JP6516785B2 - Eccentric rotary valve - Google Patents

Eccentric rotary valve Download PDF

Info

Publication number
JP6516785B2
JP6516785B2 JP2017071444A JP2017071444A JP6516785B2 JP 6516785 B2 JP6516785 B2 JP 6516785B2 JP 2017071444 A JP2017071444 A JP 2017071444A JP 2017071444 A JP2017071444 A JP 2017071444A JP 6516785 B2 JP6516785 B2 JP 6516785B2
Authority
JP
Japan
Prior art keywords
valve
seat
box
elliptical
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071444A
Other languages
Japanese (ja)
Other versions
JP2018173122A (en
Inventor
吉信 尾形
吉信 尾形
伸彦 若林
伸彦 若林
横田 稔
稔 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2017071444A priority Critical patent/JP6516785B2/en
Publication of JP2018173122A publication Critical patent/JP2018173122A/en
Application granted granted Critical
Publication of JP6516785B2 publication Critical patent/JP6516785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Sliding Valves (AREA)

Description

この発明は、石油、化学プラント等の計装設備、発電設備、及び工業用水、水力発電設備等の水やガス等の流体輸送用配管に設けられる遮断用途弁又は流量調整弁として使用される偏心回転弁に関するものである。   The present invention relates to an eccentricity used as a shutoff application valve or flow control valve provided in piping for fluid transportation of water, gas, etc., such as instrumentation equipment such as petroleum and chemical plant, power generation equipment, and industrial water, hydraulic power equipment etc. It relates to a rotary valve.

この種の偏心回転弁に二重偏心構造のものがあって、図4A〜図4Cに示すように、流体wが内部を流れる筒状の弁箱1と、その弁箱1内に挿入され、軸心aが前記弁箱1の軸心cから離れた弁棒(弁軸)2と、その弁棒2に偏心して設けた弁体(プラグ)3と、その弁体弁座(シート部)3aに接離する弁箱弁座1aと、を有する構成が一般的である(特許文献1、請求項1、図1〜3参照)。図中、2aは弁体3を弁軸2に支持するアームである。   The eccentric rotary valve of this type has a double eccentric structure, and as shown in FIGS. 4A to 4C, the fluid w is inserted into the cylindrical valve box 1 flowing therein and the valve box 1; A valve rod (valve shaft) 2 whose axial center a is separated from the axial center c of the valve box 1, a valve body (plug) 3 provided eccentrically to the valve rod 2, and its valve body valve seat (seat portion) The structure which has the valve box valve seat 1a which contacts and separates to 3a is common (refer patent document 1, claim 1, and FIGS. 1-3). In the figure, 2 a is an arm for supporting the valve body 3 on the valve shaft 2.

この二重偏心回転弁は、弁全開時に弁箱1内の流路中に抵抗となる突起等が少ない形状のため、バタフライ弁、玉形弁よりも圧力損失が小さいとされている。また、滞留部が無い構造のため、流体w中に微少な粒子が含まれる場合や粘性の高い流体等の特殊な流体に対応することができるとされている。
さらに、この二重偏心回転弁の弁体表面(弁座3a)は、多くの場合、球面状に形成され、開閉に伴う流量が線形的に増減する流量特性において、玉形弁より劣るが、バタフライ弁より優れているという特徴を持っている。これらの特徴は流量制御弁として有効であり、本来、制御弁として玉形弁が用いられる場所においてもこの二重偏心回転弁が用いられる場合がある。
The double eccentric rotary valve has a smaller pressure loss than the butterfly valve and the ball-shaped valve because it has a shape with few protrusions and the like in the flow path in the valve box 1 when the valve is fully opened. In addition, it is said that because of the structure having no stagnant part, it is possible to cope with special fluids such as fluid having a very small particle content or high viscosity fluid.
Furthermore, the valve body surface (the valve seat 3a) of this double eccentric rotary valve is often formed in a spherical shape, and is inferior to the ball valve in flow rate characteristics in which the flow rate linearly increases and decreases with opening and closing. It has the feature of being superior to a butterfly valve. These features are effective as a flow control valve, and this double eccentric rotary valve may be used even where a ball valve is originally used as a control valve.

特開平7−317923号公報JP 7-317923 A 特開2006−161918号公報JP, 2006-161918, A 特開2002−130487号公報JP 2002-130487 A

しかしながら、二重偏心回転弁の多くは、図4A(b)に示すように、弁箱弁座1aが弾性構造を持つ金属等の弾性体によって形成されたり、弁体弁座3aを同様な弾性構造を持つ弾性体で形成されたりする。このため、高流体圧下では、その高圧によって弁座1aが撓んでシール性が劣化して漏洩が生じるため、そのような高圧流体には使用することができないとされている。
すなわち、二重偏心構造を持つ弁の多くが、弾性構造を持つ弁箱弁座1aと、弁体弁座3aが適切な締め代を持つ弁***置で閉止性能を発揮する構造(ポジションシート)であり、その閉止性能が弾性構造を持つ金属片の弁箱弁座1aの弾性力によって与えられている。これは、高圧流体wを閉止しようとしても、弁座1a、3aを閉止している弾性力以上の流体圧がシート部(両弁座の当接部)に負荷すれば、そのシート部が開いて(隙間が生じて)弁閉止性能を確保できないからである。
このため、二重偏心回転弁において、弁操作(軸回転等)によって与えられる弁閉止方向トルクを増加させたとしても、弁閉止性能を向上させることはできない。
However, as shown in FIG. 4A (b), many of the double eccentric rotary valves are formed by an elastic body such as metal having an elastic structure, or the valve body valve seat 3a has the same elasticity as that of the valve body valve seat 3a. It is formed of an elastic body having a structure. For this reason, under high fluid pressure, the valve seat 1a is bent by the high pressure to deteriorate the sealability and leakage occurs, and therefore, it can not be used for such high pressure fluid.
That is, many of the valves having a double eccentric structure have a valve box valve seat 1a having an elastic structure and a structure in which the valve body valve seat 3a exhibits closing performance at a valve body position having an appropriate interference (position seat) Its closing performance is given by the elastic force of the valve box valve seat 1a of the metal piece having an elastic structure. This is because even if the high pressure fluid w is to be closed, if a fluid pressure equal to or greater than the elastic force closing the valve seats 1a and 3a is applied to the seat portion (abutment portion of both valve seats), the seat portion is opened. This is because the valve closing performance can not be secured (due to a gap).
Therefore, in the double eccentric rotary valve, even if the valve closing direction torque given by the valve operation (shaft rotation etc.) is increased, the valve closing performance can not be improved.

また、弾性構造を持つ弁座1a、3aは、両者間(シート部)を弾性力により密着させており、制御弁として使用する場合、閉弁状態から弁微開動作を行う信号が入力した際、前記弾性力を有することから、弁体3が微動してもその弾性力が消滅するまで両弁座1a、3aが離れず(開弁せず)、さらなる弁開動作を行う追加信号が入力すると、前記弾性力から解放された弁体3が急激に開く(開弁する)現象が認められる。この現象はジャンピング現象と呼ばれ、精度の高い流量制御を行う場合には好ましいことではない。   In addition, the valve seats 1a and 3a having an elastic structure are in close contact with each other (seat portion) by elastic force, and when used as a control valve, when a signal to perform a slight opening operation from the valve closing state is input Because of the elastic force, even if the valve 3 moves slightly, both valve seats 1a and 3a do not separate (do not open the valve) until the elastic force disappears, and an additional signal to open the valve further is input Then, the phenomenon that the valve body 3 released from the elastic force is suddenly opened (opened) is recognized. This phenomenon is called a jumping phenomenon and is not preferable when performing flow control with high accuracy.

そのジャンピング現象が極限まで抑えられる弁として、三重偏心回転弁がある。この弁は、上記二重偏心弁に加え、さらに、弁体表面形状(円錐面形状)の軸心が弁箱1の中心線(軸心c)から傾いて位置するものであって、弁箱弁座1aと弁体弁座3aのシール面は楕円断面となる(特許文献3、段落0002第11〜21行、図1、図5参照)。
このシール面が楕円断面となることから、弁孔6は弁箱中心軸(中心線c)に対して垂直方向では楕円状となる。
しかし、通常、流体wの配管には略真円筒が使用され、流体wの流通断面形状は略真円形であるため、弁孔6が楕円状であることは、その流通断面形状が略真円形から楕円状に変化することであって、圧力損失等が生じて、流体が弁孔を流通する際の障害となる。なお、上記二重偏心回転弁の弁孔6は略真円状である。
There is a triple eccentric rotary valve as a valve that can suppress the jumping phenomenon to the limit. This valve is, in addition to the above-mentioned double eccentric valve, the axial center of the valve body surface shape (conical surface shape) is positioned to be inclined from the center line (axial center c) of the valve box 1, The sealing surface of the valve seat 1a and the valve body valve seat 3a becomes an elliptical cross section (patent document 3, Paragraph 0002 lines 11-21, refer FIG. 1, FIG. 5).
Since this sealing surface is an elliptical cross section, the valve hole 6 is elliptical in the direction perpendicular to the central axis (the center line c) of the valve box.
However, normally, a substantially true cylinder is used for piping of the fluid w, and the flow cross-sectional shape of the fluid w is substantially circular, so that the valve hole 6 is elliptical, the flow cross-sectional shape is substantially true circular To an elliptical shape, and a pressure loss or the like occurs, which causes an obstacle when fluid flows through the valve hole. In addition, the valve hole 6 of the said double eccentric rotary valve is substantially perfect circle shape.

この発明は、以上の実状の下、上記二重偏心弁の優良な特徴である滞留部が無いことに加え、球面形状弁体による線形の流量調整ができる流量特性を生かしつつ、低圧から高圧流体までを閉止することが可能で、かつジャンピング現象の発生を抑制でき、さらに流体が弁孔を円滑に流れ得る弁構造を提供することを課題とする。   In the present invention, in addition to the absence of the retaining portion which is an excellent feature of the double eccentric valve under the above actual conditions, a low pressure to high pressure fluid is utilized while making use of a flow rate characteristic capable of linear flow rate adjustment by a spherical shaped valve body. It is an object of the present invention to provide a valve structure capable of closing up to and suppressing the occurrence of a jumping phenomenon and further allowing fluid to flow smoothly through a valve hole.

上記課題を達成するために、まず、一般的に、回転弁の場合、上記ポジションシート(ポジション・シール)と呼ばれる弁座構造と、トルクシート(トルク・シール)と呼ばれる弁座構造が存在する。この発明は、弁が閉止(閉弁)した際、シート面(弁箱弁座と弁体弁座の当接部)を押し付けるトルクシート構造とすることにより、上記ジャンピング現象の発生を抑制する。
つぎに、楕円球(楕円球体)は楕円を三次元へ拡張したような形態であり、その表面は二次曲面となる。回転楕円体はその長軸または短軸を回転軸として得られる回転体である。楕円錐は底面が楕円の錐である。
上記楕円球体は、その表面形状が楕円球面であって、軸心に対して直交する面で切断すれば、その断面は楕円状となり、前記軸心に対してある角度で切断すると、その断面は真円状となる。一方、楕円錐体は、その表面形状が楕円錐面であって、軸心に対して直交する面で切断すれば、その断面は楕円状となり、同ある角度の斜めの面で適宜に切断すれば、その断面は真円状となる。
この点に注目し、この発明は、弁体弁座(シート面)及び弁箱弁座(シート面)を楕円球面又は楕円錐面としたのである。
このようにすると、従来になかったシート面構造であり、弁孔が真円状等とし得る。
In order to achieve the above problems, first, in the case of a rotary valve, there are a valve seat structure called a position seat (position seal) and a valve seat structure called a torque seat (torque seal). The present invention suppresses the occurrence of the above-mentioned jumping phenomenon by adopting a torque sheet structure that presses the seat surface (the contact portion between the valve box valve seat and the valve body valve seat) when the valve is closed (closed valve).
Next, an elliptical sphere (elliptic sphere) has a form like an ellipse expanded in three dimensions, and its surface is a quadric surface. A spheroid is a body of revolution obtained with its major or minor axis as the axis of rotation. An elliptical cone is a cone whose bottom is an ellipse.
The surface of the above-mentioned elliptical sphere is an elliptical sphere, and if cut in a plane perpendicular to the axis, the cross section becomes elliptical, and if cut at an angle to the axis, the cross section becomes It becomes a perfect circle. On the other hand, if the surface shape of an elliptical pyramid is an elliptical pyramid and it is cut by a plane perpendicular to the axis, the cross section becomes an ellipse, and it is cut by an oblique plane of the same angle. For example, the cross section is a perfect circle.
Focusing on this point, in the present invention, the valve body valve seat (seat surface) and the valve box valve seat (seat surface) are elliptical spherical surfaces or elliptical conical surfaces.
In this way, the seat surface structure is not present in the prior art, and the valve hole can be made into a perfect circular shape or the like.

この発明の具体的な構成は、まず、流体が内部を流れる筒状の弁箱と、その弁箱内に挿入され、軸心が前記弁箱の軸心から離れた弁棒と、その弁棒に偏心して設けた弁体と、軸心が弁箱の軸心に対して傾いた弁体弁座と、その弁体弁座が接離する弁箱弁座と、を有する偏心回転弁である。   A specific configuration of the present invention is, first, a cylindrical valve box through which the fluid flows, a valve rod inserted into the valve box, the axial center of which is separated from the axial center of the valve box, and the valve rod An eccentric rotary valve having a valve body provided eccentrically in the valve body, a valve body valve seat whose axial center is inclined with respect to the axial center of the valve box, and a valve box valve seat in which the valve body valve seat contacts and separates .

つぎに、この偏心回転弁において、上記弁体の表面形状を、軸心に対して直交する面で切断すれば、その断面は楕円状となる楕円球体の表面形状としての楕円球面、軸心に対して直交する面で切断すれば、その断面は楕円状となる楕円錐体の表面形状としての楕円錐面、又は真球面(以下、単に「楕円球面」、「楕円錐面」又は「真球面」と言う。)としたのである。
このように、弁体表面形状が楕円球面等からなると、開弁時、流体はその楕円球面等に沿って流れ、その流量が線形的に増減するとともに滞留部が無くなるため、流通が円滑になる。このため、従来の二重偏心回転弁の球面弁体と同等の流量特性を得ることができる。
Next, in this eccentric rotary valve, if the surface shape of the valve body is cut along a plane orthogonal to the axial center, an elliptical spherical surface as the surface shape of an elliptical sphere whose cross section becomes elliptical , the axial center if you cut along a plane perpendicular against, its cross-section an elliptical cone surface as the surface shape of the elliptical cone made elliptical, or true sphere (hereinafter, simply "ellipsoid", "elliptical conical surface" or "true It is said that it is "spherical" .
As described above, when the valve body surface shape is an elliptical spherical surface or the like, the fluid flows along the elliptical spherical surface or the like at the time of valve opening, and the flow rate linearly increases and decreases and the stagnation portion disappears, so the flow becomes smooth. . For this reason, it is possible to obtain a flow rate characteristic equivalent to that of the spherical valve body of the conventional double eccentric rotary valve.

さらに、弁体弁座と弁箱弁座を楕円球面同士又は楕円錐面同士としたり、弁体弁座を楕円球面、弁箱弁座を楕円錐面としたりしたのである。
このようにすれば、従来になかった弁座(シール部)の形状となり、流路方向に垂直な(弁箱の軸心に対して直交方向の)真円で接するものとすることができる。但し、真円にならなくても、流通に支障がなければ、真円以外、例えば、楕円などになっても良い。
Furthermore, the valve body valve seat and the valve box valve seat are made to be elliptical spherical surfaces or elliptical conical surfaces, the valve body valve seat is made an elliptical spherical surface, and the valve box valve seat is made an elliptical conical surface.
In this manner, the valve seat (seal portion) can be shaped as in the prior art, and can be in contact with a perfect circle perpendicular to the flow path direction (perpendicular to the axis of the valve box). However, even if it does not become a perfect circle, if there is no hindrance to distribution, it may be an ellipse etc. other than a perfect circle, for example.

すなわち、弁体弁座(シート部)に正接する(その接点において直交状態で接する)錐又は球の中心線(軸心)を弁棒長手方向に垂直な面において、弁箱流路中心から傾け、かつその錐又は球を楕円錐又楕円球とし、さらに、その楕円錐又は楕円球に正接する楕円球面又は楕円錐面の弁座を持つ弁体とした。その弁体弁座と対をなす弁箱弁座は前記弁体表面の球面に倣った楕円球面、若しくは前記弁体表面の楕円球面に正接する楕円錐面構造とする。   That is, the center line (axial center) of a cone or sphere that is tangent to the valve body (seat portion) at a tangent point (contacts in the orthogonal state at the contact point) is inclined from the valve box channel center in a plane perpendicular to the valve rod longitudinal direction. And, the cone or sphere thereof is an elliptic cone or an elliptic sphere, and further, a valve body having a valve seat of an elliptic sphere or an elliptic cone surface tangent to the elliptic cone or oval sphere. The valve box and the valve seat paired with the valve seat have an elliptical spherical surface that conforms to the spherical surface of the valve body surface, or an elliptical conical surface structure tangent to the elliptical spherical surface of the valve body surface.

上記弁体弁座に正接する錐又は球の中心線を弁棒長手方向に垂直な面において、弁箱流路中心から傾け、かつその錐又は球を楕円錐又楕円球とし、さらに、その楕円錐又は楕円球に正接する楕円球面又は楕円錐面の弁座を持つ弁体は、弁棒を回転させた時、弁体表面の弁座面が弁箱弁座面に対して、真円球面の場合よりも大きなアプローチ角を持って接触する。アプローチ角は、圧力角と呼ばれ、これは、弁棒を回転させ、弁座面同士を接触させた際の弁棒のトルクが弁座面の接触面圧となる過程での重要な要素となっている。このアプローチ角が大きくなる作用により、通常の偏心回転弁よりも弁座の接触圧を上げることはできる。接触圧が上がれば閉弁作用も向上する。   In the plane perpendicular to the longitudinal direction of the valve rod, the center line of the cone or sphere tangent to the valve body is inclined from the center of the valve box flow path, and the cone or sphere is an elliptical cone or ellipsoid, and the ellipse In a valve body having an elliptical spherical surface or an elliptical conical surface tangent to a cone or an oval sphere, when the valve rod is rotated, the valve seat surface of the valve body is a perfect circle spherical surface with respect to the valve box valve seat surface. Contact with a larger approach angle than in the case of. The approach angle is called a pressure angle, which is an important factor in the process in which the torque of the valve stem when the valve stems are brought into contact with each other by rotating the valve stem becomes the contact pressure of the valve seat It has become. The action of increasing the approach angle makes it possible to increase the contact pressure of the valve seat more than a conventional eccentric rotary valve. As the contact pressure increases, the valve closing action also improves.

また、従来のポジションシート構造を持つ二重偏心弁とは異なり、トルクシート構造、すなわち弁棒を回転させることにより弁座面に接触面圧を発生させて閉弁性能を得る構造である。すなわち、弁箱流路中心線から楕円球状弁体を傾けることにより構成される楕円球により、従来の表面円球面の弁体よりも接触面圧を増加させることができ、弁棒を回転させるトルクを増加させることにより、接触面圧が増加する。
このため、従来は、弾性体構造によって弁座閉止性能を確保していた偏心回転弁が、この発明では、弁棒の回転トルクにより弁閉止性能を確保することができる。この閉止性能は、弁棒の回転トルクにより得られるため、高圧流体の閉止が可能となる。また、弁座同士は、弾性力により保持されないため、ジャンピング現象も抑制される。
Further, unlike a double eccentric valve having a conventional position seat structure, it has a torque seat structure, that is, a structure in which the contact pressure is generated on the valve seat surface by rotating the valve rod to obtain the valve closing performance. In other words, the contact surface pressure can be increased compared to a conventional valve body with a spherical surface spherical surface by means of an elliptical ball configured by inclining the elliptic spherical valve body from the valve box flow path center line, and torque for rotating the valve rod The contact pressure is increased by increasing.
For this reason, the eccentric rotary valve which has conventionally secured the valve seat closing performance by the elastic body structure can secure the valve closing performance by the rotation torque of the valve rod in the present invention. Since this closing performance is obtained by the rotational torque of the valve rod, the high pressure fluid can be closed. Moreover, since the valve seats are not held by the elastic force, the jumping phenomenon is also suppressed.

さらに、上記楕円球弁体表面のシート部(弁座)のみを楕円錐とし、その楕円錐に倣った楕円錐の弁箱弁座とする構造においても、その楕円錐の中心線を傾けた作用により、アプローチ角を大きくし、接触面圧を増加させる作用がある。   Furthermore, even in a structure in which only the seat portion (valve seat) on the surface of the above-mentioned elliptic sphere valve body is made an elliptical cone, and the valve box valve seat of an elliptical cone that follows the elliptical cone, the function of tilting the center line of the elliptical cone Thus, the approach angle is increased and the contact pressure is increased.

また、楕円球を形成する錐を楕円錐とした構造は、楕円錐を特定の断面で切断した場合、切断面が真円となる特性を生かしたものである。すなわち、弁箱流路中心線に垂直な面に設けられる弁座面が真円となるように、楕円錐を配置し、その楕円錐に正接する楕円球を形成した場合、弁箱流路中心線に垂直な面において、楕円球断面は真円となる。この真円断面は、弁体弁座及び弁箱弁座の断面形状となる。
この楕円球を構成する錐を楕円錐としたのは、シート部縦断面が真円となることで、楕円に比べて弁座接触面圧を安定したものにすることができる。
Moreover, the structure which made the cone which forms an elliptical sphere an elliptical cone utilizes the characteristic from which a cut surface becomes a perfect circle, when an elliptical cone is cut | disconnected by a specific cross section. That is, when an elliptical cone is disposed so that the valve seat surface provided on a plane perpendicular to the valve box flow path center line is a perfect circle, and an elliptical sphere tangent to the elliptical cone is formed, the valve box flow path center In the plane perpendicular to the line, the elliptical cross section is a perfect circle. The true circular cross section is the cross sectional shape of the valve body valve seat and the valve box valve seat.
The reason why the cone that constitutes this elliptical sphere is an elliptical cone is that the vertical cross section of the seat portion is a true circle, and the valve seat contact surface pressure can be made more stable than that of an ellipse.

上記弁箱弁座と弁体弁座が流路方向に垂直な真円で接して閉弁するようにすれば、略真円筒の配管に使用した際、流体の断面形状は略真円形であるため、弁孔が真円状となり、その流体断面形状が略真円形から真円状に変化することであって、圧力損失等が生じず、流体の安定した流通を確保できる。
なお、この発明でいう「真円」とは、径が全周に亘って同一の円のみを言うのではなく、流通に影響がない程度の径変化の場合も含む。
When the valve box valve seat and the valve body valve seat are in contact and closed in a true circle perpendicular to the flow path direction, the cross-sectional shape of the fluid is substantially true circle when used for a substantially true-cylindrical pipe Therefore, the valve hole becomes a perfect circle, and the cross-sectional shape of the fluid changes from a substantially perfect circle to a perfect circle, and pressure loss and the like do not occur, and stable flow of fluid can be ensured.
The term "perfect circle" in the present invention does not mean that the diameter is the same circle alone throughout the entire circumference, but also includes the case of a change in diameter that does not affect the circulation.

この発明は、以上のように構成し、アプローチ角を大きくし、接触面圧を増加させたので、止水性能の優れたものとなる。また、滞留部が無く、球面形状弁体による線形の流量調整ができる流量特性を生かすことができ、低圧から高圧流体までを閉止することが可能で、かつジャンピング現象の発生を抑制できる。   The present invention is configured as described above, the approach angle is increased, and the contact surface pressure is increased. Therefore, the water blocking performance is excellent. In addition, since there is no stagnant part, it is possible to make use of flow rate characteristics that allow linear flow rate adjustment by the spherical shaped valve body, it is possible to close from low pressure to high pressure fluid, and to suppress the occurrence of the jumping phenomenon.

この発明に係る偏心回転弁の一実施形態の切断正面図Cutaway front view of one embodiment of eccentric rotary valve according to the present invention 図1AのII−II線切断平面図The II-II line cutting plane view of Drawing 1A 同実施形態の弁体弁座と弁箱弁座のシール(閉弁)状態説明図Seal (closing valve) state explanatory drawing of the valve body valve seat and valve box valve seat of the embodiment 同弁体作用左側面図Same valve body action left side view 同実施形態の弁体斜視図The valve body perspective view of the embodiment 同実施形態の弁箱態様説明用平面図Top view for explaining the valve box aspect of the embodiment 同実施形態の弁体態様説明用平面図Plan view for explaining the valve body aspect of the embodiment この発明に係る偏心回転弁の他の実施形態の弁体弁座と弁箱弁座のシール状態説明図Seal state explanatory drawing of the valve body valve seat and valve box valve seat of other embodiment of the eccentric rotary valve concerning this invention 同実施形態の弁体態様説明用平面図Plan view for explaining the valve body aspect of the embodiment 同実施形態の弁箱態様説明用平面図Top view for explaining the valve box aspect of the embodiment この発明に係る偏心回転弁のさらに他の実施形態の弁体弁座と弁箱弁座のシール状態説明図Seal state explanatory drawing of the valve body valve seat and valve box valve seat of further another embodiment of the eccentric rotary valve concerning this invention 同実施形態の弁体態様説明用平面図Plan view for explaining the valve body aspect of the embodiment 同実施形態の弁箱態様説明用平面図Top view for explaining the valve box aspect of the embodiment 従来例を示し、(a)は一部切欠き側面図、(b)は切断正面図A prior art example is shown, (a) is a partially cutaway side view, (b) is a cut front view 同従来例の弁体を示し、(a)は正面図、(b)は左側面図、(c)は平面図The valve body of the conventional example is shown, (a) is a front view, (b) is a left side view, (c) is a plan view 図4A(b)の要部拡大図Main part enlarged view of FIG. 4A (b)

この発明に係る偏心回転弁も、図4Aに示した偏心構造のものであって、流体wが内部を流れる筒状の弁箱1と、その弁箱1内に挿入され、軸心aが前記弁箱1の軸心(弁体流路中心)cから離れた弁棒(弁軸)2と、その弁棒2に偏心して設けた弁体(プラグ)3と、その弁体弁座(シート部)3aに接離する弁箱弁座1aと、を有するプラグ弁である。弁箱弁座1aは金属製シートリング4によって形成されている。   The eccentric rotary valve according to the present invention is also of the eccentric structure shown in FIG. 4A, and is inserted into the cylindrical valve box 1 through which the fluid w flows, and inserted into the valve box 1, and the axis a is A valve rod (valve shaft) 2 separated from an axial center (valve body channel center) c of the valve box 1, a valve body (plug) 3 provided eccentrically to the valve rod 2, and a valve body valve seat (seat Part) 3a is a plug valve having a valve box and a valve seat 1a. The valve box valve seat 1 a is formed by a metal seat ring 4.

このプラグ弁において、図1A〜図1Gに示す実施形態のプラグ弁(偏心回転弁)V1は、弁箱弁座1aを楕円球面とし、楕円球の一部をなす弁体3の弁座3aも楕円球面としたものであり、シール面(部)5は楕円球面同士のピッタリと当接(シール)した面接触となる。
弁体3は、その軸心(楕円球中心線)dが弁箱1の軸心cに対して所要角度θ傾いて弁棒2に取り付けられて、弁体弁座3aもその軸心が同様に弁箱1の軸心cに対して所要角度θ傾いている(図1B参照)。また、弁箱弁座1aの楕円球面の軸心(中心線)dも同様に所要角度傾いている。
この弁体3の弁座3aが弁箱弁座1aに当接すると、その当接線は図1Dに示すように、真円となり、その真円は弁箱1の軸心cに対して直交する。この真円となって直交する弁体3の傾斜角度θ及び弁座1a、3aの楕円線は、実験及びシミュレーション等によって適宜に設定する。このとき、シート面(両弁座1a、3aが接する面、以下、シール部又はシート部の当接面とも言う)5は、ある幅(同一幅)を持った接触面となり、ある幅を有することによって確実なシール(閉弁)作用を行う。
In this plug valve, the plug valve (eccentric rotary valve) V1 of the embodiment shown in FIGS. 1A to 1G has the valve box valve seat 1a as an elliptical spherical surface, and also the valve seat 3a of the valve body 3 forming a part of an elliptical ball. The sealing surface (portion) 5 is in a surface contact in which the sealing surfaces (portions) 5 abut (seal) with each other.
The valve body 3 is attached to the valve rod 2 with its axial center (elliptic sphere center line) d inclined by a required angle θ with respect to the axial center c of the valve box 1, and the axial center of the valve body valve seat 3a is also the same. The required angle θ is inclined with respect to the axial center c of the valve box 1 (see FIG. 1B). Further, the axial center (center line) d of the elliptical spherical surface of the valve box 1a is similarly inclined at a required angle.
When the valve seat 3a of the valve body 3 abuts against the valve box valve seat 1a, the abutment line becomes a perfect circle as shown in FIG. 1D, and the perfect circle is orthogonal to the axial center c of the valve box 1 . The inclination angle θ of the valve body 3 and the elliptic lines of the valve seats 1a and 3a orthogonal to each other in the form of a true circle are appropriately set by experiment, simulation and the like. At this time, the seat surface (the surface where both the valve seats 1a and 3a are in contact, hereinafter also referred to as the seal surface or the contact surface of the seat portion ) 5 is a contact surface having a certain width (the same width) and has a certain width. In this way, a reliable sealing (valve closing) action is performed.

このように、弁体弁座3aに正接する楕円球の中心線dを弁棒長手方向に垂直な面において、弁箱1流路中心cから傾け、かつその楕円球に正接する楕円球面の弁座3aを持つ弁体3表面の楕円球は、弁棒2を回転させた時、弁体表面の弁座面3aが弁箱弁座面1aに対して、弁体弁座3aが真円球面の場合よりも大きなアプローチ角(圧力力)αを持ってトルクシールで接触する(図1B参照)。このため、弁棒2を回転させると、アプローチ角αが大きくなる作用により、通常の偏心回転弁よりも弁座1a、3aの接触圧を上げることはできる。接触圧が上がれば閉弁作用も向上する。   As described above, the valve of the elliptic spherical surface tangent to the valve box 1 flow path center c in the plane perpendicular to the valve rod longitudinal direction and centering on the center line d of the elliptical ball tangent to the valve body valve seat 3a. The oval ball on the surface of the valve body 3 having the seat 3a has the valve seat surface 3a of the valve body surface against the valve box valve seat surface 1a and the valve body valve seat 3a is a perfect spherical surface when the valve rod 2 is rotated. Contact with the torque seal with a larger approach angle (pressure force) α than in the case (see FIG. 1B). For this reason, when the valve rod 2 is rotated, the contact pressure of the valve seats 1a and 3a can be raised more than a normal eccentric rotary valve due to the action of increasing the approach angle α. As the contact pressure increases, the valve closing action also improves.

また、従来のポジションシート構造ではなく、上記トルクシート(トルクシール)構造で閉弁性能を得るとともに、弁体3が楕円球状であるため、従来の表面円球面の弁体よりも接触面圧を増加させることができ、弁棒2を回転させるトルクを増加させることにより、接触面圧が増加する。このため、弁棒2の回転トルクにより弁閉止性能を確保することができ、この閉止性能は、弁棒2の回転トルクにより得られるため、高圧流体の閉止が可能となる。また、弁座1a、3a同士は、弾性力により保持されないため、ジャンピング現象も抑制される。
さらに、弁体3表面が楕円球であるため、従来の二重偏心回転弁の球面弁体と同等の流量特性を得ることができる。
Further, the valve seat 3 has a valve closing performance with the above-mentioned torque seat (torque seal) structure instead of the conventional position seat structure, and the valve body 3 has an elliptical shape, so the contact surface pressure is more The contact surface pressure can be increased by increasing the torque for rotating the valve rod 2. For this reason, the valve closing performance can be secured by the rotational torque of the valve rod 2, and since this closing performance is obtained by the rotational torque of the valve rod 2, the high pressure fluid can be closed. Moreover, since the valve seats 1a and 3a are not hold | maintained by elastic force, the jumping phenomenon is also suppressed.
Furthermore, since the surface of the valve body 3 is an elliptical ball, it is possible to obtain flow characteristics equivalent to those of the spherical valve body of the conventional double eccentric rotary valve.

また、弁箱流路中心線cに垂直な面に設けられる弁座面1a、3aをその当接面が真円となるようにしたため、弁箱流路中心線cに垂直な面において、楕円球断面は真円となる。この真円断面は、弁体弁座及び弁箱弁座の断面形状となる。このシート断面(弁孔6)が真円となることで、楕円に比べて弁座接触面圧を安定したものにすることができるとともに、略真円筒の配管に介設した際、流体の断面形状は略真円形であるため、弁孔が真円状であることは、その流体断面形状が略真円形から真円状に変化することであって、圧力損失等が生じず、流体の安定した流通を確保できる。   In addition, since the valve seat surfaces 1a and 3a provided on the surface perpendicular to the valve box flow channel center line c have a perfect circle in their contact surfaces, an ellipse in the surface perpendicular to the valve box flow channel center line c The sphere cross section is a perfect circle. The true circular cross section is the cross sectional shape of the valve body valve seat and the valve box valve seat. Since the cross section of the seat (valve hole 6) is a perfect circle, the valve seat contact surface pressure can be made more stable than an ellipse, and the fluid cross section when it is interposed in a substantially cylindrical pipe. Since the shape is substantially a perfect circle, the fact that the valve hole is a perfect circle means that the cross-sectional shape of the fluid changes from a substantially true circle to a true circle, and pressure loss and the like do not occur, and the fluid is stable. Secure distribution.

図2A〜図2Cに示す実施形態のプラグ弁V2は、弁箱弁座1aの全面を楕円錐面とし、楕円球の弁体3の弁座3aを楕円球面としたものであり、シール面5は弁座1a、3aの一部がピッタリと当接した線接触となる。
弁体3は、同様に、その軸心(中心線)dが弁箱1の軸心cに対して所要角度θ傾いて弁棒2に取り付けられて、弁体弁座3aもその軸心が同様に弁箱1の軸心cに対して所要角度θ傾いている。また、弁箱弁座1aの楕円錐面の軸心(中心線)bも所要角度傾いている。
この弁体3の弁座3aが弁箱弁座1aに当接すると、その当接面(シール部5)は、同様に、真円となり、その真円は弁箱1の軸心cに対して直交する。この真円となって直交する弁体3の傾斜角度θ及び弁座1a、3aの楕円線は、実験及びシミュレーション等によって適宜に設定する。
この実施形態は、上記図1Cなどで示した実施形態と同様に、トルクシールとなる等の作用を発揮する。
The plug valve V2 of the embodiment shown in FIGS. 2A to 2C has the entire surface of the valve box valve seat 1a as an elliptical conical surface and the valve seat 3a of the valve body 3 of an elliptical ball as an elliptical spherical surface. Is a line contact in which a part of the valve seats 1a and 3a just abuts.
Similarly, the valve body 3 is attached to the valve rod 2 with its axial center (center line) d inclined by a required angle θ with respect to the axial center c of the valve box 1, and the valve body valve seat 3a also has its axial center Similarly, the required angle θ is inclined with respect to the axial center c of the valve box 1 . In addition, the axial center (center line) b of the elliptical conical surface of the valve box 1a is also inclined at a required angle.
When the valve seat 3a of the valve body 3 abuts against the valve box valve seat 1a, the abutment surface (seal portion 5) similarly becomes a perfect circle, and the perfect circle is with respect to the axial center c of the valve box 1 Are orthogonal. The inclination angle θ of the valve body 3 and the elliptic lines of the valve seats 1a and 3a orthogonal to each other in the form of a true circle are appropriately set by experiment, simulation and the like.
This embodiment exerts an effect such as a torque seal as in the embodiment shown in FIG. 1C and the like.

図3A〜図3Cに示す実施形態のプラグ弁V3は、弁箱弁座1aを楕円錐面とし、楕円球の弁体3の弁座3aを楕円錐面としたものであり、シール面5は弁座1a、3aの楕円錐面同士のピッタリと当接(シール)した面接触となる。
弁体3は、同様に、その軸心(中心線)dが弁箱1の軸心cに対して所要角度θ傾いて弁棒2に取り付けられて、弁体弁座3aもその軸心が同様に弁箱1の軸心cに対して所要角度θ傾いている。また、弁箱弁座1aの楕円錐面の軸心(中心線)bも所要角度傾いている。
この弁体3の弁座3aが弁箱弁座1aに当接すると、その当接面(シール部5)は、同様に、真円となり、その真円は弁箱1の軸心cに対して直交する。この真円となって直交する弁体3の傾斜角度θ及び弁座1a、3aの楕円線は、実験及びシミュレーション等によって適宜に設定する。
この実施形態は、上記図1Cなどで示した実施形態と同様に、トルクシールとなる等の作用を発揮する。すなわち、楕円球弁体3表面のシート部5のみを楕円錐とし、その楕円錐に倣った楕円錐の弁箱弁座1aとする構造においても、その楕円錐の中心線bを傾けた作用により、アプローチ角αを大きくし、接触面圧を増加させる作用等がある。
The plug valve V3 of the embodiment shown in FIGS. 3A to 3C has the valve box valve seat 1a as an elliptical conical surface and the valve seat 3a of the valve body 3 of an elliptical sphere as an elliptical conical surface, and the sealing surface 5 is It will be the surface contact which the contact | abutting (seal) of the elliptical cone faces of the valve seat 1a and 3a abut.
Similarly, the valve body 3 is attached to the valve rod 2 with its axial center (center line) d inclined by a required angle θ with respect to the axial center c of the valve box 1, and the valve body valve seat 3a also has its axial center Similarly, the required angle θ is inclined with respect to the axial center c of the valve box 1 . In addition, the axial center (center line) b of the elliptical conical surface of the valve box 1a is also inclined at a required angle.
When the valve seat 3a of the valve body 3 abuts against the valve box valve seat 1a, the abutment surface (seal portion 5) similarly becomes a perfect circle, and the perfect circle is with respect to the axial center c of the valve box 1 Are orthogonal. The inclination angle θ of the valve body 3 and the elliptic lines of the valve seats 1a and 3a orthogonal to each other in the form of a true circle are appropriately set by experiment, simulation and the like.
This embodiment exerts an effect such as a torque seal as in the embodiment shown in FIG. 1C and the like. That is, even in a structure in which only the seat portion 5 on the surface of the elliptic spherical valve body 3 is an elliptical cone and the valve box valve seat 1a of an elliptical cone that conforms to the elliptical cone, , And the action of increasing the contact pressure by increasing the approach angle α.

この発明は、弁体3の表面形状が楕円球面の場合であったが、楕円錐面又は真円球の場合であっても、この発明の作用効果を発揮する限りにおいて、同様に、弁体弁座3aと弁箱弁座1aとを楕円球面同士としたり、弁体弁座3aが楕円球面、弁箱弁座1aが楕円錐面としたり、弁体弁座3aと弁箱弁座1aとを楕円錐面同士としたりすることができる。また、流体wには、水やガス、及びそれらに微少な粒子が含まれる場合や粘性の高い流体等の特殊な流体等の種々のものが適用できることは勿論である。
このように、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
In the present invention, the surface shape of the valve body 3 is an elliptical spherical surface, but even in the case of an elliptical conical surface or a perfect spherical surface, the valve body can be similarly as long as the effects of the present invention can be exhibited. The valve seat 3a and the valve box valve seat 1a have elliptical spherical surfaces, the valve body valve seat 3a is an elliptical spherical surface, and the valve box valve seat 1a has an elliptical conical surface, or the valve body valve seat 3a and the valve box valve seat 1a Can be formed into ellipsoidal conical surfaces. Further, it is needless to say that various fluids such as water and gas, and special fluids such as fluid having a very small particle content and high viscosity can be applied to the fluid w.
Thus, it should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 弁箱
1a 弁箱弁座
2 弁棒
3 弁体
3a 弁体弁座
4 弁箱弁座用シートリング
5 シート部(シート面)
6 弁孔
V1〜V3 偏心回転弁(プラグ弁)
a 弁棒の軸心(中心線)
b 弁体弁座、弁箱弁座の楕円錐の軸心(中心線)
c 弁箱の軸心(中心線)
d 弁体弁座、弁箱弁座の楕円球軸心(中心線)
θ 弁体の傾斜角度
α 圧力角(アプローチ角)
1 valve box 1a valve box valve seat 2 valve rod 3 valve body 3a valve body valve seat 4 seat ring for valve box valve seat 5 seat part (seat surface)
6 Valve hole V1 to V3 Eccentric rotary valve (plug valve)
a Axis of the stem (center line)
b Valve center, axial center of the elliptical cone of the valve box (center line)
c Axis of valve box (center line)
d Valve body Valve seat, Elliptical ball axial center of valve box valve seat (center line)
θ Angle of inclination of valve body α Pressure angle (approach angle)

Claims (4)

流体(w)が内部を流れる筒状の弁箱(1)と、その弁箱(1)内に挿入され、軸心(a)が前記弁箱(1)の軸心(c)から離れた弁棒(2)と、その弁棒(2)に偏心して設けた弁体(3)と、軸心(b)が前記弁箱(1)の軸心(c)に対して傾いた弁体弁座(3a)と、その弁体弁座(3a)が接離する弁箱弁座(1a)と、を有する偏心回転弁であって、
上記弁体(3)の表面形状が、軸心に対して直交する面で切断すれば、その断面は楕円状となる楕円球体の表面形状としての楕円球面、又は真球面からなり、上記弁体弁座(3a)と弁箱弁座(1a)が楕円球面同士である偏心回転弁。
A cylindrical valve box (1) through which the fluid (w) flows and the valve center (a) is inserted into the valve box (1), and the shaft center (a) is separated from the shaft center (c) of the valve box (1) A valve rod (2), a valve body (3) provided eccentrically to the valve rod (2), and a valve body in which an axial center (b) is inclined with respect to an axial center (c) of the valve box (1) An eccentric rotary valve having a valve seat (3a) and a valve box valve seat (1a) with which the valve body valve seat (3a) contacts and separates,
Said valve body is a surface shape (3), if cut along a plane perpendicular to the axis, the cross section is elliptical sphere surface as the surface shape of an ellipse sphere an elliptical shape, or made from a true sphere, the Eccentric rotary valve in which the valve body valve seat (3a) and the valve box valve seat (1a) are elliptic spherical surfaces.
流体(w)が内部を流れる筒状の弁箱(1)と、その弁箱(1)内に挿入され、軸心(a)が前記弁箱(1)の軸心(c)から離れた弁棒(2)と、その弁棒(2)に偏心して設けた弁体(3)と、軸心(b)が前記弁箱(1)の軸心(c)に対して傾いた弁体弁座(3a)と、その弁体弁座(3a)が接離する弁箱弁座(1a)と、を有する偏心回転弁であって、
上記弁体(3)の表面形状が、軸心に対して直交する面で切断すれば、その断面は楕円状となる楕円球体の表面形状としての楕円球面、又は真球面からなり、上記弁体弁座(3a)が楕円球面、上記弁箱弁座(1a)が楕円錐面である偏心回転弁。
A cylindrical valve box (1) through which the fluid (w) flows and the valve center (a) is inserted into the valve box (1), and the shaft center (a) is separated from the shaft center (c) of the valve box (1) A valve rod (2), a valve body (3) provided eccentrically to the valve rod (2), and a valve body in which an axial center (b) is inclined with respect to an axial center (c) of the valve box (1) An eccentric rotary valve having a valve seat (3a) and a valve box valve seat (1a) with which the valve body valve seat (3a) contacts and separates,
Said valve body is a surface shape (3), if cut along a plane perpendicular to the axis, the cross section is elliptical sphere surface as the surface shape of an ellipse sphere an elliptical shape, or made from a true sphere, the An eccentric rotary valve in which the valve body valve seat (3a) is an elliptical spherical surface and the valve box valve seat (1a) is an elliptical conical surface.
流体(w)が内部を流れる筒状の弁箱(1)と、その弁箱(1)内に挿入され、軸心(a)が前記弁箱(1)の軸心(c)から離れた弁棒(2)と、その弁棒(2)に偏心して設けた弁体(3)と、軸心(b)が前記弁箱(1)の軸心(c)に対して傾いた弁体弁座(3a)と、その弁体弁座(3a)が接離する弁箱弁座(1a)と、を有する偏心回転弁であって、
上記弁体(3)の表面形状が、軸心に対して直交する面で切断すれば、その断面は楕円状となる楕円球体の表面形状としての楕円球面からなり、上記弁体弁座(3a)と弁箱弁座(1a)が楕円錐面同士である偏心回転弁。
A cylindrical valve box (1) through which the fluid (w) flows and the valve center (a) is inserted into the valve box (1), and the shaft center (a) is separated from the shaft center (c) of the valve box (1) A valve rod (2), a valve body (3) provided eccentrically to the valve rod (2), and a valve body in which an axial center (b) is inclined with respect to an axial center (c) of the valve box (1) An eccentric rotary valve having a valve seat (3a ) and a valve box valve seat (1a) with which the valve body valve seat (3a) contacts and separates,
If the surface shape of the valve body (3) is cut in a plane perpendicular to the axial center, the cross section is an elliptical spherical surface as the surface shape of an elliptical sphere having an elliptical shape, and the valve body valve seat (3a Eccentric rotary valve where the valve seat and the valve seat (1a) are elliptic cones.
上記弁箱弁座(1a)及び弁体弁座(3a)の楕円球面又は楕円錐面の軸心を弁箱(1)の軸心(c)に対して所要角度(θ)傾けて、前記弁箱弁座(1a)及び弁体弁座(3a)の当接面を前記弁箱(1)の軸心(c)に対して直交方向の真円で接して閉弁するようにした請求項1乃至3の何れか一つに記載の偏心回転弁。 The axis of the elliptical spherical surface or the elliptical conical surface of the valve box valve seat (1a) and the valve body valve seat (3a) is inclined at a required angle (θ) with respect to the axial center (c) of the valve box (1) claims valve housing valve seat (1a) and the valve body valve seat the abutment surface (3a) in contact with the perfect circle orthogonal direction to the axis (c) of the valve body (1) so as to close The eccentric rotary valve according to any one of Items 1 to 3.
JP2017071444A 2017-03-31 2017-03-31 Eccentric rotary valve Active JP6516785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071444A JP6516785B2 (en) 2017-03-31 2017-03-31 Eccentric rotary valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071444A JP6516785B2 (en) 2017-03-31 2017-03-31 Eccentric rotary valve

Publications (2)

Publication Number Publication Date
JP2018173122A JP2018173122A (en) 2018-11-08
JP6516785B2 true JP6516785B2 (en) 2019-05-22

Family

ID=64108515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071444A Active JP6516785B2 (en) 2017-03-31 2017-03-31 Eccentric rotary valve

Country Status (1)

Country Link
JP (1) JP6516785B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132791B2 (en) * 2018-08-17 2022-09-07 株式会社栗本鐵工所 Eccentric rotary valve
JP6744441B1 (en) 2019-03-05 2020-08-19 株式会社栗本鐵工所 Eccentric rotary valve
KR102643440B1 (en) * 2020-07-24 2024-03-05 발루션 주식회사 Eccentric valve seat with concentric body in segment ball valve
JP7270584B2 (en) * 2020-07-29 2023-05-10 株式会社栗本鐵工所 Eccentric rotary valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241777A (en) * 1997-12-04 1999-09-07 Kubota Corp Rotary valve
JP2004011763A (en) * 2002-06-06 2004-01-15 Tomoe Tech Res Co Jacket type triple eccentric butterfly valve
JP2004019784A (en) * 2002-06-17 2004-01-22 Tomoe Tech Res Co Triple eccentricity type butterfly valve
US20040183046A1 (en) * 2003-03-19 2004-09-23 Bickell Anthony J. Anti-scaling control element for a rotary control valve
JP3708538B1 (en) * 2004-05-31 2005-10-19 株式会社巴技術研究所 Triple eccentric butterfly valve

Also Published As

Publication number Publication date
JP2018173122A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6516785B2 (en) Eccentric rotary valve
US2882010A (en) Flow control valve
US9903481B2 (en) Control valve
US20210396325A1 (en) Valve assemblies, valve seats including flexible arms, and related methods
JP3205281U (en) Manual flow control valve
JP2011033189A (en) Trunnion loaded ball valve having flexible valve seat
CN111433495B (en) Contoured integrated valve seat for ball valve
US6935616B2 (en) Balanced plug valve
US11143312B2 (en) Eccentric rotary valve
US3608861A (en) Butterfly valve seat
US3164362A (en) Trunnion mounted ball valves having spring biased seats
JP2013083285A (en) Butterfly valve
KR20130040852A (en) Valve element of butterfly valve
JP6523734B2 (en) Butterfly valve
MXPA01008143A (en) Device by ball valve.
JP6820814B2 (en) Eccentric rotary valve
US2940725A (en) Ball valve
JP5913150B2 (en) Spherical valve
US4316478A (en) Fluid control valve
JP7132791B2 (en) Eccentric rotary valve
KR102268251B1 (en) Butterfly valve with quintuple offset structure
RU2699453C1 (en) Five eccentrics shutoff valve
JP7270584B2 (en) Eccentric rotary valve
KR20170084926A (en) Ball valve having releasing function of internal pressure
US20230265955A1 (en) Valve device with ball locks

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6516785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250