JP6503745B2 - 下水道網のセンシング箇所決定方法、プログラム及び装置 - Google Patents

下水道網のセンシング箇所決定方法、プログラム及び装置 Download PDF

Info

Publication number
JP6503745B2
JP6503745B2 JP2015005385A JP2015005385A JP6503745B2 JP 6503745 B2 JP6503745 B2 JP 6503745B2 JP 2015005385 A JP2015005385 A JP 2015005385A JP 2015005385 A JP2015005385 A JP 2015005385A JP 6503745 B2 JP6503745 B2 JP 6503745B2
Authority
JP
Japan
Prior art keywords
time
location
series data
sewer network
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015005385A
Other languages
English (en)
Other versions
JP2016130435A (ja
Inventor
祐輔 樋田
祐輔 樋田
鈴木 貴志
貴志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015005385A priority Critical patent/JP6503745B2/ja
Publication of JP2016130435A publication Critical patent/JP2016130435A/ja
Application granted granted Critical
Publication of JP6503745B2 publication Critical patent/JP6503745B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Description

本発明は、下水道網のセンシング箇所決定方法、プログラム及び装置に関する。
都市下水道は、降雨時に下水管路に流入してくる雨水を河川に排出したり、生活排水等の汚水を処理することを目的としており、下水道網の下流域にはポンプ場や下水処理場が設置されている。これらの下水道設備は降雨量や流入量等を加味して設計されているため、従来においては下水道管渠から溢水することはほとんどなかった。
しかし、近年においては計画降雨量を超える集中豪雨等による、都市での浸水被害が多発しているため、事前に浸水対策を講じる必要が出てきている。浸水対策の1つとして、例えば、下水道管の水位、流量、流速等の下水状況データをセンサにてリアルタイムで計測して下水道管路内の状況を把握し、ポンプ場や下水処理場での効率的な排水運用を行うことが知られている(例えば、特許文献1等参照)。
特開2010−203964号公報 特開2006−18763号公報
一般的に、センサを多数設置すると計測データ量が膨大になるとともに、設置費用が高額になるため、センサ設置数はできるだけ少ないことが望ましい。しかしながら、下水道網の状況を正確に把握するためには、センサ設置数を無闇に減じることはできない。
なお、特許文献2等には、予め設定した遅れ時間を利用して下水処理場に流入する下水量を予測する技術が開示されているが、本技術は、下水流入量を予測するためのものであって、センサの設置箇所や数を決定するためのものではない。
1つの側面では、本発明は、下水道網において適切なセンシング箇所を決定することが可能な下水道網のセンシング箇所決定方法、プログラム及び装置を提供することを目的とする。
一つの態様では、下水道網のセンシング箇所決定方法は、下水道網に関するデータと降雨量に関するデータに基づき、前記下水道網の複数の箇所における水位、流量、流速の少なくとも1つの時系列データを算出し、前記下水道網の特定箇所における前記時系列データの、該特定箇所以外の箇所における前記時系列データそれぞれに対する遅れ時間を算出し、算出した前記遅れ時間と、前記特定箇所以外の箇所それぞれにおける前記時系列データとを用いて、統計的仮説検定により前記特定箇所以外の箇所それぞれの有意確率を算出し、算出された前記有意確率に基づいてセンサを配置するセンシング箇所を決定する、処理をコンピュータが実行する下水道網のセンシング箇所決定方法である。
下水道網において適切なセンシング箇所を決定することができる。
一実施形態に係るセンシング箇所決定装置のハードウェア構成を概略的に示す図である。 センシング箇所決定装置の機能ブロック図である。 図3(a)は、下水道人孔DBのデータ構造を示す図であり、図3(b)は、下水道管路DBのデータ構造を示す図である。 地形DBのデータ構造を示す図である。 降雨量DBのデータ構造を示す図である。 センシング箇所決定装置の処理を示すフローチャートである。 下水道網の概略図である。 図8(a)は、人孔3の水位の時系列データの一例を示すグラフであり、図8(b)は、人孔9の水位の時系列データの一例を示すグラフであり、図8(c)は、人孔17の水位の時系列データの一例を示すグラフである。 人孔3と人孔17の相互相関関数(相関係数)と、人孔9と人孔17の相互相関関数(相関係数)とを示すグラフである。 図6のステップS18の処理を説明するための図である。 検定結果表を示す図(その1)である。 図12(a)、図12(b)は、検定結果表を示す図(その2)である。 センサの最適設置箇所の出力例を示す図である。 本実施形態の効果を説明するための図である。 図15(a)〜図15(c)は、変形例について説明するための図である。
以下、センシング箇所決定装置の一実施形態について、図1〜図14に基づいて詳細に説明する。本実施形態のセンシング箇所決定装置は、下水道網に含まれる複数の人孔(マンホール)の中から、水位、流量、流速等の下水状況データを検出するセンサを設置するのに適切な人孔(適切なセンシング箇所)を決定するための装置である。
図1には、本実施形態に係るセンシング箇所決定装置10のハードウェア構成が示されている。センシング箇所決定装置10は、PC(Personal Computer)等の端末であり、図1に示すように、CPU(Central Processing Unit)90、ROM(Read Only Memory)92、RAM(Random Access Memory)94、記憶部(ここではHDD(Hard Disk Drive))96、ネットワークインタフェース97、表示部93、入力部95及び可搬型記憶媒体用ドライブ99等を備えている。これらセンシング箇所決定装置10の各部は、バス98に接続されている。表示部93は、液晶ディスプレイ等を含み、入力部95は、キーボードやマウス等を含む。センシング箇所決定装置10では、CPU90が、ROM92あるいはHDD96に格納されているプログラム(センシング箇所決定プログラムを含む)、或いは可搬型記憶媒体用ドライブ99が可搬型記憶媒体91から読み取ったプログラム(センシング箇所決定プログラムを含む)を実行することにより、図2に示す各部として機能する。
具体的には、CPU90がプログラムを実行することで、図2に示す、入力受付部12、第1〜第3算出部としての演算部14、判定部16、及び出力部18として機能する。なお、本実施形態では、判定部16と出力部18とを含んで決定部としての機能が実現される。なお、図2には、HDD96に格納されているデータベース群(下水道人孔DB22、下水道管路DB24、地形DB26、降雨量DB28を含む)も図示されている。
入力受付部12は、ユーザが入力部95を介して入力した情報を取得し、取得した情報を演算部14や判定部16に送信する。なお、入力受付部12は、ユーザが下水道網に設置するセンサの最大個数(最大センサ個数)Nを入力した場合に、当該情報(N)を判定部16に送信する。また、入力受付部12は、最大センサ個数Nの入力を受け付けた段階で、センシング箇所の決定処理を開始する旨の指示を演算部14に送信する。
演算部14は、各種データベースを利用して、下水道網の各箇所(センサ設置箇所候補:本実施形態では各人孔)の有意確率を計算し、有意確率を纏めた検定結果表(図11等参照)を作成する。なお、演算部14による処理の詳細については、後述する。
判定部16は、演算部14が作成した検定結果表に基づいて、適切な位置及び数のセンサ設置箇所(センシング箇所)が定まったか否かを判定する。判定の結果、適切な位置及び数のセンシング箇所が定まった場合には、判定部16は、出力部18にその旨を通知する。一方、適切な位置及び数のセンシング箇所が定まっていない場合には、判定部16は、演算部14にその旨を通知する。なお、演算部14は、判定部16から通知を受けると、センサ設置箇所候補を減らした上で、再度、センサ設置箇所候補それぞれの有意確率を計算し、検定結果表を作成する。
出力部18は、表示部93等を介して、適切な位置及び数のセンサ設置箇所(センシング箇所)の情報を出力する。
ここで、図2に示す各種データベース(22,24,26,28)のデータ構造について、図3〜図5に基づいて、詳細に説明する。
図3(a)には、下水道人孔DB22のデータ構造が示されている。下水道人孔DB22には、下水道網に含まれる人孔(マンホール)に関する情報が格納されている。具体的には、下水道人孔DB22は、図3(a)に示すように、「人孔番号」、「緯度」、「経度」、「人孔地盤高(標高)」、「集水面積」、「不浸透面積率」、「等価粗度」、「斜面勾配」の各フィールドを有する。「人孔番号」のフィールドには、人孔に割り当てられた識別番号が格納され、「緯度」、「経度」及び「人孔地盤高(標高)」のフィールドには、人孔が設けられた位置及び標高の情報が格納される。また、「集水面積」のフィールドには、各人孔が受け持つ土地の面積が格納され、「不浸透面積率」のフィールドには、集水面積のうち不浸透な範囲(例えば建物の屋根、舗装道路など)が占める割合が格納される。また、「等価粗度」及び「斜面勾配」のフィールドには、各人孔が受け持つ土地の等価粗度と斜面勾配の値が格納される。
図3(b)には、下水道管路DB24のデータ構造が示されている。下水道管路DB24には、人孔と人孔との間に設けられている下水道管路に関する情報が格納されている。具体的には、下水道管路DB24は、図3(b)に示すように、「人孔番号(上流、下流)」、「管路形式」、「管路長」、「管路幅」、「管路高」、「粗度係数」、「管底高(標高)(上流、下流)」の各フィールドを有する。「人孔番号(上流、下流)」のフィールドには、下水道管路の上流側の人孔及び下流側の人孔の識別番号(人孔番号)が格納される。「管路形式」のフィールドには、管路の形式(矩形等)が格納され、「管路長」のフィールドには、管路の長さが格納され、「管路幅」のフィールドには、管路の幅が格納され、「管路高」のフィールドには、管路の高さが格納される。「粗度係数」のフィールドには、管路の粗度係数が格納され、「管底高(標高)(上流、下流)」のフィールドには、管路の上流側の底部が位置する標高と、管路の下流側の底部が位置する標高とが格納される。
図4には、地形DB26のデータ構造が示されている。地形DB26は、下水道網が設けられている地区をメッシュ状に分割した複数の領域それぞれの情報を管理するデータベースである。具体的には、地形DB26は、図4に示すように、「メッシュ番号」、「地盤高(標高)」、「粗度係数」、「建物占有率」の各フィールドを有する。「メッシュ番号」のフィールドには、各領域に割り当てられた識別番号が格納される。「地盤高(標高)」のフィールドには、各領域の標高が格納される。「粗度係数」及び「建物占有率」のフィールドには、各領域の粗度係数及び建物占有率が格納される。
図5には、降雨量DB28のデータ構造が示されている。降雨量DB28は、過去における降雨量の具体的な変化を格納するデータベースである。例えば、降雨量DB28は、図5に示すように、ある日時(2014/12/24の19:00〜22:00)におけるエリアA〜Cの降雨量の変化が格納されている。なお、エリアA〜Cは、図4のメッシュ状に分割した領域を複数含むエリアである。
なお、図3〜図5の各種データベースのデータ構造は、一例である。すなわち、各種データベースが有するフィールドの内容については、種々変更可能である。また、必要に応じて、他のデータベースを追加等してもよい。
(センシング箇所決定装置10の処理)
次に、図6のフローチャートに沿って、その他図面を適宜参照しつつ、センシング箇所決定装置10の処理について、詳細に説明する。なお、本実施形態では、一例として、図7に示すような下水道網においてセンシング箇所(センサの最適設置箇所)を決定する場合について説明する。なお、図7において、下水道管が分岐している場合は、太い管(すなわち幹線)のみにセンサを置くと仮定する。このような条件で、仮に全ての人孔にセンサを設置すると、図7に番号を付して示すような最大17個のセンサ設置箇所候補がある。本実施形態では、センシング箇所決定装置10は、これらのセンサ設置箇所候補の中から、ユーザが定めた最大センサ個数以下の適切な箇所をセンシング箇所として決定するものとする。
図6の処理では、まず、ステップS10において、入力受付部12が、最大センサ個数Nの入力を受け付ける。この場合、ユーザが入力部95を介して最大センサ個数Nを入力すると、入力受付部12は、当該最大センサ個数Nを受け付け、判定部16に送信する。また、入力受付部12は、最大センサ個数Nの入力を受け付けた段階で、演算部14に対して、処理を開始する旨の指示を出す。なお、本実施形態では、ユーザは最大センサ個数Nとして「5」を入力したものとする。
次いで、ステップS12では、演算部14が、下水道管渠、地形、降雨量の情報に基づいて下水データを算出する。具体的には、演算部14は、下水道人孔DB22、下水道管路DB24、地形DB26、降雨量DB28の各データに基づいて、公知の演算方法により、下水道網の各箇所(各人孔)の水位、流量、流速等の時系列データの算出を行う。なお、本実施形態では、一例として、演算部14は、水位[m]の時系列データを算出したものとする。図8(a)〜図8(c)には、一例として、図7の人孔3、人孔9、人孔17における水位の時系列データが示されている。
次いで、ステップS14では、演算部14が、算出した時系列データを用いて各人孔と最下流の人孔(ここでは、人孔17とする)の相互相関関数R(τ)を計算する。なお、τは、各箇所(人孔)の時系列データと最下流の箇所(人孔17)の時系列データの変化の時間差を意味する。図9には、人孔3と人孔17の相互相関関数(相関係数)と、人孔9と人孔17の相互相関関数(相関係数)とが示されている。より詳細には、図9には、人孔3や人孔9の時系列データをタイムシフトさせた場合の、人孔17の時系列データとの相関の変化が示されている。
次いで、ステップS16では、演算部14が、相互相関関数の極大値を計算する。すなわち、演算部14は、相関係数が正になり、かつ、時間差の相互相関関数の二階微分(d2R(τ)/dτ2)が0になる最も小さい時間差τを求める。なお、求められた時間差τは、最下流の人孔17の、他の人孔に対する遅れ時間を意味する。図9では、人孔3に対する人孔17の遅れ時間がT3、人孔9に対する人孔17の遅れ時間がT9として示されている。
次いで、ステップS18では、演算部14が、各時系列データを極大値(遅れ時間τ)だけシフトさせる。この場合、演算部14は、図10の上段の図に示すように、人孔3の時系列データを遅れ時間T3だけ右側にタイムシフトさせる(破線のグラフ参照)。また、演算部14は、図10の中段の図に示すように、人孔9の時系列データを遅れ時間T9だけ右側にタイムシフトさせる(破線のグラフ参照)。なお、その他の人孔の時系列データについても同様にタイムシフトさせる。
次いで、ステップS20では、演算部14が、有意確率を計算する。この場合、演算部14は、遅れ時間分だけタイムシフトした各人孔の時系列データに対し、統計的仮説検定を行い、有意確率を計算する。
次いで、ステップS22では、演算部14が、センサ設置箇所候補(人孔)の検定結果表を作成する。図11には、検定結果表の一例が示されている。図11の検定結果表においては、センサ設置箇所候補(ここでは、人孔1〜16)のt値、P(Probability)−値が纏められている。
次いで、ステップS24では、判定部16が、全ての有意確率が有意であるか否かを判断する。この場合、例えば、判定部16は、全てのP−値が、予め定められている閾値(例えば、0.05とする)以下であるか否かに基づいて、全ての有意確率が有意であるか否かを判断する。ここでの判断が否定された場合、すなわち、P−値が閾値を超えるセンサ設置箇所候補が存在する場合には、ステップS28に移行する。ステップS28では、演算部14が、センサ設置箇所候補を減じる処理を行う。この場合、演算部14は、ステップS28において閾値を超える最も大きなP−値を有する人孔(図11では、太破線枠で囲んだ人孔2)をセンサ設置箇所候補から除外した後、ステップS20に戻る。
ステップS20に戻ると、演算部14は、残りのセンサ設置箇所候補(ここでは、人孔1、人孔3〜16)の有意確率を再度計算する。そして、次のステップS22では、演算部14が、残りのセンサ設置箇所候補(人孔)の検定結果表を再度作成する。この場合、図12(a)に示すように、人孔1、人孔3〜16に関する検定結果表が作成される。次いで、ステップS24では、判定部16が、全ての有意確率が有意であるか否かを再度判断する。このステップS24の判断が否定されると、ステップS28に移行する。なお、ステップS28において図12(a)の場合、演算部14は、太破線枠で囲んだ人孔10を除外し、ステップS20に戻る。
なお、ステップS24の判断が肯定された場合、すなわち、全ての有意確率が有意であった場合には、判定部16は、ステップS26に移行する。ステップS26に移行すると、判定部16は、センサ設置箇所候補がN以下であるか否かを判断する。ここでの判断が否定された場合には、ステップS28に移行し、検定結果表に含まれるセンサ設置箇所候補のうち、最も有意確率(P−値)が大きい人孔を除外し、ステップS20に戻る。
以降、ステップS26の判断が肯定されるまで、ステップS20〜S28の処理・判断が繰り返し実行される。なお、ステップS26の判断が肯定される段階における検定結果表の例が、図12(b)に示されている。図12(b)においては、全ての有意確率(P−値)が閾値(0.05)未満となり、センサ設置箇所候補(人孔)の数がN(=5)以下になっている。
ステップS26の判断が肯定され、ステップS30に移行すると、出力部18は、センサの最適設置箇所を決定し、出力する。この場合、出力部18は、図12(b)の検定計画表に含まれている人孔(人孔6,9,11,13,16)をセンサの最適設置箇所として、表示部93等を介して出力する。この場合、出力部18は、図13に示すような下水道網を示す図を用いて、センサの最適設置箇所(図13の黒丸参照)を出力するようにしてもよい。
以上、詳細に説明したように、本実施形態によると、演算部14は、各種データベース(22,24,26,28)に基づき、下水道網の複数の箇所(人孔)における水位の時系列データを算出し(S12)、下水道網の特定箇所(最下流の人孔17)における時系列データの、その他の人孔における時系列データそれぞれに対する遅れ時間τを算出し(S14,S16)、算出した遅れ時間τと、その他の人孔それぞれにおける時系列データとを用いて、統計的仮説検定によりその他の人孔それぞれの有意確率を算出する(S18、S20)。そして、判定部16及び出力部18は、算出された有意確率に基づいてセンサの最適設置箇所(センシング箇所)を決定する(S22〜S30)。このように、本実施形態では、遅れ時間を考慮して、センシング箇所を決定することで、適切なセンシング箇所を決定することができる。図14には、本実施形態と比較例(遅れ時間を考慮せずに統計的仮説検定を行った例)における、設置センサ数による標準誤差の推移が示されている。なお、標準誤差は、設置したセンサを用いて最下流の人孔17の水位を予測した場合の誤差を意味する。本実施形態と比較例とを比較すると、本実施形態のほうが比較例よりも、全体的にモデル精度が向上している(標準誤差が小さくなっている)ことが確認できる。また、比較例では、センサ数を削減した場合に標準誤差が急激に大きくなるが、本実施形態では緩やかに標準誤差が大きくなることがわかる。これらより、本実施形態では、モデルが安定しており、たとえセンサの数を減らしても、モデル精度への影響が小さいことがわかる。このため、本実施形態では、図12(a)や図13に示すようにセンシング箇所をユーザが入力した最大センサ個数N(=5)以下に減らしても、精度良く最下流の人孔の水位を推定することが可能となる。したがって、本実施形態では、センサの数を極力減らすことにより、下水道網の状況を予測する際に処理する必要のあるデータ量を削減することができるとともに、センサ設置費用の削減を図ることが可能となる。
また、本実施形態では、遅れ時間τを算出する際、最下流以外の人孔17における時系列データをタイムシフトさせた場合に、最下流の人孔17における時系列データとの相関が最も大きくなるシフト時間を遅れ時間として算出する。これにより、遅れ時間τとして適切な値を算出することができる。
なお、上記実施形態では、演算部14は、ステップS12において、下水道網のセンサ設置箇所候補における水位の時系列データを算出する場合について説明したが、これに限られるものではない。例えば、演算部14は、流量の時系列データを算出することとしてもよい。この場合、図15(a)〜図15(c)に示すように、水位の時系列データ(図8(a)〜図8(c)参照)と同様のデータが得られるので、演算部14及び判定部16は、上記実施形態と同様の処理により、センサの最適設置箇所を決定するようにすればよい。また、演算部14は、ステップS12において、流速の時系列データを算出することとしてもよい。この場合、演算部14は、人孔間それぞれの距離を人孔間における下水の流速で除した値(下水が人孔間を流れる時間)を求め、当該値を最下流の人孔まで積算することで、遅れ時間を算出するようにすればよい。なお、上記実施形態では、水位、流量、流速のうち複数の時系列データを算出し、各時系列データを用いて、図6の処理をそれぞれ実行し、各時系列データから求まるセンサの最適設置箇所から、最終的なセンサの最適設置箇所を決定するようにしてもよい。
なお、上記実施形態では、ステップS24において、判定部16は、P−値を用いて各人孔の有意性を判定する場合について説明したが、これに限らず、t値を用いることとしてもよい。また、P−値やt値に限らず、仮説検定で用いられるF値や標準誤差などを用いてもよい。また、図6では、ユーザが最大センサ個数Nを入力し、センシング箇所決定装置10は、センサの最適設置箇所がN箇所以下となるように決定する場合について説明したが、これに限られるものではない。例えば、検定結果表において、全変数が有意となった場合(ステップS24が肯定された場合)に、検定結果表に残っている人孔をセンサの最適設置箇所として決定するようにしてもよい。
なお、上記実施形態では、センシング箇所決定装置10がインターネットなどのネットワークに接続されたサーバであってもよい。この場合、センシング箇所決定装置10は、ネットワークに接続された端末(クライアント)からの入力に応じて、図6の処理を実行し、処理結果を端末(クライアント)に送信するようにしてもよい。
なお、上記の処理機能は、コンピュータによって実現することができる。その場合、処理装置が有すべき機能の処理内容を記述したプログラムが提供される。そのプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体(ただし、搬送波は除く)に記録しておくことができる。
プログラムを流通させる場合には、例えば、そのプログラムが記録されたDVD(Digital Versatile Disc)、CD−ROM(Compact Disc Read Only Memory)などの可搬型記録媒体の形態で販売される。また、プログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することもできる。
プログラムを実行するコンピュータは、例えば、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、自己の記憶装置に格納する。そして、コンピュータは、自己の記憶装置からプログラムを読み取り、プログラムに従った処理を実行する。なお、コンピュータは、可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することもできる。また、コンピュータは、サーバコンピュータからプログラムが転送されるごとに、逐次、受け取ったプログラムに従った処理を実行することもできる。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
なお、以上の実施形態の説明に関して、更に以下の付記を開示する。
(付記1) 下水道網に関するデータと降雨量に関するデータに基づき、前記下水道網の複数の箇所における水位、流量、流速の少なくとも1つの時系列データを算出し、
前記下水道網の特定箇所における前記時系列データの、該特定箇所以外の箇所における前記時系列データそれぞれに対する遅れ時間を算出し、
算出した前記遅れ時間と、前記特定箇所以外の箇所それぞれにおける前記時系列データとを用いて、統計的仮説検定により前記特定箇所以外の箇所それぞれの有意確率を算出し、
算出された前記有意確率に基づいてセンサを配置するセンシング箇所を決定する、
処理をコンピュータが実行することを特徴とする下水道網のセンシング箇所決定方法。
(付記2) 前記決定する処理では、算出された前記有意確率が満たすべき条件と、予め設定されたセンシング箇所の最大数と、に基づいて、前記センシング箇所を決定する、ことを特徴とする付記1に記載の下水道網のセンシング箇所決定方法。
(付記3) 前記遅れ時間を算出する処理では、前記特定箇所以外の箇所における前記時系列データをタイムシフトさせた場合に、前記特定箇所における前記時系列データとの相関が最も大きくなるシフト時間を遅れ時間として算出する、ことを特徴とする付記1又は2に記載の下水道網のセンシング箇所決定方法。
(付記4) 前記時系列データを算出する処理において、前記下水道網の複数の箇所における流速の時系列データを算出する場合に、
前記遅れ時間を算出する処理では、前記流速の時系列データと、前記複数の箇所相互間の距離とに基づいて、遅れ時間を算出することを特徴とする付記1又は2に記載の下水道網のセンシング箇所決定方法。
(付記5) 下水道網に関するデータと降雨量に関するデータに基づき、前記下水道網の複数の箇所における水位、流量、流速の少なくとも1つの時系列データを算出し、
前記下水道網の特定箇所における前記時系列データの、該特定箇所以外の箇所における前記時系列データそれぞれに対する遅れ時間を算出し、
算出した前記遅れ時間と、前記特定箇所以外の箇所それぞれにおける前記時系列データとを用いて、統計的仮説検定により前記特定箇所以外の箇所それぞれの有意確率を算出し、
算出された前記有意確率に基づいてセンサを配置するセンシング箇所を決定する、
処理をコンピュータに実行させることを特徴とする下水道網のセンシング箇所決定プログラム。
(付記6) 前記決定する処理では、算出された前記有意確率が満たすべき条件と、予め設定されたセンシング箇所の最大数と、に基づいて、前記センシング箇所を決定する、ことを特徴とする付記5に記載の下水道網のセンシング箇所決定プログラム。
(付記7) 前記遅れ時間を算出する処理では、前記特定箇所以外の箇所における前記時系列データをタイムシフトさせた場合に、前記特定箇所における前記時系列データとの相関が最も大きくなるシフト時間を遅れ時間として算出する、ことを特徴とする付記5又は6に記載の下水道網のセンシング箇所決定プログラム。
(付記8) 前記時系列データを算出する処理において、前記下水道網の複数の箇所における流速の時系列データを算出する場合に、
前記遅れ時間を算出する処理では、前記流速の時系列データと、前記複数の箇所相互間の距離とに基づいて、遅れ時間を算出することを特徴とする付記5又は6に記載の下水道網のセンシング箇所決定プログラム。
(付記9) 下水道網に関するデータと降雨量に関するデータに基づき、前記下水道網の複数の箇所における水位、流量、流速の少なくとも1つの時系列データを算出する第1算出部と、
前記下水道網の特定箇所における前記時系列データの、該特定箇所以外の箇所における前記時系列データそれぞれに対する遅れ時間を算出する第2算出部と、
算出した前記遅れ時間と、前記特定箇所以外の箇所それぞれにおける前記時系列データとを用いて、統計的仮説検定により前記特定箇所以外の箇所それぞれの有意確率を算出する第3算出部と、
算出された前記有意確率に基づいてセンサを配置するセンシング箇所を決定する決定部と、を備える下水道網のセンシング箇所決定装置。
(付記10) 前記決定部は、算出された前記有意確率が満たすべき条件と、予め設定されたセンシング箇所の最大数と、に基づいて、前記センシング箇所を決定する、ことを特徴とする付記9に記載の下水道網のセンシング箇所決定装置。
(付記11) 前記第2算出部は、前記特定箇所以外の箇所における前記時系列データをタイムシフトさせた場合に、前記特定箇所における前記時系列データとの相関が最も大きくなるシフト時間を遅れ時間として算出する、ことを特徴とする付記9又は10に記載の下水道網のセンシング箇所決定装置。
(付記12) 前記第1算出部が、前記下水道網の複数の箇所における流速の時系列データを算出する場合に、
前記第2算出部は、前記流速の時系列データと、前記複数の箇所相互間の距離とに基づいて、遅れ時間を算出することを特徴とする付記9又は10に記載の下水道網のセンシング箇所決定装置。
10 センシング箇所決定装置
14 演算部(第1〜第3算出部)
16 判定部(決定部の一部)
18 出力部(決定部の一部)
90 コンピュータ

Claims (6)

  1. 下水道網に関するデータと降雨量に関するデータに基づき、前記下水道網の複数の箇所における水位、流量、流速の少なくとも1つの時系列データを算出し、
    前記下水道網の特定箇所における前記時系列データの、該特定箇所以外の箇所における前記時系列データそれぞれに対する遅れ時間を算出し、
    算出した前記遅れ時間と、前記特定箇所以外の箇所それぞれにおける前記時系列データとを用いて、統計的仮説検定により前記特定箇所以外の箇所それぞれの有意確率を算出し、
    算出された前記有意確率に基づいてセンサを配置するセンシング箇所を決定する、
    処理をコンピュータが実行することを特徴とする下水道網のセンシング箇所決定方法。
  2. 前記決定する処理では前記有意確率が満たすべき条件と、予め設定されたセンシング箇所の最大数と、に基づいて、前記センシング箇所を決定する、ことを特徴とする請求項1に記載の下水道網のセンシング箇所決定方法。
  3. 前記遅れ時間を算出する処理では、前記特定箇所以外の箇所における前記時系列データをタイムシフトさせた場合に、前記特定箇所における前記時系列データとの相関が最も大きくなるシフト時間を遅れ時間として算出する、ことを特徴とする請求項1又は2に記載の下水道網のセンシング箇所決定方法。
  4. 前記時系列データを算出する処理において、前記下水道網の複数の箇所における流速の時系列データを算出する場合に、
    前記遅れ時間を算出する処理では、前記流速の時系列データと、前記複数の箇所相互間の距離とに基づいて、遅れ時間を算出することを特徴とする請求項1又は2に記載の下水道網のセンシング箇所決定方法。
  5. 下水道網に関するデータと降雨量に関するデータに基づき、前記下水道網の複数の箇所における水位、流量、流速の少なくとも1つの時系列データを算出し、
    前記下水道網の特定箇所における前記時系列データの、該特定箇所以外の箇所における前記時系列データそれぞれに対する遅れ時間を算出し、
    算出した前記遅れ時間と、前記特定箇所以外の箇所それぞれにおける前記時系列データとを用いて、統計的仮説検定により前記特定箇所以外の箇所それぞれの有意確率を算出し、
    算出された前記有意確率に基づいてセンサを配置するセンシング箇所を決定する、
    処理をコンピュータに実行させることを特徴とする下水道網のセンシング箇所決定プログラム。
  6. 下水道網に関するデータと降雨量に関するデータに基づき、前記下水道網の複数の箇所における水位、流量、流速の少なくとも1つの時系列データを算出する第1算出部と、
    前記下水道網の特定箇所における前記時系列データの、該特定箇所以外の箇所における前記時系列データそれぞれに対する遅れ時間を算出する第2算出部と、
    算出した前記遅れ時間と、前記特定箇所以外の箇所それぞれにおける前記時系列データとを用いて、統計的仮説検定により前記特定箇所以外の箇所それぞれの有意確率を算出する第3算出部と、
    算出された前記有意確率に基づいてセンサを配置するセンシング箇所を決定する決定部と、を備える下水道網のセンシング箇所決定装置。
JP2015005385A 2015-01-14 2015-01-14 下水道網のセンシング箇所決定方法、プログラム及び装置 Expired - Fee Related JP6503745B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015005385A JP6503745B2 (ja) 2015-01-14 2015-01-14 下水道網のセンシング箇所決定方法、プログラム及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015005385A JP6503745B2 (ja) 2015-01-14 2015-01-14 下水道網のセンシング箇所決定方法、プログラム及び装置

Publications (2)

Publication Number Publication Date
JP2016130435A JP2016130435A (ja) 2016-07-21
JP6503745B2 true JP6503745B2 (ja) 2019-04-24

Family

ID=56415828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015005385A Expired - Fee Related JP6503745B2 (ja) 2015-01-14 2015-01-14 下水道網のセンシング箇所決定方法、プログラム及び装置

Country Status (1)

Country Link
JP (1) JP6503745B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251248A (zh) * 2015-02-20 2017-10-13 富士通株式会社 热电转换模块、传感器模块以及信息处理***
JP7389526B1 (ja) * 2023-07-12 2023-11-30 日本インフラ計測株式会社 水位計の配置の最適化方法、マンホールの水位の予測方法およびマンホールの水位の予測システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265513A (ja) * 1992-03-19 1993-10-15 Hitachi Ltd 排水ポンプ所のポンプ運転台数制御方法および装置
JPH0762719A (ja) * 1993-08-27 1995-03-07 Toshiba Corp 測定システム
US6757623B2 (en) * 2001-04-20 2004-06-29 Ads Corporation Flow transport analysis method and system
JP2003150656A (ja) * 2001-11-12 2003-05-23 Toshiba Corp 下水道管設計支援装置及びプログラム
JP4828991B2 (ja) * 2006-04-10 2011-11-30 株式会社山武 溢水発生推定装置およびプログラム
JP5270322B2 (ja) * 2008-12-08 2013-08-21 メタウォーター株式会社 下水道施設の浸水対策システム
JP2010203964A (ja) * 2009-03-04 2010-09-16 Toshiba Corp 下水道施設の監視制御システム
JP6244637B2 (ja) * 2013-03-19 2017-12-13 富士通株式会社 計測データの補正方法、計測データ監視システム及び計測データ監視プログラム

Also Published As

Publication number Publication date
JP2016130435A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
Nie et al. Impacts of climate change on urban drainage systems–a case study in Fredrikstad, Norway
JP6207889B2 (ja) 浸水予測システム、浸水予測方法およびプログラム
Russo et al. Analysis of extreme flooding events through a calibrated 1D/2D coupled model: the case of Barcelona (Spain)
Aronica et al. Probabilistic evaluation of flood hazard in urban areas using Monte Carlo simulation
Mancipe-Munoz et al. Calibration of rainfall-runoff model in urban watersheds for stormwater management assessment
Yang et al. Linking a storm water management model to a novel two-dimensional model for urban pluvial flood modeling
Hussain et al. Modeling the effects of land-use and climate change on the performance of stormwater sewer system using SWMM simulation: case study
CN115471078B (zh) 一种基于城市水务***的洪涝风险点评估方法及装置
Zhou et al. Adaptation to urbanization impacts on drainage in the city of Hohhot, China
Perez et al. Design methodology for the selection of temporary erosion and sediment control practices based on regional hydrological conditions
Wu et al. A novel approach for determining integrated water discharge from the ground surface to trunk sewer networks for fast prediction of urban floods
Valizadeh et al. Quantification of the hydraulic dimension of stormwater management system resilience to flooding
JP6503745B2 (ja) 下水道網のセンシング箇所決定方法、プログラム及び装置
Chen et al. Modelling the effect of rainfall patterns on the runoff control performance of permeable pavements
Sowby et al. A practical statistical method to differentiate inflow and infiltration in sanitary sewer systems
Wang et al. Spotting strategic storm drain inlets in flat urban catchments
JP2007280161A (ja) 溢水発生推定装置およびプログラム
Yap et al. Assessment on inflow and infiltration in sewerage systems of Kuantan, Pahang
JP3839361B2 (ja) 雨水流出係数予測方法、雨水流入量予測方法、雨水流出係数予測プログラムおよび雨水流入量予測プログラム
Wang et al. Analysis of drainage efficiency under extreme precipitation events based on numerical simulation
CN113282577A (zh) 污水管网的监测方法、装置、电子设备及存储介质
Wang et al. Uncertainty analysis of a pollutant-hydrograph model in assessing inflow and infiltration of sanitary sewer systems
Nasrin et al. Modelling impact of extreme rainfall on sanitary sewer system by predicting rainfall derived infiltration/inflow
Bean et al. Predicting Utah ground snow loads with PRISM
Gomes Jr et al. A Modeling Framework for Bioretention Analysis: Assessing the Hydrologic Performance under System Uncertainty

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6503745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees