JP6517523B2 - 摺動部材、転がり軸受および保持器 - Google Patents

摺動部材、転がり軸受および保持器 Download PDF

Info

Publication number
JP6517523B2
JP6517523B2 JP2015018983A JP2015018983A JP6517523B2 JP 6517523 B2 JP6517523 B2 JP 6517523B2 JP 2015018983 A JP2015018983 A JP 2015018983A JP 2015018983 A JP2015018983 A JP 2015018983A JP 6517523 B2 JP6517523 B2 JP 6517523B2
Authority
JP
Japan
Prior art keywords
ppm
resin
layer
sliding member
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015018983A
Other languages
English (en)
Other versions
JP2015163469A (ja
Inventor
晶美 多田
晶美 多田
佐藤 洋司
洋司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2015018983A priority Critical patent/JP6517523B2/ja
Publication of JP2015163469A publication Critical patent/JP2015163469A/ja
Application granted granted Critical
Publication of JP6517523B2 publication Critical patent/JP6517523B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Laminated Bodies (AREA)

Description

本発明は摺動部材、転がり軸受および保持器に関し、特に摺動部材表面の耐摩耗性に優れ、その優れた耐摩耗性を長期間維持できる摺動部材、例えば、転がり軸受用保持器、この保持器を用いた転がり軸受に関する。
転がり軸受や保持器などの摺動面は、潤滑油や潤滑グリースなどが供給されて転がり摩擦またはすべり摩擦を低減している。また、更に摺動性を向上させるための表面処理が摺動面になされている。表面処理の1つにフッ素系樹脂被膜を形成する方法がある。例えば、摺動部材の摺動部に形成したポリテトラフルオロエチレン(以下、PTFEという)被膜に50〜250kGyの線量の放射線を照射することにより、耐摩耗性および基材との密着性を高める方法が知られている(特許文献1)。
ポリイミド樹脂、銅、アルミニウムおよびそれらの合金等の金属材料、セラミックス、およびガラスから選択された、耐熱性に優れた基材の表面にフッ素樹脂の被膜を形成し、フッ素樹脂の融点以上の温度で電離性放射線を照射する改質フッ素樹脂被覆材の製造方法が知られている(特許文献2)。
無潤滑軸受やダイナミックシール等に使用されるフッ素樹脂からなる摺動部材として、フッ素樹脂をその結晶融点以上に加熱し、酸素不在のもとで照射線量1kGy〜10MGyの範囲内において電離性放射線を照射したフッ素樹脂が知られている(特許文献3)。
一方、自動車、バイク等のエンジンに用いられる転がり軸受、特に保持器付き針状ころ軸受があり、この保持器表面の焼付きを防止するために保持器表面に銀めっきがなされている。この保持器付き針状ころ軸受は、針状ころを等間隔に保持するプレス製金属保持器から構成され、この保持器の表面全体に銀めっきが施されている(特許文献4)。
特開2010−155443号公報 特開2002−225204号公報 特開平9−278907号公報 特許第5189427号公報
しかしながら、特許文献1に示す製造方法は、無潤滑下、低面圧の条件下で使用するため、基材との密着性を高める方法であり、各種機械の摺動面に要求される潤滑油中、高滑り速度、高面圧の条件の場合は適用が困難である。
特許文献2に記載のフッ素樹脂被膜は、フッ素樹脂の架橋反応およびフッ素樹脂と基材表面との化学反応を同時に生じさせ、それによって両者の強固な接着を達成することを目的としており、転がり軸受や保持器などの鉄基材の場合、基材表面との化学反応を生成することが困難であり、強固な接着は達成できないという問題がある。
特許文献3に記載の摺動部材は、無潤滑軸受やダイナミックシール等に使用され、被膜の形状ではなくフッ素樹脂からなる摺動部材に関する。そのため、被覆材としての特性は不明であり、更に潤滑油中、高滑り速度、高面圧を要求される転がり軸受用途に適用が困難である。
特許文献4に記載の銀めっきが施されている保持器においては、摺動面の摩耗量の経時変化がより少ない保持器が求められており、銀めっきに代わる摺動材が要求されている。また、銀めっきは、エンジンオイル中に含まれる硫黄成分によって硫化するという問題を有している。保持器表面に施された銀めっきが硫化すると、保持器から剥離や脱落が発生し、保持器の素地が露出する。
本発明はこのような問題に対処するためになされたものであり、潤滑油中、高滑り速度、高面圧の条件下においても、摺動性に優れた摺動面を有する摺動部材、転がり軸受および保持器の提供を目的とする。
本発明の摺動部材は、油潤滑環境下で使用され、鉄系金属材上に形成された摺動層を有する摺動部材である。この摺動層は、上記鉄系金属材表面に耐熱性樹脂および第一のフッ素樹脂を含む下地層を形成し、この下地層表面に第二のフッ素樹脂層を形成し、上記下地層および上記第二のフッ素樹脂層を焼成後、放射線照射して形成された摺動層であり、上記耐熱性樹脂は上記焼成時において熱分解しない樹脂であり、上記放射線照射の条件は上記第二のフッ素樹脂層が架橋する条件であることを特徴とする。
本発明の摺動部材に形成される上記第二のフッ素樹脂層が架橋する条件は、照射温度が上記第二のフッ素樹脂層の融点より30℃低い温度から該融点の20℃高い温度以下であり、照射線量が250kGy超750kGy以下であることを特徴とする。また、上記放射線が電子線であることを特徴とする。上記第二のフッ素樹脂がポリテトラフルオロエチレン樹脂であり、この第二のフッ素樹脂は、未架橋ポリテトラフルオロエチレン樹脂に比較して、固体19F Magic angle Spinning(MAS)核磁気共鳴(NMR)チャートに出現する化学シフト値(δppm)が上記未架橋ポリテトラフルオロエチレン樹脂の−82ppm、−122ppm、−126ppmに加えて、−68ppm、−70ppm、−77ppm、−80ppm、−109ppm、−112ppm、−152ppm、および−186ppmから選ばれる少なくとも1つの化学シフト値が出現するか、または−82ppmに出現する化学シフト値であるシグナルのシグナル強度が、上記未架橋ポリテトラフルオロエチレン樹脂のシグナル強度に比較して、増加することを特徴とする。また、上記摺動層の層厚さは10μm以上40μm未満であることを特徴とする。
本発明の鉄系金属材製保持器は、転がり軸受の転動体を保持する保持器であって、この鉄系金属材製保持器が上記本発明の摺動部材により形成されていることを特徴とする。
本発明の転がり軸受は上記本発明の鉄系金属材製保持器を使用した転がり軸受であり、特にエンジンのコンロッド大端部用転がり軸受、コンロッド小端部用転がり軸受またはクランクシャフト支持軸用転がり軸受であることを特徴とする。
本発明の摺動部材は、鉄系金属材上に形成された摺動層を有し、この摺動層が下地層とフッ素樹脂層とからなり、このフッ素樹脂層を焼成後、架橋する条件で架橋されているので、潤滑油中、高滑り速度、高面圧の条件下においても摩耗を抑制でき摺動部品および軸受の寿命を長期間にわたり維持できる。この摺動部材により形成されている鉄系金属材製保持器は、銀メッキ層を有する保持器に比較して、同等以上の摺動性を示す。また、この鉄系金属材製保持器を用いた転がり軸受は、潤滑油中で使用されるコンロッド用転がり軸受として、潤滑油中での摺動性に優れる。
サバン型摩擦摩耗試験結果を示す図である。 実験例1のNMRチャートの拡大図である。 実験例4のNMRチャートの拡大図である。 実験例6のNMRチャートの拡大図である。 架橋に伴なう−82ppmの規格化シグナル強度比である。 針状ころを転動体とする転がり軸受用保持器の斜視図である。 針状ころ軸受を示す斜視図である。 4サイクルエンジンの縦断面図である。 摩耗量試験装置の概要を示す図である。
本発明の摺動部材は、鉄系金属材上に形成された摺動層を有し、この摺動層が下地層とこの下地層表面に形成された架橋フッ素樹脂層とからなる。
鉄系金属材は、転がり軸受などに使用される軸受鋼、浸炭鋼、機械構造用炭素鋼、冷間圧延鋼、または熱間圧延鋼等が挙げられる。鉄系金属材は摺動部材の形状に加工後、焼入焼戻し処理することで所定の表面硬度に調整する。例えばクロムモリブデン鋼(SCM415)を用いた鉄系金属材製保持器の場合、Hv値が484〜595に調整した鉄系金属材を使用することが好ましい。
摺動層は、上記鉄系金属材表面に形成された下地層とこの下地層表面に形成された架橋フッ素樹脂層からなる。
下地層は、耐熱性樹脂および第一のフッ素樹脂を含む混合物層であり、鉄系金属材と架橋フッ素樹脂層との密着性を向上させる。
耐熱性樹脂は、下地層および上層膜の焼成時において熱分解しない樹脂である。ここで熱分解しないとは、下地層および上層膜を焼成する温度および時間内において、熱分解を開始しない樹脂である。また耐熱性樹脂は、鉄系金属材との密着性に優れた官能基および第一のフッ素樹脂とも反応する官能基を分子主鎖内または分子端部に有する樹脂であることが好ましい。
耐熱性樹脂としては、エポキシ樹脂、ポリエステル樹脂、アミドイミド樹脂、イミド樹脂、エーテルイミド樹脂、イミダゾール樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、シリコーン樹脂等が挙げられる。また、フッ素樹脂が塗膜形成時の収縮を防ぐウレタン樹脂、アクリル樹脂を併用することができる。
第一のフッ素樹脂は、下地層を形成する水系塗布液に粒子状に分散できる樹脂であれば使用できる。第一のフッ素樹脂としては、PTFE粒子、テトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)共重合体(以下、PFAという)粒子、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(以下、FEPという)粒子、またはこれらの2種以上が好ましく使用できる。
下地層を形成する水系塗布液には、耐熱性樹脂および第一のフッ素樹脂以外に、ポリオキシエチレンアルキルエーテルなどの非イオン界面活性剤、カーボンブラックなどの無機顔料、N−メチル−2−ピロリドンなどの水に任意に混合する非プロトン系極性溶剤、主溶剤としての水が配合される。また、消泡剤、乾燥剤、増粘剤、レベリング剤、ハジキ防止剤などを配合できる。下地層を形成する水系塗布液としては、例えば、ダイキン工業株式会社製プライマー塗料EKシリーズ、EDシリーズが挙げられる。
第二のフッ素樹脂層は、下地層の表面に形成され放射線により架橋できるフッ素樹脂の層である。第一のフッ素樹脂と第二のフッ素樹脂とは同一であっても異なっていてもよいが、同一のフッ素樹脂を使用することが好ましい。第二のフッ素樹脂としては、PTFE、PFA、FEP、エチレン・テトラフルオロエチレン共重合体(ETFE)等が挙げられる。これらの樹脂は単独でも混合物としても使用できる。また、これらの中で、耐熱性および摺動性に優れるPTFEが好ましい。
第二のフッ素樹脂層は、PTFE樹脂粒子を分散させた水分散液を塗布乾燥することにより得られる。PTFE樹脂粒子を分散させた水分散液としては、例えば、ダイキン工業株式会社製ポリフロン=PTFEエナメルが挙げられる。
鉄系金属材表面への摺動層の形成方法について以下説明する。
(1)鉄系金属材の表面処理
鉄系金属材は、摺動層形成前にショットブラスト等を用いて、予め金属材表面の粗さ(Ra)を1.0〜2.0μmに調整し、その後、石油ベンジン等の有機溶剤内に浸漬させ、5分〜1時間程度超音波脱脂を行なうことが好ましい。
(2)下地層を形成する水系塗布液の塗装
下地層を形成する水系塗布液を塗布前に、水分散液の分散性を向上させるために、ボールミルを用いて、例えば40rpmで1時間回転させ再分散する。この再分散した水系塗布液を100メッシュの金網を用いて濾過し、スプレー法を用いて塗布する。
(3)下地層を形成する水系塗布液の乾燥
水系塗布液を塗布後乾燥する。乾燥条件としては、例えば90℃の恒温槽内で30分程度の乾燥が好ましい。乾燥後の下地層の層厚さは2.5〜20μm、好ましくは5〜20μm、より好ましくは10〜15μmの範囲内である。2.5μm以下であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。20μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを2.5〜20μmの範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
(4)第二のフッ素樹脂層を形成する水系塗布液の塗装
第二のフッ素樹脂層を形成する水系塗布液前に、水分散液の分散性を向上させるために、ボールミルを用いて、例えば40rpmで1時間回転させ再分散する。この再分散した水系塗布液を100メッシュの金網を用いて濾過し、スプレー法を用いて塗装する。
(5)第二のフッ素樹脂層を形成する水系塗布液の乾燥
水系塗布液を塗布後乾燥する。乾燥条件としては、例えば90℃の恒温槽内で30分程度の乾燥が好ましい。乾燥後の第二のフッ素樹脂層の層厚さは2.5〜20μm、好ましくは5〜20μm、より好ましくは10〜15μmの範囲内である。2.5μm以下であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。20μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを2.5〜20μmの範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
なお、下地層および第二のフッ素樹脂層の塗装方法としては、スプレー法以外にディッピング法、刷毛塗り法など被膜を形成できるものであれば使用できる。被膜の表面粗さ、塗布形状をできるだけ小さくし、層厚さの均一性を考慮するとスプレー法が好ましい。
(6)焼成
第二のフッ素樹脂層の乾燥後、加熱炉内、空気中で第二のフッ素樹脂の融点以上の温度、好ましくは(融点(Tm)+30℃)〜(融点(Tm)+100℃)、5〜40分の範囲内で焼成する。第一および第二のフッ素樹脂がPTFEの場合、好ましくは380℃の加熱炉内で30分間焼成する。
(7)第二のフッ素樹脂層の架橋
焼成後の被膜に、照射温度が第二のフッ素樹脂層の融点より30℃低い温度から該融点の20℃高い温度以下であり、好ましくは照射線量が250〜750kGyの条件で放射線を照射してフッ素樹脂層を架橋させる。放射線としては、α線(α崩壊を行なう放射性核種から放出されるヘリウム−4の原子核の粒子線)、β線(原子核から放出される陰電子および陽電子)、電子線(ほぼ一定の運動エネルギーを持つ電子ビーム;一般に、熱電子を真空中で加速してつくる)などの粒子線;γ線(原子核、素粒子のエネルギー準位間の遷移や素粒子の対消滅、対生成などによって放出・吸収される波長の短い電磁波)などの電離放射線を用いることができる。これらの放射線の中でも、架橋効率や操作性の観点から、電子線およびγ線が好ましく、電子線がより好ましい。特に電子線は、電子線照射装置が入手しやすいこと、照射操作が簡単であること、連続的な照射工程を採用することができることなどの利点を有している。
照射温度が第二のフッ素樹脂層の融点より30℃低い温度から該融点の20℃高い温度以下の温度範囲以外ではフッ素樹脂層の架橋が十分に進まない。また、照射雰囲気は架橋を効率的に行なうため、真空引きや不活性ガス注入により照射領域の酸素濃度を低くする必要がある。酸素濃度の範囲は0〜300ppmが好ましい。酸素濃度を以上のような濃度範囲に維持するには操作性やコスト面の観点から窒素ガス注入による不活性雰囲気が好ましい。
照射線量が250kGy以下であると架橋が不十分となり、摩耗量が大きく、金属基材が露出してしまう場合がある。また、照射線量が1000kGy以上であると架橋が必要以上に進み、被膜の硬度が上昇することで、脆化し、剥離等の被膜損傷が起こりやすくなる場合がある。好ましい照射線量の上限は900kGy以下であり、より好ましくは750kGy以下である。
上述した方法により得られた摺動層の層厚さは、5μm以上40μm未満、好ましくは15μm以上30μm未満である。層厚さが5μm未満であると、被膜の密着不良による剥離や初期摩耗の摩耗により、金属基材が露出するおそれがある。40μm以上であると、被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを5μm以上40μm未満の範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
上述した方法により得られた摺動層の空気中での耐摩耗性を評価するため、サバン型摩擦摩耗試験にて摩耗量を測定した。試験片、相手材などの試験条件を以下に示す。
(1)試験片の作成
試験片:SPCC製30mm×30mm、厚さ2mmの金属平板に摺動層を形成した。下地層はダイキン社製プライマー塗料(型番:EK−1909S21R)、第二のフッ素樹脂層にはダイキン社製トップ塗料(型番:EK−3700C21R)を用いた。乾燥時間はそれぞれ90℃の恒温槽内で30分間乾燥し、380℃の加熱炉内で30分間焼成した。
その後、以下の条件で試験片に摺動層側から電子線照射を行なった。
使用装置:株式会社NHVコーポレーション社製EPS−3000
加速電圧:1.16MeV
照射線量:実験例1が0kGy(未照射)、実験例2が85kGy、実験例3が250kGy、実験例4が500kGy、実験例5が750kGy、実験例6が1000kGy
線量率:実験例2が3.9kGy/s、実験例3、実験例4、実験例5および実験例6が6.1kGy/s
コンベア速度:実験例2が3m/分、実験例3および実験例5が2m/分、実験例4および実験例6が1m/分
照射時の被膜温度:310℃
照射時のチャンバー内雰囲気:加熱窒素
電子流:実験例2が8.1mA、実験例3、実験例4、実験例5および実験例6が12.7mA
照射幅(コンベア移動方向):27.5cm
(2)実験例の試験片被膜
実験例1:PTFE被膜(照射線量:0kGy、層厚さ:20μm)
実験例2:PTFE被膜(照射線量:85kGy、層厚さ:20μm)
実験例3:PTFE被膜(照射線量:250kGy、層厚さ:20μm)
実験例4:PTFE被膜(照射線量:500kGy、層厚さ:20μm)
実験例5:PTFE被膜(照射線量:750kGy、層厚さ:20μm)
実験例6:PTFE被膜(照射線量:1000kGy、層厚さ:20μm)
(3)サバン型摩擦摩耗試験の条件
相手材:焼入焼戻し処理したSUJ2製φ40mm×幅10mm×副曲率R60mmのリング
潤滑油:無
滑り速度:0.05m/s
荷重:50N
摺動時間:実験例1は5分間、実験例2、実験例3、実験例4、実験例5および実験例6は60分間連続で試験
潤滑状態:無潤滑
(4)試験結果
試験結果を図1に示す。比摩耗量は摩耗体積を摺動距離と荷重で除した値であり、形成された摩耗痕の短径、相手材の形状寸法(φ40mmおよびR60mm)から摩耗体積を算出した。なお、図1は、実験例1の比摩耗量を1.0とした場合のそれぞれの値の比を示した。
図1に示すように、電子線照射しなかった実験例1に比較して、実験例2、実験例3、実験例4、実験例5および実験例6は優れた比摩耗量を示した。
次に本発明に用いる摺動部材の第二のフッ素樹脂層が架橋構造を有していることについて説明する。一般に、フッ素系樹脂、特にポリテトラフルオロエチレン樹脂は化学的に非常に安定で、有機溶媒などに対しても極めて安定であるため、分子構造あるいは分子量などを同定することは困難である。さらに本発明の摺動部材は架橋による三次元構造を形成しているため、さらに溶媒に溶解し難くなり、構造分析はいっそう困難となる。しかしながら19F Magic angle Spinning)(MAS)核磁気共鳴(NMR)法(High speed magic angle nuclear magnetic resonance)による測定ならびに解析により、本発明の摺動部材の三次元構造を同定することが可能となる。
測定は、日本電子株式会社製NMR装置JNM−ECX400を用いて、好適な測定核種(19F)、共鳴周波数(376.2MHz)、MAS(Magic Angle Spinning)回転数(15および12kHz)、サンプル量(4mm固体NMR管に約70μL)、待ち時間(recycle delay time)(10秒)ならびに測定温度(約24℃)で行なった。結果を図2〜図5に示す。図2は実験例1のNMR、図3は実験例4のNMR、図4は実験例6のNMRチャートの拡大図をそれぞれ表す。図2〜図4において上段はMAS回転数15kHz、下段はMAS回転数12kHzをそれぞれ表す。図5は架橋に伴い強度が増加する−82ppmでのシグナル強度を主シグナルである−122ppmでのシグナル強度で規格化し、グラフにしたものである。図5において上段は測定値、下段はグラフを表す。このシグナル強度比が高いほど架橋度が進行しているものと考えられる。
放射線照射を行なっていない第二のフッ素樹脂層(実験例1、0kGy)を上記の条件で測定すると、MAS回転数15kHzにおいて、化学シフト値(δppm)である、−82ppm、−122ppm、−162ppmのシグナルが観測された(図2上段)。また、MAS回転数12kHzにおいて、同じく、−58ppm、−82ppm、−90ppm、−122ppm、−154ppm、−186ppmのシグナルが観測された(図2下段)。−122ppmは−CF2−CF2−結合におけるF原子のシグナルであり、−82ppmは−CF2−CF3結合における−CF3のF原子のシグナルであることが知られている。このことから、MAS回転数15kHzにおける−82ppmおよび−162ppm、MAS回転数12kHzにおける−58ppm、−90ppm、−154ppm、−186ppmのシグナルはスピニングサイドバンド(Spinning Side Band:SSB)である。なお、−122ppm〜−130ppmの領域で−122ppmのシグナルに隠れてブロードになっているシグナルが観測されている。このシグナルは−126ppmに観測されるはずの−CF2−CF3結合における−CF2−のF原子のシグナルである。従って、放射線照射を行なっていない未架橋の第二のフッ素樹脂層は−CF2−CF2−結合に帰属する−122ppm、−CF2−CF3に帰属する−82ppmおよび−126ppmのシグナルを有するNMRチャートで表される。
500kGyの線量の放射線を照射した第二のフッ素樹脂層(実験例4、500kGy)の固体19F MAS NMRを未架橋の第二のフッ素樹脂層と同じ条件で測定すると、スピニングサイドバンドを除いて、−68ppm、−70ppm、−80ppm、−82ppm、−109ppm、−112ppm、−122ppm、−126ppm、−152ppm、および−186ppmのシグナルが観測された(図3上段および図3下段)。−68ppm、−70ppm、−80ppm、−109ppm、−112ppm、−152ppm、および−186ppmのシグナルが放射線照射により新たに出現し、−82ppmのシグナルはその強度が未照射より増加していた。
1000kGyの線量の放射線を照射した第二のフッ素樹脂層(実験例6、1000kGy)の固体19F MAS NMRを未架橋の第二のフッ素樹脂層と同じ条件で測定すると、スピニングサイドバンドを除いて、−68ppm、−70ppm、−77ppm、−80ppm、−82ppm、−109ppm、−112ppm、−122ppm、−126ppm、−152ppm、および−186ppmのシグナルが観測された(図4上段および図4下段)。−68ppm、−70ppm、−77ppm、−80ppm、−109ppm、−112ppm、−152ppm、および−186ppmのシグナルが放射線照射により新たに出現し、−82ppmのシグナルはそのシグナル強度が500kGy照射時より増加していた。
上記シグナルは、帰属するF原子を下線で表せば、例えば−70ppmは=CF−C 3、−109ppmは−C 2−CF(CF3)−C 2−、−152ppmは=C−C=、−186ppmは≡Cに帰属されることが知られている(Beate Fuchs and Ulrich Scheler., Branching and Cross−Linking in Radiation−Modified Poly(tetrafluoroethylene):A Solid−State NMR Investigation.Macromolecules,33,120−124.2000年)。
これらのシグナルは化学的に非等価なフッ素原子の存在を示すと同時に第二のフッ素樹脂層が架橋による三次元構造を形成していることを示す。また、上記文献によれば、観測されるシグナルのシグナル強度は照射線量500kGyよりも照射線量1000kGyの方が強くなり、少なくとも照射線量3000kGyまでは、照射線量の増加に伴ってシグナルのシグナル強度が高くなることが知られている。なお、上記文献に記載されていないシグナルについては、放射線の照射条件の違いにより第二のフッ素樹脂層の構造が異なっていることが考えられるが、架橋構造が形成されていることは、=CF−C 3、−C 2−CF(CF3)−C 2−、=C−C=、≡C等の構造が存在することから明白である。
図5に示すように、規格化シグナル強度比は、照射線量が増加するに従って増加している。照射線量が500kGyで明らかに架橋構造が出現し、照射線量が1000kGyに2倍になると、規格化シグナル強度比は約3倍になっており、架橋がより進行していることが分かった。
上記摺動層を有する鉄系金属材は、摺動層が鉄系金属材との密着性に優れ、また摺動面が油中においても耐摩耗性に優れているので、鉄系金属材製保持器、この保持器を有する転がり軸受に好適に用いることができる。特に油中で使用され、針状ころを転動体とした転がり軸受であるエンジンのコンロッド大端部軸受、コンロッド小端部軸受またはクランクシャフト支持軸である場合に好適である。
上記摺動層を有する転がり軸受用保持器の構造を図6に示す。図6は針状ころを転動体とする転がり軸受用鉄系金属製保持器の斜視図である。
保持器1は、針状ころを保持するためのポケット2が設けられ、各ポケットの間に位置する柱部3と、この柱部3を固定する両側円環部4、5とで、各針状ころの間隔を保持する。柱部3は針状ころを保持するため、柱部の中央部で山折・谷折に屈曲され、両側円環部4、5との結合部において平面視円形の膨らみを有する平板の複雑な形状とされている。本保持器の製造方法は、素形材より円環を削り出し、ポケット2をプレス加工により打抜きで形成する方法、平板をプレス加工した後、適当な長さに切断し、円環状に丸めて溶接により接合する方法などを採用することができる。この保持器1の表面部位にフッ素樹脂被膜の摺動層が形成されている。摺動層を形成する保持器の表面部位は潤滑油またはグリースと接触する部位であり、針状ころと接触するポケット2の表面を含めた保持器1の全表面に摺動層を形成することが好ましい。
図7は転がり軸受の一実施例である針状ころ軸受を示す斜視図である。図7に示すように、針状ころ軸受6は複数の針状ころ7と、この針状ころ7を一定間隔、もしくは不等間隔で保持する保持器1とで構成される。エンジンのコンロッド部用軸受の場合、軸受内輪および軸受外輪は設けられず、直接に、保持器1の内径側にクランク軸やピストンピン等の軸が挿入され、保持器1の外径側がハウジングであるコンロッドの係合穴に嵌め込まれて使用される。内外輪を有さず、長さに比べて直径が小さい針状ころ7を転動体として用いるので、この針状ころ軸受6は、内外輪を有する一般の転がり軸受に比べて、コンパクトなものとなる。
上記針状ころ軸受を使用した4サイクルエンジンの縦断面図を図8に示す。
図8は本発明の転がり軸受の一例として針状ころ軸受を使用した4サイクルエンジンの縦断面図である。4サイクルエンジンは、吸気バルブ8aを開き、排気バルブ9aを閉じてガソリンと空気を混合した混合気を吸気管8を介して燃焼室10に吸入する吸入行程と、吸気バルブ8aを閉じてピストン11を押し上げて混合気を圧縮する圧縮行程と、圧縮された混合気を爆発させる爆発行程と、爆発した燃焼ガスを排気バルブ9aを開き排気管9を介して排気する排気行程とを有する。そして、これらの行程で燃焼により直線往復運動を行なうピストン11と、回転運動を出力するクランク軸12と、ピストン11とクランク軸12とを連結し、直線往復運動を回転運動に変換するコンロッド13とを有する。クランク軸12は、回転中心軸14を中心に回転し、バランスウェイト15によって回転のバランスをとっている。
コンロッド13は、直線状棒体の下方に大端部16を、上方に小端部17を設けたものからなる。クランク軸12は、コンロッド13の大端部16の係合穴に取り付けられた針状ころ軸受6aを介して回転自在に支持されている。また、ピストン11とコンロッド13を連結するピストンピン18は、コンロッド13の小端部17の係合穴に取り付けられた針状ころ軸受6bを介して回転自在に支持されている。
摺動性に優れた針状ころ軸受を使用することにより、小型化あるいは高出力化された2サイクルエンジンや4サイクルエンジンであっても耐久性に優れる。
図7では軸受として針状ころ軸受について例示したが、本発明の転がり軸受は、上記以外の円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト円すいころ軸受、スラスト針状ころ軸受、スラスト自動調心ころ軸受等としても使用できる。特に、油潤滑環境下で使用され、鉄系金属材製保持器を使用する転がり軸受に好適に使用できる。
実施例1〜7および比較例1〜4
焼入焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受保持器(基材表面硬度 Hv:484〜595)を準備して、上記実験例1で用いた下地層および第二のフッ素樹脂層形成に用いた塗布液と同一の塗布液を用いて、被覆層の層厚さを表1記載の厚さとする以外は、実験例1と同一の条件でPTFE表面摺動層を塗布・乾燥・焼成した。実験例1で用いた電子線照射装置を用いて、表1に示す照射線量で電子線照射した。なお、電子線の照射線量は、実施例1が実験例2と同一とし、実施例2が実験例3と同一、実施例3および実施例6が実験例4と同一、実施例4が実験例5と同一、実施例5が実験例6と同一、実施例7が260kGyとした。比較例1は実験例1と同様未照射とした。また、比較例2は摺動被膜の焼成段階でクラックが発生したため以後の電子線照射、評価試験は中止した。比較例3は下地層を形成することなく、直接第二のフッ素樹脂層を上記実験例1と同一の塗布液および同一の条件で形成し、上記実験例4と同一の照射線量で電子線照射したものである。比較例4は焼入焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受保持器表面に銀メッキ層を有する例である。
表面処理されたニードル軸受保持器を以下の方法で評価した。摩耗量試験装置の概要を図9に示す。
SUJ2製、焼入れ焼戻し処理HRC62、凹部表面粗さ0.1〜0.2μmRaの凹状相手材19を垂直方向から回転軸に取り付けた保持器1に所定の荷重20で押し付けた状態で、回転軸とともに保持器1を回転させることにより保持器1表面に施した被膜の摩擦特性を評価し摩耗量を測定した。測定条件は、荷重:440N、潤滑油:鉱油(10W−30)、滑り速度:930.6m/分、測定時間:100時間である。また、その時の剥離量を目視で観察することでPTFE被膜の密着性についても評価した。剥離量が「大」とは最大剥離箇所の剥離面積が1mm2以上の場合であり、「小」とは最大剥離箇所の剥離面積が1mm2未満の場合である。なお凹R部半径は、保持器半径よりも20〜55μm大きい寸法で設定した。潤滑油は保持器の半分の高さまで浸漬する量を使用した。結果を表1に示す。
また、潤滑油浸漬試験片を用意し、以下に示す手法にて潤滑油浸漬試験に供した。結果を表1に示す。試験条件、試験片、測定方法等について以下に詳細を示す。
被膜を施した角棒3本を150℃の潤滑油〔ポリ−α−オレフィン:ルーカントHL−10(三井化学社製)にZnDTP(LUBRIZOL677A、LUBRIZOL社製)を1重量%添加したもの〕2.2gに200時間浸漬した後、潤滑油中に溶出した被膜成分の濃度(溶出量の単位、ppm)を測定した。濃度測定は、蛍光X線測定〔蛍光X線測定装置:Rigaku ZSX100e(リガク社製)〕により定量した。試験片はSCM415製3mm×3mm×20mmの角棒を3本ずつ(合計表面積774mm2)用いた。
Figure 0006517523
本発明の摺動部材は、潤滑油中、高滑り速度、高面圧の条件下においても摩耗を抑制できるので、特に、鉄系金属材製保持器を用いた潤滑油中で使用される転がり軸受の分野で使用できる。
1 保持器
2 ポケット
3 柱部
4 円環部
5 円環部
6 針状ころ軸受
7 針状ころ
8 吸気管
9 排気管
10 燃焼室
11 ピストン
12 クランク軸
13 コンロッド
14 回転中心軸
15 バランスウェイト
16 大端部
17 小端部
18 ピストンピン
19 凹状相手材
20 荷重

Claims (9)

  1. 油潤滑環境下で使用され、鉄系金属材上に形成された摺動層を有する摺動部材であって、
    前記摺動層は、前記鉄系金属材表面に耐熱性樹脂および第一のフッ素樹脂を含む下地層を形成し、この下地層表面に第二のフッ素樹脂層を形成し、前記下地層および前記第二のフッ素樹脂層を焼成後、放射線照射して形成された摺動層であり、
    前記耐熱性樹脂は、エポキシ樹脂、ポリエステル樹脂、アミドイミド樹脂、イミド樹脂、エーテルイミド樹脂、イミダゾール樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、またはシリコーン樹脂であり、該耐熱性樹脂が前記焼成時において熱分解しない樹脂であり、前記放射線照射の条件は前記第二のフッ素樹脂層が架橋する条件であることを特徴とする摺動部材。
  2. 前記第二のフッ素樹脂層が架橋する条件は、照射温度が前記第二のフッ素樹脂層の融点より30℃低い温度から該融点の20℃高い温度以下であり、照射線量が250kGy超750kGy以下であることを特徴とする請求項1記載の摺動部材。
  3. 前記放射線が電子線であることを特徴とする請求項1または請求項2記載の摺動部材。
  4. 前記第二のフッ素樹脂がポリテトラフルオロエチレン樹脂であることを特徴とする請求項1から請求項3のいずれか1項記載の摺動部材。
  5. 前記第二のフッ素樹脂は、未架橋ポリテトラフルオロエチレン樹脂に比較して、固体19F Magic angle Spinning(MAS)核磁気共鳴(NMR)チャートに出現する化学シフト値(δppm)が前記未架橋ポリテトラフルオロエチレン樹脂の−82ppm、−122ppm、−126ppmに加えて、−68ppm、−70ppm、−77ppm、−80ppm、−109ppm、−112ppm、−152ppm、および−186ppmから選ばれる少なくとも1つの化学シフト値が出現するか、または−82ppmに出現する化学シフト値のシグナル強度が、前記未架橋ポリテトラフルオロエチレン樹脂のシグナル強度に比較して、増加することを特徴とする請求項4記載の摺動部材。
  6. 前記摺動層の層厚さが5μm以上40μm未満であることを特徴とする請求項1から請求項5のいずれか1項記載の摺動部材。
  7. 転がり軸受の転動体を保持する鉄系金属材製保持器であって、
    この鉄系金属材保持器が請求項1から請求項6のいずれか1項記載の摺動部材により形成されていることを特徴とする鉄系金属材製保持器。
  8. 請求項7記載の鉄系金属材製保持器を使用した転がり軸受。
  9. 前記転がり軸受がエンジンのコンロッド大端部用転がり軸受、コンロッド小端部用転がり軸受またはクランクシャフト支持軸用転がり軸受であることを特徴とする請求項8記載の転がり軸受。
JP2015018983A 2014-02-03 2015-02-03 摺動部材、転がり軸受および保持器 Expired - Fee Related JP6517523B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018983A JP6517523B2 (ja) 2014-02-03 2015-02-03 摺動部材、転がり軸受および保持器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014018818 2014-02-03
JP2014018818 2014-02-03
JP2015018983A JP6517523B2 (ja) 2014-02-03 2015-02-03 摺動部材、転がり軸受および保持器

Publications (2)

Publication Number Publication Date
JP2015163469A JP2015163469A (ja) 2015-09-10
JP6517523B2 true JP6517523B2 (ja) 2019-05-22

Family

ID=54186622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018983A Expired - Fee Related JP6517523B2 (ja) 2014-02-03 2015-02-03 摺動部材、転がり軸受および保持器

Country Status (1)

Country Link
JP (1) JP6517523B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361636B2 (ja) * 2015-11-18 2018-07-25 コニカミノルタ株式会社 摺動部材の製造方法
JP2018025246A (ja) * 2016-08-10 2018-02-15 Ntn株式会社 転がり軸受用保持器の加熱方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135274A (ja) * 1983-01-25 1984-08-03 Mitsui Petrochem Ind Ltd フツ素樹脂プライマ−組成物
JPH06115000A (ja) * 1992-09-30 1994-04-26 Nippon Carbide Ind Co Inc プライマー組成物及びそれを用いた樹脂積層金属板
JPH0952070A (ja) * 1995-08-11 1997-02-25 Nkk Corp 潤滑性に優れた塗装鋼板およびその製造方法
JP3566805B2 (ja) * 1996-04-11 2004-09-15 日本原子力研究所 摺動部材
JP3811529B2 (ja) * 1996-04-25 2006-08-23 株式会社ジェイテクト 転がり摺動部品
JP3681023B2 (ja) * 1996-04-25 2005-08-10 光洋精工株式会社 円錐ころ軸受およびその予圧付与方法
JP3857366B2 (ja) * 1996-09-30 2006-12-13 株式会社ジェイテクト 軸受装置
JPH1135926A (ja) * 1997-07-14 1999-02-09 Canon Inc 振動波モータ用摩擦材およびそれを用いた振動波モータ
WO2006078064A1 (en) * 2005-01-21 2006-07-27 Showa Denko K.K. Heat-resistant sliding resin composition, production process and use thereof
JP2007067199A (ja) * 2005-08-31 2007-03-15 Showa Denko Kk マスキング材料の前処理方法及びこれを用いた固体電解コンデンサの製造方法
JP2007123733A (ja) * 2005-10-31 2007-05-17 Showa Denko Kk 固体電解コンデンサ素子の製造方法
CA2848028C (en) * 2011-09-22 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Medium carbon steel sheet for cold working and method for manufacturing the same
JP5303769B2 (ja) * 2012-10-25 2013-10-02 住友電工ファインポリマー株式会社 架橋フッ素樹脂複合材料

Also Published As

Publication number Publication date
JP2015163469A (ja) 2015-09-10

Similar Documents

Publication Publication Date Title
JP6769775B2 (ja) 摺動部材、転がり軸受および保持器
WO2015115655A1 (ja) 摺動部材、転がり軸受および保持器
JP6591820B2 (ja) フォイル軸受
JP6517523B2 (ja) 摺動部材、転がり軸受および保持器
JP6457285B2 (ja) 転がり軸受用保持器および転がり軸受
JP2018059629A (ja) 転がり軸受用保持器および転がり軸受
JP2017032142A (ja) 摺動部材、転がり軸受および保持器
JP2016186355A (ja) 転がり軸受用保持器および転がり軸受
WO2018062407A1 (ja) 転がり軸受用保持器および転がり軸受
WO2017022794A1 (ja) 転がり軸受用保持器および転がり軸受
JP6577193B2 (ja) 転がり軸受用保持器および転がり軸受
JP2020051444A (ja) 駆動車輪用軸受装置
WO2017022801A1 (ja) 摺動部材、転がり軸受および保持器
JP2017032143A (ja) 摺動部材、転がり軸受および保持器
US7258926B2 (en) Solid lubricant and sliding members
JP2020051439A (ja) 摺動部材、転がり軸受および保持器
JP2018059628A (ja) 転がり軸受用保持器および転がり軸受
JP6517562B2 (ja) 主電動機用軸受
JP2020051506A (ja) 転がり軸受用保持器および転がり軸受
JP4476606B2 (ja) 転動装置
JP2017032093A (ja) 転がり軸受用保持器および転がり軸受
JP3121702B2 (ja) 転がり軸受
JP2017032092A (ja) 転がり軸受用保持器および転がり軸受
JP2014234901A (ja) 転がり軸受
JPH10103339A (ja) 軸受装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190418

R150 Certificate of patent or registration of utility model

Ref document number: 6517523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees