JP6520518B2 - Mold repair welding material - Google Patents

Mold repair welding material Download PDF

Info

Publication number
JP6520518B2
JP6520518B2 JP2015146382A JP2015146382A JP6520518B2 JP 6520518 B2 JP6520518 B2 JP 6520518B2 JP 2015146382 A JP2015146382 A JP 2015146382A JP 2015146382 A JP2015146382 A JP 2015146382A JP 6520518 B2 JP6520518 B2 JP 6520518B2
Authority
JP
Japan
Prior art keywords
mold
welding
welding material
repair welding
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015146382A
Other languages
Japanese (ja)
Other versions
JP2017024053A (en
Inventor
直樹 梅森
直樹 梅森
堀尾 浩次
浩次 堀尾
河野 正道
正道 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2015146382A priority Critical patent/JP6520518B2/en
Publication of JP2017024053A publication Critical patent/JP2017024053A/en
Application granted granted Critical
Publication of JP6520518B2 publication Critical patent/JP6520518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金型補修溶接材料に関し、さらに詳しくは、ダイカスト金型を補修溶接するための金型補修溶接材料に関する。 The present invention relates to a mold repair welding material, and more particularly to a mold repair welding material for repair welding of a die casting mold.

アルミニウム、マグネシウム、亜鉛、鉛等の金属もしくは合金を鋳造するためのダイカスト金型として、JIS SKD61(以下、単にSKD61とすることがある)に代表される熱間工具鋼が広く用いられている。上記金属のダイカストでは、金型への高温の溶湯の射出及び冷却が繰り返され、金型にヒートチェック等の亀裂や割れなどの損傷が生じる。金型表面にこのような損傷が生じると、その損傷が製品に転写されてしまう。そこで、ダイカスト金型の損傷箇所に対して、溶接による補修が行われる。   As a die-casting die for casting metals or alloys such as aluminum, magnesium, zinc and lead, hot tool steels represented by JIS SKD 61 (hereinafter sometimes referred to simply as SKD 61) are widely used. In the die-casting of the above-mentioned metal, injection and cooling of the high-temperature molten metal to the mold are repeated, and damage such as cracking or cracking such as heat check occurs in the mold. Such damage to the mold surface can be transferred to the product. Therefore, repair by welding is performed on the damaged portion of the die casting mold.

また、溶接による補修後の金型の耐ヒートチェック性を高めるためには、補修溶接材料が、母材である熱間工具鋼と同程度又はそれ以上に高い熱伝導率を有していることが必要である。補修溶接材料の熱伝導率が母材である熱間工具鋼の熱伝導率と隔たった低い値となっていると、金型を使用し続ける間に、補修溶接を施した部位が、ヒートチェックによって母材よりも早く割れてしまい、金型の寿命が短くなってしまう。 Also, in order to improve the heat check resistance of the mold after repair by welding, the repair welding material should have a thermal conductivity as high as or higher than that of the hot tool steel which is the base material. is necessary. If the thermal conductivity of the repair welding material has a low value separated from the thermal conductivity of the hot tool steel which is the base material, the portion subjected to the repair welding while the mold is used continues to be subjected to the heat check Will break earlier than the base material, and the mold life will be shortened.

一方、金型の寿命という観点では、金型にヒートチェック等の亀裂や割れなどの損傷が生じた場合、そこを起点に亀裂や割れが進展して、いわゆる大割れになることを防止しなければならない。さらに、高温の溶融アルミやマグネシウムなどの溶湯が金型に接触することで、金型が少しずつ溶け出す溶損にも耐え得る必要がある。すなわち、ダイカスト金型の補修溶接材料自体にも、靭性、耐衝撃性、耐溶損性などの特性を持たせ、金型の寿命を確保しなければならない。
On the other hand, from the viewpoint of mold life, if damage such as heat check or cracks or cracks occurs in the mold, it is necessary to prevent the development of cracks or cracks starting from that point, resulting in so-called large cracks. You must. Furthermore, it is necessary that the molten metal such as high temperature molten aluminum or magnesium comes in contact with the mold so that it can withstand the melting loss that the mold gradually melts. That is, the repair welding material of the die casting mold itself must have characteristics such as toughness, impact resistance, and erosion resistance to secure the life of the mold.

特開2011−245488号公報JP 2011-245488 A

ヒートチェック等の亀裂や割れなどの損傷が激しい場合、金型の表面から深く亀裂が入り、高く(厚く)補修溶接を施す(この場合、肉盛溶接とも言う)必要がある。実際の作業現場では、金型に生じた亀裂ないし割れの箇所を補修溶接する場合、先ず亀裂ないし割れの箇所を取り除き、この箇所を埋めるように補修溶接を行う。また、鋳造設備の稼動率を上げるためには、短時間内で補修溶接の作業を終えなければならない。しかし、従来の溶接材料は、溶接時に金型表面で広がってしまい、何度も溶接を繰り返さなければならず、溶接時における溶接材料の厚さが確保しにくいという問題が指摘されていた。つまり、肉盛溶接において、溶接材料の積層性が悪いという問題があった。 In the case of severe damage such as heat check or crack, it is necessary to crack deeply from the surface of the mold and apply high (thick) repair welding (in this case, also referred to as overlay welding). In an actual work site, when repair welding of a crack or a crack generated in a mold, the crack or the crack is first removed and repair welding is performed so as to fill in the crack. In addition, in order to increase the operation rate of the casting facility, the repair welding operation must be completed within a short time. However, conventional welding materials spread on the surface of the mold at the time of welding, and welding must be repeated many times, and it has been pointed out that it is difficult to secure the thickness of the welding material at the time of welding. That is, in build-up welding, there was a problem that lamination nature of welding material was bad.

本発明は上記のような問題に鑑みてなされたものであり、本発明が解決しようとする課題は、金型補修溶接材料において、金型の耐ヒートチェック性及び金型の寿命を確保しつつ、溶接材料の積層性を向上させることである。 The present invention has been made in view of the above problems, and the problem to be solved by the present invention is to ensure the heat check resistance of the mold and the life of the mold in the mold repair welding material. , To improve the lamination of the welding material.

本発明者らは、鋭意検討した結果この課題を解決できることを見い出した。その具体的手段は以下の通りである。まず、第1の発明は、質量%で(以下、同じ)、
C:0.10〜0.30%、Si:0.20〜0.50%、Mn:0.20〜0.50%、Cr:3.6〜6.0%、Mo:0.01〜1.5%、V:0.002〜0.80%、Al:0.001〜1.50%、残部Fe及び不可避的元素からなり、ダイカスト金型の補修溶接部に用いられる金型補修溶接材料である。
The present inventors have intensively studied and found that this problem can be solved. The specific means are as follows. First, in the first invention, in mass% (hereinafter the same),
C: 0.10 to 0.30%, Si: 0.20 to 0.50%, Mn: 0.20 to 0.50%, Cr: 3.6 to 6.0%, Mo: 0.01 to 0.01% Mold repair welding used for repair welding of die cast molds, consisting of 1.5%, V: 0.002 to 0.80%, Al: 0.001 to 1. 50%, balance Fe and unavoidable elements It is a material.

次に、第2の発明は、上記した第1の発明に係る金型補修溶接材料であって、N:0.0003〜0.20%、Ti:0.01〜0.5%、Nb:0.01〜0.5%、Zr:0.01〜0.5%、Ta:0.01〜0.5%、から選択される1種または2種以上を含有することを特徴とする。 A second invention is a mold repair welding material according to the first invention, wherein N: 0.0003 to 0.20%, Ti: 0.01 to 0.5%, Nb: It is characterized in that it contains one or more selected from 0.01 to 0.5%, Zr: 0.01 to 0.5%, and Ta: 0.01 to 0.5%.

次に、第3の発明は、上記した第1の発明又は第2の発明に係る金型補修溶接材料であって、Co:0.10〜1.0%、W:0.10〜5.0%、から選択される1種または2種以上を含有することを特徴とする。 A third invention is a mold repair welding material according to the first invention or the second invention, wherein Co: 0.10 to 1.0%, W: 0.10 to 5. It is characterized in that it contains one or more selected from 0%.

次に、第4の発明は、上記した第1の発明から第3の発明のいずれかの発明に係る金型補修溶接材料であって、Ni:0.30〜1.0%、Cu:0.30〜1.0%、から選択される1種または2種以上を含有することを特徴とする。 A fourth invention is a mold repair welding material according to any one of the first to third inventions, wherein Ni: 0.30 to 1.0%, Cu: 0 30 to 1.0%, characterized in that it contains one or more selected from the group consisting of

次に、第5の発明は、上記した第1の発明から第4の発明のいずれかの発明に係る金型補修溶接材料であって、S:0.01〜0.15、Ca:0.001〜0.15%、Se:0.03〜0.35%、Te:0.01〜0.35%、Bi:0.01〜0.50%、Pb:0.03〜0.50%から選択される1種または2種以上を含有することを特徴とする。 A fifth invention is a mold repair welding material according to any one of the first to fourth inventions, wherein S: 0.01 to 0.15, Ca: 0.. 001 to 0.15%, Se: 0.03 to 0.35%, Te: 0.01 to 0.35%, Bi: 0.01 to 0.50%, Pb: 0.03 to 0.50% And at least one selected from the group consisting of

次に、第6の発明は、上記した第1の発明から第5の発明のいずれかの発明に係る金型補修溶接材料であって、溶接金属の溶接ままの硬さが42〜49HRCとなることを特徴とする。 The sixth invention is a mold repair welding material according to any one of the first to fifth inventions, wherein the as-welded hardness of the weld metal is 42 to 49 HRC. It is characterized by

次に、第7の発明は、上記した第1の発明から第6の発明のいずれかの発明に係る金型補修溶接材料であって、室温の熱伝導率が22〜35W/m・Kであることを特徴とする。 A seventh invention is a mold repair welding material according to any of the first invention to the sixth invention described above, wherein the thermal conductivity at room temperature is 22 to 35 W / m · K. It is characterized by

上記発明にかかる金型補修溶接用材料によると、C、Si、Mn、Cr、Mo、Vの含有量が最適化されていることにより、優れた硬さに加えて、従来の熱間工具鋼と比較して同等以上の熱伝導率を有する。また、金型の寿命確保に必要な靭性、耐衝撃性、耐溶損性などの特性にも優れる。さらに、上記元素に加え、Alが積極的に添加されていることにより、溶接時に溶接材料が金型表面(損傷を生じた箇所)で広がり過ぎてしまうことがなく、溶接材料の厚さを確保し得る。以上より、本発明に係る金型補修溶接材料によれば、金型の耐ヒートチェック性及び金型の寿命を確保しつつ、溶接材料の積層性を向上させることができる。 According to the mold repair welding material of the above-described invention, the content of C, Si, Mn, Cr, Mo, and V is optimized so that, in addition to the excellent hardness, the conventional hot-work tool steel Have a thermal conductivity equal to or higher than that of In addition, it is excellent in properties such as toughness, impact resistance, and erosion resistance required to secure the life of the mold. Furthermore, in addition to the above elements, Al is positively added, so that the welding material does not spread too much on the mold surface (where damage has occurred) at the time of welding, and the thickness of the welding material is secured. It can. As mentioned above, according to the metal mold | die repair welding material which concerns on this invention, the lamination property of welding material can be improved, ensuring the heat check resistance of a metal mold | die, and the lifetime of a metal mold | die.

肉盛高さとAlの添加量との関係を示した図である。It is the figure which showed the relationship between the buildup height and the addition amount of Al.

本発明の一実施形態に係る金型補修溶接材料(以下、本金型補修溶接材料と言う)について詳細に説明する。本金型補修溶接材料は、溶解したアルミ合金を金型の隙間に流し込み凝固させて部品を製造する際に使用するダイカスト金型に用いられる。例えば、金型の材料としては、SKD61及びこの改良鋼を用いることができる。また、本金型補修溶接材料は、自動車のエンジンケースやミッションケースなどのアルミ製品を製造する際に用いる金型へ適用し得る。   A mold repair welding material (hereinafter referred to as the present mold repair welding material) according to an embodiment of the present invention will be described in detail. The present mold repair welding material is used in a die-cast mold used when manufacturing a part by pouring melted aluminum alloy into the gap of the mold and solidifying it. For example, SKD 61 and this modified steel can be used as the material of the mold. In addition, the present mold repair welding material can be applied to molds used in manufacturing aluminum products such as automobile engine cases and transmission cases.

本金型補修溶接材料は、以下のような元素を含有する。添加元素の種類、その成分範囲及びその限定理由は、以下の通りである。
なお、本金型補修溶接材料は、不可避的元素として、N:0.0003%未満、Ti:0.01%未満、Nb:0.01%未満、Zr:0.01%未満、Ta:0.01%未満、Co:0.10%未満、W:0.10%未満、Ni:0.30%未満、Cu:0.30%未満、S:0.01%未満、Ca:0.001%未満、Se:0.03%未満、Te:0.01%未満、Bi:0.01%未満、Pb:0.03%未満、P:0.05%未満、O:0.01%未満、B:0.001%未満、、Mg:0.02%未満、REM:0.10%未満を含むことがある。
The present mold repair welding material contains the following elements. The type of the additive element, the component range thereof, and the reason for limitation thereof are as follows.
In addition, this mold repair welding material contains less than 0.0003% N, less than 0.01% Ti, less than 0.01% Nb, less than 0.01% Zr, less than 0.01% Ta as an unavoidable element. .01%, Co: less than 0.10%, W: less than 0.10%, Ni: less than 0.30%, Cu: less than 0.30%, S: less than 0.01%, Ca: 0.001 %, Se: less than 0.03%, Te: less than 0.01%, Bi: less than 0.01%, Pb: less than 0.03%, P: less than 0.05%, O: less than 0.01% , B: less than 0.001%, Mg: less than 0.02%, REM: less than 0.10%.

C:0.10〜0.30%
Cは、溶接部の硬さを左右する重要な元素であり、0.10%未満では硬さが不十分となってしまう。逆に、0.30%を超えると硬さが硬くなり過ぎてしまい、溶接後の割れの懸念が高くなってしまう。従って、本発明ではCを0.10〜0.30%の範囲内で含有させる。
C: 0.10 to 0.30%
C is an important element that influences the hardness of the welded portion, and if less than 0.10%, the hardness becomes insufficient. On the other hand, if it exceeds 0.30%, the hardness becomes too hard, and the concern of cracking after welding increases. Therefore, C is contained in the range of 0.10 to 0.30% in the present invention.

Si:0.20〜0.50%
Siは、軟化抵抗を高める上で有用な働きをなす元素である。アルミダイカスト金型の補修溶接に用いられる溶接材料の場合、軟化抵抗が小さいとアルミダイカスト金型にて鋳造を繰り返しているうちに、溶湯による加熱によって溶接部が軟化してしまう。而して溶接部が軟化してしまうとそこでヒートチェックが発生し易くなる。従って、本発明では軟化抵抗を高めるためにSi量を0.20%以上含有させる。一方、0.50%を超えて多量に含有させると熱伝導率が低下しヒートチェックが発生しやすくなる。従って、本発明ではSiを0.20〜0.50%の範囲内で含有させる。
Si: 0.20 to 0.50%
Si is an element that plays a useful role in enhancing the resistance to softening. In the case of a welding material used for repair welding of an aluminum die-casting die, while the casting is repeated with the aluminum die-casting die if the softening resistance is small, the weld is softened by heating by the molten metal. If the weld is softened, a heat check is likely to occur there. Therefore, in the present invention, in order to increase the softening resistance, the amount of Si is contained by 0.20% or more. On the other hand, if it is contained in a large amount exceeding 0.50%, the thermal conductivity is lowered and the heat check tends to occur. Therefore, in the present invention, Si is contained in the range of 0.20 to 0.50%.

Mn:0.20〜0.50%
Mnは、0.20%未満では硬さが不十分となり、0.20%未満に下げようとすると原材料の配合を考慮する必要があり、製造コストが高くなってしまう。
一方、0.50%を超えて含有させると逆に溶接部の硬さが硬くなり過ぎてしまう。また、Mnを0.50%以下に低くすることでベイナイトの生成を促進することができ、耐Al溶損性の向上が可能となる。さらに、Mnを低くすることで熱伝導率の向上にもつながる。従って、本発明ではMnを0.20〜0.50%の範囲内で含有させる。
Mn: 0.20 to 0.50%
If the amount of Mn is less than 0.20%, the hardness is insufficient, and if it is reduced to less than 0.20%, it is necessary to consider the combination of the raw materials, and the manufacturing cost becomes high.
On the other hand, if the content is more than 0.50%, the hardness of the welded portion becomes too hard. In addition, by lowering the Mn to 0.50% or less, the formation of bainite can be promoted, and the improvement of Al corrosion resistance can be achieved. Furthermore, lowering the Mn leads to an improvement in the thermal conductivity. Therefore, in the present invention, Mn is contained in the range of 0.20 to 0.50%.

Cr:3.0〜6.0%
Crは、3.6%未満では高温硬度が低くなり、耐ヒートチェック性が低下する。また、6.0%を超えて多量に含有させると熱伝導率が低下し、表層と内部との温度勾配が大きくなって発生する熱応力が高くなり、ヒートチェックが発生しやすくなる。従って、本発明ではCrを3.0〜6.0%の範囲内で含有させる。
Cr: 3.0 to 6.0%
If the content of Cr is less than 3.6%, the high temperature hardness decreases and the heat check resistance decreases. If the content is more than 6.0%, the thermal conductivity is lowered, the temperature gradient between the surface layer and the inside becomes large, the generated thermal stress becomes high, and the heat check tends to occur. Therefore, in the present invention, Cr is contained in the range of 3.0 to 6.0%.

Mo:0.01〜1.5%
Moは、軟化抵抗に対して有用な元素である。但し、0.01%未満では軟化抵抗に対する効果が小さいため、本発明では0.01%以上含有させる。また、1.5%を超えて添加すると溶解コストが高くなる。また、Moは1.5%を超えて添加すると破壊靭性値が低下し、大割れを生じやすくなるため、1.5%以下にする必要がある。従って、本発明ではMoを0.01〜1.5%の範囲内で含有させる。
Mo: 0.01 to 1.5%
Mo is an element useful for softening resistance. However, if the content is less than 0.01%, the effect on the softening resistance is small, so in the present invention, the content is 0.01% or more. Also, if it exceeds 1.5%, the dissolution cost becomes high. In addition, when Mo is added in excess of 1.5%, the fracture toughness value is reduced and cracking is likely to occur, so it is necessary to make the content 1.5% or less. Therefore, in the present invention, Mo is contained in the range of 0.01 to 1.5%.

V:0.002〜0.80%
Vは、VC析出により結晶粒粗大化を防止する役割(ピン止め効果)を果たす。0.002%未満ではVC析出量が少なく、ピン止め効果を得にくい。そこで、本発明では0.002%以上含有させる。また、V量が多いほどV炭化物が増加し、高温強度が向上する。しかし、Vが0.80%より多く添加した場合に粗大な炭化物が増え、シャルピー衝撃値が低下してしまうため、Vは0.80%以下にする必要がある。従って、本発明ではVを0.002〜0.80%の範囲内で含有させる。
V: 0.002 to 0.80%
V plays a role (pinning effect) of preventing coarsening by VC precipitation. If it is less than 0.002%, the amount of VC deposition is small, and it is difficult to obtain the pinning effect. Therefore, in the present invention, 0.002% or more is contained. Also, as the amount of V increases, V carbides increase and the high temperature strength improves. However, when V is added more than 0.80%, coarse carbides increase and the Charpy impact value decreases, so V needs to be 0.80% or less. Therefore, in the present invention, V is contained in the range of 0.002 to 0.80%.

Al:0.001〜1.50%
Alは、0.001%以上添加することにより、Alが置換型元素として働き、溶接時の湯が横に流れてしまうことが抑制できる。このため、金型表面に高く肉盛することができる。すなわち、肉盛溶接時の積層性が向上し、溶接の作業性が向上できる。また、窒化物形成元素であるAlを添加したことで、表層の窒化物量が増加し、溶接部分の表層の硬さを向上することができる。その結果、耐ヒートチェック性の向上を図ることができる。ただし、Alが1.50%を超えて添加すると、溶解コストが高くなる。また、熱伝導率の低下も生じてしまう。そのため、各元素の含有量は、上記の範囲とした。特に、耐ヒートチェック性の向上を図る場合には、Alは、0.002〜0.01%とすることが好ましい。
Al: 0.001 to 1.50%
When Al is added by 0.001% or more, Al acts as a substitutional element, and it is possible to suppress the flow of hot water at the time of welding. Because of this, it is possible to build high on the surface of the mold. That is, the lamination property at the time of build-up welding improves, and the workability of welding can be improved. Moreover, by adding Al which is a nitride formation element, the nitride amount of surface layer can increase and it can improve the hardness of the surface layer of a welding part. As a result, the heat check resistance can be improved. However, if Al is added in excess of 1.50%, the dissolution cost becomes high. In addition, the thermal conductivity also decreases. Therefore, the content of each element is in the above range. In particular, in order to improve the heat check resistance, the Al content is preferably 0.002 to 0.01%.

N:0.0003〜0.20%、Ti:0.01〜0.5%、Nb:0.01〜0.5%、Zr:0.01〜0.5%、Ta:0.01〜0.5%
炭素又は窒素と結合し、炭化物、窒化物又は炭窒化物を形成し、結晶粒の粗大化を抑制に寄与する元素である。すなわち、析出物を生成し、オーステナイト結晶粒のピン止め粒子として働き、結晶粒粗大化を抑制する。また、微細粒となることで靭性を上げることができる。ただし、添加量が上記成分範囲以下では析出物の生成量が少なく、ピン止めの効果が表れない。一方、上記成分範囲を超えると析出物が凝集してしまい、ピン止め粒子として効かなくなってしまう。そのため、各元素の含有量は、上記の範囲とした。
N: 0.0003 to 0.20%, Ti: 0.01 to 0.5%, Nb: 0.01 to 0.5%, Zr: 0.01 to 0.5%, Ta: 0.01 to 0.01% 0.5%
It is an element which combines with carbon or nitrogen to form carbides, nitrides or carbonitrides and contributes to suppression of coarsening of crystal grains. That is, precipitates are formed and act as pinning particles of austenite crystal grains to suppress coarsening of the crystal grains. Moreover, toughness can be improved by becoming fine particles. However, if the amount added is less than the above component range, the amount of precipitates formed is small, and the effect of pinning does not appear. On the other hand, if the above component range is exceeded, the precipitates are aggregated and become ineffective as pinning particles. Therefore, the content of each element is in the above range.

Co:0.10〜1.0%、W:0.10〜5.0%
Co、Wを添加することで高温強度が高くなるが、必要以上に添加すると、コストが増加することや熱伝導率の低下につながる。そのため、各元素の含有量は、上記の範囲とした。
Co: 0.10 to 1.0%, W: 0.10 to 5.0%
The addition of Co and W increases the high temperature strength, but adding more than necessary leads to an increase in cost and a decrease in thermal conductivity. Therefore, the content of each element is in the above range.

Ni:0.30〜1.0%、Cu:0.30〜1.0%
Cu、Niを添加することでパーライトの生成が遅延され、焼入れ性が向上するが、必要以上に添加すると、コストが高くなる。また、熱伝導率の低下につながる。さらに、Niについては残留オーステナイトの増長につながってしまう。そのため、各元素の含有量は、上記の範囲とした。
Ni: 0.30 to 1.0%, Cu: 0.30 to 1.0%
The addition of Cu and Ni delays the formation of pearlite and improves the hardenability, but adding more than necessary increases the cost. Moreover, it leads to the fall of heat conductivity. Furthermore, Ni leads to an increase in retained austenite. Therefore, the content of each element is in the above range.

S:0.01〜0.15、Ca:0.001〜0.15%、Se:0.03〜0.35%、Te:0.01〜0.35%、Bi:0.01〜0.50%、Pb:0.03〜0.50%
S、Ca、Se、Te、Bi、Pbを添加することで溶接後の機械加工性が向上するが、入れ過ぎると溶接割れを促進してしまう。そのため、各元素の含有量は、上記の範囲とした。
S: 0.01 to 0.15, Ca: 0.001 to 0.15%, Se: 0.03 to 0.35%, Te: 0.01 to 0.35%, Bi: 0.01 to 0 .50%, Pb: 0.03 to 0.50%
The addition of S, Ca, Se, Te, Bi, and Pb improves the machinability after welding, but excessive insertion will promote weld cracking. Therefore, the content of each element is in the above range.

本金型補修溶接材料は、溶接金属の溶接ままの硬さが42〜49HRCとなることが好ましい。金型の耐ヒートチェック性をより確保できるからである。ここで、「溶接まま」とは、溶接したままの状態で、溶接後に熱処理を施していない状態を言う。つまり、本金型補修溶接材料は、硬さを調質する溶接後の熱処理を省いた場合でも42〜49HRCの硬さが得ることができる。 It is preferable that the present mold repair welding material has an as-welded hardness of 42 to 49 HRC of the weld metal. This is because the heat check resistance of the mold can be further secured. Here, "as-welded" means a state in which heat treatment is not performed after welding in the as-welded state. That is, even when the heat treatment after welding for refining the hardness is omitted, a hardness of 42 to 49 HRC can be obtained.

本金型補修溶接材料は、室温の熱伝導率が22〜35W/m・Kであることが好ましい。熱伝導率が22W/m・K未満の低い場合には、ダイカスト鋳造時に金型の表面と内部の温度勾配が生じ、金型に発生する熱応力が高くなり、ヒートチェックが発生しやすくなる。35W/m・Kを超えた高い場合には、添加する合金元素を極端に減らす必要があるため、溶接ままで母材同等の硬さを出すことが困難となり、耐ヒートチェック性が悪くなってしまう。 The mold repair welding material preferably has a thermal conductivity of 22 to 35 W / m · K at room temperature. When the thermal conductivity is lower than 22 W / m · K, a temperature gradient between the surface and the inside of the mold occurs during die casting, the thermal stress generated in the mold becomes high, and a heat check tends to occur. If it exceeds 35 W / m · K, it is necessary to extremely reduce the amount of alloying elements to be added, so it is difficult to obtain the same hardness as the base metal in the welding state, and the heat check resistance is deteriorated. I will.

以下、本発明を実施例により具体的に説明する。
JIS SKD61の試験片を用意し、この試験片に対して、表1(発明例)、表2(比較例)に示す各種化学組成の溶接棒(φ1.6mm×1000mm)を用いてティグ溶接を行った。試験片は、予め焼入れ、焼戻し処理を2回行い、43HRCの硬さとした。なお、溶接材料(溶接棒)は、直径が0.2〜3.5mmであることが好ましい。0.2mmよりも直径が細いと溶接の際の熱が母材の方に多く加わって母材の溶融量が多くなり、溶接部の硬さを必要以上に硬くしてしまうことに繋がる。一方、3.5mmよりも太過ぎると溶接時の熱が溶接材料に奪われて母材側に十分加わらず、融合不良の原因となってしまう。
Hereinafter, the present invention will be specifically described by way of examples.
Prepare test pieces of JIS SKD 61, and use these welding pieces (φ 1.6 mm x 1000 mm) of various chemical compositions shown in Table 1 (Inventive Example) and Table 2 (Comparative Example) to this test piece. went. The test piece was previously quenched and tempered twice to give a hardness of 43 HRC. The welding material (welding rod) preferably has a diameter of 0.2 to 3.5 mm. If the diameter is smaller than 0.2 mm, heat at the time of welding is added to the base material in a large amount, and the amount of melting of the base material increases, leading to the hardness of the welded portion becoming harder than necessary. On the other hand, if the thickness is larger than 3.5 mm, heat during welding is taken by the welding material, and the heat is not sufficiently applied to the base material side, resulting in poor fusion.

Figure 0006520518
Figure 0006520518

Figure 0006520518
Figure 0006520518

溶接条件は、Arをシールドガスとして、溶接棒をアーク内に挿入して加熱し、これを溶融させて溶接を行った。なお、溶接電流は、120A、溶接速度は、5cm/minの条件で行った。そして、溶接後の試験片を用いて、下記の各種試験を実施した。   In welding conditions, welding was performed by inserting a welding rod into an arc and heating it with Ar as a shielding gas and melting it. The welding current was 120 A, and the welding speed was 5 cm / min. And the following various tests were implemented using the test piece after welding.

<溶接後の組織観察>
30×30×15mmのSKD61の試験片を用いて、30×30mmの面に実施例と比較例をそれぞれ2層となる肉盛溶接した。その後、断面を切り出し、研磨および腐食を行い、肉盛溶接部のミクロ組織を観察し、ベイナイトの生成具合を比較した。視野の30%以上にベイナイトが認められないものを「○」、視野の10%以上にベイナイトが認められるものを「×」と評価した。
<Observation of structure after welding>
Using a 30 × 30 × 15 mm test piece of SKD 61, overlay welding was performed on the 30 × 30 mm surface to form two layers of the example and the comparative example. Thereafter, a cross section was cut out, polished and corroded, the microstructure of the weld overlay was observed, and the degree of formation of bainite was compared. Those in which no bainite was observed in 30% or more of the field of view were evaluated as “o”, and those in which bainite was observed in 10% or more of the field of view were evaluated as “x”.

<耐Al溶損性評価>
Φ20×30mmの試験片のΦ20mmの面に実施例と比較例を15mm上に肉盛溶接を行い、その後に機械加工を施してΦ10×40mmの試験片を作成した。評価にはAl合金ADC12を用い、溶湯温度750℃で試験片を回転させた状態で、試験片のΦ10×10mm部分のみを30分間浸漬させ、浸漬前における浸漬前後の重量変化の割合を溶損率とした。耐Al溶損性としては、本試験条件における溶損率が35%未満を「○」、35%以上を「×」と評価した。
<Evaluation of Al dissolution resistance>
On the と 20 mm surface of the Φ20 × 30 mm test piece, overlay welding of the example and the comparative example on 15 mm was carried out, and then machining was performed to prepare a Φ10 × 40 mm test piece. For evaluation, using the Al alloy ADC12, with the test piece rotated at a molten metal temperature of 750 ° C, only the 1010 × 10 mm portion of the test piece is immersed for 30 minutes, and the weight change ratio before and after immersion is dissolved Rate. As the Al dissolution resistance, the dissolution rate under the present test conditions was evaluated as "o" for less than 35% and "x" for 35% or more.

<積層性評価>
上記溶接後の組織観察に用いた試験片の断面から、母材に対する肉盛溶接部分の高さを測定し、積層性を評価した。溶接部分の高さが高くなるものを積層性が良いとし、本試験条件で積層性が3mm以上を「○」、3mm未満を「×」と評価した(クラックの深さとして長いもので3mmを想定した)。
<Stackability evaluation>
From the cross section of the test piece used for the structure observation after the welding, the height of the weld overlaying portion to the base material was measured to evaluate the lamination property. Assuming that the weldability is high, the laminateability is good, the laminateability of 3 mm or more is evaluated as “o” and less than 3 mm is evaluated as “x” under this test condition (assuming a long crack depth of 3 mm) did).

<窒化特性評価>
金型を窒化した後の影響を確認するため、上記溶接後の組織観察と同様の方法で肉盛溶接を行い、溶接跡を平面研磨で除去後にガス窒化処理を施した。その試験片の断面を切り出して、研磨後、ビッカース硬さ試験を実施した。ガス窒化処理条件は、510℃の大気圧雰囲気中にNHガスを導入し、3時間保持後に冷却する条件を用いた。表層から20μm位置の硬さを表層硬さとして比較を行い、表層硬さが1100HV以上を「○」、1100HV未満を「×」と評価した。
<Evaluation of nitriding characteristics>
In order to confirm the influence after nitriding the mold, overlay welding was performed in the same manner as the above-described structure observation after welding, and the welding mark was subjected to planar polishing to be subjected to gas nitriding treatment. The cross section of the test piece was cut out, and after polishing, the Vickers hardness test was performed. As the gas nitriding conditions, an NH 3 gas was introduced into an atmospheric pressure atmosphere at 510 ° C., and was maintained for 3 hours and then cooled. The hardness at a position of 20 μm from the surface layer was compared as the surface layer hardness, and the surface layer hardness was evaluated as “o” for 1100 HV or more and “x” for less than 1100 HV.

<硬さ測定(溶接まま)>
30×30×15mmのSKD61の試験片を用いて、30×30mmの面に実施例と比較例を3mm肉盛溶接した。次に、試験片の表面を平面研磨し、溶接跡を除去した後のその表面に対し、ロックウェル硬さ試験を実施した。硬さが42〜49HRCになったものを「○」、それ以外を「×」と評価した。
<Hardness measurement (Welding)>
Using a 30 × 30 × 15 mm test piece of SKD 61, the example and the comparative example were welded by 3 mm on a 30 × 30 mm surface. Next, the surface of the test piece was flat-polished and the Rockwell hardness test was performed on the surface after removing the welding mark. Those having a hardness of 42 to 49 HRC were evaluated as "o", and the others were evaluated as "x".

<熱伝導率測定>
硬さ測定に用いた試験片において、溶接部分からΦ10×2mmを切り出し、熱伝導率測定用の試験片を作成した。熱伝導率はレーザーフラッシュ法で測定し、室温の熱伝導率を測定した。熱伝導率が22〜35W/m・Kになったものを「○」、それ以外を「×」と評価した。
<Thermal conductivity measurement>
In the test piece used for hardness measurement, Φ10 × 2 mm was cut out from the welded portion to prepare a test piece for thermal conductivity measurement. The thermal conductivity was measured by a laser flash method, and the thermal conductivity at room temperature was measured. Those having a thermal conductivity of 22 to 35 W / m · K were evaluated as “o”, and the others were evaluated as “x”.

<高温硬さ測定>
耐Al溶損性評価の試験片と同様の方法で肉盛溶接を行い、肉盛溶接部からΦ10×5mmの試験片を採取した。その試験片の表面を研磨後、試験片をヒーターにより加熱し、直接ビッカース圧痕をうち、その圧痕サイズからHV硬さを測定した。500℃時の高温硬さが300HV以上になったものを「○」、300HV未満を「×」と評価した。
<High temperature hardness measurement>
Overlay welding was performed in the same manner as the test piece for evaluation of Al corrosion resistance, and a specimen of 1010 × 5 mm was collected from the overlay weld. After the surface of the test piece was polished, the test piece was heated by a heater to directly make a Vickers indentation, and the HV hardness was measured from the size of the indentation. The thing in which the high temperature hardness at 500 degreeC became 300 HV or more was evaluated as "(circle)" and less than 300 HV as "x".

<耐ヒートチェック性評価試験>
Φ62×50mmのSKD61試験片の上面に、実施例と比較例の2mmの肉盛溶接を行い、その後に平面研磨で溶接跡を除去および研磨で粗さを整えた試験片を用いた。耐ヒートチェック性の評価は、Φ62mmの面に対し、高周波加熱コイルを用いて7秒間で580℃まで上昇させ、その後に噴射水を用いて3秒間冷却し、エアブローで7秒間放冷させ、熱応力を負荷させた。この行程を1サイクルとし、溶接部分における25000サイクル時のヒートチェックの発生具合をカラーチェック(赤色)で評価した。発生具合を写真撮影し、視野の10%以上に赤色が認められなかった場合には「〇」、それ以外は「×」と評価した。
<Heat check resistance evaluation test>
On the upper surface of the 62 62 × 50 mm SKD 61 test piece, 2 mm build-up welding of the example and the comparative example was performed, and then a test piece in which welding marks were removed by plane polishing and the roughness was adjusted by polishing was used. The heat check resistance is evaluated by raising the temperature to 580 ° C. in 7 seconds using a high frequency heating coil with respect to the surface of Φ62 mm, then cooling for 3 seconds using jet water, and letting it cool for 7 seconds with air blow, heat Stress was applied. This process was regarded as one cycle, and the occurrence of heat check at the weld portion at 25,000 cycles was evaluated by color check (red). The condition of occurrence was photographed, and when red was not recognized in 10% or more of the field of view, it was evaluated as "o", and otherwise "x".

<結晶粒評価>
溶接後の組織観察に用いた試験片の切断面を研磨、腐食を行い、450mmの面積を観察し、その面積中にある最大粒径をJIS G 0551「鋼のオーステナイト結晶粒度試験方法」に規定されている粒度番号で表現し、結晶粒の粗大化の有無を評価した。本試験条件で粒度番号が4番以上を「○」、4番未満を「×」と評価した。
<Grain evaluation>
The cut surface of the test piece used for the structural observation after welding is polished and corroded, the area of 450 mm 2 is observed, and the maximum grain size in the area is made according to JIS G 0551 “Austenite grain size test method of steel”. It expressed by the particle size number prescribed | regulated, and the presence or absence of coarsening of the crystal grain was evaluated. Under the test conditions, the particle size number of 4 or more was evaluated as "o", and less than 4 as "x".

<シャルピー衝撃値評価>
100×15×30mmの試験片の2つを肉盛溶接で接合させ、その中央部が10mm×10mm×55mmのJIS 3号衝撃試験片のノッチ部分になるように試験片を採取し、シャルピー衝撃値を室温で測定した。衝撃値が大きいほど、金型となった場合に割れにくいため好ましく、本試験条件でシャルピー衝撃値が35J/cm以上を「○」、35J/cm未満を「×」と評価した。
<Charpy impact value evaluation>
Two test pieces of 100 × 15 × 30 mm are joined by build-up welding, and the test piece is collected so that the center part becomes the notch portion of the 10 mm × 10 mm × 55 mm JIS No. 3 impact test piece, and Charpy impact The values were measured at room temperature. The larger the impact value, the harder it is to break when it becomes a mold, which is preferable, and the Charpy impact value of 35 J / cm 2 or more was evaluated as “○” and less than 35 J / cm 2 as “×”.

<破壊靭性値評価>
シャルピー衝撃値の試験片採取と同様の方法で肉盛溶接を行い、ASTM E399(金属材料の線形弾性平面ひずみ破壊靭性KICのための標準試験方法)に準じて、試験片を採取し、予きれ裂を導入後に破壊靭性KIC(臨界応力拡大係数)を求め、本試験条件で破壊靭性値が25MPa・m0.5以上を「○」、25MPa・m0.5未満を「×」と評価した。
<Evaluation of fracture toughness value>
Carry out overlay welding in the same way as specimen extraction for Charpy impact value, and collect specimens according to ASTM E 399 (Standard test method for linear elastic plane strain fracture toughness KIC of metallic materials) After introducing a crack, the fracture toughness KIC (critical stress intensity factor) was determined, and under this test condition, the fracture toughness value of 25 MPa · m 0.5 or more was evaluated as “o” and less than 25 MPa · m 0.5 as “x”. .

<溶接割れ評価>
耐ヒートチェック性の評価に用いたΦ62×50mmの試験片の研磨後の状態において、目視で溶接部分に割れがあるかを観察し、割れが見られないものは「○」、割れが有るものは「×」とした。
<Evaluation of weld cracking>
In the state after polishing of Φ 62 × 50 mm test piece used for evaluation of heat check resistance, visually observe whether there is a crack in the welded part, and if there is no crack, "○", there is a crack Was "X".

各種試験結果を表3〜表6に示す。 Tables 3 to 6 show the results of various tests.

Figure 0006520518
Figure 0006520518

Figure 0006520518
Figure 0006520518

Figure 0006520518
Figure 0006520518

Figure 0006520518
Figure 0006520518

表1〜表6を比較すると、以下のことが分かる。すなわち、比較例1は、Cが0.30%超となっている。そのため、溶接部が硬くなりすぎて、硬さ測定、溶接割れ評価の試験結果が「×」となっている。なお、比較例1は、溶接割れ評価の試験で割れてしまったため、耐ヒートチェック性評価試験は、実施することができなかった。 The comparison of Tables 1 to 6 reveals the following. That is, in Comparative Example 1, C is more than 0.30%. Therefore, the weld portion becomes too hard, and the test result of the hardness measurement and the weld crack evaluation is “x”. In addition, since the comparative example 1 was cracked by the test of welding crack evaluation, the heat check resistance evaluation test was not able to be implemented.

また、比較例2は、Siが0.50%超となっている。そのため、熱伝導率測定、耐ヒートチェック性評価試験の試験結果が「×」となっている。 In addition, in Comparative Example 2, Si is more than 0.50%. Therefore, the test results of the thermal conductivity measurement and the heat check resistance evaluation test are "x".

また、比較例3〜5は、Mnが0.50%超となっている。そのため、溶接後の組織観察、耐Al溶損性評価の試験結果が「×」となっている。 Moreover, in Comparative Examples 3 to 5, Mn is more than 0.50%. Therefore, the test result of structure observation after welding, and Al corrosion resistance evaluation is "x".

また、比較例6、7は、Crが3.6%未満となっている。そのため、高温硬さ測定、耐ヒートチェック性評価試験の試験結果が「×」となっている。 Moreover, in Comparative Examples 6 and 7, Cr is less than 3.6%. Therefore, the test results of the high temperature hardness measurement and the heat check resistance evaluation test are "x".

また、比較例8〜10は、Crが6.0%超となっている。そのため、熱伝導率測定、耐ヒートチェック性評価試験の試験結果が「×」となっている。 Moreover, in Comparative Examples 8 to 10, Cr is more than 6.0%. Therefore, the test results of the thermal conductivity measurement and the heat check resistance evaluation test are "x".

また、比較例11〜13は、Moが1.5%超となっている。そのため、破壊靭性値評価の試験結果が「×」となっている。 Moreover, Mo is more than 1.5% in Comparative Examples 11 to 13. Therefore, the test result of fracture toughness value evaluation is "x".

また、比較例14〜16は、Vが0.8%超となっている。そのため、結晶粒評価、シャルピー衝撃値評価の試験結果が「×」となっている。 Moreover, in Comparative Examples 14 to 16, V is more than 0.8%. Therefore, the test result of crystal grain evaluation and Charpy impact value evaluation is "x".

また、比較例17は、Alが0.001%未満となっている。そのため、積層性評価、窒化特性評価の試験結果が「×」となっている。図1は、肉盛高さとAlの添加量との関係(積層性)を示した図である。図1を見ると、Alの添加により、溶接材料の積層性を向上し得ることがわかる。 Further, in Comparative Example 17, Al is less than 0.001%. Therefore, the test result of lamination property evaluation and nitriding characteristic evaluation is "x". FIG. 1 is a view showing the relationship between the buildup height and the addition amount of Al (lamination). It can be seen from FIG. 1 that the addition of Al can improve the layering properties of the welding material.

上記比較例に対し、発明例は、いずれの試験結果においても良好な結果を得ている。上記結果から、金型の耐ヒートチェック性及び金型の寿命を確保しつつ、溶接材料の積層性を向上させることができる、と言える。 In contrast to the above-mentioned comparative example, the inventive example obtains good results in any of the test results. From the above results, it can be said that the lamination property of the welding material can be improved while securing the heat check resistance of the mold and the life of the mold.

以上、本発明の実施形態、実施例について説明した。本発明は、これらの実施形態、実施例に特に限定されることなく、種々の改変を行うことが可能である。 The embodiments and examples of the present invention have been described above. The present invention is not limited to these embodiments and examples, and various modifications can be made.

Claims (7)

質量%で、
C:0.10〜0.30%、
Si:0.20〜0.50%、
Mn:0.20〜0.50%、
Cr:3.6〜6.0%、
Mo:0.01〜1.5%、
V:0.002〜0.80%、
Al:0.001〜1.50%、
残部Fe及び不可避的元素からなり、ダイカスト金型の補修溶接部に用いられる金型補修溶接材料。
In mass%,
C: 0.10 to 0.30%,
Si: 0.20 to 0.50%,
Mn: 0.20 to 0.50%,
Cr: 3.6 to 6.0%,
Mo: 0.01 to 1.5%,
V: 0.002 to 0.80%,
Al: 0.001 to 1.50%,
Mold repair welding material which consists of the balance Fe and unavoidable elements, and which is used for the repair welding part of the die casting mold.
N:0.0003〜0.20%、
Ti:0.01〜0.5%、
Nb:0.01〜0.5%、
Zr:0.01〜0.5%、
Ta:0.01〜0.5%、
から選択される1種または2種以上を含有することを特徴とする請求項1に記載の金型補修溶接材料。
N: 0.0003 to 0.20%,
Ti: 0.01 to 0.5%,
Nb: 0.01 to 0.5%,
Zr: 0.01 to 0.5%,
Ta: 0.01 to 0.5%,
The mold repair welding material according to claim 1, containing one or more selected from the group consisting of
Co:0.10〜1.0%、
W:0.10〜5.0%、
から選択される1種または2種以上を含有することを特徴とする請求項1又は2に記載の金型補修溶接材料。
Co: 0.10 to 1.0%,
W: 0.10 to 5.0%,
The mold repair welding material according to claim 1 or 2, characterized in that it contains one or more selected from the group consisting of
Ni:0.30〜1.0%、
Cu:0.30〜1.0%、
から選択される1種または2種以上を含有することを特徴とする請求項1から3のいずれかに記載の金型補修溶接材料。
Ni: 0.30 to 1.0%,
Cu: 0.30 to 1.0%,
The mold repair welding material according to any one of claims 1 to 3, containing one or more selected from the group consisting of
S:0.01〜0.15、
Ca:0.001〜0.15%、
Se:0.03〜0.35%、
Te:0.01〜0.35%、
Bi:0.01〜0.50%、
Pb:0.03〜0.50%
から選択される1種または2種以上を含有することを特徴とする請求項1から4のいずれかに記載の金型補修溶接材料。
S: 0.01 to 0.15,
Ca: 0.001 to 0.15%,
Se: 0.03 to 0.35%,
Te: 0.01 to 0.35%,
Bi: 0.01 to 0.50%,
Pb: 0.03 to 0.50%
The mold repair welding material according to any one of claims 1 to 4, containing one or more selected from the group consisting of
溶接金属の溶接ままの硬さが42〜49HRCとなることを特徴とする請求項1から5のいずれかに記載の金型補修溶接材料。 The mold repair welding material according to any one of claims 1 to 5, wherein the as-welded hardness of the weld metal is 42 to 49 HRC. 室温の熱伝導率が22〜35W/m・Kであることを特徴とする請求項1から6のいずれかに記載の金型補修溶接材料。 The mold repair welding material according to any one of claims 1 to 6, wherein the thermal conductivity at room temperature is 22 to 35 W / m · K.
JP2015146382A 2015-07-24 2015-07-24 Mold repair welding material Active JP6520518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015146382A JP6520518B2 (en) 2015-07-24 2015-07-24 Mold repair welding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015146382A JP6520518B2 (en) 2015-07-24 2015-07-24 Mold repair welding material

Publications (2)

Publication Number Publication Date
JP2017024053A JP2017024053A (en) 2017-02-02
JP6520518B2 true JP6520518B2 (en) 2019-05-29

Family

ID=57945371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015146382A Active JP6520518B2 (en) 2015-07-24 2015-07-24 Mold repair welding material

Country Status (1)

Country Link
JP (1) JP6520518B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7069654B2 (en) * 2017-11-14 2022-05-18 大同特殊鋼株式会社 Mold repair welding material
JP7052342B2 (en) * 2017-12-26 2022-04-12 大同特殊鋼株式会社 Mold repair welding material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2663530B2 (en) * 1988-07-05 1997-10-15 大同特殊鋼株式会社 Welding alloy powder and method for producing the same
DE102004016236A1 (en) * 2004-04-02 2005-11-10 Ludger Weier Process and welding wire for the treatment of worn die casting filling chambers
JP2010207884A (en) * 2009-03-11 2010-09-24 Ryobi Ltd Mold repairing method
JP5515442B2 (en) * 2009-06-16 2014-06-11 大同特殊鋼株式会社 Hot tool steel and steel products using the same
CN101628365A (en) * 2009-08-12 2010-01-20 杭州同皓电器有限公司 Low-nickel type steel casting repair-welding electrowelding rod
JP5392183B2 (en) * 2010-05-21 2014-01-22 大同特殊鋼株式会社 Mold repair welding material and mold repair welding method using the same
JP2011255411A (en) * 2010-06-10 2011-12-22 Daido Steel Co Ltd Seizure-resistance improvement method for die-casting die
EP2660348B1 (en) * 2010-12-27 2017-11-15 Hitachi Metals, Ltd. Die steel having superior rusting resistance and thermal conductivity, and method for producing same
JP6146030B2 (en) * 2013-02-04 2017-06-14 大同特殊鋼株式会社 Mold repair welding material
TWI500781B (en) * 2013-02-28 2015-09-21 Hitachi Metals Ltd Steel for mold and production method thereof

Also Published As

Publication number Publication date
JP2017024053A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6338028B2 (en) Welding material for ferritic heat resistant steel, welded joint for ferritic heat resistant steel, and method for producing welded joint for ferritic heat resistant steel
JP6601051B2 (en) Steel powder
JP2015209588A (en) Steel for mold and mold
JP2007197784A (en) Alloy steel
JP2010174319A (en) Steel for plastic molding mold, and plastic molding mold
JP6631860B2 (en) Method for producing martensitic stainless steel member, and martensitic stainless steel component and method for producing same
JP2016017200A (en) Die steel and warm/hot-working die
JP4645303B2 (en) Overlay welding material for hot forging die and hot forging die using the welding material
KR20180072778A (en) Steel, carburizing steel parts and manufacturing method of carburizing steel parts
US8236088B2 (en) Metal mold repair method and metal mold repair paste agent
JP6459539B2 (en) Mold steel and mold
JP2010168639A (en) Steel for die-casting mold
JP6520518B2 (en) Mold repair welding material
US20190143460A1 (en) Repair-welding material for die
KR102253469B1 (en) Steel for die-casting die and die-casting die
JP2008126310A (en) Member for forming
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JP2008208430A (en) Soft austenitic stainless steel and manufacturing method therefor
JP7081096B2 (en) Precipitation hardening Ni alloy
JP6793574B2 (en) Low thermal expansion alloy
JP2016041431A (en) Die repair welding material excellent in softening resistance and corrosion resistance, and weld metal portion of die welded using the same
JP5645218B2 (en) Mold steel for plastic molding with excellent toughness, corrosion resistance and specularity
JP2014189853A (en) Steel for mold for suppressing heat check and water-cooling hole crack
KR20230122548A (en) Austenitic stainless steel and hydrogen resistant member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150