JP6502405B2 - System and method for setting disaster prevention weather information announcement standard at dangerous place - Google Patents

System and method for setting disaster prevention weather information announcement standard at dangerous place Download PDF

Info

Publication number
JP6502405B2
JP6502405B2 JP2017036047A JP2017036047A JP6502405B2 JP 6502405 B2 JP6502405 B2 JP 6502405B2 JP 2017036047 A JP2017036047 A JP 2017036047A JP 2017036047 A JP2017036047 A JP 2017036047A JP 6502405 B2 JP6502405 B2 JP 6502405B2
Authority
JP
Japan
Prior art keywords
threshold
data
disaster
risk
meteorological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017036047A
Other languages
Japanese (ja)
Other versions
JP2018141701A (en
Inventor
佐藤 丈晴
丈晴 佐藤
忠 井川
忠 井川
惣 植野
惣 植野
夏起 澤
夏起 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kake Educational Institution
Original Assignee
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kake Educational Institution filed Critical Kake Educational Institution
Priority to JP2017036047A priority Critical patent/JP6502405B2/en
Publication of JP2018141701A publication Critical patent/JP2018141701A/en
Application granted granted Critical
Publication of JP6502405B2 publication Critical patent/JP6502405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)

Description

この発明は、土砂災害、等の危険箇所に防災気象情報発表基準を設定するシステムに関する。特に、土砂災害防止に関するインフラ整備事業において、その危険箇所の気象情報(降雨データなど)に基づいた警戒避難基準の設定を行う際に、防災気象情報発表基準を設定する技術に関する。   The present invention relates to a system for setting disaster prevention weather information announcement standards at dangerous places such as earth and sand disasters. In particular, the technology relates to technology for setting disaster prevention weather information announcement criteria when setting warning and evacuation criteria based on weather information (such as rainfall data) of the danger point in the infrastructure maintenance business for preventing sediment disasters.

土砂災害に関する防災気象情報は、現時点で大雨注意報、大雨警報、土砂災害警戒情報の三段階の基準となっている。   Disaster prevention weather information about earth and sand disaster has become the standard of three steps of heavy rain warning, heavy rain warning and earth and sand disaster warning information at present.

このうち最も危険度の高い土砂災害警戒情報は、平成17年より基準設定が行われ、順次運用を開始している。   Among these, the highest risk of earth and sand disaster alert information has been set as a standard since 2005 and has been put into operation sequentially.

土砂災害警戒情報の発表基準は土砂災害発生危険基準線(Critical Line)(以下、単に「CL」と表すことがある)と呼ばれ、従来からその設定方法が提案、公開されている(特許文献1、非特許文献1)。   The announcement standard of the earth and sand disaster alert information is called the earth and sand disaster occurrence critical reference line (Critical Line) (hereinafter sometimes referred to simply as "CL"), and its setting method has been proposed and disclosed in the past (patent document 1, Non-Patent Document 1).

これに基づき、CLが自治体と民間企業で設定されてきた。   Based on this, CL has been set up by local governments and private companies.

CLは、警戒避難基準雨量に相当するものであり、この基準(CL)を超過すると警報が発表されるようになっている。   CL corresponds to the warning and evacuation standard rainfall, and when this standard (CL) is exceeded, a warning is issued.

地上雨量計等にある基準を設定してアラームを鳴らす仕組みは、従来から提案され(非特許文献2、等)、さまざまな場所で実施されている。   A mechanism for setting a standard on a ground rain gauge or the like to sound an alarm is conventionally proposed (Non-Patent Document 2, etc.) and implemented in various places.

通常は、設置した雨量計等に新たな基準を提案し、土砂災害の切迫度を表現し、この情報を専用回線、web配信システムで管理者や住民に知らせるものである。   Normally, a new standard is proposed for the installed rain gauges, etc., the degree of urgency of landslide disaster is expressed, and this information is notified to the administrator or residents by a dedicated line, a web distribution system.

通常実施されている方法は、現地の技術者による任意の基準設定による運用であり、防災気象情報を修正する考えではない。   The method usually carried out is the operation based on the optional standard setting by the local engineer, and it is not an idea to correct the disaster prevention weather information.

特開2003−348703号公報Japanese Patent Application Publication No. 2003-348703

「国土交通省河川局砂防部と気象庁予報部の連携による土砂災害警戒避難基準雨量の設定手法」(平成17年)(国土交通省河川局砂防部、気象庁予報部、国土交通省国土技術政策総合研究所)"Measuring method of sediment disaster alert refuge standard rainfall by cooperation of Ministry of Land, Infrastructure, Transport and Tourism River Bureau erosion control department and Meteorological Agency forecast department" (2005) (Ministry of Land, Infrastructure, Transport and Tourism River Bureau erosion department, Meteorological Agency forecast department, Ministry of Land, Infrastructure, Transport and Technology Policy General Laboratory) 「裏山雨量計プロジェクトによるデータ配信と住民の防災意識の変化」(2016)福岡、他(福岡浩、井ノ口宗成、内山智文、小林雄三、堀松崇、木村浩和“Data distribution by the back mountain rain gauge project and changes in disaster prevention awareness of residents” (2016) Fukuoka, et al. (Fukuoka Hiroshi, Inouguchi Sosei, Uchiyama Tomofumi, Kobayashi Yuzo, Horimatsu Takashi, Kimura Hirokazu

防災気象情報は、地域単位で発表されるため、近年多発する局地的な集中豪雨に対応し切れていない。例えば、平成26年の広島災害では、避難せず被災したケースが多数あることが課題として挙げられている。   Because disaster prevention weather information is announced on a regional basis, it has not been able to cope with local torrential rains that occur frequently in recent years. For example, in the 2014 Hiroshima disaster, it is pointed out that there are a large number of disaster-affected cases.

本発明は、局地的な集中豪雨にも対応可能で、土砂災害に対する警戒避難の促進に役立ち得る土砂災害警戒情報の提供を可能にするシステムを提案することを目的にしている。   An object of the present invention is to propose a system that can cope with localized torrential rain and enables provision of sediment disaster alert information that can help promote alert evacuation for sediment disasters.

この発明では、所定の地域における一の気象情報測定手段によって測定される前記防災気象情報の発表の指標を示す複数の指標からなる第一の気象データを解析して得られる土砂災害発生危険基準線(CL)の基となっている閾値と同じ閾値で、前記所定の地域における他の気象情報測定手段によって測定される、前記一の気象情報測定手段による前記複数の指標と同種の指標からなる第二の気象データを解析して得られる土砂災害発生危険基準線(CL)の閾値を設定するように修正を行うこととした。   In the present invention, a landslide disaster risk reference line obtained by analyzing first weather data consisting of a plurality of indicators indicating indicators of the announcement of the disaster prevention weather information measured by one weather information measurement means in a predetermined area (C) the same threshold as the threshold on which the (CL) is based, and which is measured by another weather information measuring unit in the predetermined area, the index being the same type as the plurality of indicators by the one meteorological information measuring unit (2) Correction was made to set the threshold value of the sediment disaster risk reference line (CL) obtained by analyzing meteorological data.

ここで、気象情報測定手段としては、従来公知のレーダや、地上雨量計など、種々のメカニズムを利用した種々の気象情報を測定する気象情報測定手段が含まれるが、前記公知のレーダの複数等、同種で複数の組み合わせや、前記公知のレーダ、前記地上雨量計、その他の測定機器等、異種で複数の組み合わせを複数の気象情報測定手段として構成することができる。   Here, as the meteorological information measuring means, meteorological information measuring means for measuring various meteorological information using various mechanisms such as a conventionally known radar, a ground rain gauge, etc. are included, A plurality of combinations of different types, such as a plurality of combinations of the same type, the known radar, the ground rain gauge, and other measuring devices, can be configured as a plurality of weather information measuring means.

前記において、前記防災気象情報の発表の指標としては、例えば、短期降雨指標を示す60分間積算雨量(≒1時間雨量)や、長期降雨指標を示す土壌雨量指数値(≒降り始めからの総降雨量)等が使用される。   In the above, as an indicator of the announcement of the disaster prevention weather information, for example, a 60-minute accumulated rainfall (雨量 1 hour rainfall) indicating a short-term rainfall indicator or a soil rainfall index value indicating a long-term rainfall indicator (総 total rainfall from the beginning Amount etc. is used.

これら複数の指標からなる気象データが前記気象情報測定手段によって測定される。   Weather data consisting of the plurality of indicators is measured by the weather information measuring means.

前記防災気象情報の発表の指標はこれらに限られるものではなく、所定の地域における災害発生危険基準線(CL)算定に用いられる指標であれば、種々の指標(例えば地下水位、積雪量、気温、湿度等を示す指標)を用いることができる。   The indicator of the said disaster prevention weather information announcement is not restricted to these, If it is an indicator used for disaster occurrence risk reference line (CL) calculation in a predetermined area, various indicators (for example, groundwater level, snowfall, temperature , An indicator indicating humidity, etc. can be used.

また、前記土砂災害発生危険基準線(CL)の閾値は、前記第一の気象データ及び前記第二の気象データをそれぞれ、出力値1、何もデータが存在しない領域が出力値0になるように人工知能(RBFN(Radial Basis Function Network))で解析してn次元で表したRBFN応答曲面(n=3以上の自然数)において設定される。   Further, the threshold value of the earth and sand disaster occurrence risk reference line (CL) is such that the first weather data and the second weather data are respectively output value 1 and the area where no data exists is output value 0. The RBFN response surface (n is a natural number of 3 or more) expressed in n dimensions analyzed by artificial intelligence (RBFN (Radial Basis Function Network)).

本発明によれば、上述したように修正を行うことで、現在、地方自治体や、自主防災組織が設定している地上雨量計等に、CLを設定し、土砂災害警戒情報の基準を修正して割り当てることができる。すなわち、本発明は、危険箇所に防災気象情報発表基準を設定するものである。   According to the present invention, by performing the correction as described above, CL is set to the local rain gauge, the ground rain gauge currently set by the voluntary disaster prevention organization, etc., and the standard of the earth and sand disaster warning information is corrected. Can be assigned. That is, the present invention sets a disaster prevention weather information announcement standard at a dangerous place.

本発明は、土砂災害に対する警戒避難を促進させるため、一般に周知され、かつ信用のある、例えば、防災気象情報発表基準を、地上雨量計等に設定するようにしたものである。   In the present invention, in order to promote warning and evacuation for landslide disasters, for example, disaster prevention weather information announcement standards that are generally known and reliable are set to ground rain gauges and the like.

本発明によれば、例えば、地上雨量計へ防災気象情報発表基準を設定することにより、その箇所の降雨状況に基づいた警戒避難情報の提供が可能となる。   According to the present invention, for example, by setting the disaster prevention weather information announcement standard to the ground rain gauge, it becomes possible to provide warning and evacuation information based on the rainfall condition of the place.

3次元応答曲面(RBFN応答曲面)解析・作成用に、所定の地域における、過去の所定の期間の雨量データを、縦軸:短期降雨指標、横軸:長期降雨指標として現した散布図。3D response curved surface (RBFN response curved surface) analysis and creation, the scatter data which expressed the rainfall data of the past predetermined period in a predetermined area as a vertical axis: short-term rainfall index, horizontal axis: a long-term rainfall index. 図1図示の雨量データに基づいて作成された3次元応答曲面(RBFN応答曲面)を表す図。The figure showing the three-dimensional response curved surface (RBFN response curved surface) created based on the rainfall data of FIG. 1 illustration. 岡山県南の所定の地域におけるレーダ雨量と地上雨量計のデータを用いて算定したRBFN応答曲面を表す図。The figure showing the RBFN response curved surface computed using the data of a radar rainfall and ground rain gauge in a predetermined area of the Okayama prefecture south. 岡山県南の他の地域におけるレーダ雨量と地上雨量計のデータを用いて算定したRBFN応答曲面を表す図。The figure which represents the RBFN response surface surface calculated using the data of the radar rainfall and the surface rain gauge in the other area of the Okayama prefecture south. 岡山県南の図3、図4図示の地域とは異なる所定の地域におけるレーダ雨量と地上雨量計のデータを用いて算定したRBFN応答曲面を表す図。The figure showing the RBFN response curved surface computed using the data of a radar rain and ground rain gauge in a predetermined area different from the area shown in Drawing 3 and Drawing 4 south of Okayama prefecture. 岡山県南の図3〜図5図示の地域とは異なる他の地域におけるレーダ雨量と地上雨量計のデータを用いて算定したRBFN応答曲面を表す図。The figure showing the RBFN response curved surface computed using the data of a radar rain and ground rain gauges in another area different from the area of illustration 3-5 of Okayama prefecture south. 岡山県南の図3〜図6図示の地域とは異なる他の地域におけるレーダ雨量と地上雨量計のデータを用いて算定したRBFN応答曲面を表す図。The figure showing the RBFN response curved surface computed using the data of a radar rain and ground rain gauge in other areas different from the area of the figure 3-6 illustration of Okayama prefecture south. 岡山県南の図3〜図7図示の地域とは異なる他の地域におけるレーダ雨量と地上雨量計のデータを用いて算定したRBFN応答曲面を表す図。The figure showing the RBFN response curved surface computed using the data of a radar rain and ground rain gauge in other areas different from the area of the figure 3-7 illustration of the Okayama prefecture south. 岡山県で現在運用しているCLの閾値を示した図。The figure which showed the threshold of CL currently operated in Okayama Prefecture. この発明のシステムの概略構成を説明する図。The figure explaining schematic structure of the system of this invention.

図1、図2を用いて、従来から提案・公開されているCLの設定方法を説明する。   The setting method of CL conventionally proposed and released will be described using FIG. 1 and FIG.

図1は、第一の気象データとして、所定の地域における、気象情報測定手段によって測定された過去の所定の期間(図では過去の10年間以上の期間)の降雨データ(1時間雨量:10年×365日×24時間)を散布図にしたもので、これが、図中の黒い点として表現されている。   Figure 1 shows, as the first meteorological data, rainfall data (1 hour rainfall: 10 years in a given area) in the past given period (period in the past 10 years or more) measured by the meteorological information measurement means The scatter plot is x 365 days x 24 hours), and this is expressed as a black point in the figure.

図1で、縦軸は防災気象情報の発表の指標を示す第一の指標として短期降雨指標、横軸は第二の指標として長期降雨指標を示している。短期降雨指標としては、例えば、60分間積算雨量(≒1時間雨量)が使用される。長期降雨指標としては、例えば、土壌雨量指数値(≒降り始めからの総降雨量)が使用される。   In FIG. 1, the vertical axis indicates a short-term rainfall index as a first index indicating the index of the announcement of disaster prevention weather information, and the horizontal axis indicates a long-term rainfall index as a second index. As a short-term rainfall index, for example, 60-minute accumulated rainfall (.apprxeq.1 hour rainfall) is used. As a long-term rainfall index, for example, a soil rainfall index value (≒ total rainfall from the beginning of downfall) is used.

図1のデータから、雨量データが高さ(出力値)1、何もデータが存在しない領域が出力値0になるように、人工知能(RBFN)で解析して3次元応答曲面(RBFN応答曲面)に表したのが図2である。   From the data in Fig. 1, 3D response surface (RBFN response surface) is analyzed by artificial intelligence (RBFN) so that the rainfall data is height (output value) 1 and the area where no data exists is 0 output value. It is FIG. 2 represented to.

図1のデータから、2種類の防災気象情報の発表の指標からなる第一の気象データを解析して得られたRBFN応答曲面が3次元のRBFN応答曲面となっていることがわかる。したがって、n次元のRBFN応答曲面(n=3以上の自然数)を得る場合には、(n−1)種類の防災気象情報の発表の指標からなる第一の気象データを解析すればよいことになる。   From the data in FIG. 1, it can be seen that the RBFN response surface obtained by analyzing the first weather data consisting of indices of the announcement of two types of disaster prevention weather information is a three-dimensional RBFN response surface. Therefore, in order to obtain an n-dimensional RBFN response surface (a natural number of n = 3 or more), it is sufficient to analyze the first meteorological data consisting of indicators of (n-1) types of disaster prevention meteorological information announcements. Become.

図2のRBFN応答曲面は、高さが高い(出力値1に近い)ほど降雨があっても災害が発生していない領域として安全と評価される。   The RBFN response surface in FIG. 2 is evaluated as safe as a region where a disaster does not occur even if there is rainfall as the height is higher (closer to the output value 1).

一方、出力値が低くなると降雨の経験がないもしくは災害が発生した領域として危険と評価される。   On the other hand, when the output value becomes low, it is regarded as dangerous as an area where there is no rainfall experience or a disaster occurs.

この出力値の高さが等しい点を結んだ図が、図1に示された図中の等高線として表現される。この等高線が閾値とよばれる。   A diagram connecting points at which the heights of the output values are equal is represented as contour lines in the diagram shown in FIG. This contour line is called a threshold.

出力値が0.1〜0.9までの9本の閾値(図1では4本しか設定されていない)に対する土砂災害の発生率を算出し、該当地域のCLを設定する。   The occurrence rate of the landslide disaster is calculated with respect to nine threshold values (only four are set in FIG. 1) having output values of 0.1 to 0.9, and CL of the corresponding area is set.

この方法が、現在運用されている土砂災害警戒情報で採用されるCLである。   This method is CL adopted by the earth and sand disaster alert information currently operated.

例えば、この基準を気象情報測定手段である地上雨量計で採用する際、レーダ雨量と地上雨量の相違が課題となる。   For example, when this reference is adopted by a ground rain gauge which is a meteorological information measurement means, the difference between the radar rainfall and the ground rainfall becomes an issue.

他の気象情報測定手段であるレーダで測定したレーダ雨量の方が地上雨量計で測定した地上雨量よりも大きく異なる場合があるため、地上雨量計用に修正が必要となる。   Since the radar rainfall measured by the radar, which is another weather information measurement means, may differ greatly from the ground rainfall measured by the ground rain gauge, correction for the ground rain gauge is necessary.

本発明は、この修正方法を提案するものである。   The present invention proposes this correction method.

例えば、大雨警報や大雨注意報は土壌雨量指数値という単一指標で評価されているため、単純な相関分析で修正は可能である。   For example, since heavy rain warning and heavy rain warning are evaluated by a single index such as soil rainfall index value, correction is possible by simple correlation analysis.

ところが、CLの場合は、図1より、60分間積算雨量などの短期降雨指標と、土壌雨量指数値などの長期降雨指標との二軸評価となっており、かつ関数形で表現することができない。   However, in the case of CL, from Fig. 1, it is a two-axis evaluation of a short-term rainfall index such as 60-minute accumulated rainfall and a long-term rainfall index such as soil rainfall index value, and can not be expressed in function form .

図3〜図8は、岡山県南の6箇所で同じ地点のレーダ雨量と地上雨量計による地上雨量のデータを用いてRBFN応答曲面を算定したものである。   FIGS. 3 to 8 show RBFN response surfaces calculated using radar rainfall at the same point at six locations in the south of Okayama Prefecture and data on ground rainfall by a ground rain gauge.

ここから閾値0.1、0.5、0.9の3ケースを表示し、比較した。   From here, three cases with thresholds of 0.1, 0.5 and 0.9 were displayed and compared.

いずれの地域においても解析雨量(=レーダ雨量)と地上雨量計による地上雨量は、単純倍して重なる相似形を示していないどころか逆転しているケースもある。   In any area, the analysis rainfall (= radar rainfall) and the ground rainfall by the ground rain gauge may be simply reversed and not even indicate similar shapes that overlap with each other.

この実施形態の修正方法は、CLの基となっている閾値を用いることにある。   The correction method of this embodiment is to use the threshold on which CL is based.

前記の場合で、解析雨量(=レーダ雨量)を上述した要領で作成するRBFN応答曲面と、地上雨量計で測定した地上雨量を上述した要領で作成するRBFN応答曲面とは、同じ期間の降雨データの密度分布を表現しているものであり、その密度は閾値として現れる。   In the above case, the RBFN response surface that creates the analysis rainfall (= radar rainfall) in the manner described above and the RBFN response surface that creates the surface rainfall measured by the ground rain gauge in the manner described above are rainfall data for the same period Represents the density distribution of H. The density appears as a threshold.

閾値が同じであれば、その地域における降雨の密度が同じということを示し、土砂災害に対する危険度も同じとなる。   If the threshold values are the same, it indicates that the density of rainfall in the area is the same, and the risk to landslide disasters is also the same.

そこで、解析雨量(=レーダ雨量)を解析して得られた図3〜図8に実線で示すCLの基になる閾値を、地上雨量計で測定した地上雨量を解析して得られた図3〜図8に破線で示すCLの基になる閾値に修正する。   Therefore, Figure 3 to Figure 8 obtained by analyzing the analysis rainfall (= radar rainfall) threshold obtained as a basis of CL shown by the solid line, obtained by analyzing the ground rainfall measured on the ground rain gauge Figure 3 Correction is made to the threshold value based on CL indicated by a broken line in FIG.

この修正した閾値、すなわち地上雨量計で測定した地上雨量による閾値に基づいてCLを設定するようにする。   The CL is set based on the corrected threshold value, that is, the threshold value based on the ground rainfall measured by the ground rain gauge.

図9は、岡山県で現在運用しているCLの閾値を示したものである。   FIG. 9 shows the threshold value of CL currently operated in Okayama Prefecture.

基本的にCLは閾値で表現され、災害の多い地域は、閾値を上げる傾向(少ない降雨で早めに避難情報を出す)にある。   Basically, CL is expressed as a threshold, and disaster prone areas tend to raise the threshold (the evacuation information is given earlier with less rainfall).

本発明では、この考え方を地上雨量計における基準の修正として採用した。   In the present invention, this concept is adopted as a correction of the standard in the ground rain gauge.

修正方法は、現在採用されている解析雨量の応答曲面におけるCLの閾値と同じ閾値で地上雨量計等の降雨データに基づいて作成した応答曲面におけるCLを設定するものである。   The correction method is to set the CL in the response surface created based on rainfall data such as a surface rain gauge with the same threshold as the threshold of CL in the response surface of the analysis rainfall currently adopted.

図10を用いて、この実施形態のシステム1を説明する。   The system 1 of this embodiment will be described with reference to FIG.

図10図示のシステム1は、コンピュータによって構成され、図示していないが、オペレーティングシステムや、インストールあるいはダウンロードした所定のコンピュータプログラムなどに従って、この実施形態のシステムの各種の機能が実現されるように制御を行うCPU、オペレーティングシステムや種々のコンピュータプログラムなどを記憶し、また、CPUが各制御のための処理を実行する上で必要なデータを記憶する記憶部としてのROM、CPUが処理を実行する上で必要なデータを記憶し、CPUによって情報が適宜書き換えられるワークエリアとしても利用されるRAMやハードディスク、更に、ユーザインターフェース、無線通信インターフェースなどを備えていて、これらが必要なバスラインで接続されている。   Although the system 1 shown in FIG. 10 is configured by a computer and is not shown, it is controlled to realize various functions of the system of this embodiment according to an operating system, a predetermined computer program installed or downloaded, etc. CPU as operating unit, various computer programs, etc., and ROM as a storage unit for storing data necessary for CPU to execute processing for each control, and CPU executing processing Stores the necessary data, and is also equipped with a RAM and hard disk used as a work area where the information is appropriately rewritten by the CPU, and further, a user interface, a wireless communication interface, etc. There is.

本発明のシステム1は、第一のRBFN応答曲面作成手段2、第二のRBFN応答曲面作成手段3、修正手段4、第一の閾値算定手段5、第一のCL設定手段6、第二の閾値算定手段7、第二のCL設定手段8を備えている。   The system 1 of the present invention includes a first RBFN response surface creation unit 2, a second RBFN response surface creation unit 3, a correction unit 4, a first threshold calculation unit 5, a first CL setting unit 6, and a second A threshold calculating unit 7 and a second CL setting unit 8 are provided.

第一のRBFN応答曲面作成手段2は、所定の地域における一の気象情報測定手段によって測定される短期降雨指標と長期降雨指標とからなる第一の気象データに基づいて、前記第一の気象データにおける雨量データが出力値1、何もデータが存在しない領域が出力値0になるように人工知能(RBFN)で解析して3次元で表した第一のRBFN応答曲面を作成する。   The first RBFN response surface creation means 2 generates the first meteorological data based on first meteorological data consisting of a short-term rainfall index and a long-term rainfall index measured by one meteorological information measurement means in a predetermined area. The first RBFN response surface expressed in three dimensions is generated by analyzing with artificial intelligence (RBFN) so that the rainfall data in A has output value 1 and the area in which no data exists has output value 0.

この作成過程で、第一の閾値算定手段5が第一の閾値を算定し、第一のCL設定手段6が、算定された第一の閾値に対する土砂災害の発生率を算出してCLを設定する。   In this preparation process, the first threshold calculation means 5 calculates the first threshold, and the first CL setting means 6 calculates the occurrence rate of landslide disaster to the calculated first threshold to set the CL. Do.

一方、第二のRBFN応答曲面作成手段3も、前記所定の地域における他の気象情報測定手段によって測定される、前記一の気象情報測定手段による前記短期降雨指標と同種の短期降雨指標と、前記一の気象情報測定手段による前記長期降雨指標と同種の長期降雨指標とからなる第二の気象データに基づいて、前記第二の気象データにおける雨量データが出力値1、何もデータが存在しない領域が出力値0になるように人工知能(RBFN)で解析して3次元で表した第二のRBFN応答曲面を作成する。   On the other hand, the second RBFN response surface creation means 3 is also a short-term rainfall index of the same type as the short-term rainfall index by the one meteorological information measurement means, which is measured by the other meteorological information measurement means in the predetermined area Rainfall data in the second meteorological data has an output value of 1, based on the second meteorological data consisting of the long-term rainfall index and the same long-term rainfall index by the meteorological information measuring means, an area in which no data exists Is analyzed by artificial intelligence (RBFN) so that the output value becomes 0, and a second RBFN response surface expressed in three dimensions is created.

従来、一般的なシステムであれば、ここでも、第二の閾値算定手段7が第二の閾値を算定し、第二のCL設定手段8が、算定された第二の閾値に対する土砂災害の発生率を算出してCLを設定することになる。   Conventionally, in the case of a general system, here too, the second threshold calculating means 7 calculates the second threshold, and the second CL setting means 8 generates the landslide disaster for the calculated second threshold. Calculate the rate and set CL.

この実施形態のシステム1では、第二のCL設定手段8がCLを設定する処理を行う際に、前述した従来一般的な工程のように、第二の閾値算定手段7が算定した第二の閾値に対する土砂災害の発生率を算出するのではなく、修正手段4によって、前述した第一の閾値が、第二のCL設定手段8によるCL設定の際に使用されるようにしている。   In the system 1 of this embodiment, when the second CL setting means 8 performs the process of setting CL, the second calculated by the second threshold calculating means 7 as in the above-described conventional general process. Instead of calculating the occurrence rate of landslide disaster with respect to the threshold value, the correction means 4 causes the first threshold value described above to be used in setting of CL by the second CL setting means 8.

すなわち、修正手段4が、第二のCL設定手段8によるCL設定の際に使用する閾値に、第二の閾値ではなく、第一の閾値が使用されるように修正している。   That is, the correction means 4 corrects so that not the second threshold but the first threshold is used as the threshold used in the CL setting by the second CL setting means 8.

そこで、第二のCL設定手段8によるCL設定は、前述した第一の閾値に対する土砂災害の発生率を算出して行われることになる。   Therefore, the CL setting by the second CL setting means 8 is performed by calculating the occurrence rate of the landslide disaster with respect to the first threshold described above.

この発明によれば、現在運用しているレーダ雨量と比較して、その危険箇所における正確な雨量に基づいた防災気象情報を提供できる。なじみのある情報がその施設の雨量に基づいて提供することにより、警戒避難に対する意識の向上が期待できる。   According to the present invention, it is possible to provide disaster prevention weather information based on the accurate rainfall at the dangerous place in comparison with the currently operating radar rainfall. By providing familiar information based on the rainfall of the facility, it is possible to expect an increase in awareness of alert evacuation.

Claims (2)

危険箇所に防災気象情報発表基準を設定するシステムであって、
所定の地域における一の気象情報測定手段によって測定される前記防災気象情報発表の指標を示す複数の指標からなる第一の気象データを解析して得られる土砂災害発生危険基準線の閾値と同じ閾値で、
前記所定の地域における他の気象情報測定手段によって測定される前記一の気象情報測定手段による前記複数の指標と同種の指標からなる第二の気象データを解析して得られる土砂災害発生危険基準線の閾値を設定す
段を備えていて、
前記土砂災害発生危険基準線の閾値は、前記第一の気象データ及び前記第二の気象データそれぞれに含まれる前記複数の指標を解析して得られるn次元応答曲面(n=3以上の自然数)に表わされ、土砂災害発生の危険が低い領域を示す出力値1、何もデータが存在しない土砂災害発生の危険が高い領域を示す出力値0を含む閾値であり、
前記第一の気象データ及び前記第二の気象データは、それぞれ、短期降雨指標を示す第一の指標と、前記第一の指標とは異なる長期降雨指標を示す第二の指標とからなり、
前記第一の気象データ及び前記第二の気象データは、それぞれ人工知能(RBFN)によって解析される
危険箇所に防災気象情報発表基準を設定するシステム。
It is a system which sets disaster prevention weather information announcement standard to the dangerous place,
The same threshold value as the threshold value of the landslide disaster risk reference line obtained by analyzing the first weather data consisting of a plurality of indicators indicating the indicators of the disaster prevention weather information announcement measured by one weather information measurement means in a predetermined area so,
Sediment disaster occurrence risk reference line obtained by analyzing second meteorological data consisting of the same kind of index as the plurality of indices by the one meteorological information measurement means measured by the other meteorological information measurement means in the predetermined area to set the threshold
Equipped with a hand stage,
The threshold value of the earth and sand disaster occurrence risk reference line is an n-dimensional response curved surface (a natural number of n = 3 or more) obtained by analyzing the plurality of indices included in each of the first weather data and the second weather data. The threshold value includes an output value of 1, which indicates an area where the risk of landslide disaster occurrence is low, and an output value of 0, which indicates an area where the risk of landslide disaster occurrence is high when no data exists
The first meteorological data and the second meteorological data each include a first index indicating a short-term rainfall index and a second index indicating a long-term rainfall index different from the first index.
A system for setting disaster prevention weather information announcement criteria in a dangerous place where the first weather data and the second weather data are respectively analyzed by artificial intelligence (RBFN) .
第一のRBFN応答曲面作成手段によって、所定の地域における一の気象情報測定手段によって測定される短期降雨指標と長期降雨指標とからなる第一の気象データに基づいて、前記第一の気象データにおける雨量データが出力値1、何もデータが存在しない領域が出力値0になるように人工知能(RBFN)で解析して3次元で表した第一のRBFN応答曲面を作成し、第一の閾値算定手段が、土砂災害発生の危険が低い領域を示す出力値1、何もデータが存在しない土砂災害発生の危険が高い領域を示す出力値0を含む閾値である、第一の閾値を算定し、第一の土砂災害発生危険基準線(CL)設定手段が、算定された第一の閾値に対する土砂災害の発生率を算出して土砂災害発生危険基準線(CL)を設定する工程、
第二のRBFN応答曲面作成手段によって、前記所定の地域における他の気象情報測定手段によって測定される、前記一の気象情報測定手段による前記短期降雨指標と同種の短期降雨指標と、前記一の気象情報測定手段による前記長期降雨指標と同種の長期降雨指標とからなる第二の気象データに基づいて、前記第二の気象データにおける雨量データが出力値1、何もデータが存在しない領域が出力値0になるように人工知能(RBFN)で解析して3次元で表した第二のRBFN応答曲面を作成し、第二の閾値算定手段が、土砂災害発生の危険が低い領域を示す出力値1、何もデータが存在しない土砂災害発生の危険が高い領域を示す出力値0を含む閾値である、第二の閾値を算定し、第二の土砂災害発生危険基準線(CL)設定手段が、算定された第二の閾値に対する土砂災害の発生率を算出して土砂災害発生危険基準線(CL)を設定する工程であって、前記第二の土砂災害発生危険基準線(CL)設定手段による土砂災害発生危険基準線(CL)設定の際に使用する閾値に、前記第二の閾値ではなく、前記第一の閾値が使用されるようにすることで、前記第二の土砂災害発生危険基準線(CL)設定手段による土砂災害発生危険基準線(CL)設定を、前記第一の閾値に対する土砂災害の発生率を算出して行う工程
を備えている危険箇所に防災気象情報発表基準を設定する方法
In the first meteorological data, based on first meteorological data consisting of a short-term rainfall index and a long-term rainfall index measured by one meteorological information measurement means in a predetermined area by the first RBFN response surface creation means Generate a first RBFN response surface expressed in three dimensions by analyzing with artificial intelligence (RBFN) so that the rainfall data is output value 1 and the area where no data exists is output value 0, the first threshold The calculation means calculates the first threshold which is a threshold value including output value 1 indicating an area where the risk of landslide disaster occurrence is low, and output value 0 indicating an area where the risk of landslide disaster occurrence is high with no data present. , The first landslide disaster risk reference line (CL) setting means calculates the occurrence rate of landslide disaster to the calculated first threshold and sets the landslide disaster risk reference line (CL);
A short-term rainfall index of the same kind as the short-term rainfall index by the one meteorological information measurement means measured by the other meteorological information measurement means in the predetermined area by the second RBFN response surface creation means, and the one meteorological condition Based on the second meteorological data consisting of the long-term rainfall index and the same long-term rainfall index by the information measurement means, the rainfall data in the second meteorological data is the output value 1 and the area where no data exists is the output value Generate a second RBFN response surface expressed in three dimensions by analyzing with artificial intelligence (RBFN) so that it becomes 0, and the second threshold calculation means output value 1 that indicates the area where the risk of landslide disaster occurrence is low The second threshold is calculated, which is a threshold including an output value 0 indicating an area where there is a high risk of landslide disaster occurrence where there is no data, and the second landslide disaster risk baseline (CL) setting means It is a process of calculating the occurrence rate of the landslide disaster with respect to the determined second threshold to set the landslide disaster risk reference line (CL) by the second landslide disaster risk reference line (CL) setting means By using the first threshold instead of the second threshold as the threshold used when setting the sediment disaster risk line (CL), the second sediment disaster risk standard Process to calculate the occurrence rate of earth and sand disaster to the first threshold by setting the earth and sand disaster occurrence risk reference line (CL) by the line (CL) setting means
How to set the disaster prevention weather information announcement standard in the dangerous place equipped with
JP2017036047A 2017-02-28 2017-02-28 System and method for setting disaster prevention weather information announcement standard at dangerous place Active JP6502405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036047A JP6502405B2 (en) 2017-02-28 2017-02-28 System and method for setting disaster prevention weather information announcement standard at dangerous place

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036047A JP6502405B2 (en) 2017-02-28 2017-02-28 System and method for setting disaster prevention weather information announcement standard at dangerous place

Publications (2)

Publication Number Publication Date
JP2018141701A JP2018141701A (en) 2018-09-13
JP6502405B2 true JP6502405B2 (en) 2019-04-17

Family

ID=63527915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036047A Active JP6502405B2 (en) 2017-02-28 2017-02-28 System and method for setting disaster prevention weather information announcement standard at dangerous place

Country Status (1)

Country Link
JP (1) JP6502405B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052429B2 (en) * 2018-03-05 2022-04-12 富士通株式会社 Calculation program, calculation method, calculation device, and display program
JP7141309B2 (en) * 2018-10-31 2022-09-22 西日本技術開発株式会社 Quantitative evaluation system for disaster occurrence risk caused by ground displacement, its method, and its program
CN109949549A (en) * 2019-04-18 2019-06-28 甘肃省地质环境监测院 A kind of Geological Disaster Warning System
CN115099677B (en) * 2022-07-14 2023-04-07 中国安全生产科学研究院 Tailing pond safety production risk grading early warning method
CN116416762B (en) * 2023-06-09 2023-08-15 四川川核地质工程有限公司 Mud-rock flow early warning method and system based on artificial intelligence

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050236A (en) * 2003-07-31 2005-02-24 Sabo Jisuberi Gijutsu Center Sediment disaster information processing device and method for providing sediment disaster information using same
JP3851641B2 (en) * 2004-06-14 2006-11-29 関西電力株式会社 Rainfall prediction method and rainfall prediction program
CN106128035B (en) * 2016-06-30 2018-10-02 西安工程大学 The geological disaster forecasting method merged based on neural network and multi-parameter information

Also Published As

Publication number Publication date
JP2018141701A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6502405B2 (en) System and method for setting disaster prevention weather information announcement standard at dangerous place
JP7104175B2 (en) Flood monitoring and management system
Zeleňáková et al. Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia
CN113538861B (en) Geological disaster information management system based on mineral geological exploration
CN110008301B (en) Regional geological disaster susceptibility prediction method and device based on machine learning
JP4595094B2 (en) Disaster prevention comprehensive plan support system and its program
JP2012198886A (en) Sediment disaster occurring risk evaluation system according to volcanic activity level and program thereof
JP6450129B2 (en) Slope failure prediction method and slope failure prediction device
JP4701371B2 (en) Disaster probability evaluation system and its program
Shastry et al. Using steady‐state backwater analysis to predict inundated area from national water model streamflow simulations
JP2007035017A (en) Disaster prevention operation plan support system
JP7141309B2 (en) Quantitative evaluation system for disaster occurrence risk caused by ground displacement, its method, and its program
Mahmood Siddiqui et al. Flood inundation modeling for a watershed in the pothowar region of Pakistan
Juan et al. Developing a radar-based flood alert system for Sugar Land, Texas
Cruse et al. Statistical evaluation of flooding impact on power system restoration following a hurricane
Marques et al. Landslides on São Miguel Island (Azores): susceptibility analysis and validation of rupture zones using a bivariate GIS-based statistical approach
Siqueira et al. Methodology for the construction of an urban flood hazard chart
JP2005301840A (en) Disaster prevention business support system
Yuan et al. Predicting road flooding risk with machine learning approaches using crowdsourced reports and fine-grained traffic data
JP2019003641A (en) Prediction apparatus, prediction system, prediction method, and program
Cloke et al. Operational European flood forecasting
Feng et al. Sensitivity of flood-depth frequency to watershed-runoff change and sea-level rise using a one-dimensional hydraulic model
Kundu et al. GIS-based statistical landslide susceptibility zonation: a case study in Ganeshganga watershed, the Himalayas
JP3455213B1 (en) Method of setting the limit line of occurrence of sediment-related disaster, caution reference line and evacuation reference line, its program and warning evacuation support system
Hammond et al. The development of a flood damage assessment tool for urban areas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180918

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190320

R150 Certificate of patent or registration of utility model

Ref document number: 6502405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250