JP6497328B2 - Waveguide terminator - Google Patents

Waveguide terminator Download PDF

Info

Publication number
JP6497328B2
JP6497328B2 JP2016008611A JP2016008611A JP6497328B2 JP 6497328 B2 JP6497328 B2 JP 6497328B2 JP 2016008611 A JP2016008611 A JP 2016008611A JP 2016008611 A JP2016008611 A JP 2016008611A JP 6497328 B2 JP6497328 B2 JP 6497328B2
Authority
JP
Japan
Prior art keywords
waveguide
absorber
axis direction
radio wave
tube axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016008611A
Other languages
Japanese (ja)
Other versions
JP2017130780A (en
Inventor
米山 直樹
直樹 米山
山本 伸一
伸一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016008611A priority Critical patent/JP6497328B2/en
Publication of JP2017130780A publication Critical patent/JP2017130780A/en
Application granted granted Critical
Publication of JP6497328B2 publication Critical patent/JP6497328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Description

本発明は、マイクロ波導波管に用いる導波管終端器に関する。   The present invention relates to a waveguide terminator used for a microwave waveguide.

マイクロ波導波管に用いられる導波管終端器は、導波管の開口端より入射する電磁波のエネルギーを吸収し、熱に変換して消費させ反射させないようにすることで導波管内を伝搬してきた電波を終端する。従来の導波管終端器として、例えばTE10モードのマイクロ波を終端させる場合に、断面が矩形状の導波管の一端を金属短絡板で終端し、金属短絡板の内面に吸収体本体を設けるとともに、電界方向に垂直な導波管の側板内面部に吸収体の側板を延長密着させた導波管終端器がある(例えば特許文献1)。   Waveguide terminators used in microwave waveguides propagate in the waveguide by absorbing the energy of electromagnetic waves incident from the open end of the waveguide and converting it into heat so that it is not consumed and reflected. Terminate the received radio wave. As a conventional waveguide terminator, for example, when terminating a TE10 mode microwave, one end of a waveguide having a rectangular cross section is terminated with a metal short-circuit plate, and an absorber body is provided on the inner surface of the metal short-circuit plate In addition, there is a waveguide terminator in which a side plate of an absorber is extended and adhered to an inner surface of a side plate of a waveguide perpendicular to the electric field direction (for example, Patent Document 1).

特公昭52−23542号公報Japanese Patent Publication No.52-23542

上記のような導波管終端器では、吸収体の側板部分の長さを導波管内を伝搬させるマイクロ波の波長λの4分の1以下で適当な長さとする。使用するマイクロ波の周波数に応じて吸収体側板部の長さが決定するため、使用するマイクロ波の周波数が決まると吸収体の側板部分の長さが決定し、その長さに導波管終端器管軸方向の長さが依存して決定するので、導波管終端器の小型化に限界があった。特に、波長の長い低周波では高周波よりも吸収体の側板部分を長くする必要があり、導波管終端器は管軸方向に長大化する。   In the waveguide terminator as described above, the length of the side plate portion of the absorber is set to an appropriate length that is equal to or less than ¼ of the wavelength λ of the microwave propagating in the waveguide. Since the length of the absorber side plate is determined according to the frequency of the microwave used, the length of the side plate of the absorber is determined when the frequency of the microwave used is determined, and the length of the waveguide ends Since the length in the tube axis direction depends on the length, there is a limit to downsizing the waveguide terminator. In particular, at a low frequency with a long wavelength, it is necessary to make the side plate portion of the absorber longer than at a high frequency, and the waveguide terminator becomes longer in the tube axis direction.

本発明は、上記課題を解決するためになされたものであり、導波管終端器の管軸方向の長大化を抑えることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to suppress an increase in the length of the waveguide terminator in the tube axis direction.

本発明に係る導波管終端器は、電波を伝搬させる導波管部と、導波管部の開口の一方を短絡させる短絡板と、導波管部内に配置された吸収体本体と、吸収体本体の端から導波管部の管軸方向に電波の波長の1/4未満の範囲に設けられ、導波管部の導波管部内の空間の電波の電界方向の幅が管軸方向において異なる形状の吸収体側部を有する吸収部とを備えたものである。   A waveguide terminator according to the present invention includes a waveguide section for propagating radio waves, a short-circuit plate for short-circuiting one of the openings of the waveguide section, an absorber body disposed in the waveguide section, and an absorption The width of the electric field direction of the radio wave in the space in the waveguide portion of the waveguide portion is less than ¼ of the wavelength of the radio wave in the tube axis direction of the waveguide portion from the end of the body body. And an absorber having an absorber side portion of a different shape.

本発明によれば、吸収部における吸収体側部の形状を導波管部の導波管内の空間の電波の電界方向の幅が管軸方向において異なる形状としたので、導波管部を伝搬する電波の経路の長さを吸収体側部の管軸方向の長さより長くすることができ、吸収体側部の管軸方向の長さを電波の波長の1/4より短くすることができるため、導波管終端器の長大化を抑えられる。   According to the present invention, since the shape of the absorber side portion in the absorption portion is different in the width of the electric field direction of the radio wave in the waveguide of the waveguide portion in the tube axis direction, it propagates through the waveguide portion. The length of the radio wave path can be made longer than the length of the absorber side portion in the tube axis direction, and the length of the absorber side portion in the tube axis direction can be made shorter than ¼ of the wavelength of the radio wave. The lengthening of the wave tube terminator can be suppressed.

実施の形態1に係る導波管終端器の一部を切り欠いて示す斜視図である。FIG. 3 is a perspective view showing a part of the waveguide terminator according to Embodiment 1 by cutting away. 図1に示した導波管終端器の電界方向と管軸方向に平行な断面の断面図である。It is sectional drawing of the cross section parallel to the electric field direction and tube-axis direction of the waveguide terminator shown in FIG. 図1に示した導波管終端器のx軸方向と管軸方向に平行な断面の断面図である。FIG. 2 is a cross-sectional view of a cross section parallel to the x-axis direction and the tube axis direction of the waveguide terminator shown in FIG. 1. 図1に示した導波管終端器の吸収部の下側の吸収体側部の拡大図である。It is an enlarged view of the absorber side part under the absorption part of the waveguide terminator shown in FIG. 実施の形態1に係る導波管終端器の特性図である。6 is a characteristic diagram of the waveguide terminator according to Embodiment 1. FIG. 実施の形態1に係る導波管終端器の溝の形状の例を示す断面図である。6 is a cross-sectional view showing an example of the shape of the groove of the waveguide terminator according to Embodiment 1. FIG. 実施の形態1に係る導波管終端器の溝の形状の例を示す断面図である。6 is a cross-sectional view showing an example of the shape of the groove of the waveguide terminator according to Embodiment 1. FIG. 実施の形態1に係る導波管終端器の溝の形状の例を示す断面図である。6 is a cross-sectional view showing an example of the shape of the groove of the waveguide terminator according to Embodiment 1. FIG. 実施の形態1に係る導波管終端器の溝の形状の例を示す断面図である。6 is a cross-sectional view showing an example of the shape of the groove of the waveguide terminator according to Embodiment 1. FIG. 実施の形態1に係る導波管終端器の溝の形状の例を示す断面図である。6 is a cross-sectional view showing an example of the shape of the groove of the waveguide terminator according to Embodiment 1. FIG. 実施の形態2に係る導波管終端器の電界方向と管軸方向に平行な断面の断面図である。It is sectional drawing of the cross section parallel to the electric field direction and tube axis direction of the waveguide terminator which concerns on Embodiment 2. FIG. 実施の形態3に係る導波管終端器の電界方向と管軸方向に平行な断面の断面図である。It is sectional drawing of the cross section parallel to the electric field direction and tube-axis direction of the waveguide terminator which concerns on Embodiment 3. FIG. 実施の形態4に係る導波管終端器の電界方向と管軸方向に平行な断面の断面図である。It is sectional drawing of the cross section parallel to the electric field direction and tube axis direction of the waveguide terminator which concerns on Embodiment 4. 実施の形態5に係る導波管終端器の電界方向と管軸方向に平行な断面の断面図である。It is sectional drawing of the cross section parallel to the electric field direction and tube-axis direction of the waveguide terminator which concerns on Embodiment 5. FIG. 実施の形態6に係る導波管終端器の電界方向と管軸方向に平行な断面の断面図である。It is sectional drawing of the cross section parallel to the electric field direction and tube-axis direction of the waveguide terminator which concerns on Embodiment 6. FIG. 実施の形態7に係る導波管終端器の電界方向と管軸方向に平行な断面の断面図である。It is sectional drawing of the cross section parallel to the electric field direction and tube-axis direction of the waveguide terminator which concerns on Embodiment 7. FIG. 実施の形態7に係る導波管終端器の吸収部の下側の吸収体側部の拡大図である。It is an enlarged view of the absorber side part below the absorption part of the waveguide terminator concerning Embodiment 7. FIG. 実施の形態8に係る導波管終端器の電界方向と管軸方向に平行な断面の断面図である。It is sectional drawing of the cross section parallel to the electric field direction and tube axis direction of the waveguide terminator which concerns on Embodiment 8. FIG. 実施の形態8に係る導波管終端器の吸収部の下側の吸収体側部の拡大図である。FIG. 10 is an enlarged view of an absorber side part below an absorption part of a waveguide terminator according to Embodiment 8.

実施の形態1.
以下、本発明の実施の形態1に係る導波管終端器について説明する。本実施の形態では波長λのTE10モードのマイクロ波を終端させる場合について説明する。図1は、実施の形態1に係る導波管終端器の一部を切り欠いて示す斜視図である。図1の導波管終端器は、導波管部1、短絡板2、吸収体本体3、吸収部4を備えており、吸収部4は導波管を伝搬する電波の電界方向に垂直な導波管部1の上下の内面、すなわち図1に示すx−z面に接するように設けられた吸収体側部41、吸収体側部42と、これら吸収体側部41、42に挟まれた空間からなる。本実施の形態では、吸収体本体3と吸収体側部41、吸収体側部42は一体となって設けられている。
吸収部4は、伝搬してきた電波のエネルギーを吸収する部分である。この発明では、吸収部4は、導波管部1の管軸方向に電波の波長の1/4未満の幅の範囲に設けられている。この導波管終端器を、導波管につなげることで導波管を伝搬してきた電波を終端することができる。
Embodiment 1 FIG.
Hereinafter, the waveguide terminator according to the first embodiment of the present invention will be described. In this embodiment, a case where a TE10 mode microwave having a wavelength λ is terminated will be described. FIG. 1 is a perspective view of the waveguide terminator according to Embodiment 1 with a part thereof cut away. The waveguide terminator in FIG. 1 includes a waveguide section 1, a short-circuit plate 2, an absorber body 3, and an absorption section 4. The absorption section 4 is perpendicular to the electric field direction of the radio wave propagating through the waveguide. From the upper and lower inner surfaces of the waveguide portion 1, that is, the absorber side portion 41 and the absorber side portion 42 provided so as to be in contact with the xz plane shown in FIG. 1, and the space sandwiched between the absorber side portions 41 and 42 Become. In this Embodiment, the absorber main body 3, the absorber side part 41, and the absorber side part 42 are provided integrally.
The absorber 4 is a part that absorbs the energy of the propagated radio wave. In the present invention, the absorbing section 4 is provided in a range of a width less than ¼ of the wavelength of the radio wave in the tube axis direction of the waveguide section 1. By connecting this waveguide terminator to the waveguide, the radio wave propagating through the waveguide can be terminated.

導波管部1は、内部が空洞である金属製の管からなり、電波を伝搬させる。導波管部1の両端には電波の出入り口となる開口11、12を持つ。なお、開口12には短絡板2が密着して固定されている。導波管は、使用するマイクロ波の伝送モードに応じて円形または矩形の開口断面形状であるが、本実施の形態ではTE10モードのマイクロ波を伝搬させるのに適している矩形の導波管を終端する導波管終端器の実施の形態について述べる。この発明は、断面が矩形の導波管に限らず円形の導波管に適用することもできる。
ここで、導波管の方向の定義について説明する。図1のように導波管部1が伸びる方向、すなわち電波が管の内部を開口11からもう一方の開口12へ伝搬する方向を管軸方向という。断面が矩形状の導波管の場合、管軸方向に垂直な導波管の断面、すなわち図1に示すx−y面で切った断面は、長辺と短辺を持つ長方形である。この導波管をTE10モードの電波が伝搬する場合、電界は短辺に平行な方向に発生する。この短辺に平行な方向を電界方向という。また、管軸方向と電界方向に直交する、長辺に平行な方向をx軸方向とする。
The waveguide section 1 is made of a metal tube having a hollow inside, and propagates radio waves. Both ends of the waveguide section 1 have openings 11 and 12 that serve as radio wave entrances. The short-circuit plate 2 is fixed in close contact with the opening 12. The waveguide has a circular or rectangular opening cross section depending on the microwave transmission mode to be used. In this embodiment, a rectangular waveguide suitable for propagating the TE10 mode microwave is used. An embodiment of a terminating waveguide terminator will be described. The present invention can be applied not only to a waveguide having a rectangular cross section but also to a circular waveguide.
Here, the definition of the direction of the waveguide will be described. The direction in which the waveguide portion 1 extends as shown in FIG. 1, that is, the direction in which radio waves propagate through the tube from the opening 11 to the other opening 12 is referred to as the tube axis direction. In the case of a waveguide having a rectangular cross section, the cross section of the waveguide perpendicular to the tube axis direction, that is, the cross section cut along the xy plane shown in FIG. 1 is a rectangle having a long side and a short side. When a TE10 mode radio wave propagates through this waveguide, an electric field is generated in a direction parallel to the short side. The direction parallel to the short side is called the electric field direction. Further, a direction parallel to the long side and orthogonal to the tube axis direction and the electric field direction is defined as an x-axis direction.

図2は、図1に示した導波管終端器の電界方向と管軸方向に平行な断面、すなわちx−y面で切った断面図である。図2に示すように短絡板2が、開口12に密着して固定されている。短絡板2の材質は、導波管部1と同様に金属であればよく、導波管部1と同じ素材であってもよいし、違う素材であってもよい。導波管部1の開口12は短絡板2で短絡されている。   2 is a cross-sectional view taken along the xy plane, that is, a cross section parallel to the electric field direction and the tube axis direction of the waveguide terminator shown in FIG. As shown in FIG. 2, the short-circuit plate 2 is fixed in close contact with the opening 12. The material of the short-circuit plate 2 may be metal as long as the waveguide section 1 may be the same material as the waveguide section 1 or may be a different material. The opening 12 of the waveguide portion 1 is short-circuited by the short-circuit plate 2.

吸収体本体3は、導波管部1内に配置される。吸収体本体3は、導波管部1の開口と同じ大きさの面を持つ直方体に形成され、導波管部1の開口12に固定された短絡板2を覆って接するように配置されている。なお、吸収体本体3は、短絡板2に接せずに隙間を設けて配置してもよい。また、吸収体本体3の形状は直方体に限らない。   The absorber body 3 is disposed in the waveguide portion 1. The absorber main body 3 is formed in a rectangular parallelepiped having a surface having the same size as the opening of the waveguide portion 1 and is disposed so as to cover and contact the short-circuit plate 2 fixed to the opening 12 of the waveguide portion 1. Yes. The absorbent body 3 may be arranged with a gap without contacting the short-circuit plate 2. Moreover, the shape of the absorber main body 3 is not restricted to a rectangular parallelepiped.

図2に示すように、導波管を伝搬する電波の電界方向に垂直な導波管部1の上下の内面に接するように設けられた吸収体側部41及び吸収体側部42と、吸収体本体3とは一体に形成されている。吸収部4は、吸収体側部41、42と、これらに挟まれた空間とからなる。導波管を伝搬させる電波の波長をλとすると、吸収部4は、吸収体本体3の端から導波管部1の管軸方向に電波の波長の1/4未満の幅の範囲に設けられる。図3は、図1に示した導波管終端器のx軸方向と管軸方向に平行な断面、すなわちx−y面で切った断面の断面図である。また、下側の吸収体側部42の上面には、溝5が設けられている。溝5は、図3に示すように吸収体側部42のx軸方向全体に亘って電界方向に深さを持つ形状に形成されている。溝5が設けられることにより、導波管部1の管軸方向において導波管部1の内部の空間の電界方向の幅が異なる。   As shown in FIG. 2, the absorber side part 41 and the absorber side part 42 provided so that the upper and lower inner surfaces of the waveguide part 1 perpendicular | vertical to the electric field direction of the electromagnetic wave which propagates a waveguide may be contacted, and an absorber main body 3 is formed integrally. The absorber 4 includes absorber side parts 41 and 42 and a space sandwiched between them. Assuming that the wavelength of the radio wave propagating through the waveguide is λ, the absorber 4 is provided in a range of a width less than ¼ of the wavelength of the radio wave from the end of the absorber body 3 in the tube axis direction of the waveguide 1. It is done. FIG. 3 is a cross-sectional view of the waveguide terminator shown in FIG. 1 in a cross section parallel to the x-axis direction and the tube axis direction, that is, a cross section cut along the xy plane. A groove 5 is provided on the upper surface of the lower absorber side portion 42. As shown in FIG. 3, the groove 5 is formed in a shape having a depth in the electric field direction over the entire x-axis direction of the absorber side portion 42. By providing the groove 5, the width in the electric field direction of the space inside the waveguide portion 1 is different in the tube axis direction of the waveguide portion 1.

ここで、導波管部1の内部の空間とは、導波管部1の内部であり、かつ吸収部4のうち吸収体側部41、42が存在しない空間を指している。なお、吸収体側部41、42が導波管の側面に接しておらず、導波管の上下の内面と吸収体側部4との間に隙間がある場合も想定され、この場合は隙間も空間の一部とする。本実施の形態では、導波管部1の管軸方向における導波管内部の空間の電界方向の幅は、下側の吸収体側部42に溝5が設けられている部分と溝5が設けられていない部分とで異なる。
吸収体側部41、42の材質は、吸収体本体3と同じ材質であってもよいし、別の材質であってもよい。
Here, the space inside the waveguide portion 1 refers to a space that is inside the waveguide portion 1 and in which the absorber side portions 41 and 42 do not exist in the absorption portion 4. It is assumed that the absorber side portions 41 and 42 are not in contact with the side surface of the waveguide, and there is a gap between the upper and lower inner surfaces of the waveguide and the absorber side portion 4, and in this case, the gap is also a space. As part of In the present embodiment, the width in the electric field direction of the space inside the waveguide in the tube axis direction of the waveguide portion 1 is set so that the groove 5 is provided on the lower absorber side portion 42. It differs in the part which is not done.
The material of the absorber side portions 41 and 42 may be the same material as that of the absorber body 3 or may be a different material.

次に、本実施の形態に係る導波管終端器に電波が伝搬してきた際の動作について説明する。導波管につながれた導波管終端器に電波が伝搬してくると、電波の大部分が吸収部4により電波のエネルギーが吸収されて、熱となる。このため電波が反射せず、導波管内を伝搬してくる電波を終端することができる。この時、吸収部4では、電波が共振することによって効率よくエネルギーが吸収される。この電波の共振は、共振長がλ/4である時に最も効率よく共振する。この実施の形態1において、共振長は、下側の吸収体側部42の開口11側の端部61mから、吸収体側部4表面を管軸方向に沿って進み、吸収体本体3の端61nまでの長さである。吸収体本体3の端61nとは、吸収体本体3のうち、吸収体側部4に沿って伝搬してきた電波が到達する部分であり、図2に点線で示す部分である。図4に、実施の形態1に係る導波管終端器の吸収部4の下側の吸収体側部42の拡大断面図を示す。図4において、共振長は吸収部4の吸収体側部42の管軸方向の長さLと電界方向の溝5の深さHから求められ、この図4の例では溝5が垂直に設けられているので共振長はL+2Hとなる。   Next, the operation when radio waves propagate to the waveguide terminator according to the present embodiment will be described. When radio waves propagate to the waveguide terminator connected to the waveguide, most of the radio waves are absorbed by the absorber 4 and become heat. For this reason, the radio wave propagating through the waveguide can be terminated without reflecting the radio wave. At this time, the absorption unit 4 efficiently absorbs energy by the radio waves resonating. The resonance of the radio wave is most efficiently resonated when the resonance length is λ / 4. In the first embodiment, the resonance length advances from the end portion 61m on the opening 11 side of the lower absorber side portion 42 along the surface of the absorber side portion 4 along the tube axis direction to the end 61n of the absorber body 3. Is the length of The end 61n of the absorber body 3 is a portion of the absorber body 3 where the radio wave propagating along the absorber side portion 4 reaches, and is a portion indicated by a dotted line in FIG. FIG. 4 is an enlarged cross-sectional view of the absorber side portion 42 below the absorber 4 of the waveguide terminator according to the first embodiment. In FIG. 4, the resonance length is obtained from the length L of the absorber side portion 42 of the absorber 4 in the tube axis direction and the depth H of the groove 5 in the electric field direction. In the example of FIG. 4, the groove 5 is provided vertically. Therefore, the resonance length is L + 2H.

図5は、図1の導波管終端器を導波管に接続した場合の反射の様子をシミュレーションで求めた結果を示す特性図であり、横軸を周波数、縦軸を進行波と反射波の関係を示す定在波比であるVSWR(Voltage Standing Wave Ratio)としたグラフである。このグラフから、導波管を伝搬してきた電波の周波数ごとの終端の性能をVSWRとして確認することができる。最もVSWRが低い周波数は、その導波管終端器に整合している周波数であり、整合周波数と呼ぶ。吸収体側部の共振長は、導波管を伝搬させる電波の整合周波数と一致するように設計すると最も導波管終端器の終端効率が良い。   FIG. 5 is a characteristic diagram showing the result of the simulation of the state of reflection when the waveguide terminator of FIG. 1 is connected to a waveguide, with the horizontal axis representing frequency and the vertical axis representing traveling wave and reflected wave. It is a graph made into VSWR (Voltage Standing Wave Ratio) which is a standing wave ratio which shows the relationship of these. From this graph, the performance of the termination for each frequency of the radio wave propagating through the waveguide can be confirmed as VSWR. The frequency with the lowest VSWR is the frequency that matches the waveguide terminator and is called the matching frequency. The termination efficiency of the waveguide terminator is best when the resonance length of the absorber side portion is designed to match the matching frequency of the radio wave propagating through the waveguide.

図5において細かい破線で示す特性101は、吸収体側部41、42を溝5が設けられていない平板上の形状とし、吸収体側部42の管軸方向の長さLを整合周波数fcにおける波長λの1/4として設定した場合の特性である。この場合の共振長はLである。
図5において粗い破線で示す特性102は、上記特性101と同じ導波管部1において、吸収体側部41、42を溝5が設けられていない平板上の形状とし、吸収体側部42の管軸方向の長さを1.3倍にした場合の特性である。この場合の共振長は、1.3Lであり、共振長が1.3倍になった分に対応して整合周波数は低減側へシフトしている。
そして、図5において実線で示す特性103は、本実施の形態による導波管終端器の特性である。すなわち、特性103は上記特性101、102と同じ導波管部1において、図1〜3で示したように吸収体側部4のうち下側の吸収体側部42の上面に溝5を設けた形状とした場合の特性である。このとき、吸収体側部41、42自体の管軸方向の長さは特性101の場合と同じ長さLとしている。管軸方向の長さはLであるが、共振長は、溝5の2つの側面の深さHの分が加わってL+2Hとなっており、L+2HがLに対して1.3倍の長さとなるようにHの深さを設定している。つまり、特性103と特性102は、共振長がL+2Hという点で共通しており、これによりほぼ同様の特性であることがわかる。
なお、図5では、横軸の周波数は特性101の整合周波数fcを基準に規格化した。
In the characteristic 101 shown by a fine broken line in FIG. 5, the absorber side portions 41 and 42 are formed on a flat plate not provided with the groove 5, and the length L in the tube axis direction of the absorber side portion 42 is the wavelength λ at the matching frequency fc. It is a characteristic when set as 1/4 of. In this case, the resonance length is L.
The characteristic 102 shown by a rough broken line in FIG. 5 is that the absorber side portions 41 and 42 are formed on a flat plate not provided with the groove 5 in the same waveguide portion 1 as the above characteristic 101, and the tube axis of the absorber side portion 42 is This is a characteristic when the length in the direction is 1.3 times. The resonance length in this case is 1.3 L, and the matching frequency is shifted to the reduction side corresponding to the increase of the resonance length by 1.3 times.
And the characteristic 103 shown as a continuous line in FIG. 5 is a characteristic of the waveguide terminator by this Embodiment. That is, the characteristic 103 is a shape in which the groove 5 is provided on the upper surface of the lower absorber side portion 42 of the absorber side portion 4 in the same waveguide portion 1 as the above characteristics 101 and 102 as shown in FIGS. It is a characteristic in the case of. At this time, the length in the tube axis direction of the absorber side portions 41 and 42 itself is set to the same length L as in the case of the characteristic 101. Although the length in the tube axis direction is L, the resonance length is L + 2H by adding the depth H of the two side surfaces of the groove 5, and L + 2H is 1.3 times as long as L. The depth of H is set so that That is, the characteristic 103 and the characteristic 102 are common in that the resonance length is L + 2H, and it can be seen that the characteristic is almost the same.
In FIG. 5, the frequency on the horizontal axis is normalized based on the matching frequency fc of the characteristic 101.

図5からわかるように、特性101の整合周波数fcに比べ低い周波数を整合周波数とする導波管終端器を得ようとすると、特性102の場合のように共振長を1.3倍にするために吸収体側部42の管軸方向の長さを1.3倍にする必要があるが、本発明の実施の形態のように導波管終端器を構成すれば、吸収体側部42の管軸方向の長さを特性101の場合と同じLのままとしても共振長が1.3倍になるため、特性102とほぼ同様の特性を得ることができる。
つまり、波長の長い低周波では高周波よりも吸収体の側板部分を長くする必要があるので導波管終端器が管軸方向に長大化する傾向にあったが、本実施の形態の導波管終端器であれば、吸収部4において、吸収体側部42に溝5を設けたことにより、この溝5の電界方向に沿った側面部分も共振長の一部となるため、波長の長い低周波であっても導波管終端器の吸収体側部41、42の管軸方向の長さを電波の波長の1/4より短くすることができる。
As can be seen from FIG. 5, when trying to obtain a waveguide terminator having a matching frequency lower than the matching frequency fc of the characteristic 101, the resonance length is increased 1.3 times as in the case of the characteristic 102. It is necessary to increase the length of the absorber side portion 42 in the tube axis direction by 1.3 times. However, if the waveguide terminator is configured as in the embodiment of the present invention, the tube axis of the absorber side portion 42 is Even if the length in the direction is kept at the same L as in the case of the characteristic 101, the resonance length becomes 1.3 times, so that almost the same characteristic as the characteristic 102 can be obtained.
That is, at the low frequency with a long wavelength, it is necessary to make the side plate portion of the absorber longer than the high frequency, so that the waveguide terminator tends to be elongated in the tube axis direction. In the case of the terminator, since the side surface portion along the electric field direction of the groove 5 becomes part of the resonance length by providing the groove 5 in the absorber side portion 42 in the absorber 4, the low frequency with a long wavelength Even so, the length of the absorber side portions 41 and 42 of the waveguide terminator in the tube axis direction can be made shorter than ¼ of the wavelength of the radio wave.

以上のように、実施の形態1に係る導波管終端器によれば、吸収部4における吸収体側部41、42の形状を導波管内の空間の電波の電界方向の幅が導波管部1の管軸方向において異なる形状としたので、導波管部1を伝搬する電波の経路の長さを吸収体側部41、42の管軸方向の長さより長くすることができ、吸収体側部41、42の管軸方向の長さを電波の波長の1/4より短くすることができるため、導波管終端器の長大化を抑えられる。   As described above, according to the waveguide terminator according to the first embodiment, the shape of the absorber side portions 41 and 42 in the absorber 4 is the same as the width of the electric field direction of the radio wave in the space in the waveguide. 1, the length of the path of the radio wave propagating through the waveguide portion 1 can be made longer than the length of the absorber side portions 41, 42 in the tube axis direction. , 42 in the tube axis direction can be made shorter than ¼ of the wavelength of the radio wave, so that the length of the waveguide terminator can be suppressed.

なお、吸収部4の吸収体側部42の溝5は、図3に示したようにx軸方向に亘って平行に設けられていなくてもよく、例えば図6に示すように斜めに設けてもよい。導波管内の電波の伝搬は導波管のx軸方向の中央が最も電界強度が大きいため、溝は吸収体側部41の中央に設けられると効果が高い。溝5の別の形状としては、図8から図10に示すような矩形あるいは円形の複数の穴を並べて配置することで形成していてもよく、これらの場合、製造時にドリルなどによって比較的簡易に溝5を作成することができる。   The grooves 5 on the absorber side portion 42 of the absorbing portion 4 do not have to be provided in parallel in the x-axis direction as shown in FIG. 3, for example, may be provided obliquely as shown in FIG. Good. Propagation of radio waves in the waveguide has the highest electric field strength at the center in the x-axis direction of the waveguide. As another shape of the groove 5, it may be formed by arranging a plurality of rectangular or circular holes as shown in FIGS. 8 to 10, and in these cases, it is relatively simple by a drill or the like at the time of manufacture. Grooves 5 can be created.

また、図5で示した特性103は、この導波管終端器を設計する際に用いる波長λに基づいて設計した結果の特性であるが、このλは必ずしも、この導波管終端器を接続する導波管で用いる電波の波長と完全に一致したものでなくてもよく、導波管で用いる波長の電波を減衰できるように設計されていればよい。すなわち、この発明でいう波長λは、この導波管終端器を接続する導波管で用いる電波の波長ということではなく、この導波管終端器を設計する際に設定する波長である。導波管で用いる電波の波長が、この導波管終端器で得られる特性103のVSWRが最小となる規格化周波数の波長と少しずれていても、この導波管終端器を用いることができる。例えばVSWR最小となる規格化周波数の波長が図5の特性103より左にずれている導波管終端器でも終端器として用いることができる。   The characteristic 103 shown in FIG. 5 is a result of designing based on the wavelength λ used when designing the waveguide terminator. This λ is not necessarily connected to the waveguide terminator. It does not have to be exactly the same as the wavelength of the radio wave used in the waveguide, and may be designed so that the radio wave of the wavelength used in the waveguide can be attenuated. That is, the wavelength λ referred to in the present invention is not the wavelength of the radio wave used in the waveguide connecting the waveguide terminator, but the wavelength set when designing the waveguide terminator. This waveguide terminator can be used even if the wavelength of the radio wave used in the waveguide is slightly different from the wavelength of the standardized frequency at which the characteristic VSWR obtained by this waveguide terminator is minimized. . For example, a waveguide terminator in which the wavelength of the normalized frequency that minimizes the VSWR is shifted to the left from the characteristic 103 in FIG. 5 can be used as the terminator.

実施の形態2.
次に、本実施の形態2に係る導波管終端器について説明する。この実施の形態2では、吸収部4の形状が実施の形態1と異なるが、その他は実施の形態1と同様である。
Embodiment 2. FIG.
Next, the waveguide terminator according to the second embodiment will be described. In this Embodiment 2, although the shape of the absorption part 4 differs from Embodiment 1, others are the same as that of Embodiment 1. FIG.

図11は、実施の形態2に係る導波管終端器の電界方向と管軸方向に平行な断面、すなわちx−y面で切った断面の断面図である。吸収部4は、導波管部1の下の内面に接するように設けられた吸収体側部42と、導波管部1の下の内面と吸収体側部42とにはさまれた空間とからなる。実施の形態1と同様に吸収部4は、吸収体本体3の端から導波管部1の管軸方向に電波の波長のλ/4未満の幅の範囲に設けられる。溝5はx軸方向全体に亘って電界方向に深さを持つ形状に形成されている。溝5が設けられることにより、導波管部1の内部の空間の電波の電界方向の幅が導波管部1の管軸方向において異なる。
本実施の形態2においても実施の形態1と同様に導波管部1の管軸方向における導波管内部の空間の電波の電界方向の幅は、吸収体側部42に溝5が設けられている部分と溝5が設けられていない部分とで異なる。
FIG. 11 is a cross-sectional view of a cross section parallel to the electric field direction and the tube axis direction of the waveguide terminator according to the second embodiment, that is, a cross section cut along an xy plane. The absorber 4 includes an absorber side portion 42 provided so as to contact the lower inner surface of the waveguide portion 1 and a space sandwiched between the lower inner surface of the waveguide portion 1 and the absorber side portion 42. Become. Similar to the first embodiment, the absorbing section 4 is provided in a range of a width less than λ / 4 of the wavelength of the radio wave in the tube axis direction of the waveguide section 1 from the end of the absorber body 3. The groove 5 is formed in a shape having a depth in the electric field direction over the entire x-axis direction. By providing the groove 5, the width in the electric field direction of the radio wave in the space inside the waveguide portion 1 differs in the tube axis direction of the waveguide portion 1.
Also in the second embodiment, as in the first embodiment, the width in the electric field direction of the radio wave in the space inside the waveguide in the tube axis direction of the waveguide portion 1 is provided with the groove 5 in the absorber side portion 42. And the portion where the groove 5 is not provided.

このように構成された本実施の形態2に係る導波管終端器に電波を伝搬してきた場合も実施の形態1と同様に、吸収部4により電波のエネルギーが吸収されて、熱となる。このため電波が反射せず、導波管内を伝搬してくる電波を終端することができる。この時、吸収部4では、電波が共振することによって効率よくエネルギーが吸収される。この電波の共振は、共振長がλ/4である時に最も効率よく共振する。この実施の形態2において、共振長は、下側の吸収体側部42の開口11側の端部61mから、吸収体側部4表面を管軸方向に沿って進み、吸収体本体3の端61nまでの長さである。吸収体本体3の端部61nとは、吸収体本体3のうち、吸収体側部4に沿って伝搬してきた電波が到達する部分であり、図12に点線で示す部分である。よって、共振長は吸収部4の吸収体の管軸方向の長さLと電界方向の溝5の深さHから求められ、この図4の例では溝5が垂直に設けられているので共振長はL+2Hとなる。   Similarly to the first embodiment, when the radio wave is propagated to the waveguide terminator according to the second embodiment configured as described above, the energy of the radio wave is absorbed by the absorber 4 and becomes heat. For this reason, the radio wave propagating through the waveguide can be terminated without reflecting the radio wave. At this time, the absorption unit 4 efficiently absorbs energy by the radio waves resonating. The resonance of the radio wave is most efficiently resonated when the resonance length is λ / 4. In the second embodiment, the resonance length advances from the end portion 61m on the opening 11 side of the lower absorber side portion 42 along the surface of the absorber side portion 4 along the tube axis direction to the end 61n of the absorber body 3. Is the length of The end 61n of the absorber main body 3 is a portion of the absorber main body 3 where radio waves propagated along the absorber side portion 4 reach, and is a portion indicated by a dotted line in FIG. Therefore, the resonance length is obtained from the length L of the absorber of the absorber 4 in the tube axis direction and the depth H of the groove 5 in the electric field direction. In the example of FIG. The length is L + 2H.

以上のように、実施の形態2に係る導波管終端器によれば、導波管部1の内側に設けられた吸収部4において、吸収体側部42に溝5を設けたことにより、この溝5の電界方向に沿った側面部分も共振長の一部となるため、吸収部4の管軸方向の長さを電波の波長の1/4の幅よりも短くすることができる。このため、導波管終端器の管軸方向の長さをより短くすることができる。   As described above, according to the waveguide terminator according to the second embodiment, in the absorbing portion 4 provided inside the waveguide portion 1, the groove 5 is provided in the absorber side portion 42. Since the side surface portion along the electric field direction of the groove 5 also becomes a part of the resonance length, the length of the absorber 4 in the tube axis direction can be made shorter than the width of ¼ of the wavelength of the radio wave. For this reason, the length of the waveguide terminator in the tube axis direction can be further shortened.

実施の形態3.
次に、本実施の形態3に係る導波管終端器について説明する。この実施の形態3では、吸収部4の形状が実施の形態1と異なるが、その他は実施の形態1と同様である。
Embodiment 3 FIG.
Next, a waveguide terminator according to the third embodiment will be described. In this Embodiment 3, although the shape of the absorption part 4 differs from Embodiment 1, others are the same as that of Embodiment 1. FIG.

図12は、実施の形態3に係る導波管終端器の電界方向と管軸方向に平行な断面、すなわちx−y面で切った断面の断面図である。吸収部4は、図12に示すように導波管部1の上下の内面に接するように設けられた吸収体側部41、42と、これら吸収体側部41、42に挟まれた空間とからなる。吸収部4は、吸収体本体3の端から導波管部1の管軸方向に電波の波長のλ/4未満の幅の範囲に設けられる。また、下側の吸収体側部42の上面には、突起7が設けられている。突起7はx軸方向全体に亘って電界方向に高さを持つ形状に形成されている。突起7が設けられることにより、導波管部1の内部の空間の電波の電界方向の幅が導波管部1の管軸方向において異なる。
導波管部1の管軸方向における導波管内部の空間の電波の電界方向の幅は、吸収体側部42に突起7が設けられている部分と突起7が設けられていない部分とで異なる。本実施の形態3においては実施の形態1の溝5の代わりに突起7を設けているが、このように構成しても、導波管部1の管軸方向における導波管内部の空間の電波の電界方向の幅を、下の吸収体側部42に突起7が設けられている部分と突起7が設けられていない部分とで異なるようにさせることができる。
FIG. 12 is a cross-sectional view of a cross section parallel to the electric field direction and the tube axis direction of the waveguide terminator according to the third embodiment, that is, a cross section cut along the xy plane. As shown in FIG. 12, the absorber 4 includes absorber side portions 41 and 42 provided so as to be in contact with upper and lower inner surfaces of the waveguide portion 1, and a space sandwiched between the absorber side portions 41 and 42. . The absorber 4 is provided in a range of a width less than λ / 4 of the wavelength of the radio wave in the tube axis direction of the waveguide portion 1 from the end of the absorber body 3. Further, a protrusion 7 is provided on the upper surface of the lower absorber side portion 42. The protrusion 7 is formed in a shape having a height in the electric field direction over the entire x-axis direction. By providing the protrusion 7, the width of the electric field direction of the radio wave in the space inside the waveguide portion 1 is different in the tube axis direction of the waveguide portion 1.
The width in the electric field direction of the radio wave in the space inside the waveguide in the tube axis direction of the waveguide portion 1 is different between the portion where the protrusion 7 is provided on the absorber side portion 42 and the portion where the protrusion 7 is not provided. . In the third embodiment, the protrusion 7 is provided instead of the groove 5 of the first embodiment. However, even in this configuration, the space inside the waveguide in the tube axis direction of the waveguide portion 1 The width in the electric field direction of the radio wave can be made different between a portion where the protrusion 7 is provided on the lower absorber side portion 42 and a portion where the protrusion 7 is not provided.

このように構成された本実施の形態3に係る導波管終端器に電波を伝搬してきた場合も実施の形態1と同様に、吸収部4により電波のエネルギーが吸収されて、熱となる。このため電波が反射せず、導波管内を伝搬してくる電波を終端することができる。この時、吸収部4では、電波が共振することによって効率よくエネルギーが吸収される。この電波の共振は、共振長がλ/4である時に最も効率よく共振する。この実施の形態3において、共振長は、下側の吸収体側部42の開口11側の端部62mから、吸収体側部4表面を管軸方向に沿って進み、吸収体本体3の端62nまでの長さである。吸収体本体3の端部62nとは、吸収体本体3のうち、吸収体側部4に沿って伝搬してきた電波が到達する部分であり、図12に点線で示す部分である。よって、共振長は吸収部4の吸収体の管軸方向の長さLと電界方向の突起7の高さHから求められ、この図4の例では突起7が垂直に設けられているので共振長はL+2Hとなる。   Similarly to the first embodiment, when the radio wave is propagated to the waveguide terminator according to the third embodiment configured as described above, the energy of the radio wave is absorbed by the absorber 4 and becomes heat. For this reason, the radio wave propagating through the waveguide can be terminated without reflecting the radio wave. At this time, the absorption unit 4 efficiently absorbs energy by the radio waves resonating. The resonance of the radio wave is most efficiently resonated when the resonance length is λ / 4. In the third embodiment, the resonance length advances from the end portion 62m on the opening 11 side of the lower absorber side portion 42 along the surface of the absorber side portion 4 along the tube axis direction to the end 62n of the absorber body 3. Is the length of The end 62n of the absorber main body 3 is a portion of the absorber main body 3 where radio waves propagated along the absorber side portion 4 reach, and is a portion indicated by a dotted line in FIG. Therefore, the resonance length is obtained from the length L of the absorber of the absorber 4 in the tube axis direction and the height H of the protrusion 7 in the electric field direction. In the example of FIG. The length is L + 2H.

以上のように、実施の形態3に係る導波管終端器によれば、導波管部1の内側に設けられた吸収部4において、吸収体側部42に突起7を設けたことにより、この突起7の電界方向に沿った側面部分も共振長の一部となるため、吸収部4の管軸方向の長さを電波の波長の1/4より短くすることができる。このため、導波管終端器の管軸方向の長さをより短くすることができる。   As described above, according to the waveguide terminator according to the third embodiment, in the absorbing portion 4 provided inside the waveguide portion 1, the protrusion 7 is provided on the absorber side portion 42. Since the side surface portion along the electric field direction of the protrusion 7 also becomes a part of the resonance length, the length of the absorber 4 in the tube axis direction can be made shorter than ¼ of the wavelength of the radio wave. For this reason, the length of the waveguide terminator in the tube axis direction can be further shortened.

実施の形態4.
次に、本実施の形態4に係る導波管終端器について説明する。この実施の形態4では、吸収部4の形状が実施の形態1と異なるが、その他は実施の形態1と同様である。
Embodiment 4 FIG.
Next, a waveguide terminator according to the fourth embodiment will be described. In this Embodiment 4, although the shape of the absorption part 4 differs from Embodiment 1, others are the same as that of Embodiment 1. FIG.

図13は、実施の形態4に係る導波管終端器の電界方向と管軸方向に平行な断面、すなわちx−y面で切った断面の断面図である。吸収部4は、図13に示すように導波管部1の上下の内面に接するように設けられた吸収体側部41、42と、これら吸収体側部41、42に挟まれた空間とからなる。吸収体側部41、42は図13に示すように短絡板2側が連続的な曲面となるような形状になっている。曲面は図13に示すような半円筒形の曲面でなくても、複数の平面または複数の曲面で構成してよい。連続的な曲面であることで、局所的な反射が抑えられる。
実施の形態1と同様に、吸収部4は、吸収体本体3の端から導波管部1の管軸方向に電波の波長のλ/4未満の幅の範囲に設けられる。また、下側の吸収体側部42の上面には、溝5が設けられている。溝5はx軸方向全体に亘って電界方向に深さを持つ形状に形成されている。溝5が設けられることにより、導波管部1の内部の空間の電波の電界方向の幅が導波管部1の管軸方向において異なる。
FIG. 13 is a cross-sectional view of a cross section parallel to the electric field direction and the tube axis direction of the waveguide terminator according to the fourth embodiment, that is, a cross section cut along an xy plane. As shown in FIG. 13, the absorber 4 includes absorber side portions 41 and 42 provided so as to be in contact with upper and lower inner surfaces of the waveguide portion 1, and a space sandwiched between the absorber side portions 41 and 42. . As shown in FIG. 13, the absorber side portions 41 and 42 are shaped so that the short-circuit plate 2 side is a continuous curved surface. The curved surface may not be a semi-cylindrical curved surface as shown in FIG. 13, but may be composed of a plurality of flat surfaces or a plurality of curved surfaces. Local reflection is suppressed by being a continuous curved surface.
As in the first embodiment, the absorber 4 is provided in a range of a width less than λ / 4 of the wavelength of the radio wave in the tube axis direction of the waveguide portion 1 from the end of the absorber body 3. A groove 5 is provided on the upper surface of the lower absorber side portion 42. The groove 5 is formed in a shape having a depth in the electric field direction over the entire x-axis direction. By providing the groove 5, the width in the electric field direction of the radio wave in the space inside the waveguide portion 1 differs in the tube axis direction of the waveguide portion 1.

本実施の形態4においても実施の形態1と同様、導波管部1の管軸方向における導波管内部の空間の電波の電界方向の幅は、吸収体側部42に溝5が設けられている部分と溝5が設けられていない部分とで異なる。   Also in the fourth embodiment, as in the first embodiment, the width in the electric field direction of the radio wave in the space inside the waveguide in the tube axis direction of the waveguide portion 1 is such that the groove 5 is provided in the absorber side portion 42. And the portion where the groove 5 is not provided.

このように構成された本実施の形態4の導波管終端器に電波を伝搬してきた場合も、実施の形態1と同様に、吸収部4により電波のエネルギーが吸収されて、熱となる。このため電波が反射せず、導波管内を伝搬してくる電波を終端することができる。この時、吸収部4では、電波が共振することによって効率よくエネルギーが吸収される。この電波の共振は、共振長がλ/4である時に最も効率よく共振する。この実施の形態3において、共振長は、下側の吸収体側部42の開口11側の端部63mから、吸収体側部4表面を管軸方向に沿って進み、吸収体本体3の端63nまでの長さである。吸収体本体3の端部63mとは、吸収体本体3のうち、吸収体側部4に沿って伝搬してきた電波が到達する部分であり、図13に点線で示す部分である。   Even when a radio wave is propagated to the waveguide terminator of the fourth embodiment configured as described above, the energy of the radio wave is absorbed by the absorber 4 as in the first embodiment and becomes heat. For this reason, the radio wave propagating through the waveguide can be terminated without reflecting the radio wave. At this time, the absorption unit 4 efficiently absorbs energy by the radio waves resonating. The resonance of the radio wave is most efficiently resonated when the resonance length is λ / 4. In the third embodiment, the resonance length advances from the end 63m on the opening 11 side of the lower absorber side portion 42 along the surface of the absorber side portion 4 along the tube axis direction to the end 63n of the absorber body 3. Is the length of The end 63m of the absorber main body 3 is a portion of the absorber main body 3 where radio waves propagated along the absorber side portion 4 reach, and is a portion indicated by a dotted line in FIG.

以上のように、実施の形態3に係る導波管終端器によれば、導波管部1の内側に設けられた吸収部4において、吸収体側部42に溝5を設けたことにより、この溝5の電界方向に沿った側面部分も共振長の一部となるため、吸収部4の管軸方向の長さを電波の波長の1/4より短くすることができる。このため、導波管終端器の管軸方向の長さをより短くすることができる。
また、吸収部4の短絡板2側を曲面形状にすることにより、吸収体本体3の端部63mに到達するまでの電波のインピーダンスの変化を連続的に緩やかにすることができ、不連続部分で起こる反射を低減できる。また、吸収体本体3の配置を導波管の電界方向に完全に平行にしなくても良好なVSWR特性が実現できるため、導波管終端器を製造する際に製造性が向上する。
なお、溝5を設ける代わりに突起7を設けても良い。
As described above, according to the waveguide terminator according to the third embodiment, in the absorbing portion 4 provided inside the waveguide portion 1, the groove 5 is provided in the absorber side portion 42. Since the side surface portion along the electric field direction of the groove 5 also becomes a part of the resonance length, the length of the absorber 4 in the tube axis direction can be made shorter than ¼ of the wavelength of the radio wave. For this reason, the length of the waveguide terminator in the tube axis direction can be further shortened.
Moreover, by making the short-circuit plate 2 side of the absorber 4 into a curved surface shape, the change in the impedance of the radio wave until it reaches the end 63m of the absorber body 3 can be continuously moderated. Can reduce reflection. In addition, good VSWR characteristics can be realized without arranging the absorber body 3 completely parallel to the direction of the electric field of the waveguide, so that the manufacturability is improved when the waveguide terminator is manufactured.
Instead of providing the groove 5, a protrusion 7 may be provided.

実施の形態5.
次に、本実施の形態5に係る導波管終端器について説明する。この実施の形態5では、吸収部4の形状が実施の形態4と異なるが、その他は実施の形態4と同様である。
Embodiment 5. FIG.
Next, a waveguide terminator according to the fifth embodiment will be described. In the fifth embodiment, the shape of the absorption part 4 is different from that of the fourth embodiment, but the other parts are the same as in the fourth embodiment.

図14は、実施の形態5に係る導波管終端器の電界方向と管軸方向に平行な断面、すなわちx−y面で切った断面の断面図である。下側の吸収体側部42の上面には、溝51、52が設けられている。溝51、52の各形状や寸法はそれぞれ異なっていてもよいし、相互に接続していてもよい。溝51、52はx軸方向全体に亘って電界方向に深さを持つ形状に形成されている。溝5が設けられることにより、導波管部1の管軸方向において導波管部1の内部の空間の電界方向の幅が異なる。   FIG. 14 is a cross-sectional view of a cross section parallel to the electric field direction and the tube axis direction of the waveguide terminator according to Embodiment 5, that is, a cross section cut along an xy plane. Grooves 51 and 52 are provided on the upper surface of the lower absorber side portion 42. The shapes and dimensions of the grooves 51 and 52 may be different from each other or may be connected to each other. The grooves 51 and 52 are formed in a shape having a depth in the electric field direction over the entire x-axis direction. By providing the groove 5, the width in the electric field direction of the space inside the waveguide portion 1 is different in the tube axis direction of the waveguide portion 1.

このように構成された本実施の形態5に係る導波管終端器に電波を伝搬してきた場合も、実施の形態4と同様に、吸収部4により電波のエネルギーが吸収される。この実施の形態5において、共振長は、吸収体側部42の開口11側の端部64mから、吸収体表面を管軸方向に沿って進み、吸収体本体3の端64nまでの長さである。吸収体本体3の端部64nとは、吸収体本体3のうち、吸収体側部4に沿って伝搬してきた電波が到達する部分であり、図14に点線で示す部分である。   Even when a radio wave is propagated to the waveguide terminator according to the fifth embodiment configured as described above, the energy of the radio wave is absorbed by the absorber 4 as in the fourth embodiment. In the fifth embodiment, the resonance length is a length from the end portion 64m of the absorber side portion 42 on the opening 11 side to the end surface of the absorber main body 3 along the tube surface along the absorber surface. . The end 64n of the absorber main body 3 is a portion of the absorber main body 3 where radio waves propagating along the absorber side portion 4 arrive, and is a portion indicated by a dotted line in FIG.

以上のように、実施の形態5に係る導波管終端器によれば、導波管部1の内側に設けられた吸収部4において、吸収体側部42に複数の溝51、52を設けたことにより、これら溝51、52の電界方向に沿った側面部分も共振長の一部となるため、吸収部4の管軸方向の大きさを管軸方向の長さを電波の波長の1/4より短くすることができる。このため、導波管終端器の管軸方向の長さをより短くすることができる。   As described above, according to the waveguide terminator according to the fifth embodiment, a plurality of grooves 51 and 52 are provided in the absorber side portion 42 in the absorption portion 4 provided inside the waveguide portion 1. As a result, the side portions along the electric field direction of the grooves 51 and 52 also become a part of the resonance length. It can be shorter than 4. For this reason, the length of the waveguide terminator in the tube axis direction can be further shortened.

なお、吸収部4の吸収体側部42に設けた溝51、52は2つに限らず、複数の溝を設けることにより任意の周波数に対応した共振長を作成できればよい。
また、溝51、52を設ける代わりに突起7を設けてもよく、また、溝5と突起7の組み合わせでも良い。
In addition, the grooves 51 and 52 provided in the absorber side part 42 of the absorber 4 are not limited to two, and it is only necessary to create a resonance length corresponding to an arbitrary frequency by providing a plurality of grooves.
Further, instead of providing the grooves 51 and 52, the protrusion 7 may be provided, or a combination of the groove 5 and the protrusion 7 may be used.

実施の形態6.
次に、本実施の形態6に係る導波管終端器について説明する。この実施の形態6では、吸収部4の形状が実施の形態4と異なるが、その他は実施の形態4と同様である。
Embodiment 6 FIG.
Next, a waveguide terminator according to the sixth embodiment will be described. In this Embodiment 6, although the shape of the absorption part 4 differs from Embodiment 4, others are the same as that of Embodiment 4. FIG.

図15は、実施の形態6に係る導波管終端器の電界方向と管軸方向に平行な断面、すなわちx−y面で切った断面の断面図である。上側の吸収体側部41の下面及び下側の吸収体側部42の上面には、溝51、52が設けられている。溝51、52の各形状や寸法はそれぞれ異なっていてもよい。溝51、52はx軸方向全体に亘って電界方向に深さを持つ形状に形成されている。溝5が設けられることにより、導波管部1の管軸方向において導波管部1の内部の空間の電界方向の幅が異なる。   FIG. 15 is a cross-sectional view of a cross section parallel to the electric field direction and the tube axis direction of the waveguide terminator according to the sixth embodiment, that is, a cross section cut along the xy plane. Grooves 51 and 52 are provided on the lower surface of the upper absorber side portion 41 and the upper surface of the lower absorber side portion 42. The shapes and dimensions of the grooves 51 and 52 may be different from each other. The grooves 51 and 52 are formed in a shape having a depth in the electric field direction over the entire x-axis direction. By providing the groove 5, the width in the electric field direction of the space inside the waveguide portion 1 is different in the tube axis direction of the waveguide portion 1.

このように構成された本実施の形態6に係る導波管終端器に電波を伝搬してきた場合も、実施の形態4と同様に、吸収部4により電波のエネルギーが吸収される。この実施の形態6において、共振長は、上側の吸収体側部41の開口11側の端部65mから、吸収体表面を管軸方向に沿って進み、吸収体本体3の端65nまでの長さと、下側の吸収体側部42の開口11側の端部65mから、吸収体表面を管軸方向に沿って進み、吸収体本体3の端65nまでの長さのうち長い方の経路が相当する。吸収体本体3の端部65nとは、吸収体本体3のうち、吸収体側部4に沿って伝搬してきた電波が到達する部分であり、図15に点線で示す部分である。   Even when a radio wave is propagated to the waveguide terminator according to the sixth embodiment configured as described above, the energy of the radio wave is absorbed by the absorber 4 as in the fourth embodiment. In this sixth embodiment, the resonance length is the length from the end 65m on the opening 11 side of the upper absorber side portion 41 along the tube axis direction to the end 65n of the absorber main body 3 along the absorber surface. The longer path of the length from the end portion 65m on the opening 11 side of the lower absorber side portion 42 to the end 65n of the absorber main body 3 along the surface of the absorber along the tube axis direction corresponds. . The end 65n of the absorber main body 3 is a portion of the absorber main body 3 where radio waves propagated along the absorber side portion 4 arrive, and is a portion indicated by a dotted line in FIG.

以上のように、実施の形態6に係る導波管終端器によれば、導波管部1の内側に設けられた吸収部4において、吸収体側部41、42に溝5m、5nを設けたことにより、この溝5m、5nの電界方向に沿った側面部分も共振長の一部となるため、吸収部4の管軸方向の大きさを管軸方向の長さを電波の波長の1/4より短くすることができる。このため、導波管終端器の管軸方向の長さをより短くすることができる。   As described above, according to the waveguide terminator according to the sixth embodiment, in the absorbing portion 4 provided inside the waveguide portion 1, the grooves 5m and 5n are provided in the absorber side portions 41 and 42. As a result, the side portions of the grooves 5m and 5n along the electric field direction also become a part of the resonance length. It can be shorter than 4. For this reason, the length of the waveguide terminator in the tube axis direction can be further shortened.

なお、吸収部4の吸収体側部41、42に設けた溝は2つに限らず、それぞれの吸収体側部の溝の数を一致させる必要はない。複数の溝を設けることにより任意の電波の波長に対応した共振長を作成できればよい。
また、溝51、52を設ける代わりに突起を設けてもよく、また、溝と突起の組み合わせでも良い。
In addition, the groove | channel provided in the absorber side parts 41 and 42 of the absorption part 4 is not restricted to two, and it is not necessary to make the number of the groove | channels of each absorber side part correspond. It is only necessary to create a resonance length corresponding to an arbitrary wavelength of radio waves by providing a plurality of grooves.
Further, instead of providing the grooves 51 and 52, a protrusion may be provided, or a combination of the groove and the protrusion may be used.

実施の形態7.
次に、本実施の形態7に係る導波管終端器について説明する。この実施の形態7では、吸収部4の形状が実施の形態1と異なるが、その他は実施の形態1と同様である。
Embodiment 7 FIG.
Next, a waveguide terminator according to the seventh embodiment will be described. In the seventh embodiment, the shape of the absorbing portion 4 is different from that of the first embodiment, but the rest is the same as the first embodiment.

図16は、実施の形態7に係る導波管終端器の電界方向と管軸方向に平行な断面、すなわちx−y面で切った断面の断面図である。下側の吸収体側部42の上面には、溝5が導波管部1まで突き抜けて設けられている。溝5はx軸方向全体に亘って電界方向に深さを持つ形状に形成されている。溝5が設けられることにより、導波管部1の管軸方向において導波管部1の内部の空間の電界方向の幅が異なる。   FIG. 16 is a cross-sectional view of a cross section parallel to the electric field direction and the tube axis direction of the waveguide terminator according to the seventh embodiment, that is, a cross section cut along an xy plane. On the upper surface of the lower absorber side portion 42, a groove 5 is provided to penetrate to the waveguide portion 1. The groove 5 is formed in a shape having a depth in the electric field direction over the entire x-axis direction. By providing the groove 5, the width in the electric field direction of the space inside the waveguide portion 1 is different in the tube axis direction of the waveguide portion 1.

このように構成された本実施の形態7に係る導波管終端器に電波を伝搬してきた場合も、実施の形態1と同様に、吸収部4により電波のエネルギーが吸収される。この実施の形態7において、共振長は、下側の吸収体側部42の開口11側の端部66mから、吸収体表面を管軸方向に沿って進み、吸収体本体3の端66nまでの長さである。吸収体本体3の端66nとは、吸収体本体3のうち、吸収体側部4に沿って伝搬してきた電波が到達する部分であり、図16に点線で示す部分である。図17に、実施の形態7に係る導波管終端器の吸収部4の下側の吸収体側部42の拡大図を示す。図17において、共振長は吸収部4の吸収体側部42の管軸方向の長さLと電界方向の溝5の深さHから求められ、この図17の例では溝5が垂直に設けられているので、共振長は吸収部4の導波管部1の表面も含むL+2Hとなる。   Even when the radio wave is propagated to the waveguide terminator according to the seventh embodiment configured as described above, the energy of the radio wave is absorbed by the absorber 4 as in the first embodiment. In the seventh embodiment, the resonance length is the length from the end portion 66m on the opening 11 side of the lower absorber side portion 42 to the end surface 66n of the absorber body 3 along the tube axis direction along the absorber surface. That's it. The end 66n of the absorber main body 3 is a portion of the absorber main body 3 where radio waves propagated along the absorber side portion 4 arrive, and is a portion indicated by a dotted line in FIG. FIG. 17 shows an enlarged view of the absorber side portion 42 below the absorber 4 of the waveguide terminator according to the seventh embodiment. In FIG. 17, the resonance length is obtained from the length L of the absorber side portion 42 of the absorber 4 in the tube axis direction and the depth H of the groove 5 in the electric field direction. In the example of FIG. 17, the groove 5 is provided vertically. Therefore, the resonance length is L + 2H including the surface of the waveguide section 1 of the absorption section 4.

以上のように、実施の形態7に係る導波管終端器によれば、導波管部1の内側に設けられた吸収部4において、吸収体側部41に溝5を設けたことにより、この溝5の電界方向に沿った側面部分も共振長の一部となるため、吸収部4の管軸方向の大きさを管軸方向の長さを電波の波長の1/4より短くすることができる。このため、導波管終端器の管軸方向の長さをより短くすることができる。   As described above, according to the waveguide terminator according to the seventh embodiment, in the absorbing portion 4 provided inside the waveguide portion 1, the groove 5 is provided in the absorber side portion 41. Since the side surface portion along the electric field direction of the groove 5 also becomes a part of the resonance length, the size in the tube axis direction of the absorber 4 can be made shorter than 1/4 of the wavelength of the radio wave. it can. For this reason, the length of the waveguide terminator in the tube axis direction can be further shortened.

なお、溝は1つとは限らず、実施の形態5、実施の形態6のように複数、吸収部の吸収体側部41、42上下に設けてもよい。   The number of grooves is not limited to one, and a plurality of grooves may be provided above and below the absorber side portions 41 and 42 of the absorber as in the fifth and sixth embodiments.

実施の形態8.
次に、本実施の形態8に係る導波管終端器について説明する。この実施の形態8では、吸収部4の形状が実施の形態1と異なるが、その他は実施の形態1と同様である。
Embodiment 8 FIG.
Next, a waveguide terminator according to the eighth embodiment will be described. In the eighth embodiment, the shape of the absorption section 4 is different from that of the first embodiment, but the rest is the same as the first embodiment.

図18は、実施の形態8に係る導波管終端器の電界方向と管軸方向に平行な断面、すなわちx−y面で切った断面の断面図である。下側の吸収体側部42が吸収体本体3と管軸方向に離れて配置されることで、吸収体本体3と吸収体側部42との間に導波管部1まで突き抜けた溝5が形成されている。溝5はx軸方向全体に亘って電界方向に深さを持つ形状に形成されている。溝5が設けられることにより、導波管部1の内部の空間の電波の電界方向の幅が導波管部1の管軸方向において異なる。   FIG. 18 is a cross-sectional view of a cross section parallel to the electric field direction and the tube axis direction of the waveguide terminator according to the eighth embodiment, that is, a cross section cut along the xy plane. By arranging the lower absorber side portion 42 away from the absorber body 3 in the tube axis direction, a groove 5 that penetrates to the waveguide portion 1 is formed between the absorber body 3 and the absorber side portion 42. Has been. The groove 5 is formed in a shape having a depth in the electric field direction over the entire x-axis direction. By providing the groove 5, the width in the electric field direction of the radio wave in the space inside the waveguide portion 1 differs in the tube axis direction of the waveguide portion 1.

このように構成された本実施の形態8に係る導波管終端器に電波を伝搬してきた場合も、実施の形態1と同様に、吸収部4により電波のエネルギーが吸収される。この実施の形態8において、共振長は、下側の吸収体側部42の開口11側の端部67mから、吸収体表面を管軸方向に沿って進み、吸収体本体3の端67nまでの長さである。吸収体本体3の端67nとは、吸収体本体3のうち、吸収体側部4に沿って伝搬してきた電波が到達する部分であり、図18に点線で示す部分である。図19に、実施の形態8に係る導波管終端器の吸収部4の下側の吸収体側部42の拡大図を示す。図19において、共振長は吸収部4の吸収体側部42の管軸方向の長さLと電界方向の溝5の深さHから求められ、この図18の例では溝5が垂直に設けられているので、共振長は吸収部4の導波管部1の表面も含むL+Hとなる。   Even when a radio wave is propagated to the waveguide terminator according to the eighth embodiment configured as described above, the energy of the radio wave is absorbed by the absorber 4 as in the first embodiment. In this eighth embodiment, the resonance length is the length from the end portion 67m on the opening 11 side of the lower absorber side portion 42 to the end surface 67n of the absorber main body 3 along the surface of the absorber along the tube axis direction. That's it. The end 67n of the absorber body 3 is a portion of the absorber body 3 where the radio wave propagating along the absorber side portion 4 reaches, and is a portion indicated by a dotted line in FIG. FIG. 19 shows an enlarged view of the absorber side portion 42 below the absorber 4 of the waveguide terminator according to the eighth embodiment. In FIG. 19, the resonance length is obtained from the length L in the tube axis direction of the absorber side portion 42 of the absorber 4 and the depth H of the groove 5 in the electric field direction. In the example of FIG. 18, the groove 5 is provided vertically. Therefore, the resonance length is L + H including the surface of the waveguide section 1 of the absorption section 4.

以上のように、実施の形態8に係る導波管終端器によれば、導波管部1の内側に設けられた吸収部4において、吸収体側部42に溝5を設けたことにより、この溝5の電界方向に沿った側面部分も共振長の一部となるため、吸収部4の管軸方向の大きさを管軸方向にλ/4の幅よりも小さくすることができる。このため、導波管終端器の管軸方向の長さを電波の波長の1/4より短くすることができる。   As described above, according to the waveguide terminator according to the eighth embodiment, in the absorbing portion 4 provided inside the waveguide portion 1, the groove 5 is provided in the absorber side portion 42. Since the side surface portion along the electric field direction of the groove 5 also becomes a part of the resonance length, the size of the absorber 4 in the tube axis direction can be made smaller than the width of λ / 4 in the tube axis direction. For this reason, the length of the waveguide terminator in the tube axis direction can be made shorter than ¼ of the wavelength of the radio wave.

なお、溝は1つとは限らず、実施の形態5、実施の形態6のように複数、吸収部の吸収体側部41、42上下に設けてもよい。   The number of grooves is not limited to one, and a plurality of grooves may be provided above and below the absorber side portions 41 and 42 of the absorber as in the fifth and sixth embodiments.

以上のようにこの発明では、上記実施の形態1〜8で示したように、吸収体側部41、42に溝5や突起7を設けた形状にすることで、導波管部1の管軸方向において導波管部1内の空間の電界方向の幅が異なるようにしている。このように導波管部1内の空間の電界方向の幅が管軸方向で異なるということは電波が吸収体側部41または吸収体側部42の端から吸収体本体3の端まで直線的に伝搬する場合に比べ、電波が伝搬する距離が長くなるということであり、共振する波長が長くなるということになる。このため、吸収体側部41、42を導波管部1の管軸方向に電波の波長の1/4未満の範囲に設け導波管終端器の長大化を抑えることができるものである。   As described above, in the present invention, as shown in the first to eighth embodiments, the tube axis of the waveguide portion 1 is obtained by forming the grooves 5 and the protrusions 7 in the absorber side portions 41 and 42. The width of the space in the waveguide portion 1 in the direction of the electric field is different in the direction. Thus, the fact that the width of the electric field direction of the space in the waveguide portion 1 differs in the tube axis direction means that the radio wave propagates linearly from the end of the absorber side portion 41 or the absorber side portion 42 to the end of the absorber body 3. This means that the distance that the radio wave propagates becomes longer than the case where the resonance occurs, and the resonating wavelength becomes longer. For this reason, the absorber side portions 41 and 42 are provided in the range of less than ¼ of the wavelength of the radio wave in the tube axis direction of the waveguide portion 1 so that the length of the waveguide terminator can be suppressed.

1.導波管部
11.開口
12.開口
2.短絡板
3.吸収体本体
4.吸収部
41.吸収体側部
42.吸収体側部
5.溝
51.溝
52.溝
7.突起
1. Waveguide section 11. Opening 12. Opening 2. 2. Short-circuit plate Absorber body 4. Absorber 41. Absorber side part 42. 4. Absorber side part Groove 51. Groove 52. Groove 7. Protrusion

Claims (1)

電波を伝搬させる導波管部と、
前記導波管部の開口の一方を短絡させる短絡板と、
前記導波管部内に配置された吸収体本体と、
前記吸収体本体の端から前記導波管部の管軸方向に前記電波の波長の1/4未満の範囲に設けられ、前記導波管部内の空間の前記電波の電界方向の幅が前記管軸方向において異なる形状の吸収体側部を有する吸収部とを備えた導波管終端器。
A waveguide section for propagating radio waves;
A short-circuit plate that short-circuits one of the openings of the waveguide portion;
An absorber body disposed in the waveguide section;
Provided in the range of less than ¼ of the wavelength of the radio wave in the tube axis direction of the waveguide portion from the end of the absorber body, and the width in the electric field direction of the radio wave in the space in the waveguide portion A waveguide terminator comprising: an absorber having an absorber side portion having a different shape in the axial direction.
JP2016008611A 2016-01-20 2016-01-20 Waveguide terminator Active JP6497328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008611A JP6497328B2 (en) 2016-01-20 2016-01-20 Waveguide terminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008611A JP6497328B2 (en) 2016-01-20 2016-01-20 Waveguide terminator

Publications (2)

Publication Number Publication Date
JP2017130780A JP2017130780A (en) 2017-07-27
JP6497328B2 true JP6497328B2 (en) 2019-04-10

Family

ID=59395756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008611A Active JP6497328B2 (en) 2016-01-20 2016-01-20 Waveguide terminator

Country Status (1)

Country Link
JP (1) JP6497328B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889733A (en) * 2021-09-30 2022-01-04 电子科技大学 Novel high-power miniaturized broadband waveguide matched load

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811745U (en) * 1971-06-21 1973-02-09
JPS5611447Y2 (en) * 1975-06-05 1981-03-16
JPS55118201A (en) * 1979-03-07 1980-09-11 Tdk Corp Resistive terminator

Also Published As

Publication number Publication date
JP2017130780A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP5566169B2 (en) Antenna device
JP5788548B2 (en) Microstrip antenna
US7746190B2 (en) Polarization-preserving waveguide filter and transformer
JP5806098B2 (en) Fin-line polarization separator
JP6497328B2 (en) Waveguide terminator
JP4753981B2 (en) Waveguide / stripline converter
JP7129263B2 (en) converter
JP4825250B2 (en) Waveguide bend
KR101483567B1 (en) Waveguide impedance matching structure and waveguide antenna using thereof
JP5780995B2 (en) Rectangular waveguide connection structure
JP2020188375A (en) Waveguide type distribution synthesizer
JP2008079085A (en) Transmission line waveguide converter
US8390199B2 (en) Mode-selective interactive structure for gyrotrons
JP6391560B2 (en) Waveguide conversion circuit and antenna device
US6657514B1 (en) Dielectric transmission line attenuator, dielectric transmission line terminator, and wireless communication device
JP6168904B2 (en) Waveguide planar line converter
JP2007311838A (en) Combined waveguide filter
JP2015050491A (en) High frequency cutoff filter, microwave output device, transmission circuit and radar device
JP7402035B2 (en) waveguide converter
JP3892339B2 (en) Bent waveguide
KR101967302B1 (en) Waveguide for horizontal or vertical polarization change of electron wave
KR102298095B1 (en) Waveguide transition structure
JP5030853B2 (en) Grooved circular polarization generator
JP4053928B2 (en) Circular-rectangular waveguide converter, demultiplexer for orthogonal polarization separation, primary radiator, feeder and antenna
JP4873642B2 (en) Waveguide bandpass filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R151 Written notification of patent or utility model registration

Ref document number: 6497328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250