JP6484656B2 - Activated carbon fiber for removing free chlorine and method for treating water containing free chlorine using the same - Google Patents

Activated carbon fiber for removing free chlorine and method for treating water containing free chlorine using the same Download PDF

Info

Publication number
JP6484656B2
JP6484656B2 JP2017047093A JP2017047093A JP6484656B2 JP 6484656 B2 JP6484656 B2 JP 6484656B2 JP 2017047093 A JP2017047093 A JP 2017047093A JP 2017047093 A JP2017047093 A JP 2017047093A JP 6484656 B2 JP6484656 B2 JP 6484656B2
Authority
JP
Japan
Prior art keywords
free chlorine
activated carbon
carbon fiber
water
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047093A
Other languages
Japanese (ja)
Other versions
JP2017164741A (en
Inventor
寛志 伊藤
寛志 伊藤
孝規 塚▲崎▼
孝規 塚▲崎▼
天能 浩次郎
浩次郎 天能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC EVOLVE TECHNOLOGIES CORPORATION
Kansai Coke and Chemicals Co Ltd
Original Assignee
MC EVOLVE TECHNOLOGIES CORPORATION
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC EVOLVE TECHNOLOGIES CORPORATION, Kansai Coke and Chemicals Co Ltd filed Critical MC EVOLVE TECHNOLOGIES CORPORATION
Publication of JP2017164741A publication Critical patent/JP2017164741A/en
Application granted granted Critical
Publication of JP6484656B2 publication Critical patent/JP6484656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Water Treatment By Sorption (AREA)
  • Inorganic Fibers (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

本発明は、遊離塩素除去性能、とりわけ高速通水条件下における遊離塩素除去性能に優れた遊離塩素除去用活性炭素繊維およびそれを用いた遊離塩素含有水の処理方法に関するものである。   The present invention relates to an activated carbon fiber for removing free chlorine which has excellent free chlorine removal performance, particularly free chlorine removal performance under high-speed water passage conditions, and a method for treating free chlorine-containing water using the same.

近年、水道水の塩素臭やかび臭を除去するために、家庭用あるいは業務用の浄水器が多く用いられている。このような浄水器では、まず何より残留塩素を除去する性能が前提となっており、残留塩素を吸着除去するためのろ過材料として、活性炭、木炭、カーボンブラック等の多孔質炭素が広く検討され、実用に供されている(非特許文献1)。   In recent years, many household or commercial water purifiers have been used to remove the chlorine odor and musty odor of tap water. Such a water purifier is premised on the performance of removing residual chlorine first, and as a filtering material for adsorbing and removing residual chlorine, porous carbon such as activated carbon, charcoal, and carbon black is widely studied. It is used for practical use (Non-patent Document 1).

また、上記ろ過材料のなかでも、特定の機能を高めた吸着材料として、様々な活性炭が提案されている。例えば、特許文献1には、比表面積が特定の値以上であり、表面の含酸素官能基量が特定の値以下で、かつそのうちのカルボキシル基量が特定の値以下である活性炭が、脱塩素能力とトリハロメタン除去能力に優れていることが記載されている。   In addition, among the above filtration materials, various activated carbons have been proposed as adsorbing materials with enhanced specific functions. For example, Patent Document 1 discloses that activated carbon having a specific surface area of a specific value or more, a surface oxygen-containing functional group content of a specific value or less, and a carboxyl group content of the specific value or less is dechlorinated. It is described that it has excellent capability and trihalomethane removal capability.

さらに、特許文献2には、カルシウム、カリウム、ナトリウム、マグネシウムの少なくとも一種が特定の値以上含有され、X線光電子分光法で測定される酸性表面官能基量の比率(O1S/C1S)が特定の範囲内である活性炭素繊維が、水中の遊離塩素に対する除去能力に優れていることが記載されている。 Further, Patent Document 2 contains at least one of calcium, potassium, sodium, and magnesium at a specific value or more, and the ratio of the amount of acidic surface functional groups (O 1S / C 1S ) measured by X-ray photoelectron spectroscopy. It is described that activated carbon fibers within a specific range are excellent in removing ability for free chlorine in water.

福原知子、外6名、「多孔質炭素の水中残留塩素除去特性」、科学と工業、社団法人大阪工研協会、2008年3月、第82巻、120〜126頁Tomoko Fukuhara, 6 others, “Residual chlorine removal characteristics of porous carbon in water”, Science and Industry, Osaka Institute of Technology, March 2008, 82, 120-126

特開平8−34605号公報JP-A-8-34605 特開平8−266896号公報JP-A-8-266896

しかしながら、従来の活性炭では、処理しようとする水の流速を高くすればするほど、吸着除去性能が低下するため、処理時の流速を制限せざるを得ないという問題がある。その理由としては、流速が高くなりすぎると、水が充分に活性炭と接触して遊離塩素が活性炭内部の細孔内に入り込むことができなくなることや、活性炭表面に分布する細孔が高い水圧を受けて損傷してしまうことが考えられる。このため、より高速通水下での遊離塩素の除去性能を高めることが、水処理用の活性炭において強く求められている。   However, the conventional activated carbon has a problem in that the higher the flow rate of water to be treated, the lower the adsorption removal performance, and thus the flow rate during treatment must be limited. The reason for this is that if the flow rate becomes too high, water will be in sufficient contact with the activated carbon and free chlorine will not be able to enter the pores inside the activated carbon, or the pores distributed on the activated carbon surface will have a high water pressure. It may be damaged by receiving. For this reason, there is a strong demand for activated carbon for water treatment to improve the removal performance of free chlorine under higher-speed water flow.

本発明は、このような事情に鑑みてなされたもので、従来、充分な遊離塩素除去性能を発揮することのできなかった高速通水下においても優れた遊離塩素除去性能を発揮する活性炭素繊維と、それを用いた遊離塩素含有水の処理方法の提供をその目的とする。   The present invention has been made in view of such circumstances, and the activated carbon fiber that exhibits excellent free chlorine removal performance even under high-speed water flow that has not been able to exhibit sufficient free chlorine removal performance conventionally. And the objective is to provide a method for treating free chlorine-containing water using the same.

上記の目的を達成するため、本発明は、遊離塩素含有水から遊離塩素を除去するのに用いられる活性炭素繊維であって、平均繊維径が5〜30μm、アスペクト比が150/1未満3/1以上、活性表面積が60m2 /g以上であり、空間速度SVが6000/hの通水条件下で濃度2ppmの遊離塩素含有水(20℃)を通水した際の遊離塩素除去率が80%に低下するまでの累積通水量が、活性炭素繊維1g当たり180L以上である遊離塩素除去用活性炭素繊維を第1の要旨とする。 In order to achieve the above object, the present invention provides an activated carbon fiber used for removing free chlorine from water containing free chlorine, having an average fiber diameter of 5 to 30 μm and an aspect ratio of less than 150/1. 1 or more , an active surface area of 60 m 2 / g or more, and a free chlorine-removing rate when water containing free chlorine (2 ° C.) having a concentration of 2 ppm is passed under a water passing condition with a space velocity SV of 6000 / h. The first gist is an activated carbon fiber for removing free chlorine which has a cumulative water flow rate of 180 L or more per 1 g of activated carbon fiber until the water content decreases to%.

また、本発明は、そのなかでも、特に、1500〜4500m2/gの比表面積を有する遊離塩素除去用活性炭素繊維を第2の要旨とし、それらのなかでも、特に、0.5〜5meq/gの酸性表面官能基量を有する遊離塩素除去用活性炭素繊維を第3の要旨とする。 In addition, the present invention has, in particular, activated carbon fibers for removing free chlorine having a specific surface area of 1500 to 4500 m 2 / g as a second gist, and among them, in particular, 0.5 to 5 meq / The activated carbon fiber for removing free chlorine having an acidic surface functional group amount of g is a third gist.

さらに、本発明は、それらのなかでも、特に、平均細孔径が1〜4.5nmの細孔を有する遊離塩素除去用活性炭素繊維を第4の要旨とし、それらのなかでも、特に、0.5〜4mL/gの細孔容積を有する遊離塩素除去用活性炭素繊維を第5の要旨とする。   Furthermore, the present invention has, as a fourth gist, activated carbon fibers for removing free chlorine having pores having an average pore diameter of 1 to 4.5 nm, among them, and among these, in particular A fifth aspect is an activated carbon fiber for removing free chlorine having a pore volume of 5 to 4 mL / g.

そして、本発明は、遊離塩素含有水を、平均繊維径が5〜30μm、アスペクト比が150/1未満3/1以上、活性表面積が60m2 /g以上であり、空間速度SVが6000/hの通水条件下で濃度2ppmの遊離塩素含有水(20℃)を通水した際の遊離塩素除去率が80%に低下するまでの累積通水量が、活性炭素繊維1g当たり180L以上である活性炭素繊維と接触させることにより、遊離塩素を除去もしくは低下させる遊離塩素含有水の処理方法を第6の要旨とする。 In the present invention, free chlorine-containing water has an average fiber diameter of 5 to 30 μm, an aspect ratio of less than 150/1, 3/1 or more , an active surface area of 60 m 2 / g or more, and a space velocity SV of 6000 / h. Activity with a cumulative water flow rate of 180L or more per gram of activated carbon fiber until the free chlorine removal rate drops to 80% when water containing free chlorine (20 ° C) with a concentration of 2 ppm is passed under The sixth gist is a method for treating free chlorine-containing water that removes or reduces free chlorine by contacting with carbon fiber.

また、本発明は、そのなかでも、特に、上記活性炭素繊維が、1500〜4500m2/gの比表面積を有するものである遊離塩素含有水の処理方法を第7の要旨とし、それらのなかでも、特に、上記活性炭素繊維が、0.5〜5meq/gの酸性表面官能基量を有するものである遊離塩素含有水の処理方法を第8の要旨とする。 In addition, the present invention has, in particular, a method for treating free chlorine-containing water in which the activated carbon fiber has a specific surface area of 1500 to 4500 m 2 / g, and among them, among them, In particular, an eighth aspect is a method for treating free chlorine-containing water in which the activated carbon fiber has an acidic surface functional group amount of 0.5 to 5 meq / g.

さらに、本発明は、それらのなかでも、特に、上記活性炭素繊維が、賦活化後に酸化処理もしくは熱処理されたものである遊離塩素含有水の処理方法を第9の要旨とする。   Furthermore, among these, the ninth gist of the present invention is a method for treating free chlorine-containing water in which the activated carbon fiber is oxidized or heat-treated after activation.

すなわち、本発明の遊離塩素除去用活性炭素繊維は、特定範囲の平均繊維径とアスペクト比と活性表面積とを備えており、空間速度SVが6000/hという高速の通水条件下における処理可能な累積通水量が、活性炭素繊維1g当たり180L以上、という優れた特性を備えている。したがって、この遊離塩素除去用活性炭素繊維を用いることにより、従来実現することのできなかった、高速通水下での遊離塩素除去処理を実現することができ、長期にわたって、大量の水に対し、効率よく遊離塩素除去処理を行うことができる。 That is, the activated carbon fiber for removing free chlorine of the present invention has an average fiber diameter , an aspect ratio, and an active surface area within a specific range, and can be treated under a high-speed water passing condition with a space velocity SV of 6000 / h. The accumulated water flow rate has an excellent characteristic of 180 L or more per 1 g of activated carbon fiber. Therefore, by using this activated carbon fiber for removing free chlorine, free chlorine removal treatment under high-speed water flow, which could not be realized in the past, can be realized. Free chlorine removal treatment can be performed efficiently.

そして、本発明の遊離塩素除去用活性炭素繊維のなかでも、特に、1500〜4500m2/gの比表面積を有するものは、水との接触面積が大きいため、より優れた遊離塩素除去性能を有する。 Among the activated carbon fibers for removing free chlorine of the present invention, those having a specific surface area of 1500 to 4500 m 2 / g have a larger contact area with water, and thus have more excellent free chlorine removal performance. .

また、本発明の遊離塩素除去用活性炭素繊維のなかでも、特に、0.5〜5meq/gの酸性表面官能基量を有するものは、遊離塩素に対する反応性が高いため、より優れた遊離塩素除去性能を有する。   Further, among the activated carbon fibers for removing free chlorine of the present invention, those having an acidic surface functional group amount of 0.5 to 5 meq / g have high reactivity to free chlorine, and thus more excellent free chlorine. Has removal performance.

さらに、本発明の遊離塩素除去用活性炭素繊維のなかでも、特に、平均細孔径が1nm〜4.5nmの細孔を有するもの、あるいは0.5〜4mL/gの細孔容積を有するものは、細孔の大きさが、遊離塩素をより取り込みやすいものであるため、より優れた遊離塩素除去性能を有する。   Further, among the activated carbon fibers for removing free chlorine of the present invention, those having an average pore diameter of 1 nm to 4.5 nm or those having a pore volume of 0.5 to 4 mL / g are particularly preferred. Since the size of the pores makes it easier to take in free chlorine, it has better free chlorine removal performance.

そして、本発明の遊離塩素含有水の処理方法は、特定範囲の平均繊維径とアスペクト比と活性表面積とを備え、空間速度SVが6000/hという、高速の通水条件下における処理可能な累積通水量が、活性炭素繊維1g当たり180L以上、という優れた特性を備えた本発明の活性炭素繊維を用いて遊離塩素含有水を処理するものである。この処理方法によれば、すでにべたとおり、高速通水下での遊離塩素除去が可能となり、長期にわたって、大量の水に対して効率よく遊離塩素除去処理を行うことができる。 The method for treating free chlorine-containing water according to the present invention has a specific range of average fiber diameter , aspect ratio, and active surface area, and is capable of being treated under high-speed water passage conditions with a space velocity SV of 6000 / h. The free chlorine-containing water is treated using the activated carbon fiber of the present invention having an excellent characteristic that the water flow rate is 180 L or more per 1 g of activated carbon fiber. According to this processing method, as already mentioned solid, free chlorine removal under high speed water passage becomes possible over a long period, can be efficiently performed free chlorine removal process for a large number of water.

また、本発明の遊離塩素含有水の処理方法のなかでも、特に、上記活性炭素繊維が、1500〜4500m2/gの比表面積を有するものである場合、また、0.5〜5meq/gの酸性表面官能基量を有するものである場合、遊離塩素処理能力がより優れたものとなり、好適である。 Among the methods for treating free chlorine-containing water of the present invention, particularly when the activated carbon fiber has a specific surface area of 1500 to 4500 m 2 / g, 0.5 to 5 meq / g When it has an acidic surface functional group amount, it becomes more excellent in free chlorine treatment ability, which is preferable.

さらに、上記活性炭素繊維が、賦活化後に酸化処理もしくは熱処理されたものである場合も、遊離塩素処理能力がより優れたものとなり、好適である。   Furthermore, when the activated carbon fiber is subjected to oxidation treatment or heat treatment after activation, the ability to treat free chlorine is more excellent, which is preferable.

なお、本発明において、通水条件を示す「空間速度SV」とは、JIS S 3201に準拠する通水方法において、下記の式(1)で求められる値である。
[式]
SV(/h)
=1時間当たりの通水量(m3/h)/活性炭素繊維の体積(m3)……(1)
In addition, in this invention, "space velocity SV" which shows water flow conditions is the value calculated | required by following formula (1) in the water flow method based on JISS3201.
[formula]
SV (/ h)
= Amount of water flow per hour (m 3 / h) / volume of activated carbon fiber (m 3 ) (1)

(a)は本発明の遊離塩素除去用活性炭素繊維の一実施の形態を模式的に示す部分的な外観図、(b)はその部分拡大断面図である。(A) is the partial external view which shows typically one Embodiment of the activated carbon fiber for free chlorine removal of this invention, (b) is the partial expanded sectional view. 粒状活性炭の模式的な部分拡大断面図である。It is a typical partial expanded sectional view of granular activated carbon. 実施例品および比較例品の、遊離塩素の除去率と累積通水量との関係を示す線図である。It is a diagram which shows the relationship between the removal rate of a free chlorine, and the cumulative water flow rate of an Example product and a comparative example product.

つぎに、本発明を実施するための形態について、詳細に説明する。   Next, a mode for carrying out the present invention will be described in detail.

本発明の遊離塩素除去用活性炭素繊維は、遊離塩素含有水から遊離塩素を除去するのに用いられる活性炭素繊維であって、平均繊維径が5〜30μm、アスペクト比が150/1未満3/1以上、活性表面積が60m2/g以上であり、空間速度SVが6000/hの通水条件下で濃度2ppmの遊離塩素含有水(20℃)を通水して遊離塩素除去率が80%に低下するまでの累積通水量が、活性炭素繊維1g当たり180L以上である、という特性を備えたものである。 The activated carbon fiber for removing free chlorine of the present invention is an activated carbon fiber used for removing free chlorine from water containing free chlorine, and has an average fiber diameter of 5 to 30 μm and an aspect ratio of less than 150/1. 1 or more , active surface area is 60 m 2 / g or more, and free chlorine-containing water (20 ° C.) having a concentration of 2 ppm is passed through under water-passing conditions with a space velocity SV of 6000 / h, and the free chlorine removal rate is 80%. The cumulative amount of water flow until it decreases to 180% or more is provided with a characteristic of 180 L or more per 1 g of activated carbon fiber.

なお、本発明において、上記通水試験における遊離塩素除去率は、用いられる遊離塩素含有水の遊離塩素濃度が2ppmと低いものであることから、通水開始時の遊離塩素除去率が100%であることを前提とし、その100%の除去率が80%に低下するまでの累積通水量を求めている。   In the present invention, the free chlorine removal rate in the water flow test is such that the free chlorine concentration of the free chlorine-containing water used is as low as 2 ppm, so the free chlorine removal rate at the start of water flow is 100%. Assuming that there is a certain amount, the cumulative water flow rate until the 100% removal rate drops to 80% is obtained.

上記特性は、本発明に用いられる活性炭素繊維の原料、炭化条件、賦活条件等を適宜選択することによって達成することができる。以下、その詳細を説明する。   The said characteristic can be achieved by selecting suitably the raw material, carbonization conditions, activation conditions, etc. of the activated carbon fiber used for this invention. Details will be described below.

本発明に用いられる活性炭素繊維は、炭素原料から繊維状の前駆体繊維を形成し、この前駆体繊維を炭化して炭素繊維とした後、賦活化して得ることができる。   The activated carbon fiber used in the present invention can be obtained by forming a fibrous precursor fiber from a carbon raw material, carbonizing the precursor fiber to obtain a carbon fiber, and then activating it.

上記炭素原料としては、特に限定されない。例えば、ピッチ系原料(石油ピッチ、石炭ピッチ、コールタールピッチ、これらの複合物等)、ポリアクリロニトリル(PAN)系樹脂、フェノール系樹脂、フラン系樹脂、イミド系樹脂、アラミド系樹脂、紙や綿等のセルロース系繊維等があげられる。これらのなかでも、ピッチ系原料、ポリアクリロニトリル系樹脂、フェノール系樹脂が好ましく、特に、親水性が高い点で、ポリアクリロニトリル系樹脂が好適である。なお、ピッチ系原料を用いる場合は、異方性であっても等方性であってもよい。そして、これらの炭素原料は、単独で用いても2種以上を組み合わせて用いることもできる。   The carbon raw material is not particularly limited. For example, pitch raw materials (petroleum pitch, coal pitch, coal tar pitch, composites thereof), polyacrylonitrile (PAN) resin, phenolic resin, furan resin, imide resin, aramid resin, paper and cotton Cellulosic fibers and the like. Among these, pitch-based raw materials, polyacrylonitrile-based resins, and phenol-based resins are preferable, and polyacrylonitrile-based resins are particularly preferable in terms of high hydrophilicity. In addition, when using a pitch-type raw material, it may be anisotropic or isotropic. These carbon materials can be used alone or in combination of two or more.

上記炭素原料から前駆体繊維を形成する方法も、特に限定されない。例えば、静電紡糸法やブレンド紡糸法等、公知の紡糸方法から適宜の方法を採用することができる。   The method for forming the precursor fiber from the carbon raw material is not particularly limited. For example, an appropriate method can be adopted from known spinning methods such as an electrostatic spinning method and a blend spinning method.

ちなみに、上記静電紡糸法とは、溶媒に溶解した炭素原料溶液を、電極間に形成された静電場中に吐出し、形成される繊維状物質を捕集基板に累積することにより、前駆体繊維を得る方法である。また、上記ブレンド紡糸法とは、炭素原料と熱可塑性樹脂との混合物を紡糸後、炭素原料を安定化処理し、熱可塑性樹脂を除去することにより、前駆体繊維を得る方法である。   By the way, the above-mentioned electrostatic spinning method is a method in which a carbon raw material solution dissolved in a solvent is discharged into an electrostatic field formed between electrodes, and the formed fibrous material is accumulated on a collection substrate to thereby form a precursor. This is a method for obtaining fibers. The blend spinning method is a method of obtaining a precursor fiber by spinning a mixture of a carbon raw material and a thermoplastic resin, stabilizing the carbon raw material, and removing the thermoplastic resin.

なお、上記前駆体繊維の形態は、紡糸したままの長繊維であっても、これを適宜の長さに切断した短繊維であってもよい。また、その用途に応じて、不織布、織生地、編生地、撚糸、紐といった形態にしておいてもよい。   The precursor fiber may be a long fiber as spun or a short fiber obtained by cutting the precursor fiber into an appropriate length. Moreover, you may make it a form, such as a nonwoven fabric, a woven fabric, a knitted fabric, a twisted thread, a string, according to the use.

つぎに、上記前駆体繊維を炭化して炭素繊維にする方法としては、一般に、窒素等の不活性ガス雰囲気下で加熱処理する方法が用いられる。処理温度は、通常400℃以上であり、好ましくは500〜900℃、より好ましくは550〜750℃、さらに好ましくは600〜700℃である。   Next, as a method of carbonizing the precursor fiber to form carbon fiber, a method of heat treatment in an inert gas atmosphere such as nitrogen is generally used. Processing temperature is 400 degreeC or more normally, Preferably it is 500-900 degreeC, More preferably, it is 550-750 degreeC, More preferably, it is 600-700 degreeC.

つぎに、上記炭素繊維を賦活化して活性炭素繊維を得る方法としては、一般に、水蒸気賦活法もしくはアルカリ賦活法、あるいは水蒸気賦活法とアルカリ賦活法とを組み合わせた賦活が用いられる。   Next, as a method for activating the carbon fibers to obtain activated carbon fibers, generally, a steam activation method or an alkali activation method, or an activation that combines the steam activation method and the alkali activation method is used.

上記水蒸気賦活法とは、水蒸気の存在下、対象となる炭素繊維を高温で加熱処理することにより、炭素繊維の炭素構造を浸食して多くの細孔を形成する方法である。処理温度は、通常700〜1500℃程度であり、好ましくは800〜1300℃、より好ましくは900〜1200℃である。   The water vapor activation method is a method of forming many pores by eroding the carbon structure of the carbon fiber by heat-treating the target carbon fiber at a high temperature in the presence of water vapor. The processing temperature is usually about 700 to 1500 ° C, preferably 800 to 1300 ° C, more preferably 900 to 1200 ° C.

また、上記アルカリ賦活法とは、対象となる炭素繊維にアルカリ性の賦活剤を含浸させ、所定の温度域まで昇温させることにより、炭素繊維の炭素構造を浸食し、さらには炭素構造内に賦活剤を侵入させて多くの細孔を形成する方法である。本発明では、このアルカリ賦活法を用いることが、目的の物性を得る上で好ましい。   Also, the alkali activation method described above impregnates the carbon structure of the carbon fiber by impregnating the target carbon fiber with an alkaline activator and raises the temperature to a predetermined temperature range, and further activates the carbon structure. This is a method of forming a large number of pores by allowing an agent to enter. In the present invention, it is preferable to use this alkali activation method for obtaining the desired physical properties.

上記アルカリ賦活法で用いられる賦活剤としては、例えばLiOH、KOH、NaOH等のアルカリ金属の水酸化物、Ba(OH)2等のアルカリ土類金属の水酸化物、Li2CO3、Na2CO3、K2CO3等のアルカリ金属の炭酸塩等、CaCO3等のアルカリ土類金属の炭酸塩等があげられる。これらのなかでも、特に、KOH、NaOHが好ましい。アルカリ賦活時の処理温度は、用いる賦活剤によっても異なるが、通常400〜1000℃であり、好ましくは500〜900℃、より好ましくは600〜800℃である。また、炭素原料に対する賦活剤の割合は、重量基準で、通常1/2〜6/1であり、好ましくは1/1〜5/1、より好ましくは3/1〜4/1である。 Examples of the activator used in the alkali activation method include alkali metal hydroxides such as LiOH, KOH, and NaOH, alkaline earth metal hydroxides such as Ba (OH) 2 , Li 2 CO 3 , and Na 2. Examples thereof include alkali metal carbonates such as CO 3 and K 2 CO 3 , and alkaline earth metal carbonates such as CaCO 3 . Among these, KOH and NaOH are particularly preferable. The treatment temperature during alkali activation varies depending on the activator used, but is usually 400 to 1000 ° C, preferably 500 to 900 ° C, more preferably 600 to 800 ° C. Moreover, the ratio of the activator with respect to a carbon raw material is 1 / 2-6 / 1 normally on a weight basis, Preferably it is 1 / 1-5 / 1, More preferably, it is 3 / 1-4 / 1.

なお、上記アルカリ賦活法で得られる活性炭素繊維の表面には、賦活剤のアルカリが残留するため、通常、アルカリ賦活処理後、水洗や酸洗浄によるアルカリ除去を行うことが好ましい。   In addition, since the alkali of an activator remains on the surface of the activated carbon fiber obtained by the alkali activation method, it is usually preferable to perform alkali removal by water washing or acid washing after the alkali activation treatment.

また、賦活化によって得られた活性炭素繊維に対し、後処理として、酸化処理や熱処理を行うと、活性炭素繊維の遊離塩素処理能力がより優れたものとなり、好適である。上記酸化処理は、例えば、賦活品に対し、空気雰囲気下で150〜500℃、0.1〜24時間程度保持して行うことができる。また、上記熱処理は、例えば、賦活品に対し、窒素流通下で400〜1200℃、0.1〜24時間保持して行うことができる。   Moreover, when the activated carbon fiber obtained by activation is subjected to an oxidation treatment or a heat treatment as a post-treatment, the free carbon treatment ability of the activated carbon fiber becomes more excellent, which is preferable. The oxidation treatment can be performed, for example, by holding the activated product at 150 to 500 ° C. for about 0.1 to 24 hours in an air atmosphere. Moreover, the said heat processing can be performed by hold | maintaining 400 to 1200 degreeC and 0.1 to 24 hours under nitrogen circulation with respect to an activation product, for example.

このようにして得られる、本発明の遊離塩素除去用活性炭素繊維は、模式的には、例えば図1(a)に示すような外観となり、その表面部分の拡大断面は、図1(b)に示すようになっている。すなわち、細長く延びる繊維表面に、多数の細孔(いわゆるミクロポア)1が分布しており、単位表面積当たりの細孔1の数が多いことがわかる。   The activated carbon fiber for removing free chlorine of the present invention thus obtained typically has an appearance as shown in FIG. 1 (a), for example, and an enlarged cross section of the surface portion thereof is shown in FIG. 1 (b). It is as shown in. That is, it can be seen that a large number of pores (so-called micropores) 1 are distributed on the surface of the elongated fiber, and the number of pores 1 per unit surface area is large.

なお、浄水器等のろ過材料として一般に用いられている活性炭は、粒状のものが主流である。粒状活性炭は、その模式的な部分断面図である図2に示すように、表面に比較的大きな開口2(いわゆるマクロポア)があり、その開口2の内側に細孔1が形成された構造になっている。このため、本発明が対象とするような、空間速度SVが6000/hといった高速通水を行うと、水が細孔1の内部まで浸透することなく通過して、遊離塩素除去性能を充分に発現することができない。また、開口2の周縁が水圧で崩れて目詰まりを生じるおそれもある。したがって、本発明のような性能を得ることはできない。   In addition, as for the activated carbon generally used as filtration materials, such as a water purifier, a granular thing is mainstream. As shown in FIG. 2, which is a schematic partial cross-sectional view, granular activated carbon has a structure in which a relatively large opening 2 (so-called macropore) is formed on the surface, and pores 1 are formed inside the opening 2. ing. For this reason, when high-speed water passage with a space velocity SV of 6000 / h, which is the object of the present invention, is performed, water passes through the inside of the pores 1 and the free chlorine removal performance is sufficiently achieved. It cannot be expressed. Further, the peripheral edge of the opening 2 may collapse due to water pressure and cause clogging. Therefore, the performance as in the present invention cannot be obtained.

そして、本発明において、活性炭素繊維の平均繊維径[図1(a)において繊維径をXで示す]は、5〜30μmであるが、参考形態を含む範囲としては、0.1〜100μmであり、なかでも、1〜50μmであることが好ましい。すなわち、本発明が対象とするような高速流速の通水下では、平均繊維径が小さすぎると、圧損が増大してしまうため、カラム等への充填量が減少するおそれがある。逆に、平均繊維径が大きすぎると、反応面積が小さくなり、さらに拡散が悪くなるため、高速通水性能が低下するおそれがある。 And in this invention, although the average fiber diameter of an activated carbon fiber [a fiber diameter is shown by X in FIG. 1 (a)] is 5-30 micrometers, as a range including a reference form, it is 0.1-100 micrometers. Oh it is, among others, arbitrary preferred to be a 1~50μm. That is, when the average fiber diameter is too small under water flow at a high flow rate as the object of the present invention, the pressure loss increases, so that the amount of packing in the column or the like may decrease. On the contrary, if the average fiber diameter is too large, the reaction area becomes small and the diffusion becomes worse, so that the high-speed water flow performance may be lowered.

また、本発明において、活性炭素繊維のアスペクト比[繊維長Y/繊維径X、図1(a)を参照]は、150/1未満3/1以上であるが、参考形態を含む範囲としては、通常100000/1〜3/1であり、好ましくは10000/1〜5/1、より好ましくは1000/1〜10/1である。アスペクト比が大きすぎると、取り扱い性の点で不都合が生じるおそれがあり、逆にアスペクト比が小さすぎると繊維形状であることの優位性が保てなくなるおそれがあるからである。 In the present invention, the aspect ratio [fiber length Y / fiber diameter X, see FIG. 1 (a)] of the activated carbon fiber is less than 150/1 and 3/1 or more. In general, it is 100,000 / 1 to 3/1, preferably 10,000 / 1 to 5/1, and more preferably 1000/1 to 10/1. This is because if the aspect ratio is too large, inconvenience may occur in terms of handleability, and conversely if the aspect ratio is too small, the superiority of the fiber shape may not be maintained.

さらに、本発明の遊離塩素除去用活性炭素繊維は、カルボキシル基、カルボニル基、フェノール性水酸基、ラクトン基等の酸性表面官能基を有するものであり、その酸性表面官能基量は、通常0.5〜5meq/g、好ましくは0.8〜4.5meq/g、より好ましくは1.0〜4.0meq/gである。すなわち、上記酸性表面官能基は、遊離塩素と反応して除去する作用を果たすため、これらの量が少なすぎると、活性炭素繊維の比表面積が大きく水との接触面積が大きくても、遊離塩素と反応して除去する効果が不充分になるおそれがある。一方、上記酸性表面官能基量を上記の範囲よりも多くするには、後処理工程(酸化処理等)が増えるため、製造コストが高くなるおそれがあり、好ましくない。   Furthermore, the activated carbon fiber for removing free chlorine of the present invention has an acidic surface functional group such as a carboxyl group, a carbonyl group, a phenolic hydroxyl group, and a lactone group, and the amount of the acidic surface functional group is usually 0.5. -5 meq / g, preferably 0.8-4.5 meq / g, more preferably 1.0-4.0 meq / g. That is, the above acidic surface functional group acts to remove by reacting with free chlorine. If these amounts are too small, even if the specific surface area of activated carbon fiber is large and the contact area with water is large, free chlorine There is a possibility that the effect of removing by reacting with will be insufficient. On the other hand, if the amount of the acidic surface functional group is larger than the above range, the number of post-treatment steps (oxidation treatment or the like) increases, which may increase the production cost, which is not preferable.

また、本発明において、活性炭素繊維の比表面積は、比較的大きいものが好ましく、通常1000〜4500m2/g、好ましくは1500〜4500m2/g、より好ましくは2000〜4500m2/gである。すなわち、比表面積が大きければ大きいほど、水との接触面積が大きくなるため、遊離塩素を除去する性能が向上するものの、あまり大きすぎると、活性炭素繊維の構造が脆くなるおそれがある。 In the present invention, the specific surface area of the activated carbon fiber is preferably relatively large, and is usually 1000 to 4500 m 2 / g, preferably 1500 to 4500 m 2 / g, and more preferably 2000 to 4500 m 2 / g. That is, the larger the specific surface area, the larger the contact area with water, so that the performance of removing free chlorine is improved, but if it is too large, the structure of the activated carbon fiber may become brittle.

そして、本発明において、活性炭素繊維の活性表面積は、遊離塩素除去性能の点から、60m2/g以上であり、70m2/g以上がより好ましく、80m2/g以上がさらに好ましい。すなわち、上述のように、水との接触面積が大きい点において、比表面積の大きい方が遊離塩素を含有する水を処理する上で好ましいが、遊離塩素との反応性を高めるには、活性表面積の大きい方が、より好ましい。 In the present invention, the active carbon fiber has an active surface area of 60 m 2 / g or more, more preferably 70 m 2 / g or more, and still more preferably 80 m 2 / g or more, from the viewpoint of the ability to remove free chlorine. That is, as described above, in terms of a large contact area with water, a larger specific surface area is preferable for treating water containing free chlorine, but in order to increase the reactivity with free chlorine, an active surface area is required. The larger one is more preferable.

また、本発明において、活性炭素繊維に形成される細孔は、遊離塩素除去性能の点から、その平均細孔径が1〜4.5nmであることが好ましく、より好ましくは1.5〜4.0nm、さらに好ましくは2〜3.5nmである。上記平均細孔径が小さくなりすぎると拡散が悪く性能が低下するおそれがあり、逆に上記平均細孔径が大きすぎると活性炭素繊維自体が嵩高くなってカラム等への充填量が減少するおそれがある。 In the present invention, the pores 1 formed in the activated carbon fiber preferably have an average pore diameter of 1 to 4.5 nm, more preferably 1.5 to 4 in terms of free chlorine removal performance. 0.0 nm, more preferably 2 to 3.5 nm. If the average pore diameter is too small, the diffusion may be poor and the performance may be reduced. Conversely, if the average pore diameter is too large, the activated carbon fiber itself may be bulky and the amount of packing in the column may be reduced. is there.

さらに、本発明において、活性炭素繊維の形成される細孔容積(全細孔容積の趣旨である、以下同じ)は、0.5〜4mL/gであることが好ましく、より好ましくは0.7〜3.5mL/g、さらに好ましくは1〜3mL/gである。上記細孔容積が少なすぎると、水との接触が不充分になるおそれがあり、逆に上記細孔容積が大きすぎると、活性炭素繊維自体が嵩高くなってカラム等への充填量が減少するおそれがある。   Furthermore, in the present invention, the pore volume in which the activated carbon fiber is formed (the meaning of the total pore volume, hereinafter the same) is preferably 0.5 to 4 mL / g, more preferably 0.7. -3.5mL / g, More preferably, it is 1-3mL / g. If the pore volume is too small, contact with water may be insufficient. Conversely, if the pore volume is too large, the activated carbon fiber itself becomes bulky and the amount of packing in the column or the like decreases. There is a risk.

そして、本発明の遊離塩素除去用活性炭素繊維は、前述のとおり、空間速度SVが6000/hの通水条件下で濃度2ppmの遊離塩素含有水(20℃)を通水して遊離塩素除去率が80%に低下するまでの累積通水量が、活性炭素繊維1g当たり180L以上であり、好ましくは200L以上、より好ましくは300L以上である。   The activated carbon fiber for removing free chlorine of the present invention, as described above, removes free chlorine by passing free chlorine-containing water (20 ° C.) at a concentration of 2 ppm under a water flow condition with a space velocity SV of 6000 / h. The accumulated water flow rate until the rate drops to 80% is 180 L or more per 1 g of activated carbon fiber, preferably 200 L or more, more preferably 300 L or more.

すなわち、従来の家庭用浄水器では、一般に、空間速度SVが500〜3000/h程度の通水条件下での対象物質の80%除去までの累積通水量を、その対象物質の除去性能の目安としており、例えば空間速度SVが5000/hを超えるような、高速流速下での長期使用に耐える遊離塩素除去用活性炭素繊維は提案されていない。これに対し、本発明の遊離塩素除去用活性炭素繊維は、上記のように、極めて高速流速での通水を行っても、遊離塩素除去率が80%に低下するまでの累積通水量が大きいのであり、大量の水を、高速で長期にわたって良好に処理することができる。   That is, in the conventional household water purifier, generally, the cumulative water flow rate up to 80% removal of the target substance under the water flow condition with a space velocity SV of about 500 to 3000 / h is a measure of the removal performance of the target substance. For example, there has not been proposed an activated carbon fiber for removing free chlorine that can withstand long-term use under a high flow rate such that the space velocity SV exceeds 5000 / h. On the other hand, the activated carbon fiber for removing free chlorine of the present invention has a large accumulated water flow rate until the free chlorine removal rate is reduced to 80% even when water is passed at an extremely high flow rate as described above. Therefore, a large amount of water can be treated well at a high speed for a long time.

もちろん、通水時において、空間速度SVが6000/hよりも低くなると、それだけ遊離塩素除去性能の寿命が延びるため、累積通水量はさらに多くなり、より長期間、効果的に遊離塩素除去を行うことができる。したがって、本発明の遊離塩素除去用活性炭素繊維は、必ずしも空間速度SVが6000/hという高速条件下で使用する必要はなく、要求される通水条件で適宜に使用することができる。   Of course, when the space velocity SV is lower than 6000 / h during water flow, the life of the free chlorine removal performance is increased accordingly, so that the accumulated water flow amount is further increased, and free chlorine removal is effectively performed for a longer period. be able to. Therefore, the activated carbon fiber for removing free chlorine of the present invention does not necessarily need to be used under a high-speed condition where the space velocity SV is 6000 / h, and can be appropriately used under a required water flow condition.

そして、本発明の遊離塩素除去用活性炭素繊維は、前述のように、高速流速で通水した際にも優れた遊離塩素除去性能を発揮することから、とりわけ、大量の水から高速で遊離塩素を除去する必要がある用途に適している。したがって、本発明は、家庭用浄水器に限らず、業務用浄水器、あるいは各種産業用の脱塩素処理装置、水循環装置、水回収リサイクル装置等に好適に用いることができる。   As described above, the activated carbon fiber for removing free chlorine of the present invention exhibits excellent free chlorine removing performance even when water is passed at a high flow rate. Suitable for applications where it is necessary to remove Therefore, the present invention can be suitably used not only for household water purifiers, but also for commercial water purifiers, various industrial dechlorination devices, water circulation devices, water recovery and recycling devices, and the like.

また、本発明の遊離塩素除去用活性炭素繊維は、トリハロメタン除去用のろ過材料等、他の機能に特化した材料と組み合わせることにより、より高機能が要求される用途においても好適に用いることができる。   Moreover, the activated carbon fiber for removing free chlorine of the present invention can be suitably used in applications requiring higher functions by combining with a material specialized for other functions such as a filtration material for removing trihalomethane. it can.

以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

[実施例1〜10]
<活性炭素繊維の調製>
後記の表1、表2に示す炭素材料を、表1、表2に示す条件で炭化処理、賦活処理等を行うことにより、10種類の実施例品を調製した。なお、炭化処理、賦活処理等の詳細を以下に示す。
[Examples 1 to 10]
<Preparation of activated carbon fiber>
Ten types of Examples were prepared by subjecting the carbon materials shown in Tables 1 and 2 below to carbonization treatment and activation treatment under the conditions shown in Tables 1 and 2. Details of carbonization treatment, activation treatment, and the like are shown below.

<炭化処理:実施例1、2、6>
炭素原料を雰囲気ボックス炉(光洋サーモシステム社製)に投入して、窒素流通下で所定の温度まで昇温速度10℃/minで昇温した後、2時間保持して炭化処理を行った。
<Carbonization treatment: Examples 1, 2 and 6>
The carbon raw material was put into an atmosphere box furnace (manufactured by Koyo Thermo Systems Co., Ltd.), heated to a predetermined temperature under a nitrogen flow at a heating rate of 10 ° C./min, and then carbonized by holding for 2 hours.

<賦活処理:実施例1〜6、10>
炭素原料10gと所定量のKOHを容器に投入・混合した状態で小型炉Aに入れ、窒素流通下(1L/min)、昇温速度10℃/minで昇温した後、所定の賦活温度で2時間保持してアルカリ賦活処理を行った。処理後の試料を5.25重量%の塩酸(HCl)水溶液2L中で1時間煮沸した後、ろ過した。ろ過後の試料に対し60℃の温水で洗浄・真空ろ過を行い、ろ液のpHが6.5以上になるまで繰り返し洗浄した。そして、洗浄した試料を温水2L中で1.5時間煮沸した後、60℃の温水4Lで洗浄し、真空ろ過を行った。ろ過後の脱水品を、115℃で一昼夜乾燥させた。
<Activation treatment: Examples 1 to 6, 10>
10 g of carbon raw material and a predetermined amount of KOH are charged into a container and mixed in a small furnace A, heated in a nitrogen flow (1 L / min) at a heating rate of 10 ° C./min, and then at a predetermined activation temperature. The alkali activation treatment was performed by holding for 2 hours. The treated sample was boiled in 2 L of a 5.25 wt% aqueous hydrochloric acid (HCl) solution for 1 hour and then filtered. The filtered sample was washed with 60 ° C. warm water and vacuum filtered, and repeatedly washed until the pH of the filtrate reached 6.5 or higher. The washed sample was boiled in 2 L of warm water for 1.5 hours, then washed with 4 L of hot water at 60 ° C., and vacuum filtered. The dehydrated product after filtration was dried at 115 ° C. for a whole day and night.

<賦活処理:実施例7〜9>
炭素原料1kgと所定量のKOHを容器に投入・混合したものを中型炉Bに入れた。それ以外は、上記実施例1〜6、10と同様にして、賦活処理を行った。
<Activation treatment: Examples 7 to 9>
A mixture of 1 kg of carbon raw material and a predetermined amount of KOH in a container was mixed in a medium-sized furnace B. Otherwise, the activation treatment was performed in the same manner as in Examples 1 to 6 and 10.

<酸化処理:実施例8>
賦活品を電気炉に投入して、空気雰囲気下で300℃まで昇温速度10℃/minで昇温した後、24時間保持して酸化処理を行った。
<Oxidation treatment: Example 8>
The activated product was put into an electric furnace, heated up to 300 ° C. at a heating rate of 10 ° C./min in an air atmosphere, and then kept for 24 hours for oxidation treatment.

<熱処理:実施例9>
賦活品を雰囲気ボックス炉(光洋サーモシステム社製)に投入して、窒素流通下で750℃まで昇温速度10℃/minで昇温した後、2時間保持して熱処理を行った。
<Heat treatment: Example 9>
The activated product was put into an atmosphere box furnace (manufactured by Koyo Thermo System Co., Ltd.), heated to 750 ° C. at a heating rate of 10 ° C./min under a nitrogen flow, and then heat-treated by holding for 2 hours.

[比較例1、2]
比較例1品は、水蒸気賦活処理された市販の活性炭素繊維であり、比較例2品は、石油系原料に由来するアルカリ賦活炭(MCエバテック社製、MSC−30)である。
[Comparative Examples 1 and 2]
The product of Comparative Example 1 is a commercially available activated carbon fiber subjected to steam activation treatment, and the product of Comparative Example 2 is alkali activated carbon (MSC-30, manufactured by MC Evatech) derived from petroleum-based raw materials.

<物性の測定、算出>
得られた各実施例品、比較例品に対し、以下の項目について、以下の方法にしたがって値を求め、その結果を、後記の表1、表2に併せて示した。
<Measurement and calculation of physical properties>
For each of the obtained Example products and Comparative product, values were obtained for the following items according to the following method, and the results are shown in Tables 1 and 2 below.

<平均繊維径の求め方:実施例1〜10,比較例1>
平均繊維径は、活性炭素繊維から、無作為に5mm×10mmの面積となるようサンプリングし、SEM試料台に固定した後、イオンスパッター(日立ハイテクノロジーズ社製、E−1030)により、真空下、15mAで300秒間金蒸着を実施した。このサンプルを走査型電子顕微鏡(日立ハイテクノロジーズ社製、S−3000N)にセットし、加圧電圧15kV、倍率を3000倍として、1サンプルあたり5視野を、重複しないよう無作為に撮影した。つぎに、各視野の中で5本の繊維を選択し、画像上のスケールを用いて繊維径に換算することで繊維径を測定した。平均繊維径は各測定値の相加平均により算出した。
<How to Obtain Average Fiber Diameter: Examples 1 to 10, Comparative Example 1>
The average fiber diameter was randomly sampled from activated carbon fiber so as to have an area of 5 mm × 10 mm, fixed to the SEM sample stage, and then vacuumed by ion sputtering (manufactured by Hitachi High-Technologies Corporation, E-1030). Gold deposition was performed at 15 mA for 300 seconds. This sample was set in a scanning electron microscope (S-3000N, manufactured by Hitachi High-Technologies Corporation), and a visual field of 5 fields per sample was randomly photographed so as not to overlap with an applied voltage of 15 kV and a magnification of 3000 times. Next, five fibers were selected in each field of view, and the fiber diameter was measured by converting to fiber diameter using the scale on the image. The average fiber diameter was calculated by the arithmetic average of each measured value.

<平均粒径の求め方:比較例2>
レーザー回折式粒度分布測定装置(島津製作所社製、SALD(登録商標)−2200)を用いて活性炭を測定し、粒度分布の測定結果から体積基準の累積頻度曲線を求め、累積頻度50%における粒子径を平均粒子径とした。
<How to Find Average Particle Size: Comparative Example 2>
Activated carbon is measured using a laser diffraction particle size distribution analyzer (SALD (registered trademark) -2200, manufactured by Shimadzu Corporation), and a volume-based cumulative frequency curve is obtained from the particle size distribution measurement results. The diameter was defined as the average particle diameter.

<比表面積、細孔容積の求め方>
試料(活性炭)0.2gを250℃にて真空加熱した後、窒素吸着装置(マイクロメリティック社製、ASAP−2405)を用いて窒素吸着等温線を求め、BET法により比表面積(m2/g)を求めた。また、窒素吸着等温線から相対圧(P/P0)が0.93における細孔直径30nmまでの窒素吸着量から細孔容積(=全細孔容積、mL/g)を算出した。
<Determination of specific surface area and pore volume>
After 0.2 g of a sample (activated carbon) was heated at 250 ° C. under vacuum, a nitrogen adsorption isotherm was obtained using a nitrogen adsorption device (ASAP-2405, manufactured by Micromeritic), and a specific surface area (m 2 / m g) was determined. The pore volume (= total pore volume, mL / g) was calculated from the nitrogen adsorption amount up to a pore diameter of 30 nm at a relative pressure (P / P 0 ) of 0.93 from the nitrogen adsorption isotherm.

<平均細孔径の求め方>
活性炭の細孔をシリンダー状と仮定し、下記の式(2)に基づいて平均細孔径を算出した。
[式]
平均細孔径(nm)
=[4×全細孔容積(mL/g)]/[比表面積(m2/g)×1000]…(2)
<How to find the average pore size>
The average pore diameter was calculated based on the following formula (2), assuming that the pores of the activated carbon were cylindrical.
[formula]
Average pore size (nm)
= [4 × total pore volume (mL / g)] / [specific surface area (m 2 / g) × 1000] (2)

<酸性表面官能基量の求め方>
酸性表面官能基の量は、Boehm法(文献「H.P.Boehm, Adzan.Catal, 16,179(1966)」にその詳細が記載されている)にしたがって求めた。具体的には、まず試料(活性炭)1gにナトリウムエトキシド水溶液(0.1mol/L)を50mL加え、2時間、500rpmで撹拌した後、24時間放置した。その後、さらに30分間撹拌を行い濾過分離した。得られた濾液25mLに対して0.1mol/Lの塩酸を滴下し、pH4.0になるときの塩酸滴定量を測定した。また、ブランクテストとして、前記ナトリウムエトキシド水溶液(0.1mol/L)25mLに対して0.1mol/Lの塩酸を滴下し、pH4.0になるときの塩酸滴定量を測定した。そして、下記の式(3)により酸性表面官能基量(meq/g)を算出した。
[式]
酸性表面官能基量(meq/g)
=(a−b)×0.1/(c×25/50)…(3)
a:ブランクテストにおける塩酸滴定量(mL)
b:試料を反応させたときの塩酸滴定量(mL)
c:試料質量(g)
<How to determine the amount of acidic surface functional groups>
The amount of the acidic surface functional group was determined according to the Boehm method (details thereof are described in the document “HP Boehm, Adzan. Catal, 16, 179 (1966)”). Specifically, first, 50 mL of an aqueous sodium ethoxide solution (0.1 mol / L) was added to 1 g of a sample (activated carbon), and the mixture was stirred for 2 hours at 500 rpm, and then allowed to stand for 24 hours. Thereafter, the mixture was further stirred for 30 minutes and separated by filtration. 0.1 mol / L hydrochloric acid was added dropwise to 25 mL of the obtained filtrate, and the hydrochloric acid titration amount was measured when the pH reached 4.0. As a blank test, 0.1 mol / L hydrochloric acid was added dropwise to 25 mL of the aqueous sodium ethoxide solution (0.1 mol / L), and the hydrochloric acid titration amount was measured when the pH reached 4.0. And the amount (meq / g) of acidic surface functional groups was calculated by the following formula (3).
[formula]
Acid surface functional group amount (meq / g)
= (A−b) × 0.1 / (c × 25/50) (3)
a: Hydrochloric acid titration in blank test (mL)
b: Hydrochloric acid titration (mL) when the sample was reacted
c: Sample mass (g)

<活性表面積の求め方>
ディスクミル粉砕した試料(6〜10μm)を空気雰囲気下で、24時間300℃で酸化し、酸化後の酸性表面官能基量d(meq/g)を上記の式(3)を用いて算出し、酸素含有化合物1分子の占める面積e:0.083(nm2)、アボガドロ定数f:6.02×1023(mol-1)として、下記の式(4)により、活性表面積を求めた。
[式]
活性表面積(m2/g)
=d×10-3×e×f×10-18 …(4)
<How to determine the active surface area>
The sample (6-10 μm) crushed by disk mill was oxidized at 300 ° C. for 24 hours in an air atmosphere, and the acid surface functional group amount d (meq / g) after oxidation was calculated using the above formula (3). The active surface area was calculated by the following formula (4), where the area e occupied by one molecule of the oxygen-containing compound was 0.083 (nm 2 ) and the Avogadro constant f was 6.02 × 10 23 (mol −1 ).
[formula]
Active surface area (m 2 / g)
= D × 10 −3 × e × f × 10 −18 (4)

<通水試験>
得られた実施例品、比較例品の各試料を所定のカラムに充填し、家庭用浄水器試験方法(JIS S 3201)に基づいて、空間速度SVが6000/hとなる流速で、濃度2ppmの遊離塩素含有水(20℃)に対する通水試験を行い、その遊離塩素除去率が100%から80%に低下するまでの累積通水量を求めた。得られた累積通水量(試料1g当たり)を、後記の表1、表2に併せて示す。
<Water flow test>
Each sample of the obtained example product and comparative product is packed in a predetermined column, and based on the household water purifier test method (JIS S 3201), the flow rate at which the space velocity SV is 6000 / h, the concentration is 2 ppm. A water passage test was conducted on free chlorine-containing water (20 ° C.), and the cumulative amount of water flow until the free chlorine removal rate decreased from 100% to 80% was determined. The obtained cumulative water flow rate (per 1 g of sample) is shown in Tables 1 and 2 below.

なお、カラム用試料の調整、カラムへの試料充填、濃度2ppmの遊離塩素含有水の調製、遊離塩素残留濃度の測定について、その詳細を以下に示す。   Details of preparation of the column sample, filling of the sample into the column, preparation of water containing 2 ppm of free chlorine and measurement of free chlorine residual concentration are shown below.

<カラム用試料の調整>
繊維状の実施例品、比較例1品においては、各試料を115℃で2時間以上乾燥し、ミキサー(大阪ケミカル社製、ラボミキサーPlus)にそれぞれ2g、純水を298g入れ、30秒間湿式粉砕した。これらの粉砕品を115℃で一日乾燥し、53〜300μmの範囲になるように篩で大きさの分級調整を行った。
また、粒状の比較例2品においては、試料を115℃で2時間以上乾燥し、53〜300μmの範囲になるように篩で大きさの分級調整を行った。
<Preparation of column sample>
In the fibrous example product and the comparative example 1 product, each sample was dried at 115 ° C. for 2 hours or more, and 2 g and 298 g of pure water were put in a mixer (laboratory mixer plus, manufactured by Osaka Chemical Co., Ltd.), and wet for 30 seconds. Crushed. These pulverized products were dried at 115 ° C. for one day, and size classification was adjusted with a sieve so as to be in the range of 53 to 300 μm.
In the case of two granular comparative examples, the sample was dried at 115 ° C. for 2 hours or more, and size classification was adjusted with a sieve so as to be in the range of 53 to 300 μm.

<カラムへの試料充填>
カラム用に調整した試料を115℃で2時間以上乾燥し、0.7g秤量し、カラムに湿式で充填した。カラムは内径19mm、高さ100mmのアクリル管を使用し、下流側よりガラスウール、試料、ガラスビーズの順に充填した。
<Packing the sample into the column>
The sample prepared for the column was dried at 115 ° C. for 2 hours or more, 0.7 g was weighed, and the column was packed wet. The column used was an acrylic tube having an inner diameter of 19 mm and a height of 100 mm, and packed in the order of glass wool, sample, and glass beads from the downstream side.

<遊離塩素含有水の調製>
市販の活性炭カートリッジフィルター(アズワン社製、Type−2)を用いて水道水をろ過し、容量300Lのタンクに貯留しておき、有効塩素濃度が2ppmになるように次亜塩素酸ナトリウム溶液(有効塩素濃度12重量%:キシダ化学製)を注入した。所定量の次亜塩素酸溶液を注入した後、よく撹拌することにより、「遊離塩素含有水」を調製した。
<Preparation of free chlorine-containing water>
Tap water is filtered using a commercially available activated carbon cartridge filter (Type-2, manufactured by As One Co., Ltd.), stored in a 300 L tank, and sodium hypochlorite solution (effective) so that the effective chlorine concentration is 2 ppm. A chlorine concentration of 12% by weight (made by Kishida Chemical Co., Ltd.) was injected. After injecting a predetermined amount of hypochlorous acid solution, well-stirred to prepare “free chlorine-containing water”.

<遊離塩素残留濃度の測定>
通水試験において、カラム通過前後の水を適時採取して、その遊離塩素残留濃度を測定して遊離塩素除去率を算出した。なお、遊離塩素残留濃度は、バイアル瓶に10mL採取された水を、直ちに調整DPD試薬(関東化学社製、ラピッドDPD試薬[分包])を加えて約20秒振とうさせ、残留塩素計(HACH社製)を用いて濃度測定を行った。
<Measurement of residual free chlorine concentration>
In the water flow test, water before and after passing through the column was sampled in a timely manner, and the free chlorine residual concentration was measured to calculate the free chlorine removal rate. The residual free chlorine concentration was determined by adding 10 mL of water collected in a vial to the adjusted DPD reagent (Rapid DPD reagent [packaging]) immediately after shaking for about 20 seconds. Concentration measurement was performed using HACH.

Figure 0006484656
Figure 0006484656

Figure 0006484656
Figure 0006484656

上記の結果から、実施例1〜10品は、空間速度SVが6000/hの流速下での通水試験において、いずれも累積通水量が180L/g以上となっている。したがって、従来にない、高速通水に適した、優れた遊離塩素除去性能を備えていることがわかる。一方、活性炭素繊維であっても活性表面積が60m2/g未満である比較例1品や、粒状活性炭である比較例2品は、累積通水量が格段に少なく、短時間で実用的な効果を失うことがわかる。 From the above results, the products of Examples 1 to 10 all have a cumulative water flow rate of 180 L / g or more in a water flow test under a flow rate of space velocity SV of 6000 / h. Therefore, it turns out that it has the outstanding free chlorine removal performance suitable for high-speed water flow which is not in the past. On the other hand, the comparative example 1 product whose active surface area is less than 60 m 2 / g even for the activated carbon fiber and the comparative example 2 product which is granular activated carbon have much less accumulated water flow rate and have practical effects in a short time. You can see that you lose.

ちなみに、上記実施例1、2、5品と、比較例1、2品について、上記の通水試験(空間速度SVが6000/hとなる流速下)における累積通水量と遊離塩素除去の除去率との関係を図3に示す。図3において、遊離塩素除去率が80%のラインを一点鎖線Zで示す。   Incidentally, with respect to the above-mentioned Examples 1, 2, 5 and Comparative Examples 1 and 2, the cumulative water flow rate and the removal rate of free chlorine removal in the above water flow test (under a flow rate where the space velocity SV is 6000 / h). FIG. 3 shows the relationship. In FIG. 3, a line having a free chlorine removal rate of 80% is indicated by a one-dot chain line Z.

本発明の遊離塩素除去用活性炭素繊維は、家庭用、業務用に係わらず、各種の浄水器等において、遊離塩素除去用のろ過材料として広く利用することができる。また、本発明の遊離塩素含有水の処理方法は、遊離塩素含有水から効果的に遊離塩素を除去することができるため、遊離塩素除去処理に広く利用することができる。   The activated carbon fiber for removing free chlorine of the present invention can be widely used as a filtering material for removing free chlorine in various water purifiers, regardless of household use or business use. Moreover, since the free chlorine containing water of the present invention can effectively remove free chlorine from the free chlorine containing water, it can be widely used for the free chlorine removing treatment.

Claims (9)

遊離塩素含有水から遊離塩素を除去するのに用いられる活性炭素繊維であって、平均繊維径が5〜30μm、アスペクト比が150/1未満3/1以上、活性表面積が60m2 /g以上であり、空間速度SVが6000/hの通水条件下で濃度2ppmの遊離塩素含有水(20℃)を通水した際の遊離塩素除去率が80%に低下するまでの累積通水量が、活性炭素繊維1g当たり180L以上であることを特徴とする遊離塩素除去用活性炭素繊維。 An activated carbon fiber used for removing free chlorine from water containing free chlorine, having an average fiber diameter of 5 to 30 μm, an aspect ratio of less than 150/1, 3/1 or more , and an active surface area of 60 m 2 / g or more. Yes, the cumulative water flow rate until the free chlorine removal rate drops to 80% when water containing free chlorine (20 ° C) with a concentration of 2 ppm under water flow conditions with a space velocity SV of 6000 / h is active. An activated carbon fiber for removing free chlorine, characterized in that it is 180 L or more per 1 g of carbon fiber. 1500〜4500m2 /gの比表面積を有する請求項1記載の遊離塩素除去用活性炭素繊維。 The activated carbon fiber for removing free chlorine according to claim 1, which has a specific surface area of 1500 to 4500 m 2 / g. 0.5〜5meq/gの酸性表面官能基量を有する請求項1または2記載の遊離塩素除去用活性炭素繊維。   The activated carbon fiber for removing free chlorine according to claim 1 or 2, which has an acidic surface functional group amount of 0.5 to 5 meq / g. 平均細孔径が1〜4.5nmの細孔を有する請求項1〜3のいずれか一項に記載の遊離塩素除去用活性炭素繊維。   The activated carbon fiber for removing free chlorine according to any one of claims 1 to 3, which has pores having an average pore diameter of 1 to 4.5 nm. 0.5〜4mL/gの細孔容積を有する請求項1〜4のいずれか一項に記載の遊離塩素除去用活性炭素繊維。   The activated carbon fiber for removing free chlorine according to any one of claims 1 to 4, having a pore volume of 0.5 to 4 mL / g. 遊離塩素含有水を、平均繊維径が5〜30μm、アスペクト比が150/1未満3/1以上、活性表面積が60m2 /g以上であり、空間速度SVが6000/hの通水条件下で濃度2ppmの遊離塩素含有水(20℃)を通水した際の遊離塩素除去率が80%に低下するまでの累積通水量が、活性炭素繊維1g当たり180L以上である活性炭素繊維と接触させることにより、遊離塩素を除去もしくは低下させることを特徴とする遊離塩素含有水の処理方法。 Free chlorine-containing water was measured under a water flow condition of an average fiber diameter of 5 to 30 μm, an aspect ratio of less than 150/1, 3/1 or more , an active surface area of 60 m 2 / g or more, and a space velocity SV of 6000 / h. Contact with activated carbon fiber with a cumulative water flow rate of 180 L or more per gram of activated carbon fiber until the free chlorine removal rate drops to 80% when water with a concentration of 2 ppm of free chlorine (20 ° C) is passed. A method for treating free chlorine-containing water, characterized in that free chlorine is removed or reduced. 上記活性炭素繊維が、1500〜4500m2 /gの比表面積を有するものである請求項6記載の遊離塩素含有水の処理方法。 The method for treating free chlorine-containing water according to claim 6, wherein the activated carbon fiber has a specific surface area of 1500 to 4500 m 2 / g. 上記活性炭素繊維が、0.5〜5meq/gの酸性表面官能基量を有するものである請求項6または7記載の遊離塩素含有水の処理方法。   The method for treating free chlorine-containing water according to claim 6 or 7, wherein the activated carbon fiber has an acidic surface functional group amount of 0.5 to 5 meq / g. 上記活性炭素繊維が、賦活化後に酸化処理もしくは熱処理されたものである請求項6〜8のいずれか一項に記載の遊離塩素含有水の処理方法。   The method for treating free chlorine-containing water according to any one of claims 6 to 8, wherein the activated carbon fiber is oxidized or heat-treated after activation.
JP2017047093A 2016-03-15 2017-03-13 Activated carbon fiber for removing free chlorine and method for treating water containing free chlorine using the same Active JP6484656B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016050854 2016-03-15
JP2016050854 2016-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018103208A Division JP2018161652A (en) 2016-03-15 2018-05-30 Method for treating free chlorine-containing water at high flow rate

Publications (2)

Publication Number Publication Date
JP2017164741A JP2017164741A (en) 2017-09-21
JP6484656B2 true JP6484656B2 (en) 2019-03-13

Family

ID=59909656

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017047093A Active JP6484656B2 (en) 2016-03-15 2017-03-13 Activated carbon fiber for removing free chlorine and method for treating water containing free chlorine using the same
JP2018103208A Pending JP2018161652A (en) 2016-03-15 2018-05-30 Method for treating free chlorine-containing water at high flow rate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018103208A Pending JP2018161652A (en) 2016-03-15 2018-05-30 Method for treating free chlorine-containing water at high flow rate

Country Status (1)

Country Link
JP (2) JP6484656B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021084840A (en) * 2019-11-29 2021-06-03 株式会社BlueForce Production method of activated carbon
CN111013583A (en) * 2019-12-20 2020-04-17 萍乡学院 Preparation method of monolithic catalyst for efficiently decomposing carbon monoxide at room temperature
CN112575575A (en) * 2020-07-21 2021-03-30 苏州远浩新纺织科技有限公司 Hole expanding method for activated carbon fiber
CN115155531B (en) * 2022-06-09 2024-04-09 陶玉仑 polyaniline/Fe 3 O 4 CuO fiber and preparation method and application thereof
JP7427849B1 (en) 2023-03-01 2024-02-05 関西熱化学株式会社 Activated carbon for water treatment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834605A (en) * 1994-07-26 1996-02-06 Kansai Coke & Chem Co Ltd Adsorbent for water treatment
JP3218315B2 (en) * 1995-03-30 2001-10-15 東邦テナックス株式会社 Activated carbon fiber for chlorine removal and chlorine removal method
US6783713B2 (en) * 1999-05-03 2004-08-31 The Procter & Gamble Co. Filters for removal of pathogens from liquids
JP2005001681A (en) * 2003-06-10 2005-01-06 Kuraray Chem Corp Cartridge storing method, and water purifier
JP4576371B2 (en) * 2005-10-27 2010-11-04 昭和電工株式会社 Activated carbon, its production method and use
US20080135489A1 (en) * 2006-09-20 2008-06-12 Omnipure Filter Company, Inc. Solid Profile Filters Comprising Activated Carbon Fiber Rods and Methods of Making and Using Same
WO2014017588A1 (en) * 2012-07-26 2014-01-30 関西熱化学株式会社 Activated carbon having large active surface area
JP6080827B2 (en) * 2014-10-31 2017-02-15 株式会社タカギ Manufacturing method of molded adsorbent

Also Published As

Publication number Publication date
JP2018161652A (en) 2018-10-18
JP2017164741A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6484656B2 (en) Activated carbon fiber for removing free chlorine and method for treating water containing free chlorine using the same
JP6375005B2 (en) Activated carbon fiber and production method thereof
Lee et al. Activated carbon fiber-the hybrid of carbon fiber and activated carbon
Phan et al. Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications
JP5781992B2 (en) Parenteral adsorbent provided with basic functional group and method for producing the same
WO2014017588A1 (en) Activated carbon having large active surface area
WO2017170754A1 (en) Granulated activated charcoal
Xia et al. Production of activated carbon from bagasse (waste) of sugarcane grown in Brazil
EP1118698B1 (en) Multifibrous carbon fiber and utilization thereof
JP7397093B2 (en) Molecular polar substance adsorption carbon
Hassani et al. Activated carbon fiber for environmental protection
WO2020165048A1 (en) Shaped cellulose article comprising activated carbon, in particular as support for co2 adsorbents
JP7060772B1 (en) Carbonaceous materials and their manufacturing methods, as well as fluorine-containing organic compound removing materials, water purification filters and water purifiers
JP4879861B2 (en) Charcoal-containing fiber and method for producing the same
US11795066B2 (en) Carbonaceous material and method for producing same, water purification filter, and water purifier
JPWO2018181778A1 (en) Activated carbon production method
KR20150004309A (en) A Novel Thermostable Adsorption Filter immobilized with a high specific surface Korean Anthracite based powder Activated Carbon(KA-pAC) by spinnable isotropic pitch binder.
JP6829796B1 (en) Carbonaceous materials and their manufacturing methods, as well as water purification filters and water purifiers
WO2019235043A1 (en) Active carbon molded body
JP6624993B2 (en) Activated carbon production method
Suresh Kumar Reddy et al. KOH-based porous carbon from date palm seed: preparation, characterization, and application to phenol adsorption
JP2019209312A (en) Granulation fibrous binder
Kaludjerović Nanoporous Carbon Fibrous Materials
Yue et al. * The University of Tennessee Space Institute, Tullahoma, TN, United States,† University of Illinois at Urbana-Champaign, Urbana, IL, United States
JP2020105070A (en) Granulated active carbon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180530

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6484656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250