JP6498461B2 - Heating tower and defrosting method thereof - Google Patents

Heating tower and defrosting method thereof Download PDF

Info

Publication number
JP6498461B2
JP6498461B2 JP2015021413A JP2015021413A JP6498461B2 JP 6498461 B2 JP6498461 B2 JP 6498461B2 JP 2015021413 A JP2015021413 A JP 2015021413A JP 2015021413 A JP2015021413 A JP 2015021413A JP 6498461 B2 JP6498461 B2 JP 6498461B2
Authority
JP
Japan
Prior art keywords
defrosting
heat medium
heat
tank
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021413A
Other languages
Japanese (ja)
Other versions
JP2016142513A (en
Inventor
浩巳 長谷川
浩巳 長谷川
一郎 櫻場
一郎 櫻場
武延 甲斐田
武延 甲斐田
岡本 勲
勲 岡本
敦志 加留部
敦志 加留部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kuken Kogyo Co Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Kuken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kuken Kogyo Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2015021413A priority Critical patent/JP6498461B2/en
Publication of JP2016142513A publication Critical patent/JP2016142513A/en
Application granted granted Critical
Publication of JP6498461B2 publication Critical patent/JP6498461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、加熱塔(ヒーティングタワー)における冬期運転時等における熱交換器への着霜に対し、除霜により継続運転が可能な、加熱塔とその除霜方法に関する。   The present invention relates to a heating tower and a defrosting method thereof capable of continuous operation by defrosting against frost formation on a heat exchanger during a winter operation or the like in a heating tower (heating tower).

空気調和設備などで循環使用する熱媒体、例えばブライン、の加熱を目的として主に屋外に設置される加熱塔には、熱交換器を有して空気とブラインが直接接触しない密閉式加熱塔が一般的に用いられる。   A heating tower installed mainly outdoors for the purpose of heating a heat medium circulated and used in an air conditioner or the like, for example, brine, has a heat exchanger and a sealed heating tower in which air and brine are not in direct contact. Generally used.

こうした密閉式加熱塔では、熱交換器にフィンコイルを用いることが多く、この熱交換器のフィンコイルが、ファンで誘引された外気と接触して熱交換を行うが、フィンコイル内部を流通して外気との熱交換で加熱される熱媒体の温度が通常この外気に比べて極めて低いことから、冬期など外気温が低い場合などは、外気中の水分が熱交換器表面で凍結し、霜が発生、付着する場合がある。   In such a closed heating tower, a fin coil is often used as a heat exchanger, and the fin coil of this heat exchanger contacts the outside air attracted by a fan to perform heat exchange. Since the temperature of the heat medium heated by heat exchange with the outside air is usually extremely low compared to this outside air, when the outside air temperature is low, such as in winter, moisture in the outside air freezes on the surface of the heat exchanger, causing frost May occur and adhere.

特に、熱交換器における熱媒体の入口や、通過した外気の出口にあたる部分では、熱媒体や外気の温度が他部位よりも低くなっているため、霜の付着が進行しやすく、この霜の付着が進行してフィンコイル表面が覆われた状態になると、外気がフィンコイル表面と接触できないだけにとどまらず、空気流路が塞がれて外気が熱交換器を通過できなくなり、適切に熱交換が行えず加熱塔全体として性能低下をもたらすなど、加熱塔を利用する上での大きな問題となっていた。   In particular, at the part corresponding to the inlet of the heat medium and the outlet of the outside air that has passed through the heat exchanger, the temperature of the heat medium and the outside air is lower than that of other parts, so that the frost adheres easily and the frost adheres. When the fin coil surface is covered by the air flow, the outside air not only cannot contact the fin coil surface, but the air flow path is blocked and the outside air cannot pass through the heat exchanger, so that heat exchange is performed appropriately. This is a big problem in using the heating tower, for example, because the performance of the entire heating tower is reduced.

このような霜を速やかに取除くために、従来から、着霜した熱交換器に対し所定の操作を行って霜を溶かす除霜方法が種々提案されている。例えば、通常の熱媒体の循環管路から切離し状態とした除霜対象の熱交換器に対し、別途ヒータや高温蒸気、温水等の熱源を用いた加熱により十分昇温した熱媒体を流入させ、熱交換器を温めてその外側の霜を溶かしたり、熱交換器外面に外部から供給される温水を散布して霜を溶かしたりする方法などが従来から提案されている。このような従来の加熱塔の除霜機構の一例として、温めたブラインを供給されて除霜を行う仕組みのヒーティングタワーを備えるヒートポンプが、特開平11−6666号公報に記載されている。   In order to quickly remove such frost, various defrosting methods have been conventionally proposed in which a predetermined operation is performed on a frosted heat exchanger to melt the frost. For example, for a heat exchanger to be defrosted that is separated from a normal heat medium circulation line, a heat medium that has been sufficiently heated by heating using a heat source such as a heater, high-temperature steam, or hot water is allowed to flow, Conventionally, a method has been proposed in which a heat exchanger is heated to melt frost on the outside thereof, or hot water supplied from the outside is sprayed on the outer surface of the heat exchanger to melt frost. As an example of such a conventional defrosting mechanism for a heating tower, a heat pump including a heating tower having a mechanism for performing defrosting by supplying warmed brine is described in JP-A-11-6666.

特開平11−6666号公報Japanese Patent Laid-Open No. 11-6666

従来のヒーティングタワーにおける除霜機構は前記特許文献に示されるような構成とされており、霜を溶かすためのブラインや温水等の熱媒体の加熱には、ヒータ等の熱源を用いているが、加熱に際しては、加熱対象の熱媒体が、熱交換器に残っていた熱媒体、すなわち循環管路を流通していたものと同じ、温度の低い熱媒体となっていた。詳細には、従来の除霜は、循環管路流通時と同様の約−10ないし−15℃、平均的には−11℃程度、のブラインを例えば3℃程度に加熱して実行され、除霜が終了すると、除霜に使用したブラインはそのまま循環管路に戻るようにしていた。そして、次回以降の除霜でも、前記同様約−10ないし−15℃のブラインを加熱して除霜を実行する方法が繰返されていた。   The defrosting mechanism in the conventional heating tower is configured as shown in the above-mentioned patent document, and a heat source such as a heater is used for heating a heat medium such as brine or hot water for melting frost. In the heating, the heat medium to be heated was the same as the heat medium remaining in the heat exchanger, that is, the heat medium having a low temperature, which was circulated through the circulation pipe. Specifically, conventional defrosting is performed by heating a brine of about −10 to −15 ° C., on average about −11 ° C., for example, to about 3 ° C. When the frost was finished, the brine used for defrosting was returned to the circulation line as it was. And the method of performing defrosting by heating the brine of about -10 thru | or -15 degreeC similarly to the above also in the defrosting after the next time was repeated.

このように、除霜の際、循環管路を流通する時と同様の温度の低い熱媒体を加熱するようにしていたために、温度を上昇させにくく、熱交換器に付着した霜と熱媒体との温度差を十分に確保できず、除霜効率が劣ることとなり、外気条件によっては、除霜に時間がかかって、霜の発生、成長に追いつかず、空気流路の閉塞に至る場合もある、という課題を有していた。   As described above, when the defrosting is performed, the heat medium having a low temperature similar to that when circulating through the circulation pipe is heated, so that it is difficult to raise the temperature, and the frost and the heat medium adhering to the heat exchanger The defrosting efficiency will be inferior due to the inability to secure a sufficient temperature difference, and depending on the outside air conditions, it may take time to defrost, cannot catch up with frost generation and growth, and may block the air flow path. , Had a problem of.

また、除霜能力を高めて閉塞の危険を回避するために、霜と熱媒体との温度差を確保しようとすると、その分、熱源で熱を発生させるエネルギー分のコストが大きなものになってしまうという課題を有していた。   In addition, in order to increase the defrosting capacity and avoid the risk of blockage, when trying to secure the temperature difference between the frost and the heat medium, the cost for the energy to generate heat by the heat source is increased accordingly. It had the problem of end.

本発明は前記課題を解消するためになされたもので、除霜に用いる熱媒体を熱交換器と循環管路を流通する熱媒体とは別とし、除霜用の熱媒体が循環管路を流通する熱媒体並みに温度低下するのを抑制し、除霜に用いる熱媒体の加熱の効率を高めると共に、熱媒体の保有する熱を有効利用して、霜を熱媒体でより効率よく除去できる、加熱塔及びこれに適用される除霜方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems. The heat medium used for defrosting is separated from the heat medium that circulates through the heat exchanger and the circulation pipe, and the heat medium for defrosting is connected to the circulation pipe. Suppressing the temperature drop as in the circulating heat medium, increasing the efficiency of heating the heat medium used for defrosting, and effectively using the heat held by the heat medium to remove frost more efficiently with the heat medium An object of the present invention is to provide a heating tower and a defrosting method applied thereto.

本発明に係る加熱塔は、熱交換器内部に流通させた熱媒体を外気と熱交換させて昇温させる密閉式の加熱塔であり、且つ所定の加熱手段で温めた熱媒体を前記熱交換器に流通させ、熱交換器に生じた霜を除去可能な加熱塔において、前記熱交換器に接続され、蒸発器である熱利用装置との間で熱媒体を循環させる循環管路における、少なくとも熱交換器入口部分上流側近傍に配設されて、前記循環管路から熱交換器への熱媒体の流入と非流入とを切替え可能とする循環制御弁と、前記熱交換器における熱媒体入口近くの所定箇所及び熱媒体出口近くの所定箇所にそれぞれ接続され、除霜用の熱媒体を熱交換器に流通可能とする除霜用管路部と、当該除霜用管路部における熱交換器との接続位置近傍にそれぞれ配設され、除霜用管路部と熱交換器間での、除霜用の熱媒体の流通状態と非流通状態とを切替え可能とする除霜用制御弁と、当該除霜用管路部に配設され、除霜用の熱媒体を加圧して管路内で所定方向に熱媒体が流れる状態とするポンプと、前記除霜用管路部に配設され、熱媒体を加熱する前記加熱手段としてのヒータと、前記除霜用管路部に配設され、熱交換器の熱媒体容量と同じ容量で熱媒体を流入出可能に貯留するタンクと、前記各制御弁の切替制御並びに前記ポンプ及びヒータの作動制御を行う制御部とを備え、前記除霜用管路部は、タンクの前後の管路間にそれぞれ接続されて熱媒体をタンクに通さず流通させるタンク迂回管路を設けられると共に、タンク迂回管路を開閉し、且つタンク迂回管路の開状態でタンクの流入出口側へ熱媒体を流通させず、タンク迂回管路の閉状態ではタンクの流入出口側へ熱媒体を流通可能とする迂回制御弁を設けられてなり、前記制御部が、前記循環管路の循環制御弁を閉止して循環管路を通じた熱媒体の熱交換器への流通を停止させ、且つ除霜用管路部の除霜用制御弁を開放して除霜用熱媒体を熱交換器に対し流通可能とした上で、前記迂回制御弁の開閉を制御して、熱媒体をタンクに対し流入出させつつ熱交換器と除霜用管路部に流通させる入替用接続状態と、熱媒体をタンク迂回管路に通してタンクに流入出させずに熱交換器と除霜用管路部で循環流通させる除霜用接続状態とを、切替可能とするものである。   The heating tower according to the present invention is a sealed heating tower that heats the heat medium circulated inside the heat exchanger by exchanging heat with the outside air and heat-exchanges the heat medium warmed by a predetermined heating means. In a heating tower capable of removing frost generated in the heat exchanger and connected to the heat exchanger, and at least in a circulation line for circulating a heat medium to and from a heat utilization device that is an evaporator. A circulation control valve disposed in the vicinity of the upstream side of the heat exchanger inlet portion and capable of switching between inflow and non-inflow of the heat medium from the circulation line to the heat exchanger; and a heat medium inlet in the heat exchanger A defrosting conduit section connected to a predetermined location near the heat medium outlet and a predetermined location near the heat medium outlet, and allowing the defrosting heat medium to flow to the heat exchanger, and heat exchange in the defrosting channel section Heat exchange with the defrosting conduit section, which is installed near the connection position And a defrosting control valve that enables switching between a defrosting heat medium flow state and a non-flow state, and a defrosting heat pipe, A pump that causes the heat medium to flow in a predetermined direction in the pipe line, a heater that is disposed in the defrost line part and heats the heat medium, and the defrost line And a tank that stores the heat medium in the same capacity as the heat medium capacity of the heat exchanger so that the heat medium can flow in and out, and a control part that performs switching control of each control valve and operation control of the pump and heater. The defrosting conduit section is connected to the tank before and after the tank and provided with a tank bypass conduit that allows the heat medium to flow without passing through the tank, and opens and closes the tank bypass conduit; and By bypassing the heat medium to the inlet / outlet of the tank when the tank bypass pipe is open, the tank bypass In the closed state of the passage, a bypass control valve is provided to allow the heat medium to flow to the inlet / outlet side of the tank, and the control unit closes the circulation control valve of the circulation pipe and heats through the circulation pipe The detour control is performed after stopping the flow of the medium to the heat exchanger and opening the defrost control valve of the defrosting conduit so that the defrosting heat medium can flow to the heat exchanger. Controls the opening and closing of the valve to allow the heat medium to flow into and out of the tank while flowing through the heat exchanger and the defrosting conduit, and the heat medium flows into the tank through the tank bypass conduit. It is possible to switch between the defrosting connection state in which the heat exchanger and the defrosting pipe line are circulated without being discharged.

このように本発明によれば、循環管路のうち熱交換器の熱媒体入口に至る管路部分を開閉する循環制御弁で、循環管路から熱交換器を切離し可能とする一方、熱交換器に除霜用制御弁を介して接続される除霜用管路部を設け、この除霜用管路部を通じて除霜用の熱媒体を熱交換器に流入出可能とし、除霜のために、循環管路側の循環制御弁を閉状態とすると共に、除霜用制御弁を開放して、除霜用熱媒体を熱交換器に流通させる状況下で、熱媒体をタンクに流入出させる入替用接続状態と、熱媒体をタンクに流入出させずに熱交換器と除霜用管路部で循環させる除霜状態とを切替可能とし、除霜工程として除霜用管路部のポンプ及びヒータを作動させ、熱交換器に除霜用の熱媒体を流通させる場合に、必要に応じてタンクを除霜用熱媒体の循環経路から切り離せる。これにより、タンクに熱媒体を流入させられる状態の除霜用管路部で熱媒体を流動させ、タンクと熱交換器の熱媒体を一旦入れ替えてから、熱媒体の入ったタンクを除霜用熱媒体の循環経路から切り離して、熱交換器にあった温度の低い熱媒体を除霜用管路部で除霜に用いないようにすることができ、低温の熱媒体を除霜可能な温度までヒータで温める必要がなくなると共に、除霜を終えて熱交換器を出た後も所定の熱を保有する熱媒体をタンク内のより低い温度の熱媒体と混合させず、熱の損失を抑えながら、熱媒体を継続的に循環させてヒータで加熱可能となり、ヒータでの熱媒体の加熱を効率化でき、熱媒体を十分に昇温させて熱交換器に流入させ、除霜に利用でき、熱交換器の着霜部分で、熱媒体による除霜の実行時間を短縮できる。   As described above, according to the present invention, the circulation control valve that opens and closes the pipe portion leading to the heat medium inlet of the heat exchanger in the circulation pipe enables the heat exchanger to be disconnected from the circulation pipe while the heat exchange. A defrosting conduit connected to the cooler via a defrosting control valve is provided, and the defrosting heat medium can flow into and out of the heat exchanger through the defrosting conduit, for defrosting. In addition, the circulation control valve on the circulation line side is closed and the defrosting control valve is opened so that the heat medium flows into and out of the tank in a state where the defrosting heat medium is circulated to the heat exchanger. It is possible to switch between the connection state for replacement and the defrosting state in which the heat medium is circulated in the defrosting pipe section without flowing the heat medium into and out of the tank, and the defrosting pipe section pump is used as a defrosting process. When the heater is operated and the defrosting heat medium is circulated through the heat exchanger, the tank is circulated as necessary. Decouple from the path. As a result, the heat medium is caused to flow in the defrosting conduit portion in a state where the heat medium can be introduced into the tank, and the tank and the heat exchanger in the heat exchanger are once replaced, and then the tank containing the heat medium is defrosted. The temperature at which the low-temperature heat medium can be defrosted by separating it from the circulation path of the heat medium so that the low-temperature heat medium in the heat exchanger is not used for defrosting in the defrosting conduit. It is no longer necessary to heat the heater with a heater, and even after defrosting and exiting the heat exchanger, the heat medium that retains the prescribed heat is not mixed with the heat medium at a lower temperature in the tank, thereby suppressing heat loss. However, the heating medium can be continuously circulated and heated by the heater, heating the heating medium with the heater can be made more efficient, and the heating medium can be sufficiently heated to flow into the heat exchanger and used for defrosting. In the frosting part of the heat exchanger, the defrosting time by the heat medium can be shortened

また、当初熱交換器にあった温度の低い熱媒体を、除霜のために熱交換器に流通させる熱媒体としては用いず、且つ除霜を終えて熱交換器を出た熱媒体とも混合させないことで、除霜用としてヒータでの加熱対象とする熱媒体が温度の低いものとなることを防止でき、熱媒体加熱のためにヒータが過剰に熱を発生させずに済む分、ヒータの熱発生容量を小さく抑えることができ、ヒータの設置に係るコスト抑制が図れると共に、熱媒体加熱のためのヒータ使用を必要最小限にとどめて、除霜の省エネルギー化が図れる。   In addition, the heat medium having a low temperature originally in the heat exchanger is not used as a heat medium to be distributed to the heat exchanger for defrosting, and is also mixed with the heat medium exiting the heat exchanger after defrosting. In this case, the heat medium to be heated by the heater for defrosting can be prevented from having a low temperature, and the heater does not generate excessive heat for heating the heat medium. The heat generation capacity can be kept small, the cost for installing the heater can be reduced, and the use of the heater for heating the heat medium can be kept to the minimum necessary, and the energy saving of defrosting can be achieved.

さらに、熱交換器に対する除霜の終了後に、タンクに熱媒体を流入させられる状態としてから、除霜用管路部で熱媒体を流動させ、タンクに入っていた温度の低い熱媒体と、これより温度の高い熱交換器内の除霜用の熱媒体をあらためて入れ替えることができ、除霜を終えた後も所定の熱を保有する除霜用熱媒体を熱交換器に残さずにタンクに回収して貯留し、次の新たな除霜実行の際に使用するようにして、後の除霜工程でもヒータでの熱媒体の加熱を効率化でき、熱媒体を適温まで速やかに昇温させて熱交換器での除霜に利用でき、除霜実行時間の短縮が図れると共に、熱媒体加熱のためのヒータの熱発生量を抑えられ、熱媒体加熱のためのヒータ使用を少なくして、除霜に係るエネルギー消費を抑制できる。   Furthermore, after the defrosting of the heat exchanger is completed, the heat medium is allowed to flow into the tank, and then the heat medium is caused to flow in the defrosting conduit, and the heat medium having a low temperature contained in the tank, The defrosting heat medium in the heat exchanger at a higher temperature can be replaced again, and the defrosting heat medium that retains the predetermined heat after the defrosting is finished in the tank without leaving the heat exchanger. It can be recovered and stored, and used for the next new defrosting operation, so that the heating medium can be heated efficiently in the subsequent defrosting process, and the heating medium can be quickly raised to an appropriate temperature. It can be used for defrosting in heat exchangers, shortening the defrosting execution time, reducing the amount of heat generated by the heater for heating the heating medium, reducing the use of the heater for heating the heating medium, Energy consumption related to defrosting can be suppressed.

また、本発明に係る加熱塔は必要に応じて、前記タンクが、熱媒体の流入出口を上部と下部にそれぞれ設けられ、除霜用管路部におけるタンクから熱媒体を吸出す側の管路及びタンクに熱媒体を押込む側の管路と、タンクにおける上下の各流入出口との間に配置されて、前記各管路とタンクにおける上下の各流入出口とを連通可能とする複数の接続切替用管路と、除霜用管路部と接続切替用管路にそれぞれ配設され、タンク上部を熱媒体流出側とすると共にタンク下部を熱媒体流入側とする第一の管路接続状態と、タンク上部を熱媒体流入側とすると共にタンク下部を熱媒体流出側とする第二の管路接続状態とを切替可能に開閉制御される複数の接続切替用制御弁とを備え、前記制御部が、前記迂回制御弁を前記入替用接続状態とする中で、熱交換器内に残っている熱媒体を除霜用管路部を通じてタンク内に流入させ、且つタンク内のより温かい除霜用の熱媒体を熱交換器に流入させる場合には、制御部が、接続切替用制御弁を前記第一の管路接続状態が生じる開放又は閉止状態とし、また、熱交換器内の除霜用の熱媒体を除霜用管路部を通じてタンク内に流入させ、且つタンク内のより冷たい熱媒体を熱交換器に流入させる場合には、制御部が、接続切替用制御弁を前記第二の管路接続状態が生じる開放又は閉止状態とするものである。   Further, in the heating tower according to the present invention, if necessary, the tank is provided with an inlet / outlet for the heat medium in the upper part and the lower part, and a pipe line on the side for sucking out the heat medium from the tank in the defrosting line part And a plurality of connections arranged between the pipes on the side where the heat medium is pushed into the tank and the upper and lower inflow outlets of the tank so that the pipes communicate with the upper and lower inflow outlets of the tank. A first pipe connection state that is disposed in each of the switching pipe, the defrosting pipe, and the connection switching pipe, with the tank upper portion being the heat medium outflow side and the tank lower portion being the heat medium inflow side. And a plurality of connection switching control valves that are open / close controlled to be switchable between a second pipe connection state in which the upper part of the tank is the heat medium inflow side and the lower part of the tank is the heat medium outflow side, In the state where the bypass control valve is in the replacement connection state, In the case where the heat medium remaining in the exchanger is caused to flow into the tank through the defrosting conduit and the warmer defrosting heat medium in the tank is caused to flow into the heat exchanger, the control unit, The connection switching control valve is in an open or closed state in which the first pipe connection state occurs, and the defrosting heat medium in the heat exchanger is caused to flow into the tank through the defrosting pipe section, and When the cooler heat medium in the tank is allowed to flow into the heat exchanger, the control unit sets the connection switching control valve to an open or closed state in which the second pipe connection state occurs.

このように本発明によれば、タンクの上下の各流出入口と除霜用管路部との連通状態を、制御部が接続切替用制御弁を開閉制御して切替可能とし、除霜用管路部が入替用接続状態にある場合に、当初は熱交換器内にあった温度の低い熱媒体をタンクに回収しつつタンク内にあったより温度の高い除霜用の熱媒体をタンクから出して熱交換器に向かわせる際には、制御部が、タンク上部側を流出口、下部側を流入口として使用する管路接続状態とし、且つ、除霜後の熱交換器内にある除霜用の熱媒体をタンクに回収しつつ、タンク内のより温度の低い熱媒体をタンクから出して熱交換器に向かわせる際には、制御部が、タンク下部側を流出口、上部側を流入口として使用する管路接続状態として、相対的に温度の高い状態にある除霜用熱媒体を、常にタンクの上部で流出入させる一方、相対的に温度の低い当初熱交換器内にあった熱媒体を、常にタンクの下部で流入出させることにより、タンク内では温度の高い熱媒体が上側に、温度の低い熱媒体が下側に位置する状態が保持され、タンク内で熱媒体の熱対流が生じにくく、タンク内で温度の異なる熱媒体が混合しにくくなり、熱媒体のうち温度の高いものについて、これより温度の低いものへの熱移動による熱の損失を抑えられ、ヒータに向かう熱媒体の温度が低くなるのを防いで、ヒータでの熱媒体加熱を効率よく実行でき、熱媒体を速やかに昇温させて除霜実行時間の短縮が図れることに加え、加熱の際のヒータでの熱発生量を小さくでき、除霜に係るエネルギー消費を抑えられる。   As described above, according to the present invention, the controller can switch the communication state between the upper and lower outlets of the tank and the defrosting conduit by opening and closing the connection switching control valve. When the road part is in the replacement connection state, the heat medium having a lower temperature that was originally in the heat exchanger is recovered in the tank, and the heat medium for defrosting having a higher temperature than that in the tank is taken out from the tank. When the control unit is directed to the heat exchanger, the control unit is in a pipe connection state in which the upper side of the tank is used as an outlet and the lower side is used as an inlet, and the defrost in the heat exchanger after defrosting When collecting the heat medium for use in the tank and taking out the heat medium having a lower temperature in the tank from the tank and directing it to the heat exchanger, the control unit flows the outlet on the lower side of the tank and flows the upper side on the upper side. As a pipe connection state used as an inlet, a defrosting heat medium in a relatively high temperature state is used. While always flowing in and out at the upper part of the tank, the heat medium that was in the initial heat exchanger with a relatively low temperature is always allowed to flow in and out at the lower part of the tank, so that , The state where the low temperature heat medium is located on the lower side is maintained, heat convection of the heat medium is less likely to occur in the tank, and heat medium having different temperatures are difficult to mix in the tank, and the temperature of the heat medium is high. The heat loss due to heat transfer to a lower temperature can be suppressed, and the temperature of the heat medium toward the heater can be prevented from being lowered, so that the heat medium can be efficiently heated by the heater. In addition to shortening the defrosting execution time by quickly raising the temperature, the amount of heat generated by the heater during heating can be reduced, and energy consumption related to defrosting can be suppressed.

また、本発明に係る加熱塔は必要に応じて、前記タンクが、タンクにおける熱媒体の流入出に際し、流入量と流出量を等しくされると共に、タンク内部を、流入出に伴って移動する熱媒体が、温度成層をなす状態を維持したまま上方又は下方に一様に移動可能な構造とされるものである。   Further, in the heating tower according to the present invention, when necessary, the tank has the same inflow amount and outflow amount when the heat medium flows in and out of the tank, and heat that moves inside the tank as the inflow and outflow occurs. The medium is structured to be able to move uniformly upward or downward while maintaining the temperature stratified state.

このように本発明によれば、タンクに対する熱媒体の流入量と流出量を等しくすると共に、タンクをこのタンク内の熱媒体が温度成層をなす状態を維持可能な内部構造とされ、熱媒体の流入出に伴ってタンク内部を上方又は下方へ移動する熱媒体における等温の各領域が、タンク内で温度の異なる他の領域と混合することなく移動できることにより、熱媒体の流入出に関わりなく、タンク内で熱媒体の各領域が温度を維持して熱交換が生じず、相対的に温度の高い除霜用の熱媒体のタンク内での熱損失を確実に抑制でき、熱媒体の保有する熱を有効利用して除霜を効率化することができる。   As described above, according to the present invention, the inflow amount and the outflow amount of the heat medium to the tank are made equal, and the tank has an internal structure capable of maintaining a state in which the heat medium in the tank forms a temperature stratification. Regardless of whether the heat medium flows in or out, each isothermal area in the heat medium that moves up or down in the tank as it flows in or out can move without mixing with other areas with different temperatures in the tank. Each area of the heat medium in the tank maintains the temperature and heat exchange does not occur, and heat loss in the tank of the defrosting heat medium having a relatively high temperature can be reliably suppressed, and the heat medium has Defrosting can be made efficient by using heat effectively.

また、本発明に係る加熱塔は必要に応じて、前記除霜用管路部における、熱交換器の熱媒体入口近くの管路位置と熱媒体出口近くの管路位置であって、且つそれぞれ熱交換器に対し除霜用制御弁よりも離れた側となる各管路位置同士を短絡するバイパス用管路と、当該バイパス用管路を開閉する制御弁とを備え、前記制御部が、各除霜用制御弁を閉止して熱交換器に除霜用の熱媒体を流通させない状態で、前記迂回制御弁を閉止し、且つバイパス用管路の制御弁を開放した上で、ポンプ及びヒータを作動させ、除霜用管路部で除霜用の熱媒体をヒータで加熱しつつタンク及びバイパス用管路を経由して循環させて、熱媒体の昇温のみ実行させるものである。   Further, the heating tower according to the present invention has a pipe line position near the heat medium inlet of the heat exchanger and a pipe line position near the heat medium outlet in the defrosting pipe line part, if necessary, and A bypass conduit that short-circuits each pipeline position on the side farther from the defrost control valve with respect to the heat exchanger, and a control valve that opens and closes the bypass conduit, and the control unit includes: In a state where each defrost control valve is closed so that the defrosting heat medium does not flow through the heat exchanger, the detour control valve is closed and the bypass pipe control valve is opened. The heater is operated and the defrosting heat medium is circulated through the tank and the bypass line while being heated by the heater in the defrosting pipe section, and only the temperature rise of the heat medium is executed.

このように本発明によれば、除霜用管路部における熱交換器への熱媒体出入口近くで除霜用制御弁よりも熱交換器から離れた管路位置間にバイパス用管路を設け、且つこのバイパス用管路にこれを開閉する制御弁を設けて、除霜用管路部において除霜用制御弁を閉じ、バイパス用管路の制御弁を開放し、ポンプ及びヒータを作動させた場合には、熱媒体が熱交換器を通らず、代わりにバイパス用管路を短絡して流れて、除霜用管路部で熱媒体が熱交換器を通過することなく循環可能となり、合わせて、タンクに熱媒体を流入出させられるようにすると、タンクの熱媒体が除霜用管路部を循環する間にヒータで加熱されて昇温し、除霜に適した温度に到達できることにより、熱交換器に熱媒体を通さず除霜を行わない間に、タンク内の除霜用の熱媒体を除霜用管路部で循環させてヒータ加熱し、あらかじめ十分高い温度としてから、除霜用管路部を熱交換器に連通させて、高い温度の熱媒体を熱交換器に流通させられることとなり、事前に温度を高くした熱媒体を熱交換器に流通させて、除霜を効率よく実行でき、除霜時間の短縮と、除霜能力増大による熱交換器閉塞の危険性低減が図れる。また、タンクの熱媒体がバイパス用管路を通り、熱交換器を通らない分、熱損失を抑えて無理なく熱媒体温度を高めることができ、より高温の熱媒体を効率よく得て後の除霜工程で有効活用でき、除霜工程を複数回繰り返し実行する場合における除霜の効率を全体的に向上させられる。   As described above, according to the present invention, the bypass pipeline is provided between the pipeline positions near the heat medium inlet / outlet to the heat exchanger in the defrosting pipeline section and farther from the heat exchanger than the defrosting control valve. In addition, a control valve for opening and closing the bypass conduit is provided in the bypass conduit, the defrost control valve is closed in the defrost conduit, the bypass conduit control valve is opened, and the pump and the heater are operated. In such a case, the heat medium does not pass through the heat exchanger, but instead flows through the bypass pipe, and the heat medium can be circulated in the defrosting pipe without passing through the heat exchanger. In addition, if the heat medium is allowed to flow in and out of the tank, the temperature of the heat medium in the tank is increased by heating with the heater while circulating through the defrosting conduit, and the temperature can reach a temperature suitable for defrosting. By this, the defrosting in the tank is not performed while the heat medium is not passed through the heat exchanger. The medium is circulated through the defrosting conduit and heated with a heater. After the temperature is sufficiently high in advance, the defrosting conduit is connected to the heat exchanger, and the high-temperature heat medium is circulated through the heat exchanger. Therefore, defrosting can be performed efficiently by distributing a heat medium whose temperature has been increased in advance to the heat exchanger, reducing the defrosting time and reducing the risk of blockage of the heat exchanger due to increased defrosting capacity. I can plan. In addition, because the heat medium in the tank does not pass through the bypass conduit and does not pass through the heat exchanger, the heat medium temperature can be increased without difficulty by suppressing heat loss, and a higher temperature heat medium can be obtained efficiently. It can be effectively used in the defrosting process, and the efficiency of defrosting when the defrosting process is repeatedly executed a plurality of times can be improved as a whole.

また、本発明に係る加熱塔の除霜方法は、熱交換器内部に流通させた熱媒体を外気と熱交換させて昇温させる密閉式の加熱塔で、昇温させた熱媒体を前記熱交換器に流通させ、当該熱交換器に生じた霜を除去する加熱塔の除霜方法において、前記熱交換器に接続され、蒸発器である熱利用装置との間で熱媒体を循環させる循環管路における、少なくとも熱交換器入口部分上流側近傍に配設した循環制御弁の開閉で、前記循環管路から熱交換器への熱媒体の流入と非流入とを切替え可能にし、前記熱交換器における熱媒体入口近くの所定箇所及び熱媒体出口近くの所定箇所にそれぞれ所定の除霜用制御弁を介して接続される除霜用管路部を通じて、除霜用の熱媒体を熱交換器に流通可能とし、前記除霜用管路部には、除霜用の熱媒体を加圧して管路内で所定方向に送給するポンプと、熱媒体を加熱するヒータと、熱交換器の熱媒体容量と同じ容量で熱媒体を流入出可能に貯留するタンクとが配設されると共に、タンクの前後の管路間にそれぞれ接続されて熱媒体をタンクに通さないタンク迂回管路が設けられ、さらに、タンク迂回管路を開閉し、且つタンク迂回管路の開状態でタンクの流入出口側へ熱媒体を流通させず、タンク迂回管路の閉状態ではタンクの流入出口側へ熱媒体を流通可能とする迂回制御弁が設けられて、当該迂回制御弁の開閉制御で、熱媒体をタンクに流入出させられる入替用接続状態と、熱媒体をタンク迂回管路に通してタンクに流入出させない除霜用接続状態とを切替使用可能とされ、熱交換器に対する除霜工程として、前記循環管路の循環制御弁を閉じて熱媒体の循環管路を通じた流通を停止させる一方、除霜用管路部の除霜用制御弁を開放状態として除霜用熱媒体を熱交換器に対し流通可能とし、且つ除霜用管路部で熱媒体をタンクに流入出させられる前記入替用接続状態で、ポンプ及びヒータを作動させ、除霜用管路部で熱媒体の流れを生じさせてタンク内の除霜用熱媒体を熱交換器に入れると共に、熱交換器内に残る冷たい熱媒体を除霜用管路部を通じてタンクに流入させる第一の熱媒体入替工程と、タンク内にあった除霜用熱媒体が熱交換器に存在していた冷たい熱媒体と全て入れ替わったら、除霜用管路部で熱媒体をタンク迂回管路に通してタンクに出入りさせない前記除霜用接続状態に移行して、除霜用熱媒体がヒータで加熱されつつ熱交換器と除霜用管路部を循環して除霜を実行する熱媒体循環工程と、熱交換器が除霜完了と見なせる状態に達したら、除霜用管路部で熱媒体をタンクに流入出させられる前記入替用接続状態に移行し、且つヒータを非作動状態とし、タンク内の冷たい熱媒体をタンクから出して熱交換器に入れると共に、熱交換器内の除霜用熱媒体を除霜用管路部を通じてタンクに流入させる第二の熱媒体入替工程と、タンク内にあった冷たい熱媒体が熱交換器に存在していた熱媒体と全て入れ替わったら、除霜用管路部の除霜用制御弁を閉止状態とすると共にポンプの作動を停止して、熱媒体の除霜用管路部を通じた流通を停止させる熱媒体流通停止工程とを含むものである。   The defrosting method for a heating tower according to the present invention is a sealed heating tower that heats the heat medium circulated inside the heat exchanger by exchanging heat with the outside air. In the defrosting method of the heating tower that circulates in the exchanger and removes frost generated in the heat exchanger, circulation that circulates the heat medium between the heat utilization device that is connected to the heat exchanger and is an evaporator The heat exchange can be switched between inflow and non-inflow of the heat medium from the circulation pipe by opening / closing a circulation control valve disposed at least in the vicinity of the upstream side of the heat exchanger inlet in the pipe. The heat exchanger for defrosting through a defrosting conduit connected to a predetermined location near the heat medium inlet and a predetermined location near the heat medium outlet in the cooler via a predetermined defrosting control valve. The defrosting conduit section is pressurized with a defrosting heat medium. A pump that feeds in a predetermined direction in the path, a heater that heats the heat medium, and a tank that stores the heat medium in the same capacity as the heat medium capacity of the heat exchanger so that the heat medium can flow in and out are disposed. Tank bypass pipes that are connected between the pipes before and after the tank and do not allow the heat medium to pass through the tank are provided. Further, the tank bypass pipes are opened and closed, and the tank bypass pipes are opened and the tank inlet and outlet sides are opened. In the closed state of the tank bypass pipe, the bypass control valve is provided to allow the heat medium to flow to the inlet / outlet side of the tank. The bypass medium is controlled by opening / closing the bypass control valve. It is possible to switch between a replacement connection state that flows into and out of the tank and a defrost connection state that does not allow the heat medium to flow into and out of the tank through the tank bypass pipe, and the circulation is performed as the defrosting step for the heat exchanger. Close the circulation control valve of the pipeline and heat While the circulation of the body through the circulation line is stopped, the defrosting control valve of the defrosting line part is opened to allow the defrosting heat medium to flow to the heat exchanger, and the defrosting line With the replacement connection state in which the heat medium can flow into and out of the tank at the section, the pump and the heater are operated, and the flow of the heat medium is generated in the defrosting conduit section to heat the defrost heat medium in the tank. The first heat medium replacement step of putting the cold heat medium remaining in the heat exchanger into the tank through the defrosting conduit and the defrost heat medium in the tank is the heat exchanger. When all of the cold heat medium existing in the heat exchanger is replaced, the heat transfer medium is transferred to the defrost connection state in which the heat medium is passed through the tank detour pipe in the defrost pipe section so as not to enter or leave the tank. Circulates through the heat exchanger and the defrosting conduit while being heated by the heater to perform defrosting When the heat medium circulation process and the state where the heat exchanger can be regarded as defrosting are reached, the heat transfer medium is transferred to the tank through the defrosting conduit, and the heater is deactivated. A second heat medium replacement step in which the cold heat medium in the tank is taken out of the tank and placed in the heat exchanger, and the defrost heat medium in the heat exchanger flows into the tank through the defrosting conduit When the cold heat medium in the tank is completely replaced with the heat medium present in the heat exchanger, the defrosting control valve of the defrosting conduit is closed and the pump is stopped. And a heat medium flow stopping step of stopping the flow of the heat medium through the defrosting conduit.

このように本発明によれば、循環管路のうち熱交換器の熱媒体入口に至る管路部分を開閉する循環制御弁で、循環管路から熱交換器を切離し可能とする一方、熱交換器に除霜用制御弁を介して接続される除霜用管路部を通じて、除霜用の熱媒体を熱交換器に流入出可能とし、除霜工程として、循環制御弁を閉止すると共に、除霜用制御弁を開放して、除霜用熱媒体を熱交換器に流通可能とした上で、まず熱媒体をタンクに流入出させられる状態としてから、ポンプ及びヒータを作動させて、タンク内の除霜用熱媒体と熱交換器内に残る冷たい熱媒体とを除霜用管路部を通じて入れ替える第一の工程と、熱媒体をタンクに出入りさせない状態で、除霜用熱媒体を熱交換器と除霜用管路部に循環させて除霜を実行する第二の工程と、除霜完了を受けてあらためて熱媒体をタンクに流入出させられる状態とし、且つヒータを非作動として、タンク内の冷たい熱媒体と熱交換器内の除霜用熱媒体を除霜用管路部を通じて入れ替える第三の工程と、除霜用制御弁を閉止すると共にポンプの作動を停止し、除霜用管路部での熱媒体の流通を停止させる第四の工程とを、それぞれ実行する。これにより、熱交換器にあった温度の低い熱媒体を除霜用管路部で除霜に用いないようにすることができ、低温の熱媒体を除霜可能な温度までヒータで温める必要がなくなると共に、除霜を終えて熱交換器を出た後も所定の熱を保有する熱媒体をタンク内のより低い温度の熱媒体と混合させず、熱の損失を抑えながら、熱媒体を除霜用管路部で継続的に循環させてヒータで加熱可能となり、ヒータでの熱媒体の加熱を効率化でき、熱媒体を十分に昇温させて熱交換器に流入させて除霜を実行でき、熱交換器の着霜部分で、熱媒体による除霜の実行時間を短縮できる。   As described above, according to the present invention, the circulation control valve that opens and closes the pipe portion leading to the heat medium inlet of the heat exchanger in the circulation pipe enables the heat exchanger to be disconnected from the circulation pipe while the heat exchange. The defrosting heat medium can be flowed into and out of the heat exchanger through the defrosting conduit connected to the cooler via the defrosting control valve, and as a defrosting process, the circulation control valve is closed, The defrosting control valve is opened so that the defrosting heat medium can flow through the heat exchanger. First, the heating medium is allowed to flow into and out of the tank, and then the pump and heater are operated to The first defrosting heat medium and the cold heat medium remaining in the heat exchanger through the defrosting conduit section, and heat the defrosting heat medium in a state where the heat medium is not allowed to enter and exit the tank. A second process of performing defrosting by circulating through the exchanger and the defrosting conduit and receiving the defrosting completion A third state in which the heat medium is allowed to flow into and out of the tank again, the heater is deactivated, and the cold heat medium in the tank and the defrost heat medium in the heat exchanger are replaced through the defrost line. The step and the fourth step of closing the defrosting control valve and stopping the operation of the pump to stop the flow of the heat medium in the defrosting conduit section are respectively performed. Thereby, it is possible to prevent the heat medium having a low temperature in the heat exchanger from being used for defrosting in the defrosting conduit, and it is necessary to heat the low-temperature heat medium to a temperature capable of defrosting with a heater. In addition, after the defrosting is finished and the heat exchanger is exited, the heat medium having the predetermined heat is not mixed with the heat medium having a lower temperature in the tank, and the heat medium is removed while suppressing heat loss. Continuously circulates in the frost line and can be heated by the heater, heating the heating medium with the heater can be made more efficient, and the heating medium is sufficiently heated to flow into the heat exchanger to perform defrosting It is possible to reduce the defrosting time by the heat medium at the frosting portion of the heat exchanger.

また、当初熱交換器にあった温度の低い熱媒体を、除霜のために熱交換器に流通させる熱媒体としては用いず、且つ除霜を終えて熱交換器を出た熱媒体とも混合させないことで、除霜用としてヒータでの加熱対象とする熱媒体が温度の低いものとなることを防止でき、熱媒体加熱のためにヒータが過剰に熱を発生させずに済む分、熱媒体加熱のためのヒータ使用を必要最小限にとどめて、除霜の省エネルギー化が図れる。   In addition, the heat medium having a low temperature originally in the heat exchanger is not used as a heat medium to be distributed to the heat exchanger for defrosting, and is also mixed with the heat medium exiting the heat exchanger after defrosting. In this case, the heat medium to be heated by the heater for defrosting can be prevented from having a low temperature, and the heater does not generate excessive heat for heating the heat medium. Energy consumption for defrosting can be reduced by using the heater for heating to the minimum necessary.

さらに、熱交換器に対する除霜の終了後に、所定の熱を保有する除霜用熱媒体を熱交換器に残さずにタンクに回収して貯留し、次の新たな除霜実行の際に使用可能として、繰り返し除霜を行う場合に、後の除霜工程でもヒータでの熱媒体の加熱を効率化でき、熱媒体を適温まで速やかに昇温させられ、除霜実行時間の短縮が図れると共に、熱媒体加熱のためのヒータの熱発生量を抑えられ、ヒータ使用に係るエネルギー消費を抑制できる。   Furthermore, after the defrosting of the heat exchanger is completed, the defrosting heat medium having the predetermined heat is collected and stored in the tank without remaining in the heat exchanger, and used for the next new defrosting execution. As possible, when performing repeated defrosting, heating of the heat medium in the heater can be made more efficient in the subsequent defrosting process, the heat medium can be quickly raised to an appropriate temperature, and the defrosting execution time can be shortened. In addition, the amount of heat generated by the heater for heating the heating medium can be suppressed, and energy consumption associated with the use of the heater can be suppressed.

また、本発明に係る加熱塔の除霜方法は必要に応じて、除霜用管路部が、熱交換器の熱媒体入口近くの管路位置と熱媒体出口近くの管路位置であって、且つそれぞれ熱交換器に対し除霜用制御弁よりも離れた側となる各管路位置について、当該管路位置同士を短絡するバイパス用管路を有すると共に、当該バイパス用管路を開閉する制御弁を有して、バイパス用管路を経由してヒータとタンクの含まれる経路で熱媒体を循環可能とし、前記除霜工程に先立つ予熱工程として、除霜用制御弁を閉止すると共にバイパス用管路の制御弁を開放した状態で、ポンプ及びヒータを作動させ、除霜用管路部で除霜用の熱媒体をヒータで加熱しつつタンク及びバイパス用管路を通じて循環させて、熱媒体の昇温のみ実行するものである。   Further, in the heating tower defrosting method according to the present invention, if necessary, the defrosting pipeline section is located at a pipeline position near the heat medium inlet of the heat exchanger and a pipe line position near the heat medium outlet. In addition, for each pipeline position on the side away from the defrosting control valve with respect to the heat exchanger, each pipeline location has a bypass pipeline that short-circuits the pipeline locations and opens and closes the bypass pipeline It has a control valve so that the heat medium can be circulated through the path including the heater and tank via the bypass pipe, and the defrost control valve is closed and bypassed as a preheating process prior to the defrost process. With the control valve of the pipe line open, the pump and the heater are operated, and the heating medium for defrosting is circulated through the tank and the bypass pipe line while being heated by the heater in the defrosting line part. Only the temperature of the medium is increased.

このように本発明によれば、除霜用管路部における熱交換器への熱媒体出入口近くで除霜用制御弁よりも熱交換器から離れた管路位置間に、バイパス用管路を有すると共に、このバイパス用管路中の制御弁でバイパス用管路を開閉可能とし、予熱工程として、除霜用管路部において除霜用制御弁を閉じ、バイパス用管路の制御弁を開放し、タンクに熱媒体を流入出させられるようにした上で、ポンプ及びヒータを作動させて、タンクの熱媒体を熱交換器に通さずにバイパス用管路に導いて、除霜用管路部で循環させる間に、熱媒体がヒータで加熱されて昇温し、除霜に適した温度に到達できることにより、熱交換器に熱媒体を通さず除霜を行わない間に、タンク内の除霜用の熱媒体を加熱してあらかじめ十分高い温度としてから、除霜用管路部を熱交換器に連通させて、高い温度の熱媒体を熱交換器に流通させられることとなり、事前に温度を高くした熱媒体を熱交換器に流通させて、除霜を効率よく実行でき、除霜時間の短縮と、除霜能力増大による熱交換器閉塞の危険性低減が図れる。また、タンクの熱媒体がバイパス用管路を通り、熱交換器を通らない分、熱損失を抑えて無理なく熱媒体温度を高めることができ、より高温の熱媒体を効率よく得て後の除霜工程で有効活用でき、除霜工程を複数回繰り返し実行する場合における除霜の効率を全体的に向上させられる。   As described above, according to the present invention, the bypass pipe line is provided between the pipe line positions near the heat medium inlet / outlet to the heat exchanger in the defrost pipe part and farther from the heat exchanger than the defrost control valve. In addition, the bypass conduit can be opened and closed by the control valve in the bypass conduit, and as a preheating process, the defrost control valve is closed in the defrost conduit and the bypass conduit control valve is opened. Then, after allowing the heat medium to flow into and out of the tank, the pump and the heater are operated, and the heat medium in the tank is guided to the bypass line without passing through the heat exchanger, and the defrost line While being circulated in the unit, the heat medium is heated by the heater to increase the temperature and reach a temperature suitable for defrosting, so that the heat medium in the tank is not defrosted without passing the heat medium through the heat exchanger. After heating the defrosting heat medium to a sufficiently high temperature in advance, the defrosting conduit , The high-temperature heat medium can be circulated through the heat exchanger, and the heat medium whose temperature has been increased in advance can be circulated through the heat exchanger to efficiently perform defrosting. It is possible to shorten the defrosting time and reduce the risk of blockage of the heat exchanger by increasing the defrosting capacity. In addition, because the heat medium in the tank does not pass through the bypass conduit and does not pass through the heat exchanger, the heat medium temperature can be increased without difficulty by suppressing heat loss, and a higher temperature heat medium can be obtained efficiently. It can be effectively used in the defrosting process, and the efficiency of defrosting when the defrosting process is repeatedly executed a plurality of times can be improved as a whole.

また、本発明に係る加熱塔の除霜方法は必要に応じて、前記循環管路に、複数の熱交換器が並列に接続され、各熱交換器ごとに循環制御弁の開閉で、循環管路の熱媒体を熱交換器に流通させる状態と流通させない状態とを切替え可能とし、且つ、共通の一つの除霜用管路部に、複数の熱交換器が、それぞれ除霜用制御弁を介在させつつ並列に接続され、除霜用の熱媒体を熱交換器に択一的に流通可能とし、各熱交換器ごとに、循環管路の熱媒体を熱交換器に流通させない待機状態の期間を、期間が互いに重ならないように設定し、当該待機状態の期間に、前記予熱工程を実行し、所定の一熱交換器の待機状態の期間が終了して、循環管路の熱媒体を熱交換器に流通させて熱交換させる運転状態に移行すると、他の熱交換器が除霜工程を開始し、前記所定の一熱交換器の待機状態の期間と重なる予熱工程で温度を高めた除霜用熱媒体を利用しつつ除霜を実行し、除霜工程の終了後、前記他の熱交換器が待機状態に移行すると共に、並行して予熱工程が実行され、以降、前記各工程が繰り返されて、各熱交換器の除霜工程が熱交換器ごとに時間をずらしつつ、それぞれ直前の予熱工程で温度を高められた除霜用熱媒体により実行されるものである。   In addition, in the heating tower defrosting method according to the present invention, a plurality of heat exchangers are connected in parallel to the circulation pipe as necessary, and a circulation pipe is opened and closed for each heat exchanger. It is possible to switch between a state where the heat medium of the passage is circulated to the heat exchanger and a state where it is not circulated, and a plurality of heat exchangers each have a defrosting control valve in one common defrosting conduit section. It is connected in parallel while being interposed, and the heat medium for defrosting can be selectively distributed to the heat exchanger, and for each heat exchanger, the heat medium in the circulation line is not allowed to flow to the heat exchanger. The period is set so that the periods do not overlap each other, the preheating step is executed during the standby state, the standby period of the predetermined heat exchanger is completed, and the heat medium in the circulation line is removed. When the operation state is changed to the heat exchange through the heat exchanger, the other heat exchanger starts the defrosting process. The defrosting is performed while using the defrosting heat medium whose temperature is increased in the preheating process that overlaps the standby period of the predetermined one heat exchanger, and after the defrosting process is finished, the other heat exchanger is While shifting to the standby state, the preheating step is executed in parallel, and thereafter, the respective steps are repeated, and the defrosting step of each heat exchanger shifts the time for each heat exchanger, each immediately preceding preheating step. This is performed by the heat medium for defrosting whose temperature is increased in (1).

このように本発明によれば、加熱塔の循環管路に複数の熱交換器が接続される場合で、これら各熱交換器が、共通の一つの除霜用管路部を用いて熱交換器に対し択一的に除霜実行可能とされると共に、熱媒体を熱交換器に流通させない待機状態が、その期間を各熱交換器で互いに重ならないようにして各々設定され、この待機状態の期間に予熱工程を実行して、複数の熱交換器に対する除霜が、所定の一熱交換器が待機状態から循環管路の熱媒体を熱交換器に流通させる通常の運転状態に移行すると、この一熱交換器の待機状態の期間と重なる予熱工程で温められた除霜用熱媒体を利用して、他の熱交換器が除霜工程を実行し、次いでこの除霜工程を終えた他の熱交換器が待機状態に移行し、並行して新たな予熱工程が実行される、という一連の工程の繰り返しで実行され、熱交換器ごとに時間をずらしつつ、直前の予熱工程を経た除霜用熱媒体を用いて除霜がそれぞれ実行されることにより、ある熱交換器が待機状態にある間に、タンク内の除霜用の熱媒体を加熱してあらかじめ十分高い温度としてから、次の所定の熱交換器の除霜工程で、高い温度の熱媒体を熱交換器に流通させられ、除霜を効率よく実行でき、除霜時間の短縮と、除霜能力増大による熱交換器閉塞の危険性低減が図れる。また、予熱工程ではタンクの熱媒体が熱交換器を通らない分、熱損失を抑えて無理なく熱媒体温度を高めることができ、より高温の熱媒体を効率よく得て、後の除霜工程で有効活用でき、複数の熱交換器における除霜の効率を全体的に向上させられる。   Thus, according to the present invention, in the case where a plurality of heat exchangers are connected to the circulation line of the heating tower, each of these heat exchangers exchanges heat using one common defrosting line part. The standby state in which the defrosting can be performed alternatively to the heat exchanger and the heat medium is not circulated to the heat exchanger is set so that the period does not overlap each other in the heat exchanger. When the preheating process is performed during the period of time and the defrosting for the plurality of heat exchangers shifts from a standby state to a normal operation state in which the heat medium in the circulation line is circulated to the heat exchanger from the standby state. Using the defrosting heat medium warmed in the preheating process that overlaps the standby state period of this one heat exchanger, another heat exchanger performs the defrosting process, and then finishes this defrosting process. The other heat exchanger goes to the standby state and a new preheating process is executed in parallel. A heat exchanger is put on standby by performing defrosting using the heat medium for defrosting that has undergone the immediately preceding preheating process while shifting the time for each heat exchanger and performing the defrosting process. While the defrosting heat medium in the tank is heated to a sufficiently high temperature in advance, the high temperature heat medium can be circulated through the heat exchanger in the next predetermined defrosting process of the heat exchanger. Therefore, the defrosting can be performed efficiently, the defrosting time can be shortened, and the risk of blockage of the heat exchanger due to the increased defrosting capability can be reduced. Also, in the preheating process, the heat medium in the tank does not pass through the heat exchanger, so heat loss can be suppressed and the heat medium temperature can be increased without difficulty, and a higher temperature heat medium can be obtained efficiently, and the defrosting process later Can be effectively utilized, and the efficiency of defrosting in a plurality of heat exchangers can be improved as a whole.

さらに、予熱工程で温めた熱媒体をタンクに貯留し、次の新たな熱交換器への除霜実行の際に使用するようにして、この除霜の際にヒータでの熱媒体の加熱を効率化でき、各熱交換器の除霜ごとの、熱媒体加熱のためのヒータの熱発生量を抑えられ、ヒータ使用に係るエネルギー消費を抑制できる。   Furthermore, the heat medium warmed in the preheating process is stored in a tank and used in the next defrosting execution to a new heat exchanger, and the heating medium is heated by the heater during this defrosting. Efficiency can be improved, the amount of heat generated by the heater for heating the heating medium for each defrosting of each heat exchanger can be suppressed, and energy consumption associated with the use of the heater can be suppressed.

本発明の第1の実施形態に係る加熱塔の概略構成説明図である。It is schematic structure explanatory drawing of the heating tower which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る加熱塔のブロック図である。It is a block diagram of the heating tower which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る加熱塔におけるタンクの一部切欠正面図及び左側面図である。It is the partially notched front view and left view of the tank in the heating tower which concern on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る加熱塔における通常運転状態の熱媒体流通状態説明図である。It is heat medium distribution state explanatory drawing of the normal operation state in the heating tower which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る加熱塔における除霜工程内の第一の熱媒体入替工程説明図である。It is explanatory drawing of the 1st heat-medium replacement | exchange process in the defrost process in the heating tower which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る加熱塔における除霜工程内の熱媒体循環工程説明図である。It is heat medium circulation process explanatory drawing in the defrost process in the heating tower which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る加熱塔における除霜工程内の第二の熱媒体入替工程説明図である。It is explanatory drawing of the 2nd heat-medium replacement | exchange process in the defrost process in the heating tower which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔における通常運転状態の熱媒体流通状態説明図である。It is heat medium distribution state explanatory drawing of the normal operation state in the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔のブロック図である。It is a block diagram of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔における除霜工程での各部作動の繰返しサイクル説明図である。It is a repetition cycle explanatory drawing of each part operation | movement in the defrost process in the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔における第三の熱交換器の待機状態説明図である。It is standby state explanatory drawing of the 3rd heat exchanger in the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔における第三の熱交換器の待機状態に伴う予熱工程説明図である。It is a preheating process explanatory drawing accompanying the standby state of the 3rd heat exchanger in the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第一の熱交換器における除霜工程内の第一の熱媒体入替工程説明図である。It is a 1st heat-medium replacement | exchange process explanatory drawing in the defrost process in the 1st heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第一の熱交換器における除霜工程内の熱媒体循環工程説明図である。It is heat medium circulation process explanatory drawing in the defrost process in the 1st heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第一の熱交換器における除霜工程内の第二の熱媒体入替工程説明図である。It is explanatory drawing of the 2nd heat-medium replacement | exchange process in the defrost process in the 1st heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔における第一の熱交換器の待機状態に伴う予熱工程説明図である。It is a preheating process explanatory drawing accompanying the standby state of the 1st heat exchanger in the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第二の熱交換器における除霜工程内の第一の熱媒体入替工程説明図である。It is a 1st heat carrier exchange process explanatory drawing in the defrost process in the 2nd heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第二の熱交換器における除霜工程内の熱媒体循環工程説明図である。It is heat medium circulation process explanatory drawing in the defrost process in the 2nd heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第二の熱交換器における除霜工程内の第二の熱媒体入替工程説明図である。It is explanatory drawing of the 2nd heat-medium replacement | exchange process in the defrost process in the 2nd heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔における第二の熱交換器の待機状態に伴う予熱工程説明図である。It is a preheating process explanatory drawing accompanying the standby state of the 2nd heat exchanger in the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第三の熱交換器における除霜工程内の第一の熱媒体入替工程説明図である。It is a 1st heat carrier exchange process explanatory drawing in the defrost process in the 3rd heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第三の熱交換器における除霜工程内の熱媒体循環工程説明図である。It is heat medium circulation process explanatory drawing in the defrost process in the 3rd heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る加熱塔の第三の熱交換器における除霜工程内の第二の熱媒体入替工程説明図である。It is explanatory drawing of the 2nd heat-medium replacement | exchange process in the defrost process in the 3rd heat exchanger of the heating tower which concerns on the 2nd Embodiment of this invention.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る加熱塔の除霜方法を前記図1ないし図7に基づいて説明する。本実施形態では、蒸発器である熱利用装置との間で循環管路を通じて熱媒体を循環させ、循環管路に接続された熱交換器で熱媒体を外気と熱交換させて昇温させる密閉式の加熱塔の例について説明する。
(First embodiment of the present invention)
Hereinafter, a defrosting method for a heating tower according to a first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a heat medium is circulated through a circulation line with a heat utilization device that is an evaporator, and the heat medium is heat-exchanged with the outside air in a heat exchanger connected to the circulation line to be heated. An example of the heating tower of the formula will be described.

前記各図に示すように、本実施形態に係る加熱塔1は、循環管路60から熱交換器10内部に流通させた熱媒体をファン11で誘引した外気と熱交換させて昇温させる密閉式加熱塔の基本的構成と共に、循環管路60における熱交換器10入口部分上流側近傍に配設され、管路を開閉して熱交換器10への熱媒体の流入と非流入とを切替える循環制御弁12と、熱交換器10における熱媒体入口近くの所定箇所及び熱媒体出口近くの所定箇所にそれぞれ接続され、除霜用の熱媒体を熱交換器10に流通可能とする除霜用管路部13と、この除霜用管路部13における熱交換器10との接続位置近傍にそれぞれ配設され、除霜用管路部13と熱交換器10間での、除霜用の熱媒体の流通状態と非流通状態とを切替え可能とする除霜用制御弁14と、除霜用管路部13に配設されて熱媒体の流れを生じさせるポンプ15と、除霜用管路部13に配設されて熱媒体を加熱するヒータ16と、除霜用管路部13に配設されて熱媒体を貯留するタンク17と、熱交換器10への着霜状態を検知するセンサ18と、センサ18の着霜検出に対応してポンプ15やヒータ16の作動を制御する制御部19とを備える構成である。   As shown in the drawings, the heating tower 1 according to the present embodiment is a hermetically sealed heating medium that heats the heat medium circulated from the circulation pipe 60 to the inside of the heat exchanger 10 with the outside air attracted by the fan 11 to raise the temperature. Along with the basic structure of the heating tower, the circulation line 60 is disposed in the vicinity of the upstream side of the inlet portion of the heat exchanger 10 and opens and closes the line to switch between inflow and non-inflow of the heat medium into the heat exchanger 10. For defrosting, which is connected to the circulation control valve 12 and a predetermined location near the heat medium inlet and a predetermined location near the heat medium outlet in the heat exchanger 10 so that the heat medium for defrosting can be distributed to the heat exchanger 10. It is each arrange | positioned in the connection part vicinity of the heat exchanger 10 in the pipe line part 13 and this defrosting pipe line part 13, and between the defrosting pipe line part 13 and the heat exchanger 10 for defrosting Defrosting control valve 14 that enables switching between a circulating state and a non-circulating state of the heat medium. , A pump 15 disposed in the defrosting conduit 13 to generate a flow of the heat medium, a heater 16 disposed in the defrosting conduit 13 to heat the heat medium, and a defrosting conduit The tank 17 that is disposed in the unit 13 and stores the heat medium, the sensor 18 that detects the frosting state on the heat exchanger 10, and the operation of the pump 15 and the heater 16 corresponding to the detection of frosting of the sensor 18 It is the structure provided with the control part 19 to control.

前記加熱塔1は、循環管路60と接続されて設置され、熱利用装置70との間で熱媒体を循環させ、熱利用装置70、例えば、チラー(冷凍機)や空気調和機器等、において熱を放出し、温度を下げた熱媒体を、循環管路60を通じて受入れ、塔内の熱交換器10で昇温させた後、再び循環管路60を通じて熱利用装置70へ向わせる過程を繰返す装置であり、その基本的構成は公知の密閉式加熱塔同様のものであり、詳細な説明を省略する。   The heating tower 1 is connected to the circulation pipe 60 and circulates a heat medium between the heat utilization device 70 and the heat utilization device 70, for example, a chiller (refrigerator), an air conditioner, or the like. The process of releasing the heat and lowering the temperature of the heat medium through the circulation line 60, raising the temperature in the heat exchanger 10 in the tower, and then directing the heat medium again to the heat utilization device 70 through the circulation line 60. This is a repetitive apparatus, and its basic configuration is the same as that of a known hermetic heating tower, and detailed description thereof is omitted.

なお、一般に加熱塔は、ファンで外気を誘引し、外気と熱媒体とを熱交換器で熱交換させる、熱交換の単位構成部分(セル)を一又は複数組有し、セルごとに循環管路と接続されて熱媒体を流通可能とされる。例えば、地域冷暖房に使用されるような加熱塔は、三組程度のセルを1グループとして、複数グループ組合わせた大型のものとされることが多い。   In general, a heating tower has one or a plurality of heat exchange unit components (cells) that draw outside air using a fan and exchange heat between the outside air and a heat medium using a heat exchanger, and each cell has a circulation pipe. It is connected to the road and can circulate the heat medium. For example, a heating tower used for district cooling and heating is often a large-sized tower in which a plurality of groups are combined with about three sets of cells as one group.

一セルに配設される部品としての熱交換器のユニットは一つに限らず、複数が直列又は並列に接続されて配設される場合も有りうるが、除霜に係る各構成の付加にあたっては、一セル単位で対応すればよいことから、本発明においては、一セルに配設される複数の熱交換器のユニットは、これらを一まとめとした一つの熱交換器として取り扱うものとする。本実施形態における加熱塔1は、前記単位構成部分(セル)を唯一有し、この一セルをなす唯一の熱交換器10に循環管路60や除霜用管路部13が接続される構成であるが、この熱交換器10は、部品としての熱交換器のユニット一つから構成される場合と、複数の熱交換器ユニット群からなる場合の両方を含み、いずれの場合も一つの熱交換器10と見なす。   The number of units of the heat exchanger as a component arranged in one cell is not limited to one, and a plurality of units may be arranged connected in series or in parallel. In the present invention, the units of a plurality of heat exchangers disposed in one cell are handled as a single heat exchanger that is a group of these. . The heating tower 1 in this embodiment has the said unit component part (cell) uniquely, and the structure by which the circulation line 60 and the defrosting line part 13 are connected to the only heat exchanger 10 which makes this 1 cell. However, the heat exchanger 10 includes both a case where the heat exchanger 10 is composed of one unit of heat exchangers and a case where the heat exchanger 10 is composed of a plurality of heat exchanger unit groups. Considered the exchanger 10.

前記熱交換器10は、フィンコイル型とされ、コイルの内部に熱媒体を流通させて外気との間で熱交換を行わせる公知の構成であり、詳細な説明を省略する。この熱交換器10に対して、循環管路60の熱交換器入口部分上流側近傍に配設される循環制御弁12が、制御部19の制御に基づいて、循環管路60から熱交換器10への熱媒体の流入と非流入とを切替える仕組みである。   The heat exchanger 10 is a fin coil type and has a known configuration in which a heat medium is circulated inside the coil to exchange heat with the outside air, and detailed description thereof is omitted. With respect to the heat exchanger 10, a circulation control valve 12 disposed in the vicinity of the upstream side of the heat exchanger inlet portion of the circulation line 60 is connected from the circulation line 60 to the heat exchanger based on the control of the control unit 19. 10 is a mechanism for switching between the inflow and non-inflow of the heat medium to 10.

また、前記ファン11は、その下方で熱交換器10に隣接する外部から隔離された空間部分を介して、誘引通風で各熱交換器10に横方向から外気を通し、熱交換器10を横に通過した排気を上方へ吹出して排出する公知のものであり、詳細な説明を省略する。   In addition, the fan 11 passes outside air from the lateral direction to each heat exchanger 10 by an induced draft through a space portion that is separated from the outside and adjacent to the heat exchanger 10 below. The exhaust gas that passed through is blown upward and discharged, and detailed description thereof is omitted.

また、加熱塔10の各熱交換器10近傍には、熱交換器10における着霜を検知するセンサ18が配設され、このセンサ18の検知結果に基づいた制御部19による制御で、各制御弁やポンプ15やヒータ16を作動させる仕組みである。センサ18としては着霜に伴う熱交換器10の入口側と出口側の差圧の変化を取得して着霜を検知するものなど、公知の着霜検知可能な各種センサを用いることができる。   Further, a sensor 18 for detecting frost formation in the heat exchanger 10 is disposed in the vicinity of each heat exchanger 10 of the heating tower 10, and each control is controlled by the control unit 19 based on the detection result of the sensor 18. This is a mechanism for operating the valve, pump 15 and heater 16. As the sensor 18, various known sensors capable of detecting frost formation, such as a sensor that detects a change in differential pressure between the inlet side and the outlet side of the heat exchanger 10 accompanying frost formation and detects frost formation, can be used.

前記除霜用管路部13は、熱交換器10における熱媒体入口近くの所定箇所、及び熱媒体出口近くの所定箇所に、それぞれ除霜用制御弁14を介して接続される管路であり、管路中に前記ポンプ15、ヒータ16、及びタンク17を有し、除霜用の熱媒体を熱交換器10に流通可能とするものである。   The defrosting pipe line section 13 is a pipe line connected to a predetermined location near the heat medium inlet and a predetermined position near the heat medium outlet in the heat exchanger 10 via the defrost control valve 14, respectively. In addition, the pump 15, the heater 16, and the tank 17 are provided in the pipeline, and the heat medium for defrosting can be circulated to the heat exchanger 10.

この除霜用管路部13の熱交換器10との接続位置近傍には、制御部19により開閉制御される除霜用制御弁14が設けられており、この除霜用制御弁14を開閉させることで、除霜用管路部13と熱交換器10間での、除霜用の熱媒体の流通状態と非流通状態とを切替えられる。   A defrosting control valve 14 that is controlled to open and close by the control unit 19 is provided in the vicinity of the connection position of the defrosting pipe line part 13 to the heat exchanger 10. The defrosting control valve 14 is opened and closed. By doing it, the distribution | circulation state and non-circulation state of the heat medium for a defrost between the defrosting pipe line part 13 and the heat exchanger 10 are switched.

そして、除霜用管路部13は、循環制御弁12による循環管路60閉止時に対応させて除霜用制御弁14が開放状態とされるのに伴い、熱交換器10の熱媒体入口と熱媒体出口とにそれぞれ連通して、除霜用熱媒体を熱交換器10内に流通させ、除霜用熱媒体を循環させられる仕組みである。   The defrosting pipe line section 13 is connected to the heat medium inlet of the heat exchanger 10 as the defrosting control valve 14 is opened in response to the circulation control valve 12 being closed by the circulation control valve 12. The defrosting heat medium is circulated in the heat exchanger 10 to communicate with the heat medium outlet, and the defrosting heat medium is circulated.

この除霜用管路部13における、ポンプ15と接続されてタンク17から熱媒体を吸出す側の管路部分、及び、タンク17に熱媒体を押込む側の管路部分と、タンク17における上下の各流入出口との間には、それぞれ前記各管路部分とタンク17における上下の各流入出口とを連通可能とする、四つの接続切替用管路13a、13b、13c、13dが配設される。   In this defrosting pipe line section 13, the pipe line part connected to the pump 15 and sucking out the heat medium from the tank 17, the pipe line part pushing the heat medium into the tank 17, and the tank 17 Four connection switching pipes 13a, 13b, 13c, and 13d are provided between the upper and lower inlets and outlets so that the pipe parts can communicate with the upper and lower inlets and outlets in the tank 17, respectively. Is done.

また、これら接続切替用管路13a、13b、13c、13dには、タンク上部を熱媒体流出側とすると共にタンク下部を熱媒体流入側とする第一の管路接続状態と、タンク上部を熱媒体流入側とすると共にタンク下部を熱媒体流出側とする第二の管路接続状態とを切替可能に開閉制御される、複数の接続切替用制御弁13e、13f、13g、13hが、それぞれ配設される。   The connection switching pipes 13a, 13b, 13c, and 13d include a first pipe connection state in which the upper part of the tank is a heat medium outflow side and the lower part of the tank is a heat medium inflow side, and the upper part of the tank is heated. A plurality of connection switching control valves 13e, 13f, 13g, and 13h, which are open / close controlled so as to be switchable between the medium inlet side and the second pipe connection state where the tank lower part is the heat medium outlet side, are arranged respectively. Established.

接続切替用制御弁13e、13f、13g、13hの切替により、具体的には、接続切替用管路13b、13dの各接続切替用制御弁13f、13hを閉止する一方、接続切替用管路13a、13cの各接続切替用制御弁13e、13gを開放して、熱媒体をタンク上部から取り出しつつタンク下部からタンク内に流入させる状態(第一の管路接続状態;図5参照)と、これとは逆に、切替用制御弁13e、13gを閉止する一方、切替用制御弁13f、13hを開放して、熱媒体をタンク下部から取り出しつつタンク上部からタンク内に流入させる状態(第二の管路接続状態;図7参照)とを切替可能としている。   By switching the connection switching control valves 13e, 13f, 13g, 13h, specifically, the connection switching control valves 13f, 13h of the connection switching pipelines 13b, 13d are closed, while the connection switching pipeline 13a is closed. , 13c, the connection switching control valves 13e and 13g are opened, and the heat medium is taken out from the upper part of the tank while flowing into the tank from the lower part of the tank (first pipe connection state; see FIG. 5). On the contrary, the switching control valves 13e and 13g are closed, while the switching control valves 13f and 13h are opened, and the heat medium is taken out from the lower part of the tank and flows into the tank from the upper part of the tank (second state). The pipe connection state (see FIG. 7) can be switched.

この他、除霜用管路部13における、タンク17の前後の管路部分間にタンク17と並行する形でそれぞれ接続することとなる接続切替用管路13b、13dは、接続切替用制御弁13f、13hの開放状態で、熱媒体をタンク17に通さず流通させる、タンク迂回管路として用いることができる。また、接続切替用管路13b、13dにそれぞれ配置される接続切替用制御弁13f、13hは、タンク迂回管路を開閉する迂回制御弁の役割を果たすこととなる。   In addition, in the defrosting pipe line section 13, connection switching pipe lines 13 b and 13 d that are connected in parallel with the tank 17 between the pipe line parts before and after the tank 17 are connected switching control valves. In the open state of 13f and 13h, it can be used as a tank bypass pipe that allows the heat medium to flow without passing through the tank 17. Further, the connection switching control valves 13f and 13h arranged in the connection switching pipes 13b and 13d respectively serve as bypass control valves for opening and closing the tank bypass pipe.

詳細には、接続切替用管路13b、13cの各接続切替用制御弁13f、13gを開放すると共に、接続切替用管路13a、13dの各接続切替用制御弁13e、13hを閉止する状態とするか、接続切替用管路13a、13dの各接続切替用制御弁13e、13hを開放すると共に、接続切替用管路13b、13cの各接続切替用制御弁13f、13gを閉止する状態とし、合わせてタンク側の流入出口を閉止することで、熱媒体をタンク迂回管路としての接続切替用管路13d、又は接続切替用管路13bに流通させ、タンク17に通さない状態を得ることができる(図6参照)。   Specifically, the connection switching control valves 13f and 13g of the connection switching pipelines 13b and 13c are opened, and the connection switching control valves 13e and 13h of the connection switching pipelines 13a and 13d are closed. Alternatively, the connection switching control valves 13e and 13h of the connection switching pipelines 13a and 13d are opened, and the connection switching control valves 13f and 13g of the connection switching pipelines 13b and 13c are closed. At the same time, by closing the inlet / outlet on the tank side, the heat medium can be circulated through the connection switching conduit 13d or the connection switching conduit 13b as a tank bypass conduit, and the state where it does not pass through the tank 17 can be obtained. Yes (see FIG. 6).

前記ポンプ15は、除霜用管路部13に配設され、作動状態で除霜用の熱媒体を加圧して、除霜用管路部13が熱交換器10及びタンク17に通じる状態で、管路内で熱媒体がヒータ16を経由して熱交換器10に向かい、さらに熱交換器10からタンク17に向かい、タンク17から最終的にポンプ15に戻る所定方向に熱媒体が流れるようにするものである。
前記ヒータ16は、熱媒体の加熱手段として除霜用管路部13に配設され、ポンプ15を出た後の熱媒体を加熱するものである。
The pump 15 is disposed in the defrosting conduit section 13, pressurizes the defrosting heat medium in an operating state, and the defrosting conduit section 13 communicates with the heat exchanger 10 and the tank 17. In the pipeline, the heat medium flows to the heat exchanger 10 via the heater 16, further flows from the heat exchanger 10 to the tank 17, and finally returns from the tank 17 to the pump 15 in a predetermined direction. It is to make.
The heater 16 is disposed in the defrosting conduit 13 as a heating means for heating the heating medium, and heats the heating medium after exiting the pump 15.

前記タンク17は、除霜用管路部13に配設され、熱交換器10の熱媒体容量と同じ容量とされる内外断熱構造の略箱状体として形成され、熱媒体の流入出口17a、17bを上部と下部にそれぞれ設けられ、熱媒体を流入出可能に貯留する構成である。なお、このタンク17の流入出口17a、17bには、これら流入出口を開閉する流入出制御弁が配設されるようにすることもできる。   The tank 17 is disposed in the defrosting pipe line portion 13 and is formed as a substantially box-shaped body having an inner and outer heat insulation structure having the same capacity as the heat medium capacity of the heat exchanger 10, and the heat medium inflow / outlet port 17a, 17b is provided in each of the upper part and the lower part, and the heat medium is stored so as to be able to flow in and out. The inflow / outflow ports 17a and 17b of the tank 17 may be provided with inflow / outlet control valves for opening and closing the inflow / outlet ports.

また、タンク17は、タンクにおける熱媒体の流入出に際し、流入量と流出量を等しくされると共に、その内部を、流入出に伴って移動する熱媒体が、温度成層をなす状態を維持したまま上方又は下方に一様に移動可能な構造とされる。具体的には、タンクを幅が細く縦長の形状とすることで、低温の熱媒体と高温の熱媒体との接触面積を小さくすると共に、タンク内部に、流入出口17a、17bと連通する分散管17cを設けて、熱媒体の流入出の際に熱媒体の流れを制御し、低温の熱媒体と高温の熱媒体とが混ざりにくくしている。分散管17cは、熱媒体をタンク内空間に出し入れする孔17dを複数並べて穿設される構成であり、この孔17dを分散管17cのタンク中心に近い部位ではより小さく、タンク外面に近い部位ではより大きくすることで、分散管17cの各孔17dから出る熱媒体が噴流となるのを防止し、タンク内の熱媒体流れを穏やかなものとして、温度の異なる熱媒体同士が混ざりにくい状態を得ている。   In addition, the inflow and outflow amounts of the tank 17 are equalized when the heat medium flows in and out of the tank, and the heat medium that moves along with the inflow and outflow maintains a temperature stratified state. The structure can move uniformly upward or downward. Specifically, by making the tank narrow and vertically long, the contact area between the low-temperature heat medium and the high-temperature heat medium is reduced, and the dispersion pipe that communicates with the inflow / outflow ports 17a and 17b inside the tank. 17c is provided to control the flow of the heat medium when the heat medium flows in and out so that the low-temperature heat medium and the high-temperature heat medium are hardly mixed. The dispersion pipe 17c has a structure in which a plurality of holes 17d through which the heat medium is taken in and out of the tank internal space are formed side by side, and the holes 17d are smaller in the part near the tank center of the dispersion pipe 17c and in the part near the tank outer surface. By making it larger, the heat medium exiting from each hole 17d of the dispersion pipe 17c is prevented from becoming a jet, and the heat medium flow in the tank is made gentle so that the heat mediums having different temperatures are not easily mixed. ing.

タンク17の流入出口近傍には、制御部19に接続された温度センサ17eが設けられ、温度を検出可能とすることで、タンク内の熱媒体の入れ替わりが完了した際にあらわれる、センサ位置での熱媒体の温度変化から、この熱媒体の入れ替わり完了状態を制御部19で把握できる仕組みである。   A temperature sensor 17e connected to the control unit 19 is provided in the vicinity of the inflow / outlet of the tank 17 so that the temperature can be detected, which appears when the replacement of the heat medium in the tank is completed. This is a mechanism in which the control unit 19 can grasp the completion of the replacement of the heat medium from the temperature change of the heat medium.

前記制御部19は、前記各制御弁の開閉制御、並びに、ポンプ15及びヒータ16の作動制御を行うものである。制御部19は、センサ18で取得した熱交換器10の状況が除霜に係る所定の条件を満たすと、除霜制御状態に移行して、循環管路60の循環制御弁12を閉止して循環管路60を通じた熱媒体の熱交換器10への流通を停止させ、且つ除霜用管路部13の除霜用制御弁14を開放して除霜用熱媒体を熱交換器10に対し流通可能とする(図5、図6、図7参照)。   The control unit 19 performs opening / closing control of the control valves and operation control of the pump 15 and the heater 16. When the condition of the heat exchanger 10 acquired by the sensor 18 satisfies a predetermined condition related to defrosting, the control unit 19 shifts to the defrosting control state and closes the circulation control valve 12 of the circulation line 60. The flow of the heat medium through the circulation line 60 to the heat exchanger 10 is stopped, and the defrosting control valve 14 of the defrosting line part 13 is opened to transfer the defrosting heat medium to the heat exchanger 10. It can be distributed (see FIGS. 5, 6, and 7).

その上で、制御部19は、迂回制御弁としての接続切替用制御弁13e、13f、13g、13hの開閉を制御して、熱媒体をタンク17に対し流入出させつつ熱交換器10と除霜用管路部13に流通させる入替用接続状態(図5、図7参照)と、熱媒体をタンク迂回管路としての接続切替用管路13b又は13dに通して、熱媒体をタンク17に流入出させずに熱交換器10と除霜用管路部13で循環流通させる除霜用接続状態(図6参照)とを、切替える制御を実行する。   Then, the control unit 19 controls the opening and closing of the connection switching control valves 13e, 13f, 13g, and 13h as bypass control valves, and removes the heat exchanger 10 from the heat exchanger 10 while flowing the heat medium into and out of the tank 17. The replacement connection state (see FIGS. 5 and 7) to be circulated through the frost pipe section 13, and the heat medium through the connection switching pipe line 13 b or 13 d serving as a tank bypass pipe line, the heat medium into the tank 17. Control is performed to switch between the defrosting connection state (see FIG. 6) to be circulated and circulated in the heat exchanger 10 and the defrosting conduit 13 without flowing in and out.

より詳細には、制御部19は、除霜用管路部13の除霜用熱媒体を熱交換器10に対し流通可能とした上で、接続切替用制御弁13e、13gを開放、接続切替用制御弁13f、13hを閉止して入替用接続状態とし、熱媒体をタンク17に対し流入出させつつ熱交換器10に流通させる。この場合、接続切替用管路13a、13cが熱媒体を流通させるようにされて、タンク上部の流入出口17aを熱媒体流出側とすると共に、タンク下部の流入出口17bを熱媒体流入側とする、第一の管路接続状態(図5参照)となる。   More specifically, the control unit 19 opens the connection switching control valves 13e and 13g after switching the defrosting heat medium of the defrosting conduit portion 13 to the heat exchanger 10, and switching the connection. The control valves 13f and 13h for use are closed to make a connection state for replacement, and the heat medium flows through the heat exchanger 10 while flowing into and out of the tank 17. In this case, the connection switching pipes 13a and 13c are configured to circulate the heat medium so that the inflow / outflow port 17a at the upper part of the tank is the heat medium outflow side and the inflow / outlet port 17b at the lower part of the tank is the heat medium inflow side The first pipe connection state (see FIG. 5) is obtained.

この後、実際に除霜を行う場合には、接続切替用制御弁13f、13gを開放、接続切替用制御弁13e、13hを閉止して除霜用接続状態とし、熱媒体を接続切替用管路13cと、タンク迂回管路としての接続切替用管路13bにそれぞれ通して、熱媒体をタンク17に流入出させずに熱交換器10と除霜用管路部13で循環流通させる(図6参照)。   Thereafter, when the defrosting is actually performed, the connection switching control valves 13f and 13g are opened, the connection switching control valves 13e and 13h are closed to the defrosting connection state, and the heat medium is connected to the connection switching pipe. The heat medium is circulated and circulated in the heat exchanger 10 and the defrosting conduit section 13 without flowing into and out of the tank 17 through the passage 13c and the connection switching conduit 13b as a tank bypass conduit (see FIG. 6).

さらに、除霜を終えた後は、制御部19があらためて接続切替用制御弁13f、13hを開放、接続切替用制御弁13e、13gを閉止して入替用接続状態とし、熱媒体をタンク17に対し流入出させつつ熱交換器10に流通させる。この場合、接続切替用管路13b、13dが熱媒体を流通させるようにされて、タンク上部の流入出口17aを熱媒体流入側とすると共に、タンク下部の流入出口17bを熱媒体流出側とする、第二の管路接続状態(図7参照)となる。   Further, after the defrosting is completed, the control unit 19 reopens the connection switching control valves 13f and 13h, closes the connection switching control valves 13e and 13g, and switches to the replacement connection state. On the other hand, it is circulated through the heat exchanger 10 while flowing in and out. In this case, the connection switching pipes 13b and 13d are made to circulate the heat medium so that the inflow / outflow port 17a at the upper part of the tank is the inflow side of the heat medium and the inflow / outlet port 17b of the lower part of the tank is the outflow side of the heat medium. Then, the second pipe connection state is established (see FIG. 7).

そして、最終的には、制御部19は、除霜用管路部13の除霜用制御弁14を閉止すると共にポンプ15の作動を停止させて、除霜用熱媒体の熱交換器10への流通を止める仕組みである。   Finally, the control unit 19 closes the defrosting control valve 14 of the defrosting conduit unit 13 and stops the operation of the pump 15 to the heat exchanger 10 for the defrosting heat medium. It is a mechanism to stop the distribution of

次に、本実施形態に係る加熱塔での除霜方法について説明する。前提として、ブライン等の熱媒体は、熱利用装置70で熱を放出し、温度を下げた後、循環管路60を通じて加熱塔1に達し、加熱塔1の熱交換器10で昇温し、再び循環管路60に戻る過程を繰返している(図4参照)。こうした加熱塔1の通常運転時、低温の熱媒体は熱交換器10で外気により加熱され、入口側より出口側で温度が高くなった状態となっている。そして、霜発生時には、熱交換器10入口側のより低温の部位から着霜し、こうした熱交換器10の着霜時には、センサ18により検出した熱交換器の状況(差圧や温度など)が変化して、除霜に係る所定の条件を満たすようになることから、制御部19は熱交換器が着霜したと判定し、それに基づいて制御部19が除霜工程を実行開始する。   Next, the defrosting method in the heating tower which concerns on this embodiment is demonstrated. As a premise, the heat medium such as brine releases heat by the heat utilization device 70, lowers the temperature, reaches the heating tower 1 through the circulation line 60, rises in temperature in the heat exchanger 10 of the heating tower 1, The process of returning to the circulation line 60 is repeated again (see FIG. 4). During normal operation of the heating tower 1, the low-temperature heat medium is heated by the outside air in the heat exchanger 10, and the temperature is higher on the outlet side than on the inlet side. When frost is generated, frost is formed from a lower temperature part on the inlet side of the heat exchanger 10, and when the heat exchanger 10 is frosted, the state of the heat exchanger (differential pressure, temperature, etc.) detected by the sensor 18 is detected. Since the predetermined condition for defrosting is changed, the control unit 19 determines that the heat exchanger has frosted, and the control unit 19 starts executing the defrosting process based on the determination.

除霜工程としては、制御部19は、最初に第一の熱媒体入替工程(図5参照)として、循環管路60における熱交換器10近傍の循環制御弁12を閉止し、熱交換器10への熱媒体の循環管路60を通じた流通を停止させ、循環管路60から加熱塔1の熱交換器10が切離された状態とする。   As the defrosting process, the control unit 19 first closes the circulation control valve 12 in the vicinity of the heat exchanger 10 in the circulation line 60 as the first heat medium replacement process (see FIG. 5). The circulation of the heat medium through the circulation pipe 60 is stopped, and the heat exchanger 10 of the heating tower 1 is disconnected from the circulation pipe 60.

同時に制御部19は、加熱塔の通常運転状態では閉じられていた除霜用管路部13の除霜用制御弁14を開放し、除霜用管路部13を熱交換器10の熱媒体入口及び出口にそれぞれ連通状態として、除霜用熱媒体を熱交換器10に対し流通可能とする。   At the same time, the control unit 19 opens the defrosting control valve 14 of the defrosting conduit 13 that was closed in the normal operation state of the heating tower, and the defrosting conduit 13 is used as the heat medium of the heat exchanger 10. The defrosting heat medium can be circulated to the heat exchanger 10 by communicating with the inlet and the outlet, respectively.

またこの時、制御部19は接続切替用制御弁13e、13gを開放、接続切替用制御弁13f、13hを閉止して、熱媒体がタンク17に流入出可能な状態(入替用接続状態)とする。そして同時に、制御部19はポンプ15及びヒータ16を作動させ、除霜用管路部13でポンプ15の作動に伴う熱媒体の流れを生じさせて、タンク17内の熱媒体をヒータ16で加熱しながら熱交換器10に流入させると共に、熱交換器10内に残っていた、より冷たい熱媒体(熱媒体温度:約−10ないし−15℃)を、除霜用管路部13を通じてタンク17に流入させる。   At this time, the control unit 19 opens the connection switching control valves 13e and 13g and closes the connection switching control valves 13f and 13h so that the heat medium can flow into and out of the tank 17 (replacement connection state). To do. At the same time, the control unit 19 operates the pump 15 and the heater 16 to cause the flow of the heat medium accompanying the operation of the pump 15 in the defrosting conduit section 13 to heat the heat medium in the tank 17 with the heater 16. While flowing into the heat exchanger 10, the cooler heat medium (heat medium temperature: about −10 to −15 ° C.) remaining in the heat exchanger 10 is passed through the defrosting conduit 13 to the tank 17. To flow into.

タンク17の前後では、前記第一の管路接続状態として、接続切替用管路13a、13cが熱媒体を流通させるようにされており、タンク上部の流入出口17aからタンク17内にあった熱媒体が流出すると共に、タンク下部の流入出口17bで、熱交換器10内にあった熱媒体がタンク17内に新たに流入する。   Before and after the tank 17, as the first pipe connection state, the connection switching pipe lines 13 a and 13 c circulate the heat medium, and the heat in the tank 17 from the inlet / outlet port 17 a at the upper part of the tank. As the medium flows out, the heat medium existing in the heat exchanger 10 newly flows into the tank 17 at the inlet / outlet 17b at the lower part of the tank.

こうして、当初は熱交換器10内にあった温度の低い熱媒体をタンク17に回収しつつ、当初タンク17内にあった、より温度の高い除霜用の熱媒体を熱交換器10に向かわせる際に、相対的に温度の高い状態にある除霜用熱媒体を、常にタンク17の上部から流出させる一方、相対的に温度の低い当初熱交換器内にあった熱媒体を、常にタンク17の下部で流入させている。   In this way, the heat medium having a low temperature originally in the heat exchanger 10 is recovered in the tank 17, and the heat medium for defrosting having a higher temperature in the tank 17 is directed to the heat exchanger 10. When degassing, the defrosting heat medium in a relatively high temperature state is always allowed to flow out from the upper portion of the tank 17, while the heat medium originally in the relatively low temperature initial heat exchanger is always in the tank. It is made to flow in at the lower part of 17.

入替工程の途中では、熱交換器10内にあった温度の低い熱媒体と、元々タンク17内にあった除霜用の熱媒体が、タンク17内に共に存在することもあるが、流入出位置の設定により、タンク17内では温度の高い熱媒体が上側に、温度の低い熱媒体が下側に位置する状態が保持され、タンク内部構造とも相まって、タンク内で熱媒体の熱対流が生じにくく、タンク内で温度の異なる熱媒体が互いに混合せず、熱媒体中での熱移動による熱の損失を抑えられ、ヒータ16に向かう熱媒体の温度が低くなるのを防止できる。よって、ヒータ16での熱媒体加熱を効率よく実行でき、熱媒体を速やかに昇温させて除霜実行時間の短縮が図れることに加え、加熱の際のヒータ16での熱発生量を小さくでき、除霜に係るエネルギー消費を抑えられる。   In the middle of the replacement process, the heat medium having a low temperature in the heat exchanger 10 and the heat medium for defrosting originally in the tank 17 may both exist in the tank 17. By setting the position, a state in which the heat medium having a high temperature is positioned on the upper side and the heat medium having a low temperature is positioned on the lower side is maintained in the tank 17. It is difficult, and heat media having different temperatures in the tank are not mixed with each other, heat loss due to heat transfer in the heat medium can be suppressed, and the temperature of the heat medium toward the heater 16 can be prevented from being lowered. Therefore, the heating medium heating in the heater 16 can be efficiently performed, the heating medium can be quickly heated to shorten the defrosting execution time, and the amount of heat generated in the heater 16 during heating can be reduced. The energy consumption related to defrosting can be suppressed.

この第一の熱媒体入替工程で、タンク17内にあった除霜用の熱媒体が熱交換器10に全て入り、熱交換器10内にあった熱媒体がタンク17に全て入り、熱媒体が入れ替わったことを温度センサ17eでの温度変化検出により取得したら、制御部19は、引き続いて熱媒体循環工程を実行する。   In this first heat medium replacement step, all the defrosting heat medium in the tank 17 enters the heat exchanger 10, and all the heat medium in the heat exchanger 10 enters the tank 17, Is acquired by detecting the temperature change by the temperature sensor 17e, the control unit 19 subsequently executes the heat medium circulation step.

この熱媒体循環工程として、制御部19は、接続切替用制御弁13f、13gを開放、接続切替用制御弁13e、13hを閉止し、管路を、熱媒体が接続切替用管路13cと、タンク迂回管路としての接続切替用管路13bをそれぞれ通り、熱媒体がタンク17に流入出しない状態(除霜用接続状態)に切り替える。これにより、除霜用の熱媒体が熱交換器10に流通しつつ、タンク17が含まれない除霜用管路部13を循環する状態が継続する(図6参照)。この状態では、ヒータで加熱され昇温した除霜用の熱媒体を熱交換器10に流入させて、熱交換器10に付着した霜を溶かして除去する除霜が進行していく。   As this heat medium circulation step, the control unit 19 opens the connection switching control valves 13f and 13g, closes the connection switching control valves 13e and 13h, and connects the heat transfer path to the connection switching pipe line 13c. The state is switched to a state in which the heat medium does not flow into and out of the tank 17 (defrosted connection state) through the connection switching conduits 13b serving as tank bypass conduits. Thereby, the state which circulates through the defrosting pipe line part 13 which does not include the tank 17 continues while the heat carrier for defrosting distribute | circulates to the heat exchanger 10 (refer FIG. 6). In this state, a defrosting heat medium heated by a heater and heated to flow into the heat exchanger 10 and defrosting by melting and removing the frost attached to the heat exchanger 10 proceeds.

この熱媒体循環工程では、除霜用の熱媒体をタンク17に通さないようにする一方、当初熱交換器10にあった温度の低い熱媒体(熱媒体温度:約−10ないし−15℃)を、タンク17に貯留したままとして、熱交換器10に流通させる熱媒体としては用いず、且つ除霜を終えて熱交換器10を出た熱媒体とも一切混合させないことから、除霜用としてヒータ16での加熱対象とする熱媒体が温度の低いものとなることを防止でき、除霜に際して、従来の循環管路流通時と同様に温度の低い熱媒体を加熱する場合に比べて、ヒータでの加熱開始時の熱媒体温度が高くなる。こうして熱媒体加熱のためにヒータ16が過剰に熱を発生させずに済む分、ヒータ16の熱発生容量を小さく抑えられ、ヒータ16の設置に係るコスト抑制が図れる。また、熱媒体加熱のためのヒータ使用を必要最小限にとどめられ、除霜の省エネルギー化が図れる。   In this heat medium circulation step, the heat medium for defrosting is not passed through the tank 17, while the heat medium having a low temperature originally in the heat exchanger 10 (heat medium temperature: about −10 to −15 ° C.) Is not stored in the tank 17 and used as a heat medium to be circulated through the heat exchanger 10 and is not mixed with any heat medium that has exited the heat exchanger 10 after defrosting. The heating medium to be heated by the heater 16 can be prevented from having a low temperature, and the heater is heated at the time of defrosting as compared with the case of heating a low-temperature heating medium as in the circulation of a conventional circulation pipe. The heating medium temperature at the start of heating at is increased. In this way, the heat generation capacity of the heater 16 can be reduced to the extent that the heater 16 does not generate excessive heat for heating the heat medium, and costs associated with the installation of the heater 16 can be reduced. In addition, the use of a heater for heating the heat medium can be kept to a minimum and energy saving for defrosting can be achieved.

以上の熱媒体循環工程における熱媒体の循環で、熱交換器10の除霜が進み、センサ18が着霜状態を検出しなくなった時、又は、熱交換器10で霜の溶けた水滴を確実に流下乾燥させるために、センサ18が着霜状態を検出しなくなった時点から所定時間(例えば、5分)経過後に、制御部19は除霜完了と判断する。そして、制御部19は第二の熱媒体入替工程(図7参照)として、接続切替用制御弁13f、13hを開放、接続切替用制御弁13e、13gを閉止して、熱媒体がタンク17に流入出する状態に移行する。   By the heat medium circulation in the heat medium circulation process described above, when the defrosting of the heat exchanger 10 proceeds and the sensor 18 no longer detects the frosting state, or when the heat exchanger 10 reliably detects frosted water droplets. Therefore, the control unit 19 determines that the defrosting is completed after a predetermined time (for example, 5 minutes) has passed since the sensor 18 no longer detects the frosting state. Then, the control unit 19 opens the connection switching control valves 13 f and 13 h and closes the connection switching control valves 13 e and 13 g as a second heat medium replacement step (see FIG. 7). Transition to the state of inflow and outflow.

この時、制御部19はポンプ15の作動は継続させる一方、ヒータ16は非作動として、除霜用管路部13を通じて、タンク17内の熱媒体をヒータ16での加熱なしに熱交換器10に流入させると共に、熱交換器10内に残っていた熱媒体を、除霜用管路部13を通じてタンク17に流入させる。   At this time, the control unit 19 continues the operation of the pump 15, while the heater 16 is not operated, and the heat medium in the tank 17 is not heated by the heater 16 through the defrosting conduit unit 13 without being heated by the heater 16. The heat medium remaining in the heat exchanger 10 is caused to flow into the tank 17 through the defrosting conduit section 13.

タンク17の前後では、前記第二の管路接続状態として、接続切替用管路13b、13dが熱媒体を流通させるようにされており、タンク下部の流入出口17bからタンク17内にあった冷たい熱媒体が流出すると共に、タンク上部の流入出口17aで、熱交換器10内にあった熱媒体がタンク17内に新たに流入する。   Before and after the tank 17, as the second pipe connection state, the connection switching pipe lines 13 b and 13 d are made to circulate the heat medium, and the cold inside the tank 17 from the inlet / outlet 17 b at the lower part of the tank. As the heat medium flows out, the heat medium existing in the heat exchanger 10 newly flows into the tank 17 at the inlet / outlet port 17a at the upper part of the tank.

こうして、タンク17内に貯留していた、当初熱交換器10内にあった温度の低い熱媒体を熱交換器10に向かわせ、熱交換器内にあった、より温度の高い除霜用の熱媒体をタンク17に流入させる際に、相対的に温度の低い熱媒体を、常にタンク17の下部から流出させる一方、相対的に温度の高い除霜用熱媒体を、常にタンク17の上部から流入させている。これにより、前記第一の熱媒体入替工程と同様、タンク17内では温度の高い熱媒体が上側に、温度の低い熱媒体が下側に位置する状態が保持され、タンク内で熱媒体の熱対流が生じにくく、熱媒体中での熱移動による熱の損失を抑えられ、タンク17に回収した除霜用の熱媒体の温度が低くなるのを防止できる。よって、タンク17に貯留されて次回以降の除霜工程で除霜に用いる熱媒体の温度が下がり過ぎず、この熱媒体のヒータ16での加熱を効率よく実行でき、除霜実行時間の短縮と、除霜に係るエネルギー消費抑制が図れる。   In this way, the low-temperature heat medium stored in the tank 17 at the beginning of the heat exchanger 10 is directed to the heat exchanger 10, and the defroster having a higher temperature in the heat exchanger is used. When the heat medium flows into the tank 17, the heat medium having a relatively low temperature is always allowed to flow out from the lower part of the tank 17, while the heat medium for defrosting having a relatively high temperature is always discharged from the upper part of the tank 17. Inflow. As a result, as in the first heat medium replacement step, the state in which the heat medium having a high temperature is positioned on the upper side and the heat medium having a low temperature is positioned on the lower side is maintained in the tank 17. Convection is unlikely to occur, heat loss due to heat transfer in the heat medium can be suppressed, and the temperature of the heat medium for defrosting collected in the tank 17 can be prevented from being lowered. Therefore, the temperature of the heat medium stored in the tank 17 and used for defrosting in the next and subsequent defrosting steps does not decrease too much, and the heating of the heat medium with the heater 16 can be performed efficiently, and the defrosting execution time can be shortened. In addition, energy consumption suppression related to defrosting can be achieved.

タンク17内に貯留されていた、除霜前に熱交換器内にあった冷たい熱媒体(熱媒体温度:約−10ないし−15℃)が、熱交換器10に全て入り、熱交換器10内にあった除霜用の熱媒体がタンク17に全て入り、熱媒体が入れ替わったことを温度センサ17eでの温度変化検出により取得したら、制御部19は、熱媒体流通停止工程として、除霜用管路部13の除霜用制御弁14を閉止すると共に、ポンプ15の作動を停止させて、除霜用管路部13を通じての除霜用熱媒体の熱交換器10への流通を止める。
この後、循環制御弁12を開状態として熱交換器10を循環管路60に連通させ(図4参照)、通常運転状態に復帰させれば、一連の除霜工程は終了となる。
All of the cold heat medium (heat medium temperature: about −10 to −15 ° C.) stored in the tank 17 and before being defrosted in the heat exchanger enters the heat exchanger 10. When the defrosting heat medium that was inside has entered all of the tanks 17 and has acquired that the heat medium has been replaced by detecting a temperature change in the temperature sensor 17e, the controller 19 performs the defrosting process as the heat medium flow stopping step. The defrosting control valve 14 of the pipe line section 13 is closed and the operation of the pump 15 is stopped to stop the flow of the defrosting heat medium to the heat exchanger 10 through the defrosting pipe section 13. .
Thereafter, when the circulation control valve 12 is opened and the heat exchanger 10 is communicated with the circulation line 60 (see FIG. 4) and returned to the normal operation state, the series of defrosting steps is completed.

このように、本実施形態に係る加熱塔では、循環管路60のうち熱交換器10の熱媒体入口に至る管路部分を開閉する循環制御弁12で、循環管路60から熱交換器10を切離し可能とする一方、熱交換器10に除霜用制御弁14を介して接続される除霜用管路部13を設け、この除霜用管路部13を通じて除霜用の熱媒体を熱交換器10に流入出可能とし、除霜のために、循環管路側の循環制御弁12を閉状態とすると共に、除霜用制御弁14を開放して、除霜用熱媒体を熱交換器10に流通させる状況下で、熱媒体をタンク17に流入出させる入替用接続状態と、熱媒体をタンク17に流入出させずに熱交換器10と除霜用管路部13で循環させる除霜状態とを切替可能としている。これにより、前記入替用接続状態とした除霜用管路部13で熱媒体を流動させ、タンク17と熱交換器10の熱媒体を一旦入れ替えてから、温度の低い熱媒体の入ったタンク17を除霜用熱媒体の循環経路から切り離して、熱交換器にあった温度の低い熱媒体を除霜用管路部13で除霜に用いずに済ますことができ、従来のような循環管路流通時と同様に温度の低い熱媒体(熱媒体温度:約−10ないし−15℃)を除霜可能な温度までヒータ16で温める必要がなくなると共に、除霜を終えて熱交換器10を出た後も所定の熱を保有する熱媒体をタンク内のより低い温度の熱媒体と混合させず、熱の損失を抑えながら、熱媒体を継続的に循環させてヒータ16で加熱可能となり、ヒータ16での熱媒体の加熱を効率化でき、熱媒体を十分に昇温させて熱交換器10に流入させられ、熱交換器10の着霜部分で、熱媒体による除霜の実行時間を短縮できる。   As described above, in the heating tower according to the present embodiment, the circulation control valve 12 that opens and closes the pipeline portion reaching the heat medium inlet of the heat exchanger 10 in the circulation pipeline 60, and the heat exchanger 10 from the circulation pipeline 60. The defrosting conduit 13 connected to the heat exchanger 10 via the defrosting control valve 14 is provided, and the defrosting heat medium is supplied through the defrosting conduit 13. The circulation control valve 12 on the circulation line side is closed and the defrosting control valve 14 is opened so that heat can be exchanged for the defrosting heat medium. In a state where the heat medium is circulated in the heat exchanger 10, the heat connection medium is circulated in the heat exchanger 10 and the defrosting pipe line portion 13 without flowing in and out of the tank 17. The defrosting state can be switched. As a result, the heat medium is caused to flow in the defrosting conduit section 13 in the replacement connection state, and the tank 17 and the heat medium in the heat exchanger 10 are once replaced, and then the tank 17 containing the heat medium having a low temperature. Can be cut off from the circulation path of the defrosting heat medium so that the heat medium having a low temperature in the heat exchanger is not used for defrosting in the defrosting conduit 13. It is not necessary to heat the heat medium having a low temperature (heat medium temperature: about −10 to −15 ° C.) to a temperature capable of defrosting as in the case of road circulation, and the heat exchanger 10 is removed after defrosting. The heating medium that retains the predetermined heat even after exiting is not mixed with the lower temperature heating medium in the tank, and the heating medium can be continuously circulated and heated by the heater 16 while suppressing heat loss. Heating of the heat medium with the heater 16 can be made more efficient, By temperature allowed to flow into the heat exchanger 10, in frosted portions of the heat exchanger 10, can reduce the execution time of the defrosting by the heat medium.

また、除霜用としてヒータ16で加熱対象とする熱媒体が温度の低いものとなるのを防いで、熱媒体加熱のためにヒータ16が過剰に熱を発生させずに済む分、ヒータ16としてその熱発生容量をより小さく抑えたものを採用でき、ヒータ16の設置に係るコスト抑制が図れると共に、熱媒体加熱のためのヒータ使用を必要最小限にとどめて、除霜の省エネルギー化が図れる。   Further, the heater 16 prevents the heat medium to be heated by the heater 16 from being low in temperature for defrosting, and the heater 16 does not generate excessive heat for heating the heat medium. The heat generation capacity can be reduced and the cost associated with the installation of the heater 16 can be reduced, and the use of the heater for heating the heat medium can be kept to a minimum and the energy saving of defrosting can be achieved.

さらに、熱交換器に対する除霜の終了後に、前記入替用接続状態としてから、除霜用管路部13で熱媒体を流動させ、タンク17に入っていた温度の低い熱媒体と、これより温度の高い熱交換器内の除霜用の熱媒体をあらためて入れ替え、除霜後も所定の熱を保有する除霜用熱媒体をタンク17に回収して、次の新たな除霜実行の際に使用できることで、後の除霜工程でもヒータ16での熱媒体の加熱を効率化でき、熱媒体を適温まで速やかに昇温させて除霜実行時間の短縮が図れる。   Further, after the defrosting of the heat exchanger is completed, after the replacement connection state, the heat medium is caused to flow in the defrosting conduit 13 and the temperature of the heat medium that has entered the tank 17 is lower. The defrosting heat medium in the high heat exchanger is replaced again, and after the defrosting, the defrosting heat medium that retains the predetermined heat is recovered in the tank 17 and the next new defrosting is performed. Since it can be used, heating of the heat medium in the heater 16 can be made more efficient in the subsequent defrosting process, and the heat medium can be quickly raised to an appropriate temperature to shorten the defrosting execution time.

(本発明の第2の実施形態)
本発明の第2の実施形態に係る加熱塔を前記図8ないし図23に基づいて説明する。
前記各図に示すように、本実施形態に係る加熱塔は、前記第1の実施形態同様、密閉式の加熱塔とされる一方、異なる点として、熱交換器とファンの組合わせを三組有し、各熱交換器20、30、40を同一の循環管路60に並列に接続される複数セルタイプとされ、且つ、共通の一つの除霜用管路部23に、三つの熱交換器20、30、40が、それぞれ除霜用制御弁24、34、44を介在させつつ並列に接続され、除霜用の熱媒体を熱交換器20、30、40に択一的に流通可能とされてなり、さらに、除霜用管路部23における、熱交換器の熱媒体入口近くの管路位置と熱媒体出口近くの管路位置同士を短絡するバイパス用管路35と、このバイパス用管路35を開閉する制御弁36とを備える構成を有するものである。
(Second embodiment of the present invention)
A heating tower according to a second embodiment of the present invention will be described with reference to FIGS.
As shown in the respective drawings, the heating tower according to the present embodiment is a sealed heating tower, as in the first embodiment. On the other hand, there are three combinations of heat exchangers and fans. Each of the heat exchangers 20, 30, 40 is of a plurality of cell types connected in parallel to the same circulation pipe 60, and three heat exchanges are performed on one common defrosting pipe section 23. , 20, 30, 40 are connected in parallel with the defrosting control valves 24, 34, 44, respectively, and a heat medium for defrosting can be selectively distributed to the heat exchangers 20, 30, 40. Furthermore, in the defrosting conduit section 23, a bypass conduit 35 that short-circuits the conduit positions near the heat medium inlet and the heat medium outlet of the heat exchanger, and this bypass And a control valve 36 for opening and closing the service pipe 35.

なお、加熱塔は、ファンで外気を誘引し、外気と熱媒体とを熱交換器で熱交換させる、熱交換の単位構成部分(セル)を三組有しており、これらの組ごとに、循環管路60との接続部分や除霜用管路部23との接続部分が設けられる関係で、循環制御弁22、32、42と除霜用制御弁24、34、44も複数設けられる点以外は、前記第1の実施形態同様である。すなわち、除霜用管路部23と、ポンプ25と、ヒータ26と、タンク27と、センサ28と、制御部29とを備える構成であり、より詳細な説明については省略する。この加熱塔では、複数設けられるセルに対し、従来の複数セルタイプの加熱塔と同様、1セルずつ順次除霜が実行されることとなる。   The heating tower has three sets of unit components (cells) for heat exchange that attract outside air with a fan and exchange heat between the outside air and a heat medium with a heat exchanger. A plurality of circulation control valves 22, 32, and 42 and defrosting control valves 24, 34, and 44 are provided in connection with a connection portion with the circulation pipeline 60 and a connection portion with the defrosting pipeline section 23. Other than the above, the second embodiment is the same as the first embodiment. That is, the defrosting pipe section 23, the pump 25, the heater 26, the tank 27, the sensor 28, and the control section 29 are provided, and a detailed description thereof is omitted. In this heating tower, defrosting is sequentially performed on a plurality of cells, one cell at a time, as in a conventional multi-cell type heating tower.

前記バイパス用管路35は、除霜用管路部23における、熱交換器20、30、40の熱媒体入口近くの共通部分の管路位置(ヒータ26より熱交換器20に近い側)と熱媒体出口近くの共通部分の管路位置であって、且つそれぞれ熱交換器20、30、40に対し除霜用制御弁24、34、44よりも離れた側となる各管路位置間に、これらの管路位置同士を短絡するように設けられる構成である(図8参照)。このバイパス用管路35には、これを開閉する制御弁36も設けられる。   The bypass pipe 35 is connected to the common portion of the defrosting pipe section 23 near the heat medium inlet of the heat exchangers 20, 30, and 40 (side closer to the heat exchanger 20 than the heater 26). Between the pipe positions of the common part near the heat medium outlet and on the side farther from the defrosting control valves 24, 34, 44 with respect to the heat exchangers 20, 30, 40, respectively. The configuration is such that these pipeline positions are short-circuited (see FIG. 8). The bypass conduit 35 is also provided with a control valve 36 for opening and closing the bypass conduit 35.

バイパス用管路35の制御弁36は、熱交換器20、30、40に熱媒体を流通させる場合、閉止状態とされる。一方、後述する予熱工程等で、熱媒体を熱交換器20、30、40に通すことなく除霜用管路部23で循環させる必要がある場合、制御部29の制御により、除霜用制御弁24、34、44が閉止されると共に、バイパス用管路35の制御弁36が開放されることで、除霜用管路部23で、熱媒体をバイパス用管路35経由で熱交換器20、30、40を通さずに循環させられることとなる。   The control valve 36 of the bypass conduit 35 is closed when the heat medium is passed through the heat exchangers 20, 30, and 40. On the other hand, when it is necessary to circulate the heat medium in the defrosting conduit section 23 without passing through the heat exchangers 20, 30, 40 in the preheating process described later, the control for the defrosting is performed under the control of the control section 29. The valves 24, 34, 44 are closed and the control valve 36 of the bypass conduit 35 is opened, so that the heat medium is passed through the bypass conduit 35 in the defrosting conduit section 23. It will be circulated without passing 20, 30, 40.

前記制御部29は、前記第1の実施形態同様、各制御弁の開閉制御、並びに、ポンプ25及びヒータ26の作動制御を行うものであり、特に、三つの熱交換器20、30、40が設けられるのに対応して、除霜制御状態で各熱交換器ごとにタイミングをずらして循環制御弁22、32、42を開閉させると共に、共通の一つの除霜用管路部23に対し、除霜用制御弁24、34、44の開状態とするタイミングをずらすようにして、除霜用の熱媒体を熱交換器20、30、40に択一的に流通可能としている。   The controller 29 controls the opening / closing of each control valve and the operation control of the pump 25 and the heater 26 as in the first embodiment. In particular, the three heat exchangers 20, 30, 40 are provided. Corresponding to being provided, while opening and closing the circulation control valves 22, 32, 42 by shifting the timing for each heat exchanger in the defrosting control state, for one common defrosting conduit 23, The defrosting heat medium can be selectively distributed to the heat exchangers 20, 30, and 40 by shifting the timing when the defrosting control valves 24, 34, and 44 are opened.

また、制御部29は、各熱交換器20、30、40ごとに、除霜用制御弁を閉じて熱交換器の除霜を行わず、且つ、循環制御弁も開じて循環管路60の熱媒体を熱交換器に流通させない、待機状態の期間を、その期間が互いに重ならないように設定する。すなわち、一つの熱交換器が待機状態にある場合、残りの二つの熱交換器は通常通り熱交換する運転状態となっている。そして、待機状態の期間に、制御部29は除霜用管路部23において予熱工程を実行させる(図10参照)。   Further, the control unit 29 closes the defrosting control valve for each heat exchanger 20, 30, 40 and does not defrost the heat exchanger, and also opens the circulation control valve to open the circulation line 60. The period of the standby state in which the heat medium is not distributed to the heat exchanger is set so that the periods do not overlap each other. That is, when one heat exchanger is in a standby state, the remaining two heat exchangers are in an operation state in which heat is exchanged as usual. And in the period of a standby state, the control part 29 performs a preheating process in the pipeline part 23 for defrost (refer FIG. 10).

この予熱工程では、制御部29は、各除霜用制御弁24、34、44を閉止していずれの熱交換器20、30、40にも除霜用の熱媒体を流通させない状態を保持しつつ、接続切替用管路23b、23dの接続切替用制御弁23f、23hを開放し、且つバイパス用管路35の制御弁36を開放した上で、ポンプ25及びヒータ26を作動させ、除霜用管路部23で除霜用の熱媒体をヒータ26で加熱しつつタンク27及びバイパス用管路35を経由して循環させて、熱媒体の昇温のみを進行させる仕組みである(図12、図16、図20参照)。   In this preheating process, the control unit 29 keeps the state in which the defrosting heat medium is not circulated through any of the heat exchangers 20, 30, 40 by closing the defrosting control valves 24, 34, 44. While opening the connection switching control valves 23f and 23h of the connection switching pipes 23b and 23d and opening the control valve 36 of the bypass pipe 35, the pump 25 and the heater 26 are operated to defrost. The defrosting heat medium is heated by the heater 26 in the pipe line section 23 and circulated through the tank 27 and the bypass pipe line 35 to advance only the temperature rise of the heat medium (FIG. 12). 16 and 20).

このように予熱工程として、除霜用管路部23において除霜用制御弁24、34、44を閉じ、バイパス用管路35の制御弁36を開放し、タンク27に熱媒体を流入出させられるようにした上で、ポンプ25及びヒータ26を作動させて、タンク27の熱媒体を熱交換器に通さずにバイパス用管路35に導いて、除霜用管路部23で循環させる間に、熱媒体がヒータ26で加熱されて昇温し、除霜に適した温度に到達できることから、熱交換器20、30、40に除霜用の熱媒体を通さず除霜を行わない間に、タンク27内の除霜用の熱媒体を加熱してあらかじめ十分高い温度としてから、除霜用管路部23を熱交換器に連通させて、高い温度の熱媒体を熱交換器に流通させられ、事前に温度を高くした熱媒体を熱交換器に流通させて、除霜を効率よく実行でき、除霜時間の短縮と、除霜能力増大による熱交換器閉塞の危険性低減が図れる。   As described above, as the preheating process, the defrosting control valves 24, 34, 44 are closed in the defrosting conduit section 23, the control valve 36 of the bypass conduit 35 is opened, and the heat medium is caused to flow into and out of the tank 27. After the pump 25 and the heater 26 are operated, the heat medium in the tank 27 is led to the bypass pipe 35 without passing through the heat exchanger and is circulated in the defrosting pipe section 23. In addition, since the heat medium is heated by the heater 26 to increase the temperature and reach a temperature suitable for defrosting, the defrosting is not performed without passing the heat medium for defrosting through the heat exchangers 20, 30, and 40. In addition, after heating the defrosting heat medium in the tank 27 to a sufficiently high temperature in advance, the defrosting conduit 23 is connected to the heat exchanger, and the high temperature heat medium is circulated to the heat exchanger. The heat medium that has been heated in advance and passed through the heat exchanger is removed. Efficiently be executed, and shortening of the defrosting time, thereby the risk reduction of heat exchanger clogging by defrosting capacity increases.

この予熱工程の場合、タンク27前後では、接続切替用管路23b、23dが熱媒体を流通させるようにされて、タンク上部の流入出口27aを、ヒータ26を通過して温められた熱媒体の流入側とすると共に、タンク下部の流入出口27bを新たにヒータ26に向かう熱媒体の流出側とする、第二の管路接続状態とされる。   In the case of this preheating process, the connection switching pipes 23b and 23d are made to circulate the heat medium before and after the tank 27, and the inflow / outflow port 27a in the upper part of the tank passes through the heater 26 and is heated. In addition to the inflow side, the second pipe connection state is established in which the inflow / outflow port 27b at the bottom of the tank is newly set as the outflow side of the heat medium toward the heater 26.

こうして、ヒータ26で温められて相対的に温度の高い状態にある除霜用熱媒体を、常にタンク27の上部で流入させる一方、ヒータ26で温められる前の、相対的に温度の低い当初タンク27内にあった熱媒体を、常にタンク27の下部から流出させることで、タンク27内では温度の高い熱媒体が上側に、温度の低い熱媒体が下側に位置する状態が保持され、タンク内で熱媒体の熱対流が生じにくく、タンク内で温度の異なる熱媒体が互いに混合せず、熱媒体中での熱移動による熱の損失を抑えられ、熱媒体の昇温を効率よく実行させられる。   Thus, the defrosting heat medium heated by the heater 26 and having a relatively high temperature is always allowed to flow into the upper portion of the tank 27, while the initial tank having a relatively low temperature before being heated by the heater 26. 27, the state in which the heat medium having a high temperature is positioned on the upper side and the heat medium having a low temperature is positioned on the lower side is maintained in the tank 27. Heat convection of the heat medium is unlikely to occur in the tank, heat media of different temperatures in the tank do not mix with each other, heat loss due to heat transfer in the heat medium can be suppressed, and the temperature of the heat medium can be raised efficiently. It is done.

次に、本実施形態に係る加熱塔での除霜方法について説明する。前記第1の実施形態同様、加熱塔の通常運転時(図8参照)、いずれかの熱交換器における状況変化をセンサ28により検出し、検出結果が除霜に係る所定の条件を満たすようになった場合、制御部29は熱交換器が着霜したと判定して、除霜工程を実行開始する。ただし、制御部29は、全ての熱交換器に対し順次除霜工程を実行し、且つ除霜実行の前に予熱工程を実行して除霜用の熱媒体温度を高めることを可能にするため、着霜直前や着霜初期の段階を検出して、早めに除霜工程の開始を決定するように設定される。この他、制御部29は、外気温センサ(図示を省略)により取得した外気温があらかじめ設定された温度以下となった場合に、熱交換器が着霜する状況に至ったと判定し、除霜工程を実行開始するようにしてもよい。   Next, the defrosting method in the heating tower which concerns on this embodiment is demonstrated. As in the first embodiment, during normal operation of the heating tower (see FIG. 8), a change in status in any of the heat exchangers is detected by the sensor 28 so that the detection result satisfies a predetermined condition related to defrosting. When it becomes, the control part 29 determines with the heat exchanger having frosted, and starts performing a defrost process. However, the control unit 29 sequentially performs the defrosting process on all the heat exchangers and executes the preheating process before performing the defrosting to increase the temperature of the heat medium for defrosting. It is set to detect the stage immediately before frosting or the initial stage of frosting and to determine the start of the defrosting process early. In addition, when the outside air temperature acquired by the outside air temperature sensor (not shown) is equal to or lower than a preset temperature, the control unit 29 determines that the heat exchanger has reached a frosting condition, and defrosts. You may make it start execution of a process.

着霜状態把握後、制御部29は、まず最初に、待機状態とするようあらかじめ設定された第三の熱交換器40について、循環管路60における熱交換器40近傍の循環制御弁42を閉止し、熱交換器40への熱媒体の循環管路60を通じた流通を停止させる(図11参照)。この時、加熱塔の他の熱交換器20、30には循環管路60を通じて熱媒体が流通しており、加熱塔は二つの熱交換器20、30を用いた運転状態となっている。   After grasping the frost formation state, the control unit 29 first closes the circulation control valve 42 in the vicinity of the heat exchanger 40 in the circulation line 60 for the third heat exchanger 40 set in advance to enter the standby state. Then, the flow of the heat medium to the heat exchanger 40 through the circulation pipe 60 is stopped (see FIG. 11). At this time, the heat medium is circulated through the circulation pipe 60 in the other heat exchangers 20 and 30 of the heating tower, and the heating tower is in an operation state using the two heat exchangers 20 and 30.

続いて制御部29は、予熱工程(図12参照)として、通常運転状態で閉じられていた除霜用管路部23の除霜用制御弁24、34、44についてはそのままの状態を維持して、まずバイパス用管路35の制御弁36を開放する。加えて、接続切替用制御弁23f、23hを開放、接続切替用制御弁23e、23gを閉止状態とする。そして、制御部29はポンプ25及びヒータ26を作動させ、除霜用管路部23で除霜用の熱媒体をヒータ26で加熱しつつタンク27及びバイパス用管路35を経由して、熱交換器20、30、40を通すことなく循環させて、タンク27に貯留される熱媒体全量を昇温させる。   Subsequently, as a preheating step (see FIG. 12), the control unit 29 maintains the state of the defrosting control valves 24, 34, and 44 of the defrosting conduit unit 23 that has been closed in the normal operation state. First, the control valve 36 of the bypass conduit 35 is opened. In addition, the connection switching control valves 23f and 23h are opened, and the connection switching control valves 23e and 23g are closed. Then, the control unit 29 operates the pump 25 and the heater 26, and heats the defrosting heat medium by the heater 26 in the defrosting pipeline unit 23 while passing through the tank 27 and the bypass pipeline 35. Circulation is performed without passing through the exchangers 20, 30, and 40, and the total amount of the heat medium stored in the tank 27 is raised.

この予熱工程は、熱交換器40の待機状態としてあらかじめ設定された期間の間、継続され(図10参照)、除霜用管路部23を流れる熱媒体は所定温度(例えば、約15ないし30℃、好ましくは約20℃)まで昇温することとなる。   This preheating step is continued for a period set in advance as a standby state of the heat exchanger 40 (see FIG. 10), and the heat medium flowing through the defrosting conduit 23 is at a predetermined temperature (for example, about 15 to 30). Temperature, preferably about 20 ° C.).

制御部29は、最初の第三の熱交換器40の待機状態の期間が終了したら、除霜用管路部23の除霜用制御弁44を閉じたまま、循環管路60における熱交換器40近傍の循環制御弁42を開放し、熱交換器40に循環管路60を通じて熱媒体を流通させる。同時に、予熱工程も終了として、バイパス用管路35の制御弁36を閉止する。一方、制御部29は、新たに第一の熱交換器20で除霜工程を開始させる。こうして第一の熱交換器20で除霜工程を進めつつ、第三の熱交換器40では循環管路60の熱媒体を流通させて熱交換させる状態に移行させることで、加熱塔は二つの熱交換器30、40を用いた運転状態となっている。   When the standby period of the first third heat exchanger 40 ends, the control unit 29 closes the defrosting control valve 44 of the defrosting line unit 23 and closes the heat exchanger in the circulation line 60. The circulation control valve 42 in the vicinity of 40 is opened, and the heat medium is passed through the heat exchanger 40 through the circulation line 60. At the same time, the preheating process is ended, and the control valve 36 of the bypass conduit 35 is closed. On the other hand, the control unit 29 newly starts the defrosting process with the first heat exchanger 20. In this way, while the defrosting process is proceeding in the first heat exchanger 20, the third heat exchanger 40 shifts to a state in which the heat medium in the circulation pipe 60 is circulated and heat-exchanged, so that the heating tower has two It is in the operating state using heat exchangers 30 and 40.

第一の熱交換器20の除霜工程は、先の第三の熱交換器40の待機状態の期間と重なる予熱工程で温度を高めた除霜用熱媒体を利用する点以外は、前記第1の実施形態と同様である。すなわち、制御部29は、まず第一の熱媒体入替工程(図13参照)として、循環管路60の循環制御弁22を閉止し、熱交換器20への熱媒体の循環管路60を通じた流通を停止させると共に、除霜用管路部23の除霜用制御弁24を開放し、除霜用管路部23を熱交換器20の熱媒体入口及び出口にそれぞれ連通状態として、除霜用熱媒体を熱交換器20に対し流通可能とする。   The defrosting process of the first heat exchanger 20 uses the defrosting heat medium whose temperature has been increased in the preheating process overlapping the period of the standby state of the third heat exchanger 40 described above. This is the same as the first embodiment. That is, the control unit 29 first closes the circulation control valve 22 of the circulation line 60 and passes through the heat medium circulation line 60 to the heat exchanger 20 as a first heat medium replacement process (see FIG. 13). While the circulation is stopped, the defrosting control valve 24 of the defrosting pipe section 23 is opened, and the defrosting pipe section 23 is in communication with the heat medium inlet and the outlet of the heat exchanger 20, respectively. The heating medium can be distributed to the heat exchanger 20.

そして、制御部29は、接続切替用制御弁23e、23gを開放して、熱媒体がタンク27に流入出可能な状態(入替用接続状態)とする。この時、接続切替用管路23b、23dの接続切替用制御弁23f、23hは閉止状態として、熱媒体の流れが分岐、合流せず一方向となるようにしておく。先の予熱工程と同様にポンプ25及びヒータ26が作動することで、除霜用管路部23で熱媒体が流通して、既に温められたタンク27内の熱媒体をヒータ26でさらに加熱しながら熱交換器20に流入させると共に、熱交換器20内に残っていた、より冷たい熱媒体(熱媒体温度:約−10ないし−15℃)を、除霜用管路部23を通じてタンク27に流入させる。   Then, the control unit 29 opens the connection switching control valves 23e and 23g so that the heat medium can flow into and out of the tank 27 (replacement connection state). At this time, the connection switching control valves 23f and 23h of the connection switching pipelines 23b and 23d are closed so that the flow of the heat medium does not branch or merge but is in one direction. By operating the pump 25 and the heater 26 in the same manner as in the previous preheating step, the heat medium flows through the defrosting conduit 23 and the heater 26 further heats the already heated heat medium in the tank 27. While flowing into the heat exchanger 20, the cooler heat medium (heat medium temperature: about −10 to −15 ° C.) remaining in the heat exchanger 20 is transferred to the tank 27 through the defrosting conduit 23. Let it flow.

前記第1の実施形態同様、タンク27内にあった除霜用の熱媒体が熱交換器20に全て入り、熱交換器20内にあった熱媒体がタンク27に全て入り、熱媒体が入れ替わったことを温度センサ27eでの温度変化検出により取得したら、制御部29は、引き続いて熱媒体循環工程を実行する。   As in the first embodiment, all of the defrosting heat medium in the tank 27 enters the heat exchanger 20, all of the heat medium in the heat exchanger 20 enters the tank 27, and the heat medium is replaced. If this is acquired by detecting the temperature change by the temperature sensor 27e, the control unit 29 subsequently executes the heat medium circulation step.

制御部29は、熱媒体循環工程として、前記第1の実施形態と同様に、接続切替用制御弁23f、23gを開放、接続切替用制御弁23e、23hを閉止し、管路を、熱媒体が接続切替用管路23cと接続切替用管路23bをそれぞれ通り、熱媒体がタンク27に流入出しない状態(除霜用接続状態)に切り替える。これにより、除霜用の熱媒体が熱交換器20に流通しつつ、タンク27が含まれない除霜用管路部23を循環する状態が継続する(図14参照)。この状態では、ヒータ26で加熱され昇温した除霜用の熱媒体を熱交換器20に流入させて、熱交換器20での除霜が進行していく。   As in the first embodiment, the control unit 29 opens the connection switching control valves 23f and 23g, closes the connection switching control valves 23e and 23h, and closes the pipe to the heat medium as a heat medium circulation step. Passes through the connection switching pipeline 23c and the connection switching pipeline 23b, respectively, and switches to a state where the heat medium does not flow into and out of the tank 27 (defrosted connection state). Thereby, the state which circulates through the defrosting pipe part 23 in which the tank 27 is not contained continues, while the heat medium for defrosting distribute | circulates to the heat exchanger 20 (refer FIG. 14). In this state, the defrosting heat medium heated by the heater 26 and heated up is caused to flow into the heat exchanger 20, and defrosting in the heat exchanger 20 proceeds.

熱媒体の循環で、熱交換器20の除霜が進み、あらかじめ設定された、熱交換器20で霜が十分除去されたと見込める所定時間(例えば、60分)が経過したら、制御部29は熱媒体循環工程終了とし、引き続いて第二の熱媒体入替工程(図15参照)として、あらためて接続切替用制御弁23f、23hを開放、接続切替用制御弁23e、23gを閉止して、熱媒体がタンク27に流入出する状態に移行する。   When the defrosting of the heat exchanger 20 proceeds by circulation of the heat medium, and a predetermined time (for example, 60 minutes) in which it is expected that the heat exchanger 20 has sufficiently removed the frost has passed, the control unit 29 After the medium circulation process is completed, and subsequently the second heat medium replacement process (see FIG. 15), the connection switching control valves 23f and 23h are opened again, the connection switching control valves 23e and 23g are closed, Transition to a state of flowing into and out of the tank 27.

この時、制御部29はポンプ25の作動は継続させる一方、ヒータ26は非作動として、除霜用管路部23を通じて、タンク27内の熱媒体を熱交換器20に流入させると共に、熱交換器20内に残っていた除霜用の熱媒体を、除霜用管路部23を通じてタンク27に流入させる。   At this time, the control unit 29 continues the operation of the pump 25 while the heater 26 is not operated, and the heat medium in the tank 27 is caused to flow into the heat exchanger 20 through the defrosting conduit unit 23 and heat exchange is performed. The defrosting heat medium remaining in the vessel 20 is caused to flow into the tank 27 through the defrosting conduit section 23.

熱交換器20を含む除霜用管路部23の経路に残る、除霜に使用した熱媒体は、ヒータ26による加熱と除霜時の放熱を経ながら循環し、最終的には循環管路60の熱媒体(熱媒体温度:約−10ないし−15℃)より若干温度の高い状態(例えば、熱媒体温度は約2ないし6℃、好ましくは約3℃)となっている。こうした熱媒体をタンク27内の当初熱交換器20にあった冷たい熱媒体と入れ替える形で、タンク27に回収することで、次の予熱工程で熱媒体をヒータで温める際に、より温度の高い状態を開始点として、効率よく除霜に適した温度まで昇温させることができ、従来のように、除霜した後で熱交換器内に存在する熱媒体を、熱交換器に残したまま運転状態に移行して、循環管路を循環する熱媒体の一部として用いる場合のように、熱媒体の保有する熱が有効利用されずに廃棄される状態となることを避けられ、熱媒体の熱を最大限有効に活用できる。   The heat medium used for defrosting that remains in the path of the defrosting pipe line portion 23 including the heat exchanger 20 circulates while being heated by the heater 26 and radiating heat at the time of defrosting, and finally the circulation line. The temperature is slightly higher than 60 heat medium (heat medium temperature: about −10 to −15 ° C.) (for example, the heat medium temperature is about 2 to 6 ° C., preferably about 3 ° C.). By recovering such a heat medium in the tank 27 in the form of replacing the cold heat medium that was originally in the heat exchanger 20 in the tank 27, when the heat medium is heated by the heater in the next preheating step, the temperature is higher. As a starting point, the temperature can be efficiently raised to a temperature suitable for defrosting, and the heat medium existing in the heat exchanger after defrosting remains in the heat exchanger as in the past. It is possible to avoid the state where the heat held by the heat medium is discarded without being effectively used, as in the case of using the heat medium as a part of the heat medium circulating in the circulation pipe by shifting to the operation state. Can be used to the fullest.

タンク27内に貯留されていた、除霜前に熱交換器内にあった冷たい熱媒体(熱媒体温度:約−10ないし−15℃)が、熱交換器20に全て入り、熱交換器20内にあった除霜用の熱媒体がタンク27に全て入り、熱媒体が入れ替わったことを温度センサ27eでの温度変化検出により取得したら、制御部29は、熱媒体流通停止工程として、除霜用管路部23の除霜用制御弁24を閉止すると共に、ポンプ25の作動を停止させて、除霜用管路部23を通じての除霜用熱媒体の熱交換器20への流通を止める。   All of the cold heat medium (heat medium temperature: about −10 to −15 ° C.) stored in the tank 27 and before being defrosted in the heat exchanger enters the heat exchanger 20. Once the defrosting heat medium that has been inside has entered the tank 27 and the fact that the heat medium has been replaced is acquired by detecting a temperature change in the temperature sensor 27e, the control unit 29 performs the defrosting process as the heat medium flow stopping step. The defrosting control valve 24 of the pipe line section 23 is closed and the operation of the pump 25 is stopped to stop the flow of the defrosting heat medium to the heat exchanger 20 through the defrosting pipe section 23. .

こうして、第一の熱交換器20は、一連の除霜工程を終えて、除霜を行わず、且つ、循環管路60の熱媒体も流通させない待機状態に移行する(図10参照)。そして、制御部29は、熱交換器20が待機状態にある期間に、除霜用管路部23において前記同様に予熱工程を実行させる。   Thus, the first heat exchanger 20 completes a series of defrosting steps, and shifts to a standby state in which the defrosting is not performed and the heat medium in the circulation pipe 60 is not circulated (see FIG. 10). And the control part 29 performs the preheating process similarly to the above in the pipeline part 23 for a defrost, in the period when the heat exchanger 20 is in a standby state.

予熱工程(図16参照)では、前記同様、除霜用管路部23で、除霜用の熱媒体をヒータ26で加熱しつつ、タンク27及びバイパス用管路35を経由して熱交換器20、30、40を通すことなく循環させ、除霜用管路部23を流れる熱媒体が前記所定温度まで昇温した状態を得ることとなる。   In the preheating step (see FIG. 16), the heat exchanger for defrosting is heated by the heater 26 in the defrosting pipe line section 23 by the heater 26 and passed through the tank 27 and the bypass pipe line 35 as described above. Circulation is performed without passing 20, 30, 40, and the heat medium flowing through the defrosting duct 23 is heated to the predetermined temperature.

第一の熱交換器20のあらかじめ設定された待機状態の期間が終了したら、前記第三の熱交換器40の場合と同様、制御部29は、循環管路60における循環制御弁22を開放し、熱交換器20に循環管路60を通じて熱媒体を流通させると同時に、予熱工程も終了させる。その一方、制御部29は新たに第二の熱交換器30で除霜工程を開始させる。こうして第二の熱交換器30で除霜工程を進めつつ、第一の熱交換器20では循環管路60の熱媒体を流通させて熱交換させる状態に移行させることで、加熱塔は二つの熱交換器20、40を用いた運転状態となっている。   When the preset standby state period of the first heat exchanger 20 ends, the control unit 29 opens the circulation control valve 22 in the circulation line 60 as in the case of the third heat exchanger 40. The heat medium is circulated through the heat exchanger 20 through the circulation line 60, and at the same time, the preheating step is also finished. On the other hand, the control unit 29 newly starts the defrosting process with the second heat exchanger 30. In this way, while the second heat exchanger 30 proceeds with the defrosting process, the first heat exchanger 20 shifts the heat medium in the circulation line 60 to a state in which heat is exchanged, so that the heating tower has two It is in the operation state using heat exchangers 20 and 40.

第二の熱交換器30の除霜工程は、先の第一の熱交換器20の待機状態の期間と重なる予熱工程で温度を高めた除霜用熱媒体を利用して行われる。制御部29は、まず第一の熱媒体入替工程(図17参照)として、循環管路60の循環制御弁32を閉止し、熱交換器30への熱媒体の循環管路60を通じた流通を停止させると共に、除霜用管路部23の除霜用制御弁34を開放し、除霜用管路部23を熱交換器30の熱媒体入口及び出口にそれぞれ連通状態として、除霜用熱媒体を熱交換器30に対し流通可能とする。   The defrosting process of the 2nd heat exchanger 30 is performed using the heat medium for defrosting which raised temperature at the preheating process overlapped with the period of the standby state of the 1st heat exchanger 20 above. The controller 29 first closes the circulation control valve 32 of the circulation line 60 and distributes the heat medium to the heat exchanger 30 through the circulation line 60 as a first heat medium replacement process (see FIG. 17). The defrosting control valve 34 of the defrosting conduit section 23 is opened, and the defrosting conduit section 23 is in communication with the heat medium inlet and outlet of the heat exchanger 30, respectively. The medium can be distributed to the heat exchanger 30.

そして、前記第一の熱交換器20の除霜工程の場合と同様に、制御部29は熱媒体がタンク27に流入出可能な状態で、除霜用管路部23に熱媒体を流通させ、既に温められたタンク27内の熱媒体をヒータ26でさらに加熱しながら熱交換器30に流入させると共に、熱交換器30内に残っていた、より冷たい熱媒体(熱媒体温度:約−10ないし−15℃)を、除霜用管路部23を通じてタンク27に流入させる。   Then, as in the case of the defrosting step of the first heat exchanger 20, the control unit 29 causes the heat medium to flow through the defrosting conduit 23 in a state where the heat medium can flow into and out of the tank 27. The heat medium already heated in the tank 27 is caused to flow into the heat exchanger 30 while being further heated by the heater 26, and the cooler heat medium remaining in the heat exchanger 30 (heat medium temperature: about −10). Or −15 ° C.) is allowed to flow into the tank 27 through the defrosting conduit 23.

この後も、前記第一の熱交換器20の除霜工程の場合と同様、タンク27内にあった除霜用の熱媒体が熱交換器30に全て入り、熱交換器30内にあった熱媒体がタンク27に全て入ったら、制御部29は、熱媒体循環工程を実行して、除霜用の熱媒体が熱交換器30に流通しつつ、タンク27が含まれない除霜用管路部23を循環する状態(図18参照)を継続させ、ヒータ26で加熱され昇温した除霜用の熱媒体で熱交換器30での除霜を進めていく。   After this, as in the case of the defrosting process of the first heat exchanger 20, all the defrosting heat medium in the tank 27 entered the heat exchanger 30 and was in the heat exchanger 30. When all of the heat medium has entered the tank 27, the control unit 29 executes the heat medium circulation step so that the defrosting heat medium flows through the heat exchanger 30 and the defrosting pipe not including the tank 27. The state (see FIG. 18) that circulates in the path portion 23 is continued, and defrosting in the heat exchanger 30 is advanced by the defrosting heat medium heated by the heater 26 and heated.

そして、あらかじめ設定された、熱交換器30で霜が十分除去されたと見込める所定時間(例えば、60分)が経過したら、前記熱交換器20の除霜工程の場合と同様に、制御部29は熱媒体循環工程終了とし、引き続いて第二の熱媒体入替工程として、熱媒体がタンク27に流入出する状態とし、除霜用管路部23を通じて、タンク27内の熱媒体を熱交換器30に流入させると共に、熱交換器30内に残っていた除霜用の熱媒体を、除霜用管路部23を通じてタンク27に流入させる(図19参照)。   And if the predetermined time (for example, 60 minutes) which can anticipate that the frost was fully removed with the heat exchanger 30 passed previously, the control part 29 will be the same as the case of the defrosting process of the said heat exchanger 20. After completing the heat medium circulation process, and subsequently as a second heat medium replacement process, the heat medium flows into and out of the tank 27, and the heat medium in the tank 27 is transferred to the heat exchanger 30 through the defrosting conduit section 23. The defrosting heat medium remaining in the heat exchanger 30 is caused to flow into the tank 27 through the defrosting conduit section 23 (see FIG. 19).

タンク27内に貯留されていた冷たい熱媒体(熱媒体温度:約−10ないし−15℃)が熱交換器30に全て入り、熱交換器30内にあった除霜用の熱媒体がタンク27に全て入ったら、制御部29は、熱媒体流通停止工程として、除霜用管路部23の除霜用制御弁34を閉止すると共に、ポンプ25の作動を停止させて、除霜用管路部23を通じての除霜用熱媒体の熱交換器30への流通を止める。   All of the cold heat medium (heat medium temperature: about −10 to −15 ° C.) stored in the tank 27 enters the heat exchanger 30, and the heat medium for defrosting in the heat exchanger 30 is stored in the tank 27. When all of the above are entered, the control unit 29 closes the defrosting control valve 34 of the defrosting pipe line part 23 and stops the operation of the pump 25 as a heat medium flow stopping process. The circulation of the heat medium for defrosting through the section 23 to the heat exchanger 30 is stopped.

こうして、第二の熱交換器30は、前記第一の熱交換器20の場合と同様、一連の除霜工程を終え、除霜を行わず、且つ、循環管路60の熱媒体も流通させない待機状態に移行する(図10参照)。そして、制御部29は、第二の熱交換器30が待機状態にある期間に、除霜用管路部23において前記同様に予熱工程を実行させる。   Thus, as in the case of the first heat exchanger 20, the second heat exchanger 30 finishes a series of defrosting steps, does not perform defrosting, and does not distribute the heat medium in the circulation line 60. Transition to a standby state (see FIG. 10). And the control part 29 performs a preheating process in the defrosting conduit part 23 similarly to the above in the period when the 2nd heat exchanger 30 is in a standby state.

この予熱工程(図20参照)でも、前記同様、除霜用管路部23で、除霜用の熱媒体をヒータ26で加熱しつつ、タンク27及びバイパス用管路35を経由して熱交換器20、30、40を通すことなく循環させ、除霜用管路部23を流れる熱媒体が前記所定温度まで昇温した状態を得ることとなる。   Also in this preheating step (see FIG. 20), heat is exchanged through the tank 27 and the bypass pipe 35 while heating the defrosting heat medium by the heater 26 in the defrosting pipe section 23 as described above. The heat medium flowing through the defrosting pipe line section 23 is circulated without passing through the vessels 20, 30, 40, thereby obtaining a state where the temperature is raised to the predetermined temperature.

第二の熱交換器30のあらかじめ設定された待機状態の期間が終了したら、前記第一の熱交換器20の場合と同様、制御部29は、循環管路60における循環制御弁32を開放し、熱交換器30に循環管路60を通じて熱媒体を流通させると同時に、予熱工程も終了させる。その一方、制御部29は新たに第三の熱交換器40で除霜工程を開始させる。こうして第三の熱交換器40で除霜工程を進めつつ、第二の熱交換器30では循環管路60の熱媒体を流通させて熱交換させる状態に移行させることで、加熱塔は二つの熱交換器20、30を用いた運転状態となっている。   When the preset standby period of the second heat exchanger 30 ends, the control unit 29 opens the circulation control valve 32 in the circulation line 60 as in the case of the first heat exchanger 20. The heat medium is circulated through the heat exchanger 30 through the circulation pipe 60, and at the same time, the preheating step is also finished. On the other hand, the control unit 29 newly starts the defrosting process with the third heat exchanger 40. In this way, while the defrosting process is advanced by the third heat exchanger 40, the second heat exchanger 30 shifts to the state in which the heat medium in the circulation pipe 60 is circulated and heat-exchanged, so that the heating tower has two It is in the operating state using heat exchangers 20 and 30.

第三の熱交換器40の除霜工程は、先の第二の熱交換器30の待機状態の期間と重なる予熱工程で温度を高めた除霜用熱媒体を利用して行われる。制御部29は、まず第一の熱媒体入替工程(図21参照)として、循環管路60の循環制御弁42を閉止し、熱交換器40への熱媒体の循環管路60を通じた流通を停止させると共に、除霜用管路部23の除霜用制御弁44を開放し、除霜用管路部23を熱交換器40の熱媒体入口及び出口にそれぞれ連通状態として、除霜用熱媒体を熱交換器40に対し流通可能とする。   The defrosting process of the third heat exchanger 40 is performed using the defrosting heat medium whose temperature is increased in the preheating process that overlaps the standby state period of the second heat exchanger 30. First, as a first heat medium replacement process (see FIG. 21), the control unit 29 closes the circulation control valve 42 of the circulation pipe 60 and distributes the heat medium to the heat exchanger 40 through the circulation pipe 60. The defrosting control valve 44 of the defrosting conduit section 23 is opened and the defrosting conduit section 23 is in communication with the heat medium inlet and outlet of the heat exchanger 40, respectively. The medium can be distributed to the heat exchanger 40.

そして、前記熱交換器20、30の除霜工程の場合と同様に、制御部29は熱媒体がタンク27に流入出可能な状態で、除霜用管路部23に熱媒体を流通させ、既に温められたタンク27内の熱媒体をヒータ26でさらに加熱しながら熱交換器40に流入させると共に、熱交換器40内に残っていた、より冷たい熱媒体(熱媒体温度:約−10ないし−15℃)を、除霜用管路部23を通じてタンク27に流入させる。   And similarly to the case of the defrosting process of the heat exchangers 20 and 30, the control unit 29 causes the heat medium to flow through the defrosting pipe line part 23 in a state where the heat medium can flow into and out of the tank 27, The heat medium in the tank 27 that has already been heated is allowed to flow into the heat exchanger 40 while being further heated by the heater 26, and the cooler heat medium (heat medium temperature: about −10 to about 10 to 10) remaining in the heat exchanger 40. −15 ° C.) is allowed to flow into the tank 27 through the defrosting conduit 23.

この後も、前記熱交換器20、30の除霜工程の場合と同様、タンク27内にあった除霜用の熱媒体が熱交換器40に全て入り、熱交換器40内にあった熱媒体がタンク27に全て入ったら、制御部29は、熱媒体循環工程を実行して、除霜用の熱媒体が熱交換器40に流通しつつ、タンク27が含まれない除霜用管路部23を循環する状態(図22参照)を継続させ、ヒータ26で加熱され昇温した除霜用の熱媒体で熱交換器40での除霜を進めていく。   After that, as in the case of the defrosting process of the heat exchangers 20 and 30, all the defrosting heat medium in the tank 27 enters the heat exchanger 40, and the heat in the heat exchanger 40 is obtained. When all of the medium enters the tank 27, the control unit 29 executes the heat medium circulation step, and the defrosting conduit not including the tank 27 while the heat medium for defrosting flows to the heat exchanger 40. The state of circulating the part 23 (see FIG. 22) is continued, and the defrosting in the heat exchanger 40 is advanced with the defrosting heat medium heated by the heater 26 and heated.

そして、あらかじめ設定された、熱交換器40で霜が十分除去されたと見込める所定時間(例えば、60分)が経過したら、前記熱交換器20、30の除霜工程の場合と同様に、制御部29は熱媒体循環工程終了とし、引き続いて第二の熱媒体入替工程として、熱媒体がタンク27に流入出する状態とし、除霜用管路部23を通じて、タンク27内の熱媒体を熱交換器40に流入させると共に、熱交換器40内に残っていた除霜用の熱媒体を、除霜用管路部23を通じてタンク27に流入させる(図23参照)。   And if the predetermined time (for example, 60 minutes) which can be estimated that the frost was fully removed with the heat exchanger 40 passed in advance, similarly to the case of the defrosting process of the heat exchangers 20 and 30, the control unit 29 is the end of the heat medium circulation process, and then, as the second heat medium replacement process, the heat medium flows into and out of the tank 27, and the heat medium in the tank 27 is heat exchanged through the defrosting conduit section 23. The defrosting heat medium remaining in the heat exchanger 40 is caused to flow into the tank 27 through the defrosting conduit 23 (see FIG. 23).

タンク27内に貯留されていた冷たい熱媒体(熱媒体温度:約−10ないし−15℃)が熱交換器40に全て入り、熱交換器40内にあった除霜用の熱媒体がタンク27に全て入ったら、制御部29は、熱媒体流通停止工程として、除霜用管路部23の除霜用制御弁44を閉止すると共に、ポンプ25の作動を停止させて、除霜用管路部23を通じての除霜用熱媒体の熱交換器40への流通を止める。   All of the cold heat medium (heat medium temperature: about −10 to −15 ° C.) stored in the tank 27 enters the heat exchanger 40, and the heat medium for defrosting in the heat exchanger 40 is stored in the tank 27. When all of the above are entered, the control unit 29 closes the defrosting control valve 44 of the defrosting pipe line part 23 and stops the operation of the pump 25 as a heat medium flow stopping process. The flow of the heat medium for defrosting through the unit 23 to the heat exchanger 40 is stopped.

こうして、第三の熱交換器40は、前記熱交換器20、30の場合と同様、一連の除霜工程を終え、除霜を行わず、且つ、循環管路60の熱媒体も流通させない待機状態に移行する(図10参照)。そして、制御部29は、第三の熱交換器40が待機状態にある期間に、前記同様に除霜用管路部23において予熱工程を実行させる(図10、図12参照)。   Thus, as in the case of the heat exchangers 20 and 30, the third heat exchanger 40 finishes a series of defrosting steps, does not perform defrosting, and does not distribute the heat medium in the circulation pipe 60. Transition to the state (see FIG. 10). And the control part 29 performs a preheating process in the duct part 23 for defrost similarly to the above, in the period when the 3rd heat exchanger 40 is in a standby state (refer FIG. 10, FIG. 12).

これ以降、前記第三の熱交換器40の待機状態から、各熱交換器20、30、40の、待機状態及び予熱工程を挟みながらの除霜工程の順次実行までの、一連のサイクルが一又は複数回繰り返されることとなる(図10参照)。この加熱塔では、除霜が行われる中、常にいずれかの熱交換器が循環管路60に連通して熱媒体を流通させ、熱交換を行って運転状態を維持することができる。   Thereafter, a series of cycles from the standby state of the third heat exchanger 40 to the sequential execution of the defrosting process while sandwiching the standby state and the preheating process of each of the heat exchangers 20, 30, 40 is completed. Or it will be repeated several times (refer FIG. 10). In this heating tower, while defrosting is being performed, any one of the heat exchangers can always communicate with the circulation pipe 60 to flow the heat medium, perform heat exchange, and maintain the operation state.

このサイクルの繰り返しが、全ての熱交換器20、30、40で霜が確実に除去されて問題のない状態に至ったと見込める、あらかじめ設定された回数分なされたら、制御部29は、加熱塔での除霜完了として、第三の熱交換器40での除霜工程終了後、循環管路60における熱交換器40近傍の循環制御弁42を開放し、熱交換器40への熱媒体の循環管路60を通じた流通を再開させて、加熱塔の全ての熱交換器20、30、40に循環管路60を通じて熱媒体を流通させて、加熱塔を三つの熱交換器20、30、40を用いた通常運転状態(図8参照)に復帰させることとなる。   When this cycle is repeated for a preset number of times that it is expected that the frost has been reliably removed in all of the heat exchangers 20, 30, and 40 and has reached a problem-free state, the control unit 29 After the defrosting process in the third heat exchanger 40 is completed, the circulation control valve 42 in the vicinity of the heat exchanger 40 in the circulation line 60 is opened and the heat medium is circulated to the heat exchanger 40. The circulation through the pipe line 60 is resumed, and the heat medium is circulated through all the heat exchangers 20, 30 and 40 of the heating tower through the circulation pipe line 60, and the heating tower is connected to the three heat exchangers 20, 30, 40. It will be returned to the normal operation state using (see FIG. 8).

このように、本実施形態に係る加熱塔では、循環管路60に複数の熱交換器20、30、40が接続される場合で、これら各熱交換器が、共通の一つの除霜用管路部23を用いて熱交換器に対し択一的に除霜実行可能とされると共に、熱媒体を熱交換器に流通させない待機状態が、その期間を各熱交換器20、30、40で互いに重ならないようにして各々設定され、且つこの待機状態の期間に予熱工程を実行して、複数の熱交換器に対する除霜が、所定の一熱交換器が待機状態から運転状態に移行すると、この一熱交換器の待機状態の期間と重なる予熱工程で温められた除霜用熱媒体を利用して、他の熱交換器が除霜工程を実行し、次いでこの除霜工程を終えた他の熱交換器が待機状態に移行し、並行して新たな予熱工程が実行される、という一連の工程の繰り返しで実行され、熱交換器ごとに時間をずらしつつ、直前の予熱工程を経た除霜用熱媒体を用いて除霜がそれぞれ実行されることから、ある熱交換器が待機状態にある間に、タンク27内の除霜用の熱媒体を加熱してあらかじめ十分高い温度としてから、次の所定の熱交換器の除霜工程で、高い温度の熱媒体を熱交換器に流通させられ、除霜を効率よく実行でき、除霜時間の短縮と、除霜能力増大による熱交換器閉塞の危険性低減が図れる。また、予熱工程ではタンク27の熱媒体がバイパス用管路35を通り、熱交換器を通らない分、熱損失を抑えて無理なく熱媒体温度を高めることができ、より高温の熱媒体を効率よく得て、後の除霜工程で有効活用でき、複数の熱交換器における除霜の効率を全体的に向上させられる。   Thus, in the heating tower according to the present embodiment, when a plurality of heat exchangers 20, 30, 40 are connected to the circulation pipe 60, each of these heat exchangers is a common defrosting tube. While it is possible to perform defrosting alternatively to the heat exchanger using the path portion 23, the standby state in which the heat medium is not circulated to the heat exchanger is the period in each of the heat exchangers 20, 30, 40. Each is set so as not to overlap each other, and the preheating step is performed during the standby state, and when the defrosting for the plurality of heat exchangers is performed, the predetermined one heat exchanger shifts from the standby state to the operation state. Other heat exchangers have performed the defrosting process using the defrosting heat medium warmed in the preheating process that overlaps the period of the standby state of this one heat exchanger, and then the other defrosting process is completed. The heat exchanger of the system moves to the standby state, and a new preheating process is executed in parallel. It is executed by repeating a series of processes, and defrosting is performed using the heat medium for defrosting that has undergone the previous preheating process while shifting the time for each heat exchanger. While in the state, the heating medium for defrosting in the tank 27 is heated to a sufficiently high temperature in advance, and then the heating medium having a high temperature is used as a heat exchanger in the next defrosting step of the predetermined heat exchanger. The defrosting can be performed efficiently, the defrosting time can be shortened, and the risk of blockage of the heat exchanger due to the increased defrosting capability can be reduced. Further, in the preheating process, the heat medium in the tank 27 passes through the bypass conduit 35 and does not pass through the heat exchanger, so that the heat medium temperature can be increased without difficulty by suppressing heat loss. It can be obtained well and used effectively in the subsequent defrosting process, and the efficiency of defrosting in the plurality of heat exchangers can be improved as a whole.

さらに、予熱工程で温めた熱媒体をタンク27に貯留し、次の新たな熱交換器への除霜実行の際に使用するようにして、この除霜の際にヒータ26での熱媒体の加熱を効率化でき、各熱交換器20、30、40の除霜ごとの、熱媒体加熱のためのヒータ26の熱発生量を抑えられ、ヒータ使用に係るエネルギー消費を抑制できる。   Further, the heat medium warmed in the preheating process is stored in the tank 27 and used in the next defrosting execution to the new heat exchanger, and the heat medium in the heater 26 is removed during the defrosting. Heating can be made more efficient, the amount of heat generated by the heater 26 for heating the heating medium for each defrosting of the heat exchangers 20, 30, 40 can be suppressed, and energy consumption associated with the use of the heater can be suppressed.

なお、前記第1及び第2の各実施形態に係る加熱塔においては、除霜に係る各機構の適用対象を、熱媒体の加熱機能のみ備える単機能タイプの加熱塔としているが、これに限らず、必要に応じて熱媒体の冷却も行える冷却塔との兼用タイプ、すなわち加熱冷却塔を適用対象として、前記実施形態同様に除霜を行える構成とすることもできる。   In addition, in the heating tower which concerns on each said 1st and 2nd embodiment, although the application object of each mechanism which concerns on a defrost is made into the single function type heating tower provided only with the heating function of a heat medium, it is not restricted to this. In addition, it is also possible to adopt a configuration in which defrosting can be performed in the same manner as in the above-described embodiment, with a cooling tower that can also cool the heat medium as necessary, that is, a heating / cooling tower as an application target.

また、前記第1及び第2の各実施形態に係る加熱塔において、タンク17、27は、相対的に温度の高い熱媒体を、常にタンクの上部で流出入させる一方、相対的に温度の低い熱媒体を、常にタンクの下部で流入出させることに加え、タンク上下での熱媒体の流入量と流出量を等しくされ、さらに、熱媒体をタンク内領域に対し緩やかに出入りさせてタンク内で噴流を生じさせず、タンク内部を流入出に伴って移動する熱媒体が、温度成層をなす状態を維持したまま上方又は下方に一様に移動可能な構造とされる構成としているが、この他、タンク内に柔軟性のある隔膜(ダイヤフラム、ブラダー)のような高温領域と低温領域とを隔離する仕切りを設けて、タンク下部から流入出させる相対的に低い温度の熱媒体と、タンク上部から流入出させる相対的に高い温度の熱媒体とが、タンク内で混合しないようにする構成とすることもでき、温度の異なるものが混合することによる熱損失を避けられる。また、タンク内の熱媒体温度の異なる部分を物理的に隔離してそもそも混合を生じさせないことで、タンクへの流入出時に熱媒体の流れがタンク内で乱れないようにするといった特別な配慮が不要となり、熱媒体の入替速度を速くすることができ、除霜を迅速に実行できる。   In the heating towers according to the first and second embodiments, the tanks 17 and 27 always allow the heat medium having a relatively high temperature to flow in and out at the upper part of the tank, while the temperature is relatively low. In addition to allowing the heat medium to always flow in and out at the lower part of the tank, the heat medium inflow and outflow amounts at the top and bottom of the tank are made equal, and further, the heat medium is gently moved in and out of the tank area. The heat medium that moves in and out of the tank without causing a jet flow is configured to be able to move uniformly upward or downward while maintaining the state of temperature stratification. A partition that separates the high temperature area from the low temperature area, such as a flexible diaphragm (diaphragm, bladder) in the tank, and a relatively low temperature heat medium that flows in and out from the bottom of the tank, and from the top of the tank Inflow and outflow Causing the heat medium of relatively high temperature, it can also be configured to not mix in the tank and avoid heat loss by mixing different in temperature. In addition, special consideration is given to prevent the heat medium flow from being disturbed in the tank when it flows into and out of the tank by physically isolating the parts with different heat medium temperatures in the tank so that mixing does not occur in the first place. It becomes unnecessary, the heat medium replacement speed can be increased, and defrosting can be performed quickly.

1 加熱塔
10、20 熱交換器
11 ファン
12、22 循環制御弁
13、23 除霜用管路部
13a、13b、13c、13d 接続切替用管路
13e、13f、13g、13h 接続切替用制御弁
14、24 除霜用制御弁
15、25 ポンプ
16、26 ヒータ
17、27 タンク
17a、17b 流入出口
17c 分散管
17d 孔
17e 温度センサ
18、28 センサ
19、29 制御部
23a、23b、23c、23d 接続切替用管路
23e、23f、23g、23h 接続切替用制御弁
27a、27b 流入出口
27e 温度センサ
30、40 熱交換器
32、42 循環制御弁
34、44 除霜用制御弁
35 バイパス用管路
36 制御弁
60 循環管路
70 熱利用装置
DESCRIPTION OF SYMBOLS 1 Heating tower 10, 20 Heat exchanger 11 Fan 12, 22 Circulation control valve 13, 23 Defrosting pipeline part 13a, 13b, 13c, 13d Connection switching pipeline 13e, 13f, 13g, 13h Connection switching control valve 14, 24 Defrost control valve 15, 25 Pump 16, 26 Heater 17, 27 Tank 17a, 17b Inlet / outlet 17c Dispersion pipe 17d Hole 17e Temperature sensor 18, 28 Sensor 19, 29 Control unit 23a, 23b, 23c, 23d Connection Switching line 23e, 23f, 23g, 23h Connection switching control valve 27a, 27b Inlet / outlet 27e Temperature sensor 30, 40 Heat exchanger 32, 42 Circulation control valve 34, 44 Defrosting control valve 35 Bypass line 36 Control valve 60 Circulation line 70 Heat utilization device

Claims (4)

複数設けられた熱交換器の内部に流通させた熱媒体を外気と熱交換させて昇温させる密閉式の加熱塔であり、且つ所定の加熱手段で温めた熱媒体を前記各熱交換器に流通させ、熱交換器に生じた霜を除去可能な加熱塔において、
前記各熱交換器に接続され、蒸発器である熱利用装置との間で熱媒体を循環させる循環管路における、少なくとも各熱交換器の入口部分上流側近傍にそれぞれ配設されて、前記循環管路から各熱交換器への熱媒体の流入と非流入とを各熱交換器ごとに切替え可能とする複数の循環制御弁と、
前記各熱交換器における熱媒体入口近くの所定箇所及び熱媒体出口近くの所定箇所にそれぞれ接続され、除霜用の熱媒体を各熱交換器に流通可能とする除霜用管路部と、
当該除霜用管路部における各熱交換器との接続位置近傍にそれぞれ配設され、除霜用管路部と熱交換器間での、除霜用の熱媒体の流通状態と非流通状態とを切替え可能とする複数の除霜用制御弁と、
当該除霜用管路部に配設され、除霜用の熱媒体を加圧して管路内で所定方向に熱媒体が流れる状態とするポンプと、
前記除霜用管路部に配設され、熱媒体を加熱する前記加熱手段としてのヒータと、
前記除霜用管路部に配設され、熱交換器の熱媒体容量と同じ容量で熱媒体を流入出可能に貯留するタンクと、
前記除霜用管路部における、各熱交換器の熱媒体入口近くの管路位置と熱媒体出口近くの管路位置であって、且つそれぞれ熱交換器に対し除霜用制御弁よりも離れた側となる各管路位置同士を短絡するバイパス用管路と、
当該バイパス用管路を開閉する制御弁と、
前記各制御弁の切替制御並びに前記ポンプ及びヒータの作動制御を行う制御部とを備え、
前記各熱交換器は、前記循環管路に並列に接続されると共に、共通の一つの前記除霜用管路部にそれぞれ除霜用制御弁を介在させつつ並列に接続され、除霜用の熱媒体を熱交換器に択一的に流通可能とされ、
前記除霜用管路部は、タンクの前後の管路間にそれぞれ接続されて熱媒体をタンクに通さず流通させるタンク迂回管路を設けられると共に、タンク迂回管路を開閉し、且つタンク迂回管路の開状態でタンクの流入出口側へ熱媒体を流通させず、タンク迂回管路の閉状態ではタンクの流入出口側へ熱媒体を流通可能とする迂回制御弁を設けられてなり、
前記制御部が、前記循環管路の循環制御弁を閉止して循環管路を通じた熱媒体の熱交換器への流通を停止させ、且つ除霜用管路部の除霜用制御弁を開放して除霜用熱媒体を熱交換器に対し流通可能とした上で、前記迂回制御弁の開閉を制御して、熱媒体をタンクに対し流入出させつつ熱交換器と除霜用管路部に流通させる入替用接続状態と、熱媒体をタンク迂回管路に通してタンクに流入出させずに熱交換器と除霜用管路部で循環流通させる除霜用接続状態とを、切替可能とし、
さらに、前記制御部が、各熱交換器ごとに、循環管路の熱媒体を熱交換器に流通させない待機状態の期間を、当該期間が熱交換器同士で互いに重ならないように設定して、当該待機状態の期間に、各除霜用制御弁を閉止して各熱交換器に除霜用の熱媒体を流通させない状態で、前記迂回制御弁を閉止し、且つバイパス用管路の制御弁を開放すると共に、ポンプ及びヒータを作動させ、除霜用管路部で除霜用の熱媒体をヒータで加熱しつつタンク及びバイパス用管路を経由して循環させ、除霜用の熱媒体を昇温させるようにし、
前記制御部は、所定の一熱交換器の待機状態から、前記循環管路の熱媒体を前記所定の一熱交換器に流通させて熱交換させる状態とし、前記待機状態の期間を終了させると共に、前記待機状態の期間に昇温させた除霜用の熱媒体を他の熱交換器に流通させて除霜を行わせ、加えて、当該除霜の期間に引き続いて、前記他の熱交換器における待機状態の期間を新たに開始させる、という一連の制御を繰り返して、各熱交換器における除霜を、熱交換器ごとに時間をずらしつつ、それぞれ直前の待機状態の期間に昇温させた除霜用の熱媒体の流通により行わせることを
特徴とする加熱塔。
It is a hermetic heating tower that heats the heat medium circulated inside a plurality of heat exchangers that exchange heat with the outside air to raise the temperature, and the heat medium warmed by a predetermined heating means is supplied to each heat exchanger. In a heating tower that can circulate and remove frost generated in the heat exchanger,
The circulation line connected to each of the heat exchangers and circulating in the circulation line that circulates the heat medium to and from the heat utilization device that is an evaporator is disposed at least in the vicinity of the upstream side of the inlet portion of each of the heat exchangers. A plurality of circulation control valves that enable switching between inflow and non-inflow of the heat medium from the pipe line to each heat exchanger for each heat exchanger;
A defrosting conduit portion connected to a predetermined location near the heat medium inlet and a predetermined location near the heat medium outlet in each of the heat exchangers, and allowing the defrosting heat medium to flow to each heat exchanger;
Circulation state and non-circulation state of the heat medium for defrosting disposed near the connection position with each heat exchanger in the defrosting pipe section, between the defrosting pipe section and the heat exchanger A plurality of defrosting control valves that can be switched between,
A pump that is disposed in the defrosting pipe section, pressurizes the defrosting heat medium, and causes the heat medium to flow in a predetermined direction in the pipe;
A heater as the heating means that is disposed in the defrosting conduit section and heats the heat medium;
A tank that is disposed in the defrosting pipe section and stores the heat medium in a capacity that is the same as the heat medium capacity of the heat exchanger so that the heat medium can flow in and out;
In the defrosting pipe section, the pipe position near the heat medium inlet of each heat exchanger and the pipe position near the heat medium outlet, and are separated from the defrost control valve with respect to the heat exchanger, respectively. A bypass pipeline that short-circuits each pipeline location on the other side;
A control valve for opening and closing the bypass conduit;
A control unit that performs switching control of each control valve and operation control of the pump and the heater,
Each of the heat exchangers is connected in parallel to the circulation line, and is connected in parallel to each of the common defrosting line parts with a defrosting control valve interposed therebetween. The heat medium can be distributed alternatively to the heat exchanger,
The defrosting conduit portion is provided with a tank bypass conduit that is connected between the front and rear conduits of the tank so as to circulate the heat medium without passing through the tank, opens and closes the tank bypass conduit, and bypasses the tank. A bypass control valve is provided to allow the heat medium to flow to the inlet / outlet side of the tank in the closed state of the tank without passing the heat medium to the inlet / outlet side of the tank in the open state of the pipe line,
The controller closes the circulation control valve of the circulation pipe to stop the flow of the heat medium through the circulation pipe to the heat exchanger, and opens the defrost control valve of the defrost pipe Then, the defrosting heat medium can be distributed to the heat exchanger, and the opening and closing of the bypass control valve is controlled so that the heat medium flows into and out of the tank and the heat exchanger and the defrosting pipe Switching between the connection state for replacement to be circulated in the part and the connection state for defrosting to circulate and circulate in the heat exchanger and the defrosting line part without passing the heat medium through the tank bypass line and flowing into and out of the tank. Made possible
Furthermore, the control unit, for each heat exchanger, set a period of a standby state in which the heat medium of the circulation line is not circulated to the heat exchanger so that the period does not overlap each other in the heat exchangers, During the standby state, each defrost control valve is closed and the defrosting heat medium is not circulated to each heat exchanger, and the bypass control valve is closed and the bypass conduit control valve is closed. The defrosting heat medium is circulated via the tank and the bypass pipe while the pump and the heater are operated, and the defrosting heat medium is heated by the heater in the defrosting pipe section. Let the temperature rise ,
The control unit sets a state in which the heat medium in the circulation line is circulated through the predetermined one heat exchanger to perform heat exchange from a standby state of the predetermined one heat exchanger, and ends the period of the standby state. The defrosting heat medium that has been heated during the standby period is circulated to another heat exchanger to perform defrosting. In addition, following the defrosting period, the other heat exchange is performed. Repeat the series of controls to start a new standby period in the heat exchanger, and defrost in each heat exchanger while raising the temperature to the previous standby period while shifting the time for each heat exchanger. A heating tower characterized in that it is performed by circulating a heat medium for defrosting .
前記請求項1に記載の加熱塔において、
前記タンクが、熱媒体の流入出口を上部と下部にそれぞれ設けられ、
除霜用管路部におけるタンクから熱媒体を吸出す側の管路及びタンクに熱媒体を押込む側の管路と、タンクにおける上下の各流入出口との間に配置されて、前記各管路とタンクにおける上下の各流入出口とを連通可能とする複数の接続切替用管路と、
除霜用管路部と接続切替用管路にそれぞれ配設され、タンク上部を熱媒体流出側とすると共にタンク下部を熱媒体流入側とする第一の管路接続状態と、タンク上部を熱媒体流入側とすると共にタンク下部を熱媒体流出側とする第二の管路接続状態とを切替可能に開閉制御される複数の接続切替用制御弁とを備え、
前記制御部が、前記迂回制御弁を前記入替用接続状態とする中で、熱交換器内に残っている熱媒体を除霜用管路部を通じてタンク内に流入させ、且つタンク内のより温かい除霜用の熱媒体を熱交換器に流入させる場合には、制御部が、接続切替用制御弁を前記第一の管路接続状態が生じる開放又は閉止状態とし、また、
熱交換器内の除霜用の熱媒体を除霜用管路部を通じてタンク内に流入させ、且つタンク内のより冷たい熱媒体を熱交換器に流入させる場合には、制御部が、接続切替用制御弁を前記第二の管路接続状態が生じる開放又は閉止状態とすることを
特徴とする加熱塔。
In the heating tower according to claim 1,
The tank is provided with a heat medium inlet and outlet at the upper and lower parts, respectively;
The defrosting pipe line section is disposed between a pipe line on the side for sucking out the heat medium from the tank, a pipe line on the side for pushing the heat medium into the tank, and the upper and lower inflow / outlet ports of the tank. A plurality of connection switching pipelines that allow communication between the channel and each of the upper and lower inlet / outlet ports of the tank;
A defrosting conduit section and a connection switching conduit are disposed respectively, and a first conduit connection state in which the upper portion of the tank is a heat medium outflow side and the lower portion of the tank is a heat medium inflow side, and the upper portion of the tank is heated. A plurality of connection switching control valves that are open / close controlled so as to be switchable between a second pipe connection state in which the lower part of the tank is the heat medium outflow side and the tank lower part is provided,
While the control unit places the bypass control valve in the replacement connection state, the heat medium remaining in the heat exchanger is caused to flow into the tank through the defrosting conduit and is warmer in the tank. When the defrosting heat medium is allowed to flow into the heat exchanger, the control unit sets the connection switching control valve in an open or closed state in which the first pipe connection state occurs, and
When the heat medium for defrosting in the heat exchanger is caused to flow into the tank through the defrosting conduit and the cooler heat medium in the tank is allowed to flow into the heat exchanger, the controller switches the connection. A heating tower, wherein the control valve is in an open or closed state in which the second pipe connection state occurs.
前記請求項2に記載の加熱塔において、
前記タンクが、タンクにおける熱媒体の流入出に際し、流入量と流出量を等しくされると共に、タンク内部を、流入出に伴って移動する熱媒体が、温度成層をなす状態を維持したまま上方又は下方に一様に移動可能な構造とされることを
特徴とする加熱塔。
In the heating tower according to claim 2,
The inflow and outflow amounts of the tank are equalized when the heat medium flows in and out of the tank, and the heat medium moving along with the inflow and outflow is maintained upward or in a state where temperature stratification is maintained. A heating tower characterized by a structure that can move uniformly downward.
複数設けられた熱交換器の内部に流通させた熱媒体を外気と熱交換させて昇温させる密閉式の加熱塔で、昇温させた熱媒体を前記各熱交換器に流通させ、当該熱交換器に生じた霜を除去する加熱塔の除霜方法において、
前記各熱交換器に接続され、蒸発器である熱利用装置との間で熱媒体を循環させる循環管路における、少なくとも各熱交換器の入口部分上流側近傍にそれぞれ配設した複数の循環制御弁の開閉で、前記循環管路から当該循環管路に並列に接続される各熱交換器への熱媒体の流入と非流入とを各熱交換器ごとに切替え可能にし、
前記各熱交換器における熱媒体入口近くの所定箇所及び熱媒体出口近くの所定箇所にそれぞれ所定の除霜用制御弁を介して接続される除霜用管路部を通じて、当該除霜用管路部に並列に接続される各熱交換器に対し、除霜用の熱媒体を熱交換器に択一的に流通可能とし、
前記除霜用管路部には、除霜用の熱媒体を加圧して管路内で所定方向に送給するポンプと、熱媒体を加熱するヒータと、熱交換器の熱媒体容量と同じ容量で熱媒体を流入出可能に貯留するタンクとが配設されると共に、タンクの前後の管路間にそれぞれ接続されて熱媒体をタンクに通さないタンク迂回管路が設けられ、さらに、タンク迂回管路を開閉し、且つタンク迂回管路の開状態でタンクの流入出口側へ熱媒体を流通させず、タンク迂回管路の閉状態ではタンクの流入出口側へ熱媒体を流通可能とする迂回制御弁が設けられて、当該迂回制御弁の開閉制御で、熱媒体をタンクに流入出させられる入替用接続状態と、熱媒体をタンク迂回管路に通してタンクに流入出させない除霜用接続状態とを切替使用可能とされ、
前記除霜用管路部が、各熱交換器の熱媒体入口近くの管路位置と熱媒体出口近くの管路位置であって、且つそれぞれ熱交換器に対し除霜用制御弁よりも離れた側となる各管路位置について、当該管路位置同士を短絡するバイパス用管路を有すると共に、当該バイパス用管路を開閉する制御弁を有して、バイパス用管路を経由してヒータとタンクの含まれる経路で熱媒体を循環可能とし、
前記各熱交換器に対する除霜工程として、
前記循環管路の循環制御弁を閉じて熱媒体の循環管路を通じた流通を停止させる一方、除霜用管路部の除霜用制御弁を開放状態として除霜用熱媒体を熱交換器に対し流通可能とし、且つ除霜用管路部で熱媒体をタンクに流入出させられる前記入替用接続状態で、ポンプ及びヒータを作動させ、除霜用管路部で熱媒体の流れを生じさせてタンク内の除霜用熱媒体を熱交換器に入れると共に、熱交換器内に残る冷たい熱媒体を除霜用管路部を通じてタンクに流入させる第一の熱媒体入替工程と、
タンク内にあった除霜用熱媒体が熱交換器に存在していた冷たい熱媒体と全て入れ替わったら、除霜用管路部で熱媒体をタンク迂回管路に通してタンクに出入りさせない前記除霜用接続状態に移行して、除霜用熱媒体がヒータで加熱されつつ熱交換器と除霜用管路部を循環して除霜を実行する熱媒体循環工程と、
熱交換器が除霜完了と見なせる状態に達したら、除霜用管路部で熱媒体をタンクに流入出させられる前記入替用接続状態に移行し、且つヒータを非作動状態とし、タンク内の冷たい熱媒体をタンクから出して熱交換器に入れると共に、熱交換器内の除霜用熱媒体を除霜用管路部を通じてタンクに流入させる第二の熱媒体入替工程と、
タンク内にあった冷たい熱媒体が熱交換器に存在していた熱媒体と全て入れ替わったら、除霜用管路部の除霜用制御弁を閉止状態とすると共にポンプの作動を停止して、熱媒体の除霜用管路部を通じた流通を停止させる熱媒体流通停止工程とを含み、
各熱交換器ごとに、循環管路の熱媒体を熱交換器に流通させない待機状態の期間を、期間が互いに重ならないように設定し、当該待機状態の期間に、前記除霜工程に先立つ予熱工程として、除霜用制御弁を閉止すると共にバイパス用管路の制御弁を開放した状態で、ポンプ及びヒータを作動させ、除霜用管路部で除霜用の熱媒体をヒータで加熱しつつタンク及びバイパス用管路を通じて循環させて、熱媒体の昇温のみ実行し、
所定の一熱交換器の待機状態の期間が終了して、循環管路の熱媒体を熱交換器に流通させて熱交換させる運転状態に移行すると、他の熱交換器が前記除霜工程を開始し、前記所定の一熱交換器の待機状態の期間と重なる予熱工程で温度を高めた除霜用熱媒体を利用しつつ除霜を実行し、
除霜工程の終了後、前記他の熱交換器が待機状態に移行すると共に、並行して予熱工程が実行され、以降、前記各工程が繰り返されて、各熱交換器の除霜工程が熱交換器ごとに時間をずらしつつ、それぞれ直前の予熱工程で温度を高められた除霜用熱媒体により実行されることを
特徴とする加熱塔の除霜方法
A sealed heating tower that heats the heat medium circulated inside a plurality of heat exchangers that exchange heat with the outside air and heats the heat medium that has been heated to each heat exchanger. In the defrosting method of the heating tower that removes frost generated in the exchanger ,
A plurality of circulation controls respectively disposed in the vicinity of the upstream side of the inlet portion of each heat exchanger in a circulation line connected to each heat exchanger and circulating a heat medium to and from a heat utilization device that is an evaporator By opening and closing the valve, it is possible to switch between inflow and non-inflow of the heat medium from the circulation line to each heat exchanger connected in parallel to the circulation line for each heat exchanger,
Through the defrosting conduit section connected to a predetermined location near the heat medium inlet and a predetermined location near the heat medium outlet in each heat exchanger via a predetermined defrosting control valve, the defrosting pipeline. For each heat exchanger connected in parallel to the section, the heat medium for defrosting can be selectively distributed to the heat exchanger,
The defrosting conduit section is the same as the heat medium capacity of the heat exchanger, a pump that pressurizes the defrosting heat medium and feeds it in a predetermined direction in the duct, a heater that heats the heat medium, and the heat exchanger A tank for storing the heat medium in a capacity so as to be able to flow in and out, and a tank bypass pipe that is connected between the pipes before and after the tank and does not pass the heat medium through the tank. Opens and closes the bypass line and does not flow the heat medium to the inlet / outlet side of the tank when the tank bypass line is open, and allows the heat medium to flow to the inlet / outlet side of the tank when the tank bypass line is closed. A detour control valve is provided, and switching control for opening and closing the detour control valve allows the heat medium to flow into and out of the tank, and defrosting to prevent the heat medium from flowing into and out of the tank through the tank detour pipe line The connection status can be switched and used.
The defrosting pipe sections are located near the heat medium inlet of each heat exchanger and the pipe position near the heat medium outlet, and are separated from the defrost control valve with respect to the heat exchanger, respectively. For each pipeline position on the other side, it has a bypass pipeline that short-circuits the pipeline locations and has a control valve that opens and closes the bypass pipeline, and a heater via the bypass pipeline The heat medium can be circulated through the path that contains the tank,
As a defrosting process for each heat exchanger,
The circulation control valve of the circulation line is closed to stop the flow of the heat medium through the circulation line, while the defrosting control valve of the defrosting line part is opened to remove the defrosting heat medium from the heat exchanger. In the replacement connection state in which the heat medium is allowed to flow into and out of the tank in the defrosting pipe section, the pump and the heater are operated, and the heat medium flows in the defrosting pipe section. And a first heat medium replacement step in which the defrosting heat medium in the tank is put into the heat exchanger and the cold heat medium remaining in the heat exchanger flows into the tank through the defrosting pipe line part,
When all the defrosting heat medium in the tank has been replaced with the cold heat medium existing in the heat exchanger, the heat medium is not passed through the tank detour pipe in the defrosting pipe section so that it does not enter or leave the tank. Transition to the frost connection state, a heat medium circulation step of performing defrosting by circulating the heat exchanger and the defrosting conduit while the defrosting heat medium is heated by the heater,
When the heat exchanger reaches a state where defrosting is completed, the heat transfer medium is transferred to the tank through the defrosting conduit, and the heater is deactivated. A second heat medium replacement step of taking out the cold heat medium from the tank and putting it in the heat exchanger, and causing the defrost heat medium in the heat exchanger to flow into the tank through the defrost pipe line,
When the cold heat medium in the tank is completely replaced with the heat medium present in the heat exchanger, the defrosting control valve of the defrosting conduit is closed and the pump operation is stopped. A heat medium flow stopping step for stopping the flow of heat medium through the defrosting pipe line part,
For each heat exchanger, a standby period in which the heat medium in the circulation line is not circulated to the heat exchanger is set so that the periods do not overlap each other, and preheating prior to the defrosting step is performed in the standby period. As a process, with the defrosting control valve closed and the bypass conduit control valve opened, the pump and heater are operated, and the defrosting conduit is heated with the heater. While circulating through the tank and bypass pipe, only the heating medium is heated,
When the period of the standby state of the predetermined one heat exchanger is completed and the operation mode is changed to the operation state in which the heat medium in the circulation pipe is passed through the heat exchanger and heat exchange is performed, the other heat exchanger performs the defrosting step. Start and perform defrosting while using the defrosting heat medium whose temperature has been increased in the preheating step overlapping the period of the standby state of the predetermined one heat exchanger,
After completion of the defrosting process, the other heat exchanger shifts to a standby state, and a preheating process is executed in parallel. Thereafter, the processes are repeated, and the defrosting process of each heat exchanger is heated. A defrosting method for a heating tower , which is executed by a defrosting heat medium whose temperature is increased in the immediately preceding preheating step while shifting the time for each exchanger .
JP2015021413A 2015-02-05 2015-02-05 Heating tower and defrosting method thereof Active JP6498461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021413A JP6498461B2 (en) 2015-02-05 2015-02-05 Heating tower and defrosting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021413A JP6498461B2 (en) 2015-02-05 2015-02-05 Heating tower and defrosting method thereof

Publications (2)

Publication Number Publication Date
JP2016142513A JP2016142513A (en) 2016-08-08
JP6498461B2 true JP6498461B2 (en) 2019-04-10

Family

ID=56568613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021413A Active JP6498461B2 (en) 2015-02-05 2015-02-05 Heating tower and defrosting method thereof

Country Status (1)

Country Link
JP (1) JP6498461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106958964A (en) * 2017-03-07 2017-07-18 杭州三花家电热管理***有限公司 Heat pump and its control method and the water heater with the heat pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102750U (en) * 1977-12-29 1979-07-19
JPS63318455A (en) * 1987-06-23 1988-12-27 株式会社竹中工務店 Heat pump
JPH02298780A (en) * 1989-05-12 1990-12-11 Shikoku Dock Kk Defrosting method for refrigerating facility
JP4539665B2 (en) * 2007-02-28 2010-09-08 ダイキン工業株式会社 Cold / hot water circulation system for printing press and its cold / hot water circulation method

Also Published As

Publication number Publication date
JP2016142513A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5713536B2 (en) Heat pump water heater
US20170153050A1 (en) Air conditioner
JP2019015498A (en) Defrosting device of heat exchanger and defrosting method
JP5484289B2 (en) Engine cooling water circulation system for testing
JP6671009B2 (en) Air conditioner
KR20130115123A (en) Heating system
JP7377116B2 (en) Vehicle air conditioner
JP2010025440A (en) Air conditioning system
JP6498461B2 (en) Heating tower and defrosting method thereof
CN104949318A (en) Heat exchanger, air conditioner system and heat exchange method
CN202835785U (en) Heat pump water heater capable of preventing cold water from flowing out in defrosting state
JP5383409B2 (en) Ice storage type heat source device
JP2008281282A (en) Water heater
JP2016075262A (en) Exhaust heat recovery system
CN104236142A (en) Anti-freezing method of fused salt solar heat absorber emptying and exhausting pipeline
JP4700371B2 (en) Defrosting method for heating tower
JP2004251593A (en) Heat storage type hot-water supply apparatus
CN110160249A (en) Heat-exchanging component and air-conditioner set
JP5166840B2 (en) Heat pump system
JP2023513827A (en) air conditioner
CN209581083U (en) Vehicle heat management system and vehicle
CN113124512A (en) Air conditioning unit and control method thereof
CN208536140U (en) Air-conditioning system
CN206973921U (en) Refrigeration system and the water dispenser for including it
CN105536452B (en) Gas automatic water-removing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R150 Certificate of patent or registration of utility model

Ref document number: 6498461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250