機状態を含み、前記制御情報は、負荷の消費電力に基づき、前記スレーブモードで動作する前記他の燃料電池装置の少なくとも一つを前記発電状態と前記待機状態との間での切り替える制御をするための制御情報である請求項10または11に記載の燃料電池装置。
  13. 負荷の消費電力を取得するステップと、
    前記消費電力に基づいて、複数の燃料電池装置の稼働状態を制御するための制御情報を生成するステップと、
    マスターモードで動作する燃料電池装置に対して前記制御情報を出力するステップと、
    前記マスターモードで動作する燃料電池装置が、前記制御情報に基づいて自装置及び他の燃料電池装置の前記稼働状態を制御するステップと
    を含み、
    前記複数の燃料電池装置は、ネットワークに接続され相互に通信可能であり、前記負荷に電力を供給し、
    前記複数の燃料電池装置は、自装置及び他の燃料電池装置の稼働状態を制御する前記マスターモードと、他の燃料電池装置により稼働状態の制御を受けるスレーブモードとを含む複数の動作モードの何れかで動作する燃料電池装置の制御方法。
  14. 前記負荷の消費電力を取得するステップは、前記マスターモードで動作する燃料電池装置が、前記負荷の消費電力を監視するエネルギー管理装置から取得した前記消費電力を、該マスターモードで動作する燃料電池装置から受信することを含む請求項13に記載の燃料電池装置の制御方法。
  15. 前記複数の燃料電池装置の前記稼働状態は、発電状態および待機状態を含み、前記制御情報を出力するステップは、前記負荷の消費電力に基づき、前記スレーブモードで動作する燃料電池装置の少なくとも一つを前記発電状態と前記待機状態との間での切り替える制御情報を出力することを含む請求項13または14に記載の燃料電池装置の制御方法。
JP2017524650A 2015-06-26 2016-06-24 燃料電池システム、外部管理装置、燃料電池装置及び燃料電池装置の制御方法 Active JP6522751B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015129162 2015-06-26
JP2015129162 2015-06-26
PCT/JP2016/003073 WO2016208205A1 (ja) 2015-06-26 2016-06-24 燃料電池システム、外部管理装置、燃料電池装置及び燃料電池装置の制御方法

Publications (2)

Publication Number Publication Date
JPWO2016208205A1 JPWO2016208205A1 (ja) 2018-02-08
JP6522751B2 true JP6522751B2 (ja) 2019-05-29

Family

ID=57584774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017524650A Active JP6522751B2 (ja) 2015-06-26 2016-06-24 燃料電池システム、外部管理装置、燃料電池装置及び燃料電池装置の制御方法

Country Status (4)

Country Link
US (1) US11050261B2 (ja)
EP (1) EP3316374A4 (ja)
JP (1) JP6522751B2 (ja)
WO (1) WO2016208205A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287380A1 (en) * 2017-03-29 2018-10-04 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. External and redundant power device and power system
US10518652B2 (en) 2017-05-24 2019-12-31 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell vehicle with power modules
US10793157B2 (en) 2017-05-24 2020-10-06 Toyota Motor Engineering & Manufacturing North America, Inc. Operating electrified vehicles during traction events
US10442297B2 (en) 2017-05-24 2019-10-15 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell vehicle with power modules
CN108963353A (zh) * 2017-05-26 2018-12-07 宁德时代新能源科技股份有限公司 电池包的主从识别方法及装置
WO2020004317A1 (ja) * 2018-06-27 2020-01-02 京セラ株式会社 電力管理サーバ、電力管理システム及び電力管理方法
KR101989388B1 (ko) 2018-12-14 2019-06-14 (주)에프씨아이 연료전지 제어 시스템
DE112019007182T5 (de) * 2019-04-11 2022-03-31 Mitsubishi Electric Corporation Informationssteuerungseinrichtung, informationssteuerungssystem und informationssteuerungsverfahren
CN112018413A (zh) * 2019-05-31 2020-12-01 株式会社东芝 燃料电池***及其运转方法
JP7297703B2 (ja) * 2019-05-31 2023-06-26 株式会社東芝 燃料電池システムおよびその運転方法
CN113013958A (zh) * 2021-04-17 2021-06-22 深圳市鑫嘉恒科技有限公司 一种储能电池的均衡控制***、方法、存储介质
CN113777492A (zh) * 2021-08-27 2021-12-10 江苏兴邦能源科技有限公司 一种多控制器协同控制的燃料电池测试方法和***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378394B2 (ja) * 1994-12-19 2003-02-17 東芝システムテクノロジー株式会社 燃料電池発電プラントの並列運転装置
US20020163819A1 (en) * 2000-11-07 2002-11-07 Treece William A. Hybrid microturbine/fuel cell system providing air contamination control
JP3764056B2 (ja) 2001-02-16 2006-04-05 ヤンマー株式会社 パワーコンディショナの運転制御装置とその運転制御方法
JP2003174726A (ja) * 2001-12-05 2003-06-20 Osaka Gas Co Ltd 電源装置の運転管理システム
JP3740118B2 (ja) * 2002-11-19 2006-02-01 三菱重工業株式会社 系統連係システム
JP5112642B2 (ja) 2006-03-31 2013-01-09 大阪瓦斯株式会社 固体酸化物型燃料電池システム
JP4944578B2 (ja) * 2006-11-14 2012-06-06 財団法人電力中央研究所 低圧系統の自立運転方法及び低圧系統の自立運転システム
JP5336818B2 (ja) * 2008-11-07 2013-11-06 大阪瓦斯株式会社 固体酸化物形燃料電池システム
JP4823345B2 (ja) 2009-09-18 2011-11-24 三菱重工業株式会社 電池システム

Also Published As

Publication number Publication date
US11050261B2 (en) 2021-06-29
JPWO2016208205A1 (ja) 2018-02-08
EP3316374A4 (en) 2019-01-09
US20180375337A1 (en) 2018-12-27
EP3316374A1 (en) 2018-05-02
WO2016208205A1 (ja) 2016-12-29

Similar Documents

Publication Publication Date Title
JP6522751B2 (ja) 燃料電池システム、外部管理装置、燃料電池装置及び燃料電池装置の制御方法
JP6465228B2 (ja) 電力供給システム、電力制御装置、電力供給方法および電力制御方法
JP6403831B2 (ja) 電力制御装置及び機器
JP6189949B2 (ja) 被制御装置、制御装置、装置制御方法及び装置制御システム
JP6452331B2 (ja) 発電システムの制御方法、発電システム、及び発電装置
KR20120101615A (ko) 전력 공급 장치, 전력 수전 장치 및 전력 공급 방법
WO2018173546A1 (ja) 電力制御装置、電力制御方法及びコンピュータプログラム
JP2007028036A (ja) 制御装置及び制御装置を用いた機器の制御方法
CN109428367A (zh) 电力供应控制电路、无线模块以及信号发送器
JP6516839B2 (ja) 燃料電池装置、燃料電池システム及び制御方法
JP2015008619A (ja) 無線電力伝送受電装置
JP2006204023A (ja) インバータ装置の運転方法
EP2645519A2 (en) System and method for controlling solar power conversion systems
JP6410567B2 (ja) 電力供給システム、起動制御装置及び電力供給システムの制御方法
CN114731048A (zh) 非均流ups装置、分流方法及ups并机***
JP2015056916A (ja) 電力供給装置
JP2022166652A (ja) 給湯機
JP2018136691A (ja) 直流集中電源システム
KR101708438B1 (ko) 사물인터넷을 위한 전자식 스위치 장치
JP2018182559A (ja) 管理システム
JP2014142726A (ja) 自動販売機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6522751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150