JP6482828B2 - Dispersant for inorganic nanomaterials - Google Patents

Dispersant for inorganic nanomaterials Download PDF

Info

Publication number
JP6482828B2
JP6482828B2 JP2014232410A JP2014232410A JP6482828B2 JP 6482828 B2 JP6482828 B2 JP 6482828B2 JP 2014232410 A JP2014232410 A JP 2014232410A JP 2014232410 A JP2014232410 A JP 2014232410A JP 6482828 B2 JP6482828 B2 JP 6482828B2
Authority
JP
Japan
Prior art keywords
amino acid
fmoc
inorganic
peptide
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014232410A
Other languages
Japanese (ja)
Other versions
JP2016093796A (en
Inventor
洋平 山本
洋平 山本
司 水垂
司 水垂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2014232410A priority Critical patent/JP6482828B2/en
Publication of JP2016093796A publication Critical patent/JP2016093796A/en
Application granted granted Critical
Publication of JP6482828B2 publication Critical patent/JP6482828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、無機ナノ材料用分散剤に関する。更に詳細には、金属、金属錯体、グラフェン等の無機ナノ材料用分散剤に関する。   The present invention relates to a dispersant for inorganic nanomaterials. In more detail, it is related with the dispersing agent for inorganic nanomaterials, such as a metal, a metal complex, and a graphene.

従来から、無機ナノ材料は、電極材料や高密度記録材料、触媒材料、基板用インク材料等の工業材料に用いられている。
しかし、無機ナノ材料は、微粒子化により表面エネルギーが増加して凝集しやすいという問題がある。
Conventionally, inorganic nanomaterials have been used in industrial materials such as electrode materials, high-density recording materials, catalyst materials, and substrate ink materials.
However, inorganic nanomaterials have a problem in that they tend to aggregate due to increased surface energy due to micronization.

そこで、無機ナノ材料の1種である金属ナノ粒子を分散させるため、トリメチルペンタンジオール誘導体からなる分散剤が開発されている(特許文献1)。
また、無機材料であるグラフェンの分散性を高めるため、ブチルメチルイミダゾリウムヘキサフルオロホスフェート(BMIPF6)又はブチルメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(C)を混合したイオン液体が開発されている(特許文献2)。
Therefore, in order to disperse metal nanoparticles that are one type of inorganic nanomaterial, a dispersant composed of a trimethylpentanediol derivative has been developed (Patent Document 1).
In order to improve the dispersibility of graphene, which is an inorganic material, an ionic liquid in which butylmethylimidazolium hexafluorophosphate (BMIPF6) or butylmethylimidazolium bis (trifluoromethanesulfonyl) imide (C) is mixed has been developed ( Patent Document 2).

特開2013−43160号公報JP2013-43160A 国際公開第2013/172350号パンフレットInternational Publication No. 2013/172350 Pamphlet

本発明は、無機ナノ材料を分散させる分散剤を提供することを主目的とする。   The main object of the present invention is to provide a dispersant for dispersing inorganic nanomaterials.

本発明者は、前記課題を解決すべく鋭意検討を行った結果、少なくとも4つのアミノ酸を有するペプチドを特定のアミノ酸配列にすることによって、該ペプチドを無機ナノ材料の分散剤として用いることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has found that a peptide having at least four amino acids can be used as a dispersant for inorganic nanomaterials by making the peptide a specific amino acid sequence. The headline and the present invention were completed.

すなわち、本発明は、少なくとも4つのアミノ酸を有し、それらのアミノ酸のうち、少なくとも1つが無機物質に対して結合能を有するアミノ酸であり、少なくとも1つが塩基性アミノ酸であるペプチドを有効成分として含む無機ナノ材料用分散剤を提供する。
前記無機物質は、金属、金属錯体及びグラフェンからなる群から選択される少なくとも1種の物質であることが好ましい。
また、前記無機物質に対して結合能を有するアミノ酸は、システイン、グルタミン酸、ヒスチジン及びリシンからなる群から選択される少なくとも1種のアミノ酸であることが好ましい。
更に、前記塩基性アミノ酸は、アルギニン、ヒスチジン及びリシンからなる群から選択される少なくとも1種のアミノ酸であることが好ましい。
また、前記ペプチドはβシート構造を形成し得る。
また、前記無機物質がグラフェンであるとき、前記ペプチドは、カルボキシル基と結合可能な部位を1つ有することが好ましい。
That is, the present invention includes, as an active ingredient, a peptide having at least four amino acids, at least one of which is an amino acid capable of binding to an inorganic substance, and at least one of which is a basic amino acid. Dispersants for inorganic nanomaterials are provided.
The inorganic substance is preferably at least one substance selected from the group consisting of metals, metal complexes, and graphene.
The amino acid having binding ability to the inorganic substance is preferably at least one amino acid selected from the group consisting of cysteine, glutamic acid, histidine and lysine.
Furthermore, the basic amino acid is preferably at least one amino acid selected from the group consisting of arginine, histidine and lysine.
Further, the peptide can form a β sheet structure.
Further, when the inorganic substance is graphene, the peptide preferably has one site capable of binding to a carboxyl group.

本発明によれば、無機ナノ材料を容易に安定に分散させることができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。   According to the present invention, inorganic nanomaterials can be easily and stably dispersed. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present specification.

合成ペプチドによる金ナノ粒子の分散を示す図である。It is a figure which shows dispersion | distribution of the gold nanoparticle by a synthetic peptide. 合成ペプチドによる金ナノ粒子の分散を示す図である。It is a figure which shows dispersion | distribution of the gold nanoparticle by a synthetic peptide. メタノール、合成ペプチドによる銅、白金、パラジウムナノ粒子の分散を示す図である。It is a figure which shows dispersion | distribution of copper, platinum, and a palladium nanoparticle by methanol and a synthetic peptide. 合成ペプチドにより分散された金ナノ粒子(AuNP)の表面のゼータ電位と移動度を示す図である。It is a figure which shows the zeta potential and mobility of the surface of the gold nanoparticle (AuNP) disperse | distributed by the synthetic peptide. 合成ペプチドにより分散された金ナノ粒子の分散の様子と可視光スペクトルを示す図である。It is a figure which shows the mode of dispersion | distribution and visible light spectrum of the gold nanoparticle disperse | distributed with the synthetic peptide. 合成ペプチドにより分散されたマンガンフタロシアニン(MnPC)の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of manganese phthalocyanine (MnPC) disperse | distributed with the synthetic peptide. 合成ペプチドによる酸化グラフェンナノ粒子の分散を示す図である。It is a figure which shows dispersion | distribution of the graphene oxide nanoparticle by a synthetic peptide.

<1.無機ナノ材料用分散剤の適用対象>
本発明の無機ナノ材料用分散剤の適用対象となる材料は、特に限定されないが、例えば、金属ナノ粒子、金属分子、金属錯体ナノ粒子、グラフェンナノ粒子等の無機ナノ材料が挙げられる。
なお、本明細書において、金属ナノ粒子、金属分子、金属錯体ナノ粒子、グラフェンナノ粒子等をまとめて「無機ナノ粒子」という。
<1. Applications of dispersants for inorganic nanomaterials>
Although the material used as the application object of the dispersing agent for inorganic nanomaterials of this invention is not specifically limited, For example, inorganic nanomaterials, such as a metal nanoparticle, a metal molecule, a metal complex nanoparticle, a graphene nanoparticle, are mentioned.
In this specification, metal nanoparticles, metal molecules, metal complex nanoparticles, graphene nanoparticles, and the like are collectively referred to as “inorganic nanoparticles”.

具体的な金属ナノ粒子又は金属分子として、例えば、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム、ニッケル、チタン、コバルト、銅、クロム、マンガン、鉄、ジルコニウム、スズ、タングステン、モリブデン、バナジウムを挙げることができる。これらの金属ナノ粒子は、単一の金属で構成されていてもよく、2種以上の金属で構成されていてもよい。また、金属は合金であってもよい。   Specific metal nanoparticles or metal molecules include, for example, gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, rhenium, nickel, titanium, cobalt, copper, chromium, manganese, iron, zirconium, tin, tungsten , Molybdenum, and vanadium. These metal nanoparticles may be composed of a single metal or may be composed of two or more kinds of metals. The metal may be an alloy.

具体的な金属錯体ナノ粒子として、例えば、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、金、白金、銅、銀、亜鉛、ランタン、ユーロピウム、ガドリニウム、ルテチウム、バリウム、ストロンチウム、カルシウムの金属錯体等を挙げることができる。これらの金属錯体ナノ粒子は、単一の金属錯体で構成されていてもよく、2種以上の金属錯体で構成されていてもよい。   Specific metal complex nanoparticles include, for example, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, gold, platinum, copper, silver, zinc, lanthanum, europium, gadolinium, lutetium, barium, strontium And metal complexes of calcium. These metal complex nanoparticles may be composed of a single metal complex or may be composed of two or more kinds of metal complexes.

具体的なグラフェンナノ粒子として、例えば酸化グラフェンナノ粒子が挙げられる。   Specific graphene nanoparticles include, for example, graphene oxide nanoparticles.

<2.無機ナノ材料用分散剤の有効成分としてのペプチド>
ペプチドは、少なくとも4つのアミノ酸を有する。アミノ酸が3つ以下であると、十分な無機ナノ粒子の分散効果が得られないことがある。
アミノ酸は、タンパク質を構成する20種類のアミノ酸であれば、特に限定されない。但し、前記4つのアミノ酸のち、少なくとも1つは無機物質に対して結合能を有するアミノ酸であり、少なくとも1つは塩基性アミノ酸である。
<2. Peptides as active ingredients of dispersants for inorganic nanomaterials>
The peptide has at least 4 amino acids. If the number of amino acids is 3 or less, a sufficient dispersion effect of inorganic nanoparticles may not be obtained.
The amino acid is not particularly limited as long as it is 20 kinds of amino acids constituting the protein. However, at least one of the four amino acids is an amino acid having an ability to bind to an inorganic substance, and at least one is a basic amino acid.

(1)無機物質に対して結合能を有するアミノ酸
「無機物質に対して結合能を有するアミノ酸」とは、前記金属、金属錯体、グラフェン等の無機物質と結合することができるアミノ酸をいう。そのようなアミノ酸として、例えば、システイン(C)、ヒスチジン(H)、グルタミン酸(E)、リシン(K)等が挙げられる。
特に、無機物質が金属のときは、システインが好ましい。無機物質が金属錯体のときは、ヒスチジン、グルタミン酸が好ましい。無機物質がグラフェンのときは、リシン、ヒスチジンが好ましい。
(1) Amino acid having binding ability to inorganic substance “Amino acid having binding ability to inorganic substance” refers to an amino acid capable of binding to an inorganic substance such as the metal, metal complex, graphene and the like. Examples of such amino acids include cysteine (C), histidine (H), glutamic acid (E), lysine (K) and the like.
In particular, cysteine is preferred when the inorganic substance is a metal. When the inorganic substance is a metal complex, histidine and glutamic acid are preferable. When the inorganic substance is graphene, lysine and histidine are preferable.

(2)塩基性アミノ酸
「塩基性アミノ酸」とは、リシン(K)、アルギニン(R)、及びヒスチジン(H)をいう。
なお、塩基性アミノ酸と無機物質に対して結合能を有するアミノ酸とは異なることが好ましい。
(2) Basic amino acid “Basic amino acid” refers to lysine (K), arginine (R), and histidine (H).
The basic amino acid is preferably different from the amino acid having an ability to bind to an inorganic substance.

(3)結合能を有するアミノ酸と該塩基性アミノ酸との間
無機物質に対して結合能を有するアミノ酸と塩基性アミノ酸との間には、他のアミノ酸が配置されていてもよい。例えば、中性アミノ酸(アスパラギン(N)、セリン(S)、グルタミン(Q)、トレオニン(T)、グリシン(G)、チロシン(Y)、トリプトファン(W)、メチオニン(M)、プロリン(P)、フェニルアラニン(F)、アラニン(A)、バリン(V)、ロイシン(L)、イソロイシン(I))が配置されていてもよいし、酸性アミノ酸(アスパラギン酸(D))が配置されていてもよい。
また、無機物質に対して結合能を有するアミノ酸と塩基性アミノ酸との間に配置されるアミノ酸の数は、1つでもよいし、2つ以上でもよく、特に限定されない。
(3) Between an amino acid having binding ability and the basic amino acid Another amino acid may be disposed between an amino acid having binding ability to an inorganic substance and a basic amino acid. For example, neutral amino acids (asparagine (N), serine (S), glutamine (Q), threonine (T), glycine (G), tyrosine (Y), tryptophan (W), methionine (M), proline (P) , Phenylalanine (F), alanine (A), valine (V), leucine (L), isoleucine (I)) may be arranged, or an acidic amino acid (aspartic acid (D)) may be arranged Good.
In addition, the number of amino acids arranged between an amino acid having binding ability to an inorganic substance and a basic amino acid may be one or two or more, and is not particularly limited.

(4)ペプチドの例
以下に、本発明の無機ナノ材料用分散剤の有効成分であるペプチドの配列を列挙する。アミノ酸は1文字の略号で表す。
なお、ここに挙げるものは例であって、本発明に用いられるペプチドはこれらに限定されない。
KVVC (配列番号1)
VKVVC (配列番号2)
KVVH (配列番号3)
VKVVH (配列番号4)
KVVE (配列番号5)
VKVVE (配列番号6)
KVVK (配列番号7)
VKVVK (配列番号8)
(4) Examples of peptides The following lists the sequences of peptides that are active ingredients of the dispersant for inorganic nanomaterials of the present invention. Amino acids are represented by single letter abbreviations.
In addition, what is mentioned here is an example, Comprising: The peptide used for this invention is not limited to these.
KVVC (SEQ ID NO: 1)
VKVVC (SEQ ID NO: 2)
KVVH (SEQ ID NO: 3)
VKVVH (SEQ ID NO: 4)
KVVE (SEQ ID NO: 5)
VKVVE (SEQ ID NO: 6)
KVVK (SEQ ID NO: 7)
VKVVK (SEQ ID NO: 8)

前記ペプチドのN末端及び/又はC末端のアミノ酸残基は、保護基等で置換、修飾又は付加されてもよい。そのような置換又は修飾として、例えば、Fmoc基での置換、Boc基での置換、アミノ基での置換、GPIアンカーの付加、ファルネシルイソプレノイド膜アンカーの付加等が挙げられる。
また、本発明の効果を奏する範囲で、末端以外のアミノ酸が修飾等されていてもよい。
The amino acid residue at the N-terminal and / or C-terminal of the peptide may be substituted, modified or added with a protecting group or the like. Examples of such substitution or modification include substitution with an Fmoc group, substitution with a Boc group, substitution with an amino group, addition of a GPI anchor, addition of a farnesyl isoprenoid membrane anchor, and the like.
Moreover, amino acids other than the terminal may be modified within the range where the effects of the present invention are exhibited.

更に、前記ペプチドは、カルボキシル基と結合可能な部位を1つ有していてもよい。
例えば、安定して分散させたい無機ナノ粒子が酸化グラフェンの場合、酸化グラフェンには酸化に由来するカルボキシル基が存在するので、前記ペプチドと容易に結合でき、酸化グラフェンナノ粒子の分散を安定化させることができる。
カルボキシル基と結合可能な部位として、例えば、リシン、ヒスチジン残基のアミノ基が挙げられるが、これらに限定されない。
Furthermore, the peptide may have one site capable of binding to a carboxyl group.
For example, when the inorganic nanoparticles to be stably dispersed are graphene oxide, since the graphene oxide has a carboxyl group derived from oxidation, it can be easily bonded to the peptide and stabilize the dispersion of the graphene oxide nanoparticles. be able to.
Examples of the site capable of binding to the carboxyl group include, but are not limited to, lysine and an amino group of a histidine residue.

(5)ペプチドの製造
ペプチドは、通常用いられる方法、例えば、ペプチド固相合成法(Fmoc合成法、Boc合成法)や遺伝子工学的ペプチド合成法等により製造することができる。
(5) Production of peptide Peptide can be produced by a commonly used method, for example, a peptide solid phase synthesis method (Fmoc synthesis method, Boc synthesis method), a genetic engineering peptide synthesis method, or the like.

また、前記ペプチドを、βシート構造をとるようなアミノ酸配列で構成してもよい。例えば、塩基性アミノ酸と無機物質に対して結合能を有するアミノ酸との間に配置されたアミノ酸が、疎水性アミノ酸であると、自己組織的にβシート構造へと集合化することができる。疎水性アミノ酸として、バリン(V)、グリシン(G)、アラニン(A)、ロイシン(L)、イソロイシン(I)、セリン(S)、トレオニン(T)、システイン(C)、メチオニン(M)、アスパラギン(N)、グルタミン(Q)、プロリン(P)、フェニルアラニン(F)、チロシン(Y)、及びトリプトファン(W)が挙げられる。ペプチドをβシート構造にするときは、バリン、イソロイシン、アラニンを含むことが好ましい。   The peptide may be composed of an amino acid sequence having a β sheet structure. For example, when an amino acid arranged between a basic amino acid and an amino acid capable of binding to an inorganic substance is a hydrophobic amino acid, it can be assembled into a β sheet structure in a self-organizing manner. As hydrophobic amino acids, valine (V), glycine (G), alanine (A), leucine (L), isoleucine (I), serine (S), threonine (T), cysteine (C), methionine (M), Examples include asparagine (N), glutamine (Q), proline (P), phenylalanine (F), tyrosine (Y), and tryptophan (W). When the peptide has a β sheet structure, it preferably contains valine, isoleucine and alanine.

なお、ペプチドを自己組織化させるときは、ペプチド合成により得られたペプチドを、メタノール、アセトニトリル等の有機溶媒を用いて精製することが好ましい。また、自己組織化の際には、N末端及び/又はC末端にノボルネン等を導入し、開環メタセシス重合によりペプチド間を架橋することができる。   When the peptide is self-assembled, it is preferable to purify the peptide obtained by peptide synthesis using an organic solvent such as methanol or acetonitrile. In self-assembly, nobornene or the like can be introduced at the N-terminus and / or C-terminus, and the peptides can be cross-linked by ring-opening metathesis polymerization.

<3.無機ナノ材料用分散剤の組成>
本発明の無機ナノ材料用分散剤は、1種類の前記ペプチドを有効成分として含有してもよいし、2種類以上の前記ペプチドを有効成分として含有してもよい。
また、無機ナノ材料用分散剤のその他の組成としては、本発明の効果を奏する範囲であれば特に限定されない。例えば、溶媒は、水系あるいは有機溶媒を用いることができ、例えば、水、アルコール、ハロゲン系溶媒、エーテル系溶媒、アミン系溶媒、スルホン酸系溶媒、芳香族系溶媒、極性溶媒、無極性溶媒等の有機溶媒等、あるいはこれらの混合溶媒等が挙げられる。
また、添加剤として、イオン性緩衝溶剤、酸、塩基等や、安定剤等を含有してもよい。
更に、前記ペプチドと金属ナノ粒子とを含む水溶液等の形にしてもよい。
<3. Composition of Dispersant for Inorganic Nanomaterial>
The dispersant for inorganic nanomaterials of the present invention may contain one kind of the peptide as an active ingredient, or may contain two or more kinds of the peptides as an active ingredient.
Moreover, as another composition of the dispersing agent for inorganic nanomaterials, if it is a range with the effect of this invention, it will not specifically limit. For example, the solvent can be an aqueous or organic solvent, such as water, alcohol, halogen solvent, ether solvent, amine solvent, sulfonic acid solvent, aromatic solvent, polar solvent, nonpolar solvent, etc. These organic solvents and the like, or a mixed solvent thereof and the like.
Moreover, you may contain an ionic buffer solvent, an acid, a base, a stabilizer, etc. as an additive.
Further, it may be in the form of an aqueous solution containing the peptide and metal nanoparticles.

<4.無機ナノ材料用分散剤の適用>
本発明の無機ナノ材料用分散剤の適用方法は特に限定されないが、例えば、適量の分散剤を無機ナノ粒子に添加して混合する方法、その後ホモジナイザー等で更に機械的に分散する方法、あるいは無機ナノ粒子をホモジナイザー等で機械的に分散させてから更に適量の分散剤を添加する方法等が挙げられる。
<4. Application of dispersant for inorganic nanomaterials>
The application method of the dispersant for inorganic nanomaterials of the present invention is not particularly limited. For example, a method of adding an appropriate amount of dispersant to inorganic nanoparticles and mixing, a method of further mechanically dispersing with a homogenizer or the like, or inorganic Examples thereof include a method in which nanoparticles are mechanically dispersed with a homogenizer or the like and then an appropriate amount of a dispersant is added.

無機ナノ粒子分散剤の適用量は、特に限定されず、無機ナノ粒子の材料、量、凝集の程度、所望の分散の程度等、又は無機ナノ粒子分散剤中の有効成分のペプチド濃度、ペプチドの種類等により、適宜設定することができる。
例えば、金ナノ粒子の場合、金ナノ粒子100μgを含む200μLの水溶液に対し、有効成分であるペプチド0.1μmolを含む200μLのメタノール溶液を添加することができる。
また、マンガンや亜鉛フタロシアニン錯体の場合、マンガンや亜鉛フタロシアニン錯体0.1μmolを含む400μLのメタノール溶液に対し、有効成分であるペプチド0.1μmolを含む400μLのメタノール溶液を添加することができる。
また、酸化グラフェンの場合、酸化グラフェン3.3μg/mL水分散液200μLに対し、有効成分であるペプチド量0.1μmolを含む400μLのメタノール溶液を添加することができる。
The application amount of the inorganic nanoparticle dispersant is not particularly limited, and the inorganic nanoparticle material, amount, degree of aggregation, desired degree of dispersion, etc., or the peptide concentration of the active ingredient in the inorganic nanoparticle dispersant, It can be set as appropriate depending on the type.
For example, in the case of gold nanoparticles, a 200 μL methanol solution containing 0.1 μmol of the peptide as the active ingredient can be added to a 200 μL aqueous solution containing 100 μg of gold nanoparticles.
In the case of a manganese or zinc phthalocyanine complex, a 400 μL methanol solution containing 0.1 μmol of an active ingredient peptide can be added to a 400 μL methanol solution containing 0.1 μmol manganese or zinc phthalocyanine complex.
In the case of graphene oxide, 400 μL of methanol solution containing 0.1 μmol of peptide as an active ingredient can be added to 200 μL of graphene oxide 3.3 μg / mL aqueous dispersion.

<5.分散された無機ナノ粒子>
本発明の無機ナノ材料用分散剤で分散された無機ナノ粒子は、電極材料、高密度記録材料、触媒材料、基板用インク材料等として使用することができる。
<5. Dispersed inorganic nanoparticles>
The inorganic nanoparticles dispersed with the dispersant for inorganic nanomaterials of the present invention can be used as electrode materials, high-density recording materials, catalyst materials, substrate ink materials, and the like.

以下、実施例に基づいて本発明を更に詳細に説明する。なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, the present invention will be described in more detail based on examples. In addition, the Example demonstrated below shows an example of the typical Example of this invention, and, thereby, the range of this invention is not interpreted narrowly.

(1)合成ペプチドの作製
以下のペプチドをFmoc固相ペプチド合成法によって作製した。なお、アミノ酸は1文字の略語で示す。
Fmoc−C (配列番号9)
Fmoc−V (配列番号10)
Fmoc−K (配列番号11)
Fmoc−VC (配列番号12)
Fmoc−KC (配列番号13)
Fmoc−VVC (配列番号14)
Fmoc−KVVC (配列番号1)
Fmoc−VKVVC (配列番号2)
Fmoc−EKVKE (配列番号15)
(1) Preparation of synthetic peptide The following peptides were prepared by the Fmoc solid phase peptide synthesis method. Amino acids are indicated by single letter abbreviations.
Fmoc-C (SEQ ID NO: 9)
Fmoc-V (SEQ ID NO: 10)
Fmoc-K (SEQ ID NO: 11)
Fmoc-VC (SEQ ID NO: 12)
Fmoc-KC (SEQ ID NO: 13)
Fmoc-VVC (SEQ ID NO: 14)
Fmoc-KVVC (SEQ ID NO: 1)
Fmoc-VKVVC (SEQ ID NO: 2)
Fmoc-EKVKE (SEQ ID NO: 15)

(2)合成ペプチドの金ナノ粒子分散能
合成したFmoc−V、Fmoc−K、Fmoc−C、Fmoc−KC、Fmoc−VC、Fmoc−VVC、Fmoc−KVVC、Fmoc−VKVVCについて、金への配向性と金ナノ粒子(AuNP)に対する分散能を調べた。
(2) Gold nanoparticle dispersibility of synthetic peptide Orientation to gold for synthesized Fmoc-V, Fmoc-K, Fmoc-C, Fmoc-KC, Fmoc-VC, Fmoc-VVC, Fmoc-KVVC, Fmoc-VKVCVC And dispersibility for gold nanoparticles (AuNP) were investigated.

(i) 実験方法
前記合成ペプチドを、それぞれ0.1μmolとり、該合成ペプチドと、金ナノ粒子0.064μgとをメタノール400μL中で混合し、静置して1日ごとに可視光吸収スペクトルと目視で観察した。
(I) Experimental Method Each 0.1 μmol of the synthetic peptide was taken, and the synthetic peptide and 0.064 μg of gold nanoparticles were mixed in 400 μL of methanol and allowed to stand, and the visible light absorption spectrum and visual observation were taken every day. Observed at.

(ii) 結果
混合直後では、Fmoc−VKVVCのみに金ナノ粒子に対する分散性がみられた(図1)。一方、他の合成ペプチドについては、Fmoc−KVVCのみが2μLの水を添加することで分散性を持った。
Fmoc−VKVVC、Fmoc−KVVC以外の合成ペプチドについては、金ナノ粒子の凝集がそのまま残った。
このことより、少なくともアミノ酸残基4つと荷電部位とが金ナノ粒子の分散に必要であることが示された。また、側鎖の荷電も金ナノ粒子の分散に寄与していることが示唆された。
(Ii) Results Immediately after mixing, only Fmoc-VKVVC showed dispersibility in gold nanoparticles (FIG. 1). On the other hand, about other synthetic peptides, only Fmoc-KVVC had dispersibility by adding 2 μL of water.
For synthetic peptides other than Fmoc-VKVVC and Fmoc-KVVC, aggregation of gold nanoparticles remained as it was.
This indicates that at least four amino acid residues and a charged site are necessary for the dispersion of gold nanoparticles. It was also suggested that the side chain charge contributed to the dispersion of the gold nanoparticles.

(3)合成ペプチドFmoc−VKVVCによる金ナノ粒子分散能
Fmoc−VKVVCの金ナノ粒子への吸着性と、金ナノ粒子量の変化に対するペプチドの分散能を調べた。
(3) Gold nanoparticle dispersibility by synthetic peptide Fmoc-VKVVC The adsorption ability of Fmoc-VKVVC to gold nanoparticles and the dispersibility of the peptides with respect to changes in the amount of gold nanoparticles were investigated.

(i) 実験方法
以下の表1の条件になるように、金ナノ粒子の水中分散液とFmoc−VKVVCメタノール溶液200μLとを混合して3日間静置し、その間に目視で観察した。
(I) Experimental method A dispersion of gold nanoparticles in water and 200 μL of Fmoc-VKVVC methanol solution were mixed and allowed to stand for 3 days so that the conditions shown in Table 1 below were satisfied.

(ii) 結果
サンプル1、2及び3において凝集の解消が確認された(図2)。また、サンプル3が最も早く凝集解離を起こし、1日で凝集の解離が確認された。なお、サンプル2については2日、サンプル1については3日で凝集の解離が確認された。一方、ブランクであるメタールのみを混合したものは凝集したままであった。
(Ii) Results The elimination of aggregation was confirmed in samples 1, 2 and 3 (FIG. 2). Further, Sample 3 caused the aggregation dissociation earliest, and the aggregation dissociation was confirmed in one day. In addition, dissociation of aggregation was confirmed in 2 days for sample 2 and 3 days for sample 1. On the other hand, what mixed only the methanol which is a blank remained agglomerated.

(4)合成ペプチドFmoc−VKVVCによる他の金属ナノ粒子分散能
Fmoc−VKVVCの他の金属への配向性と分散能を調べた。
(4) Dispersibility of other metal nanoparticles by synthetic peptide Fmoc-VKVVC The orientation and dispersibility of Fmoc-VKVVC to other metals were investigated.

(i) 実験方法
以下の表2の条件になるように、銅(Cu)、白金(Pt)、パラジウム(Pd)の金属ナノ粒子凝集液をそれぞれ100μL用意した。また、0.1μmmolのFmoc−VKVVCをメタノール100μLに添加し、それを該金属ナノ粒子凝集液に混合した。対照として、メタノール100μLを金属ナノ粒子凝集液に混合したものも用意し、静置後、目視で観察した。
(I) Experimental Method 100 μL each of copper (Cu), platinum (Pt), and palladium (Pd) metal nanoparticle aggregates were prepared so as to satisfy the conditions shown in Table 2 below. Moreover, 0.1 micromol Fmoc-VKVVC was added to 100 microliters of methanol, and it was mixed with this metal nanoparticle aggregation liquid. As a control, what mixed 100 microliters of methanol with the metal nanoparticle aggregation liquid was prepared, and after standing still, it observed visually.

(ii) 結果
対照のメタノールでは、銅、白金、パラジウムのいずれも金属ナノ粒子が凝集したままであったが、Fmoc−VKVVCでは、全ての金属ナノ粒子が分散していた(図3)。また銅については、即時的に凝集の解消が確認された。
このことより、Fmoc−VKVVCは金以外の金属ナノ粒子にも効果を発揮することが示唆された。
(Ii) Results In the control methanol, the metal nanoparticles remained aggregated in all of copper, platinum, and palladium, but in Fmoc-VKVVC, all the metal nanoparticles were dispersed (FIG. 3). Moreover, about copper, the elimination | elimination of aggregation was confirmed instantly.
From this, it was suggested that Fmoc-VKVVC exhibits an effect also on metal nanoparticles other than gold.

(5)合成ペプチドFmoc−VKVVCにより分散された金ナノ粒子のゼータ電位/移動度の計測
金ナノ粒子の表面電荷の変化を見ることにより、合成ペプチドが金ナノ粒子に吸着しているかどうかを確認した。
(5) Measurement of zeta potential / mobility of gold nanoparticles dispersed by synthetic peptide Fmoc-VKVVC Confirmation of whether synthetic peptide is adsorbed to gold nanoparticles by observing changes in surface charge of gold nanoparticles did.

(i) 実験方法
0.064μgの金ナノ粒子と0.1μmolのFmoc−VKVVCをメタノール400μL中に混合したものを用意し、また、0.064μgの金ナノ粒子をメタノール400μL中に混合したブランクを用意し、それぞれゼータ電位と移動度を計測した。
(I) Experimental method Prepare a mixture of 0.064 μg gold nanoparticles and 0.1 μmol Fmoc-VKVVC in 400 μL of methanol, and prepare a blank prepared by mixing 0.064 μg of gold nanoparticles in 400 μL of methanol. Prepared and measured zeta potential and mobility respectively.

(ii) 結果
ブランクと比較して、Fmoc−VKVVCを混合したものは、その金ナノ粒子の表面電荷が弱くなっており、明らかな表面電荷の変化が見られた(図4)。
これにより、Fmoc−VKVVCが金ナノ粒子の表面に吸着し、表面電荷が変化していることが示唆された。
(Ii) Results Compared with the blank, the mixture of Fmoc-VKVVC had a weak surface charge of the gold nanoparticles, and a clear change in the surface charge was observed (FIG. 4).
This suggested that Fmoc-VKVVC was adsorbed on the surface of the gold nanoparticles, and the surface charge was changed.

(6)合成ペプチドFmoc−VKVVCにより分散された金ナノ粒子の可視光スペクトルの計測
金ナノ粒子のサイズにより溶液の色が青から赤まで変化することを利用して、可視光スペクトルを計測することにより、金ナノ粒子のサイズが小さくなっているかどうかを確認した。
(6) Measurement of visible light spectrum of gold nanoparticles dispersed by synthetic peptide Fmoc-VKVVC Measuring the visible light spectrum using the fact that the color of the solution changes from blue to red depending on the size of gold nanoparticles. Thus, it was confirmed whether the size of the gold nanoparticles was reduced.

(i) 実験方法
0.064μgの金ナノ粒子と、0.1μmolのFmoc−VKVVC又はFmoc−Cとをメタノール400μL中に混合したものを用意し、ブランクとして0.064μgの金ナノ粒子をメタノール400μL中に混合したものを用意し、可視光透過スペクトルにて観察した。
(I) Experimental method A mixture of 0.064 μg of gold nanoparticles and 0.1 μmol of Fmoc-VKVVC or Fmoc-C in 400 μL of methanol was prepared, and 0.064 μg of gold nanoparticles was added as a blank to 400 μL of methanol. What was mixed in was prepared and observed in the visible light transmission spectrum.

(ii) 結果
ブランクとFmoc−Cを混合したものは、赤色のスペクトル周辺で吸収を持っていたのに対し、Fmoc−VKVVCを混合したものは、それが解消され、明らかに色が変化したことを支持するデータが得られた(図5)。
このことより、Fmoc−VKVVCは、凝集した金ナノ粒子を解離し分散させる効果があることが示唆された。
(Ii) Results The mixture of blank and Fmoc-C had absorption around the red spectrum, whereas the mixture of Fmoc-VKVVC was canceled and the color changed clearly. Data supporting this was obtained (FIG. 5).
This suggests that Fmoc-VKVVC has an effect of dissociating and dispersing the aggregated gold nanoparticles.

(7)合成ペプチドFmoc−VKVVHによる金属錯体の分散
マンガンフタロシアニン(MnPC)及び亜鉛フタロシアニン(ZnPC)の金属錯体に対するFmoc−VKVVHの分散能を調べた。
(7) Dispersion of metal complex by synthetic peptide Fmoc-VKVVH The dispersibility of Fmoc-VKVVH for metal complexes of manganese phthalocyanine (MnPC) and zinc phthalocyanine (ZnPC) was investigated.

(i) 実験方法
0.1μmolのFmoc−VKVVHと、0.1μmolのMnPC又は0.1μmolのZnPCとをメタノール400μL中にそれぞれ混合したものを用意した。また、ブランクとして、0.1μmolのMnPCのみ、0.1μmolのZnPCのみを、それぞれメタノール400μL中に混合したものを用意した。これらの吸収スペクトルを測定し、目視でも観察した。
(I) Experimental method The thing which mixed 0.1 micromol Fmoc-VKVVH, 0.1 micromol MnPC, or 0.1 micromol ZnPC in 400 microliters of methanol, respectively was prepared. Moreover, what mixed only 0.1 micromol MnPC and only 0.1 micromol ZnPC in 400 microliters of methanol as a blank was prepared, respectively. These absorption spectra were measured and observed visually.

(ii) 結果
Fmoc−VKVVHを混合したものは、全体的に吸収が大きくなった(図6)。また、目視でも、色が濃く変化したことが観察され、吸収スペクトルの変化と目視による色変化の結果が合致した。
(Ii) Results The absorption of Fmoc-VKVVH mixed as a whole increased (FIG. 6). Moreover, it was observed visually that the color changed deeply, and the change of the absorption spectrum and the result of the color change visually confirmed.

(8)合成ペプチドの酸化グラフェンナノ粒子分散能
合成したFmoc−VKVVH、NH−VKVVH、Fmoc−VKVVC、Fmoc−VKVVE、Fmoc−EKVKEについて、分散している酸化グラフェン(GO)ナノ粒子に対してどのように作用するかを調べた。
(8) oxidation of the synthetic peptide graphene particles dispersibility synthesized Fmoc-VKVVH, NH 2 -VKVVH, Fmoc-VKVVC, Fmoc-VKVVE, for Fmoc-EKVKE, against Dispersed graphene oxide (GO) Nanoparticles We investigated how it works.

(i) 実験方法
Fmoc−VKVVH、NH−VKVVH、Fmoc−VKVVC、Fmoc−VKVVE、Fmoc−EKVKEをそれぞれ含む0.1mMメタノール溶液を調製し、200μLの各液と200μLの酸化グラフェンナノ粒子3.3g/ml水中分散液とを混合し、目視で観察した。
(I) Experimental Method Fmoc-VKVVH, NH 2 -VKVVH, Fmoc-VKVVC, Fmoc-VKVVE, 0.1 mM methanol solutions each containing Fmoc-EKVKE were prepared, and 200 μL of each solution and 200 μL of graphene oxide nanoparticles 3. 3 g / ml dispersion in water was mixed and visually observed.

(ii) 結果
Fmoc−VKVVH、NH−VKVVH、Fmoc−EKVKEについては、酸化グラフェンナノ粒子が即時に凝集したことが観察されたが、Fmoc−VKVVC、Fmoc−VKVVEを混合したものは、凝集しなかったことが観察された(図7)。
このことより、リシン(K)やヒスチジン(H)等の正に荷電する部位が酸化グラフェンと相互作用し得ることがわかった。また、リシン、ヒスチジン等の正に荷電する部分を複数有するペプチドは、酸化グラフェンナノ粒子のカルボキシル基と結合し、酸化グラフェンナノ粒子が凝集したと推定された。一方、Fmoc−VKVVC、Fmoc−VKVVEのように、カルボキシル基と結合可能な部位1つ(これらのペプチドにおいてはリシン(K)のアミノ酸残基1つ)を有するものは、酸化グラフェンナノ粒子の分散状態を保持あるいは安定させ得ることが推定された。
(Ii) Results Regarding Fmoc-VKVVH, NH 2 -VKVVH, and Fmoc-EKVKE, it was observed that the graphene oxide nanoparticles were immediately aggregated. It was observed that there was not (Figure 7).
This indicates that positively charged sites such as lysine (K) and histidine (H) can interact with graphene oxide. Moreover, it was estimated that the peptide which has two or more positively charged parts, such as a lysine and histidine, couple | bonded with the carboxyl group of the graphene oxide nanoparticle, and the graphene oxide nanoparticle aggregated. On the other hand, those having one site capable of binding to a carboxyl group (in these peptides, one amino acid residue of lysine (K)) such as Fmoc-VKVVC and Fmoc-VKVVE are dispersed graphene oxide nanoparticles. It was estimated that the state could be maintained or stabilized.

Claims (5)

少なくとも4つのアミノ酸を有し、それらのアミノ酸のうち、少なくとも1つが無機物質に対して結合能を有するアミノ酸であり、少なくとも1つが塩基性アミノ酸であるペプチドを有効成分として含み、
前記無機物質が金属及び金属錯体からなる群から選択される少なくとも1種の物質であり
前記ペプチドは、前記結合能を有するアミノ酸及び前記塩基性アミノ酸との間に−バリン(V)−バリン(V)−を配置するものである、
無機ナノ材料用分散剤。
A peptide having at least four amino acids, at least one of which is an amino acid capable of binding to an inorganic substance, and at least one of which is a basic amino acid, as an active ingredient,
Wherein the inorganic substance is at least one material selected from the group consisting of a metal and a metal complex,
The peptide is one in which -valine (V) -valine (V)-is arranged between the amino acid having the binding ability and the basic amino acid.
Dispersant for inorganic nanomaterials.
前記無機物質に対して結合能を有するアミノ酸は、システイン、グルタミン酸、ヒスチジン及びリシンからなる群から選択される少なくとも1種のアミノ酸である、請求項1に記載の無機ナノ材料用分散剤。   The dispersant for inorganic nanomaterials according to claim 1, wherein the amino acid capable of binding to the inorganic substance is at least one amino acid selected from the group consisting of cysteine, glutamic acid, histidine and lysine. 前記塩基性アミノ酸は、アルギニン、ヒスチジン及びリシンからなる群から選択される少なくとも1種のアミノ酸である、請求項1又は2に記載の無機ナノ材料用分散剤。   The dispersant for inorganic nanomaterials according to claim 1 or 2, wherein the basic amino acid is at least one amino acid selected from the group consisting of arginine, histidine and lysine. 前記ペプチドは、βシート構造を形成し得るためのペプチドである、請求項1〜3のいずれか1項に記載の無機ナノ材料用分散剤。 The peptides, beta is a peptide for capable of forming a sheet structure, dispersants for inorganic nanomaterials according to any one of claims 1-3. 少なくとも4つのアミノ酸を有し、それらのアミノ酸のうち、少なくとも1つが無機物質に対して結合能を有するアミノ酸であり、少なくとも1つが塩基性アミノ酸であるペプチドを有効成分として含み、
前記無機物質がグラフェンであり
前記ペプチドは、カルボキシル基と結合可能な部位を1つ有するものであり、かつ、前記結合能を有するアミノ酸及び前記塩基性アミノ酸との間に−バリン(V)−バリン(V)−を配置するものである
無機ナノ材料用分散剤。
A peptide having at least four amino acids, at least one of which is an amino acid capable of binding to an inorganic substance, and at least one of which is a basic amino acid, as an active ingredient,
Wherein the inorganic material is a graphene
The peptides state, and are not having one available binding sites with a carboxyl group, and, between the amino acids and the basic amino acids having a binding capacity - valine (V) - valine (V) - the arrangement To do ,
Dispersant for inorganic nanomaterials.
JP2014232410A 2014-11-17 2014-11-17 Dispersant for inorganic nanomaterials Active JP6482828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232410A JP6482828B2 (en) 2014-11-17 2014-11-17 Dispersant for inorganic nanomaterials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232410A JP6482828B2 (en) 2014-11-17 2014-11-17 Dispersant for inorganic nanomaterials

Publications (2)

Publication Number Publication Date
JP2016093796A JP2016093796A (en) 2016-05-26
JP6482828B2 true JP6482828B2 (en) 2019-03-13

Family

ID=56070366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232410A Active JP6482828B2 (en) 2014-11-17 2014-11-17 Dispersant for inorganic nanomaterials

Country Status (1)

Country Link
JP (1) JP6482828B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649138B2 (en) * 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US20050054752A1 (en) * 2003-09-08 2005-03-10 O'brien John P. Peptide-based diblock and triblock dispersants and diblock polymers
DE102008008837A1 (en) * 2008-02-13 2009-08-27 Bayer Materialscience Ag Printable composition for producing electrically conductive coatings and process for their preparation
JP2012188362A (en) * 2011-03-09 2012-10-04 Ryukoku Univ Metal nanorod complex and method of manufacturing the same
JP2015513001A (en) * 2012-01-20 2015-04-30 イムラ アメリカ インコーポレイテッド Stable colloidal suspensions of gold nanocomposites and methods for their preparation

Also Published As

Publication number Publication date
JP2016093796A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
Sawada et al. Peptide [4] catenane by folding and assembly
Duan et al. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM
Li et al. Selective in vitro effect of peptides on calcium carbonate crystallization
US7914588B2 (en) Synthesis of fluorescent metal nanoclusters
Valenti et al. The binding of Ni (II) ions to hexahistidine as a model system of the interaction between nickel and His-tagged proteins
Murawala et al. In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies
Feng et al. Bioinspired synthesis of Au nanostructures templated from amyloid β peptide assembly with enhanced catalytic activity
Joshi et al. Interactions of amino acids and polypeptides with metal oxide nanoparticles probed by fluorescent indicator adsorption and displacement
Ueda et al. Tubulation on peptide vesicles by phase-separation of a binary mixture of amphiphilic right-handed and left-handed helical peptides
US10870783B2 (en) Surfactant adhesive composition
Panzner et al. Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies
Lin et al. A further insight into the biosorption mechanism of Au (III) by infrared spectrometry
Tanaka et al. Array-based functional peptide screening and characterization of gold nanoparticle synthesis
Marsh et al. Infrared spectroscopic analysis of the adsorption of pyridine carboxylic acids on colloidal ceria
Corra et al. Size‐Controlled Formation of Noble‐Metal Nanoparticles in Aqueous Solution with a Thiol‐Free Tripeptide
KR101526234B1 (en) Silver micropowder having excellent affinity for polar medium, and silver ink
Rajbhandary et al. Investigating the effects of peptoid substitutions in self‐assembly of Fmoc‐diphenylalanine derivatives
JP6482828B2 (en) Dispersant for inorganic nanomaterials
Marchetti et al. Fibril Structure Demonstrates the Role of Iodine Labelling on a Pentapeptide Self‐Assembly
Hasnaoui et al. Synthesis and characterization of magnetic perovskites La1-xSrxMnO3: Green catalyst for oxidation of olefins in aqueous medium
Kitai et al. Simple method of synthesizing nickel–nitrilotriacetic acid gold nanoparticles with a narrow size distribution for protein labeling
Hobara et al. Phase separation of binary self-assembled thiol monolayers of 2-mercaptoethanesulfonic acid and 1-octadecanethiol on Au (111)
Gokula et al. Self-assembly of penta-selenopeptides into amyloid fibrils
KR20160033260A (en) Metal ion-peptide complex and oxidase consist of the same
Hamley et al. Fibrillisation of ring-closed amyloid peptides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6482828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250