JP6478046B2 - Server cooling system - Google Patents

Server cooling system Download PDF

Info

Publication number
JP6478046B2
JP6478046B2 JP2015191945A JP2015191945A JP6478046B2 JP 6478046 B2 JP6478046 B2 JP 6478046B2 JP 2015191945 A JP2015191945 A JP 2015191945A JP 2015191945 A JP2015191945 A JP 2015191945A JP 6478046 B2 JP6478046 B2 JP 6478046B2
Authority
JP
Japan
Prior art keywords
air
server
rack
fan
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015191945A
Other languages
Japanese (ja)
Other versions
JP2017068485A (en
Inventor
隆洋 松下
隆洋 松下
敏 鵜澤
敏 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015191945A priority Critical patent/JP6478046B2/en
Priority to PCT/JP2016/004282 priority patent/WO2017056453A1/en
Priority to TW105130954A priority patent/TW201712478A/en
Publication of JP2017068485A publication Critical patent/JP2017068485A/en
Application granted granted Critical
Publication of JP6478046B2 publication Critical patent/JP6478046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Ventilation (AREA)

Description

本発明は、多数のサーバーを設置するサーバーセンターにおいて、複数のサーバーをサーバーラックに収納し、そのサーバーラックを冷却用のチャンバー内に配置し、チャンバー内にホットアイルとコールドアイルを設けてサーバーを冷却するサーバー冷却システムに関するものである。   In the server center in which a large number of servers are installed, a plurality of servers are stored in a server rack, the server rack is disposed in a cooling chamber, and a hot aisle and a cold aisle are provided in the chamber. The present invention relates to a server cooling system for cooling.

クラウドシステム等の提案により、多くのサーバーを集めたデータセンターの需要が高くなってくる。サーバーは大きな電流を消費するために、熱を発生する。そのため、多数のサーバーをまとめて冷却する冷却システムが必要となる。このような冷却システムとしては、ケーシング内に、ホットゾーンとコールドゾーンを設けて、その境界上にサーバーラックを配置し、コールドゾーンからの冷気でサーバーラックを冷却し、熱交換で暖気となった空気をホットゾーン内の冷却器で冷やし、再びコールドゾーンに供給するシステムが提案されている(特許文献1)。   With the proposal of cloud systems, etc., the demand for data centers that gather many servers will increase. Since the server consumes a large amount of current, it generates heat. Therefore, a cooling system that cools a large number of servers together is required. As such a cooling system, a hot zone and a cold zone are provided in the casing, a server rack is arranged on the boundary, the server rack is cooled by the cold air from the cold zone, and the heat is exchanged to warm up the air. There has been proposed a system in which air is cooled by a cooler in a hot zone and supplied to the cold zone again (Patent Document 1).

このような冷却システムを採用すると、サーバーはケーシング毎にまとめられる。ケーシングをコンテナ型とすることで、輸送が簡便となる、各ユニットが事前に最適設計されるので、省エネルギー性に優れる、複数並設することだけでデータセンターの早期構築、早期稼働が可能になる、屋外型のデータセンターとすることができる、といったメリットがあるとされる。   When such a cooling system is employed, the servers are grouped for each casing. By making the casing into a container type, transportation is simple, and each unit is optimally designed in advance, so that it is excellent in energy saving. It is said that there is a merit that it can be an outdoor type data center.

このようなサーバー冷却システムでは、消費電力の効率化が問題とされる。データセンターでは、多数のサーバーを利用するため、消費電力が膨大となるので、サーバー以外に消費する電力は少しでも少ない方がよい。運転コストを低く抑えることができ、利用者から見た利用コストも安くできるという経済面からの利点と、消費電力を抑えることができるという環境面の利点があるからである。   In such a server cooling system, efficiency of power consumption is a problem. Since a data center uses a large number of servers, the power consumption becomes enormous, so it is better to consume as little power as possible other than the servers. This is because there is an economic advantage that the operating cost can be kept low and the usage cost seen from the user can be reduced, and an environmental advantage that power consumption can be reduced.

サーバー冷却システムが消費する電力については、サーバー自身が消費する電力(WH_RAC)に対するサーバーシステム全体が消費する電力(WH_RCV)の倍率を求めるPUE(Power Usage Effectiveness)という指標が使われる。PUEはサーバーを冷却する消費電力及び付帯設備電力の合計がゼロであれば、1.0となる。   For the power consumed by the server cooling system, an index called PUE (Power Usage Effects) is used to obtain a ratio of the power consumed by the entire server system (WH_RCV) to the power consumed by the server itself (WH_RAC). The PUE is 1.0 if the sum of the power consumption for cooling the server and the incidental facility power is zero.

このPUEをできるだけ少なくするために、さまざまな提案が行われている。特許文献2には、コールドアイルとホットアイルの間に設置されたサーバーラックとチャンバーとの間にギャラリーを設けることで、冷却風の通過をサーバーラックに集中させ、PUEを低くする技術が開示されている。   Various proposals have been made to minimize this PUE. Patent Document 2 discloses a technique for lowering the PUE by concentrating the passage of cooling air on the server rack by providing a gallery between the server rack and the chamber installed between the cold aisle and the hot aisle. ing.

特許文献3では、サーバーラックの排気口にサーバーが備える内蔵ファンよりも大風量を送風できるファンと、そのファンに近接して温度検知装置が設けられ、温度検知装置の測定値に応じてファンの風量調節を行うことで、無駄な給気を防止して空調効率の高い、省エネルギーシステムを構築できるとしている。   In Patent Document 3, a fan capable of blowing a larger air volume than a built-in fan included in a server at an exhaust port of a server rack, and a temperature detection device in the vicinity of the fan are provided, and according to a measured value of the temperature detection device, By adjusting the air volume, it is said that an energy-saving system with high air-conditioning efficiency can be constructed by preventing unnecessary air supply.

特開2012−98799号公報JP 2012-98799 A 特開2014−157494号公報JP 2014-157494 A 特開2009−140421号公報JP 2009-140421 A

特許文献1のような冷却システムでは、コールドゾーンからホットゾーンに流れる冷気の流れ方で冷却効率が決まる。この冷気の流れは、ホットゾーンに配置した空調装置と、ケーシングのサイズによって決まる。しかし、空調装置およびケーシングの能力およびサイズは、ある程度規定があり、まったく自由に設計できるものではない。   In a cooling system such as Patent Document 1, the cooling efficiency is determined by the flow of cold air flowing from the cold zone to the hot zone. The flow of this cool air is determined by the air conditioner arranged in the hot zone and the size of the casing. However, the capacity and size of the air conditioner and casing are regulated to some extent and cannot be designed freely.

例えば、ある大きさのケーシングを使用しなければならない場合、その大きさに最適な空調装置が常に存在するとは限らない。つまり、冷却能力の効率は、たまたま適合する空調装置とケーシングの組み合わせがなければ、最適化されていなかった。   For example, when a casing having a certain size must be used, an air conditioner optimal for the size does not always exist. In other words, the efficiency of the cooling capacity was not optimized without a matching air conditioner and casing combination.

特許文献2のような冷却システムは高い効率化が望める。しかし、サーバーの規模が大きくなるほど、冷却効率は低下するため、消費電力の低減が求められる。   A cooling system like patent document 2 can expect high efficiency. However, as the scale of the server increases, the cooling efficiency decreases, so that reduction in power consumption is required.

特許文献3は、熱源負荷であるサーバーに局所的な空調を行うもので、これも高い効率化が見込める。しかし、特許文献3では、サーバー冷却システムとしては、冷却機をサーバーラックの側面にも配置した構成しか開示していない。したがって、PUEに換算した消費電力の低減効果は低い。   In Patent Document 3, local air conditioning is performed on a server that is a heat source load, and high efficiency can also be expected. However, Patent Document 3 discloses only a configuration in which a cooler is also arranged on the side surface of a server rack as a server cooling system. Therefore, the reduction effect of the power consumption converted into PUE is low.

本発明は上記の課題に鑑み想到されたものであり、チャンバー(ケーシング)内にホットアイル(ホットゾーン)とコールドアイル(コールドゾーン)を設け、その境界上にサーバーラックを配置したサーバー冷却システムであって、冷却効率を高く(PUEを1.0に向けて小さく)できるものである。   The present invention has been conceived in view of the above problems, and is a server cooling system in which a hot aisle (hot zone) and a cold aisle (cold zone) are provided in a chamber (casing), and a server rack is arranged on the boundary. Therefore, the cooling efficiency can be increased (PUE is decreased toward 1.0).

より具体的に本発明に係るサーバー冷却システムは、
チャンバー内を実質的に2分し、一方にコールドアイルを形成し、他方にホットアイルを形成し、前記コールドアイルと前記ホットアイルの境界上にサーバーラックを配置したサーバー冷却システムであって、
前記サーバーラックは、複数台縦方向に配置されたサーバーユニットで構成され、
前記サーバーユニットは、CPUが搭載された中央部と周辺機器が配置される周辺部から構成され、
前記ホットアイル側に設けられた空調装置と、
前記空調装置から前記コールドアイルまで配置された循環路と、
前記サーバーユニットの前記周辺部のホットアイル面には設けず、前記中央部のホットアイル面に設けられたラックファンと、
前記サーバーラックと前記チャンバー内壁および前記チャンバーの天井との間に設けられた仕切壁を有し、
前記ラックファンにより、前記サーバーユニットの中央部に集中的に冷気を通過させることを特徴とする。
More specifically, the server cooling system according to the present invention is:
A server cooling system in which a chamber is substantially divided into two, a cold aisle is formed on one side, a hot aisle is formed on the other, and a server rack is disposed on a boundary between the cold aisle and the hot aisle,
The server rack is configured on the server units arranged in a plurality vertical Direction,
The server unit is composed of a central part where a CPU is mounted and a peripheral part where peripheral devices are arranged,
An air conditioner provided on the hot aisle side;
A circulation path arranged from the air conditioner to the cold aisle;
A rack fan provided on the hot aisle surface of the central part without providing it on the hot aisle surface of the peripheral part of the server unit;
A partition wall provided between the server rack and the chamber inner wall and the ceiling of the chamber;
The rack fan intensively passes cool air through the center of the server unit.

本発明に係るサーバー冷却システムは、コールドアイルとホットアイルの境界にサーバーラックを配置し、サーバーラックの排気口にファンを設け、空調装置の定格風量の一部をファンが負担することにしたので、同じ冷却能力であるにもかかわらず、サーバー冷却が消費する電力を抑え、冷却効率の高い冷却システムを得ることができる。   In the server cooling system according to the present invention, the server rack is arranged at the boundary between the cold aisle and the hot aisle, the fan is provided at the exhaust port of the server rack, and the fan bears a part of the rated air volume of the air conditioner. In spite of the same cooling capacity, the power consumed by server cooling can be reduced and a cooling system with high cooling efficiency can be obtained.

また、本発明に係るサーバー冷却システムは、ヒートパイプを利用することもできる。したがって、冬季の温度が低い時期には、PUEが1.0に近い程度の冷却効率を期待することができる。   The server cooling system according to the present invention can also use a heat pipe. Therefore, when the temperature in winter is low, it is possible to expect a cooling efficiency such that PUE is close to 1.0.

サーバー冷却システム1の構成を示す図である。1 is a diagram illustrating a configuration of a server cooling system 1. FIG. サーバー冷却システム1のチャンバーの平面図である。2 is a plan view of a chamber of the server cooling system 1. FIG. サーバーラックの背面から見た図である。It is the figure seen from the back of a server rack. サーバーラックの平面図で、熱効率が良好でない場合の空気の流れを示す図である。It is a top view of a server rack, and is a figure which shows the flow of air when heat efficiency is not favorable. サーバーラックの背面から見た図である。It is the figure seen from the back of a server rack. サーバーラックの平面図で、熱効率が高くなる場合の空気の流れを示す図である。It is a top view of a server rack, and is a figure which shows the flow of air when thermal efficiency becomes high. 空調装置の循環ファンの特性である。It is the characteristic of the circulation fan of an air conditioner.

以下本発明に係るサーバー冷却システムについて図面を参照しながら説明を行う。しかし、以下の説明は本発明の実施形態を例示するのであり、本発明は、以下に示す実施形態に限定されるものではない。本発明の趣旨を逸脱しない限りにおいて、以下の実施形態は変更することができる。   Hereinafter, a server cooling system according to the present invention will be described with reference to the drawings. However, the following description exemplifies an embodiment of the present invention, and the present invention is not limited to the embodiment shown below. The following embodiments can be modified without departing from the spirit of the present invention.

<構成の説明>
図1に本発明のサーバー冷却システムの構成図を示す。本発明のサーバー冷却システム1は、チャンバー10とチャンバー10の床下に設けられた循環路12と、チャンバー10の天井裏に設けられた外気通路14と、チャンバー10の略中央付近に配置されたサーバーラック20と、サーバーラック20の背面に配置されたラックファン32と、チャンバー10においてサーバーラック20の背面側(ホットアイル10h側)に配置される空調装置(パッケージエアコン)22とを有する。また、循環路12中に加湿器13と、パッケージエアコン22の上部にヒートパイプ24(ヒートパイプ24の蒸発器24a)が備えられていてもよい。なお、ヒートパイプ24は、ヒートパイプ式補冷却器24とも呼ぶ。
<Description of configuration>
FIG. 1 shows a configuration diagram of a server cooling system of the present invention. The server cooling system 1 according to the present invention includes a chamber 10, a circulation path 12 provided under the floor of the chamber 10, an outside air passage 14 provided on the back of the ceiling of the chamber 10, and a server disposed near the center of the chamber 10. The rack 20 includes a rack fan 32 disposed on the back side of the server rack 20, and an air conditioner (package air conditioner) 22 disposed on the back side (hot aisle 10 h side) of the server rack 20 in the chamber 10. Further, the humidifier 13 may be provided in the circulation path 12, and the heat pipe 24 (the evaporator 24a of the heat pipe 24) may be provided above the package air conditioner 22. The heat pipe 24 is also referred to as a heat pipe type auxiliary cooler 24.

外気通路14は、入口14aに通気ダンパ14dと通気ファン14fが設けられる。また、外気通路14には、ヒートパイプ24の凝縮器24bが備えられる。   The outside air passage 14 is provided with a ventilation damper 14d and a ventilation fan 14f at an inlet 14a. Further, the outside air passage 14 is provided with a condenser 24b of the heat pipe 24.

また、チャンバー10の外側には、全体を制御する制御装置30が設けられる。チャンバー10の各ヶ所には、給気温度センサTSA、給気湿度センサHSA、還気温度センサTRE、還気湿度センサHRH、外気温度センサTOA、外気湿度センサHOA、ヒートパイプ入口温度センサTHP、パッケージエアコン電力モニタWHPAC、サーバー電力モニタWHRAC、受電電力モニタWHRCV、ラックファン電力モニタWHRF、ヒートパイプ電力モニタWHHPが設けられ、それぞれ制御装置30と接続されている。また、制御装置30は空調装置22、通気ファン14f、通気ダンパ14d、とも接続されている。   Further, a control device 30 for controlling the whole is provided outside the chamber 10. In each part of the chamber 10, a supply air temperature sensor TSA, a supply air humidity sensor HSA, a return air temperature sensor TRE, a return air humidity sensor HRH, an outside air temperature sensor TOA, an outside air humidity sensor HOA, a heat pipe inlet temperature sensor THP, a package An air conditioner power monitor WHPAC, a server power monitor WHRAC, a received power monitor WHRCV, a rack fan power monitor WHRF, and a heat pipe power monitor WHHP are provided and connected to the control device 30. The control device 30 is also connected to the air conditioner 22, the ventilation fan 14f, and the ventilation damper 14d.

図2には、チャンバー10の平面図を示す。チャンバー10の略中央にはサーバーラック20が並べて配置されている。サーバーラック20とチャンバー10の側面との間には、仕切壁16が設けられている。サーバーラック20のホットアイル10h側には、ラックファン32が備えられている。空調装置22は、ホットアイル10h側の壁際に配置された例を示している。なお、ヒートパイプ24は、空調装置22の上面に配置されるがここでは省略した。   FIG. 2 shows a plan view of the chamber 10. A server rack 20 is arranged side by side in the approximate center of the chamber 10. A partition wall 16 is provided between the server rack 20 and the side surface of the chamber 10. A rack fan 32 is provided on the hot aisle 10 h side of the server rack 20. The air conditioner 22 has shown the example arrange | positioned at the wall near the hot aisle 10h side. In addition, although the heat pipe 24 is arrange | positioned on the upper surface of the air conditioner 22, it abbreviate | omitted here.

再度図1を参照して、サーバーラック20とチャンバー10の天上との間にも仕切壁16が設けることもできる。   Referring to FIG. 1 again, a partition wall 16 can be provided between the server rack 20 and the top of the chamber 10.

<構成の詳細および接続関係>
図1を参照して、チャンバー10は、断熱材で覆われた直方体形状をしている。しかし、内部を実質的に2分できれば、直方体形状でなくてもよい。ここで「実質的に2分」とは、チャンバー10内を冷気が充満するコールドアイル10cとサーバーで熱交換され、暖かくなった暖気が充満するホットアイル10hの2つの領域に分けるということである。すなわち、コールドアイル10cとホットアイル10hができれば、チャンバー10内を2分割以上の分割にしてもよい。具体的な例示を上げると、チャンバー10内を3分割し、真ん中をコールドアイル10cとし、両端の空間をホットアイル10hとする等である。
<Configuration details and connection>
Referring to FIG. 1, the chamber 10 has a rectangular parallelepiped shape covered with a heat insulating material. However, as long as the inside can be substantially divided into two, it does not have to be a rectangular parallelepiped shape. Here, “substantially 2 minutes” means that the inside of the chamber 10 is divided into two regions, a cold aisle 10c filled with cold air and a hot aisle 10h where heat is exchanged by the server and filled with warm air. . That is, if the cold aisle 10c and the hot aisle 10h are formed, the inside of the chamber 10 may be divided into two or more. As a specific example, the inside of the chamber 10 is divided into three, the middle is a cold aisle 10c, the space at both ends is a hot aisle 10h, and so on.

また、さらに仕切壁16を設けず、冷気や暖気の流れで、コールドアイル10cとホットアイル10hを形成し、その境界に中間領域を有してもよい。すなわち、「実質的に2分」するとは、あえて仕切壁16を設けなくても良い場合が含まれていてもよい。   Furthermore, the partition wall 16 may not be provided, and the cold aisle 10c and the hot aisle 10h may be formed by a flow of cool air or warm air, and an intermediate region may be provided at the boundary. That is, “substantially 2 minutes” may include a case where the partition wall 16 is not necessarily provided.

ホットアイル10hとコールドアイル10cとの境界にはサーバーラック20が配置される。サーバーラック20は、正面(コールドアイル10c側)から背面(ホットアイル10h側)に向けて貫通し、貫通部分にCPU(Central Processor Unit)とメモリを有するサーバーユニット20u(図3参照)を配置する段板が設けられている棚である。サーバーラック20は複数個配置してよく、全てのサーバーラック20は、正面をコールドアイル10cに向け、背面はホットアイル10hを向ける。なお、「サーバーラック消費電力」は、全てのサーバーユニット20uの消費する電力の事である。   A server rack 20 is disposed at the boundary between the hot aisle 10h and the cold aisle 10c. The server rack 20 penetrates from the front side (cold aisle 10c side) to the back side (hot aisle 10h side), and a server unit 20u (see FIG. 3) having a CPU (Central Processor Unit) and a memory is arranged in the penetration part. It is a shelf provided with a corrugated board. A plurality of server racks 20 may be arranged, and all the server racks 20 face the cold aisle 10c at the front and the hot aisle 10h at the back. The “server rack power consumption” refers to the power consumed by all server units 20u.

サーバーラック20とチャンバー10との間には、チャンバー10との間で、サーバーラック20の側面側と上面側に隙間ができる。この隙間を遮蔽するのが遮蔽手段である。ここでは遮蔽手段は仕切壁16とする。遮蔽手段は、コールドアイル10cからホットアイル10h側に、冷気を通さないようにできれば、仕切壁16以外の方法であってもよい。   Between the server rack 20 and the chamber 10, a gap is formed between the chamber 10 and the side surface side and the upper surface side of the server rack 20. Shielding means shields this gap. Here, the shielding means is the partition wall 16. The shielding means may be a method other than the partition wall 16 as long as it does not allow cold air to pass from the cold aisle 10c to the hot aisle 10h side.

ホットアイル10h側のチャンバー10の内壁には、空調装置(パッケージエアコン)22が配置される。空調装置22は前面に還気吸い込み口22inが設けられ、下面に冷気吹出し口22outが設けられている。また空調装置22は、冷気の吹出し量を調節するために、循環ファン34と循環ファン34を駆動する循環ファンインバータ36が備えられている。   An air conditioner (package air conditioner) 22 is disposed on the inner wall of the chamber 10 on the hot aisle 10 h side. The air conditioner 22 is provided with a return air inlet 22in on the front surface and a cold air outlet 22out on the lower surface. The air conditioner 22 includes a circulation fan 34 and a circulation fan inverter 36 that drives the circulation fan 34 in order to adjust the amount of cool air blown out.

このため、空調装置22は、冷気の吹出し流量を多段階に変更することができる。本発明に係るサーバー冷却システム1は、空調装置22とサーバーラック20の直後に配置されたラックファン32で、空調装置22の定格送風量を流す。   For this reason, the air conditioner 22 can change the blowing flow rate of cold air in multiple stages. The server cooling system 1 according to the present invention allows the rated air flow of the air conditioner 22 to flow through the rack fan 32 disposed immediately after the air conditioner 22 and the server rack 20.

空調装置22は、定格送風量よりも少ない送風量に調節できることが必要だからである。空調装置22の送風量の調節は、空調装置22が制御装置30からの要求指示(冷却能力レベル要求指示)C22を受信することで行われる。より具体的には、制御装置30からの指示信号C22を受信すると、空調装置22内の循環ファン34の送風量が変化することで調節される。また、図には示されていないが、ヒートパイプ24の冷気も空調装置22の循環ファン34で送風してもよい。   This is because the air conditioner 22 needs to be able to adjust the air flow rate to be less than the rated air flow rate. Adjustment of the air volume of the air conditioner 22 is performed when the air conditioner 22 receives a request instruction (cooling capacity level request instruction) C22 from the control device 30. More specifically, when the instruction signal C22 from the control device 30 is received, the air flow rate of the circulation fan 34 in the air conditioner 22 is adjusted to change. Further, although not shown in the figure, the cold air of the heat pipe 24 may be blown by the circulation fan 34 of the air conditioner 22.

チャンバー10の床下には、循環路12が設けられている。循環路12は、空調装置22の冷気吹出し口22outからの冷気をコールドアイル10cの冷気供給口10ctまで送る移送路である。そのため、チャンバー10の床面のホットアイル10h側とコールドアイル10c側には、貫通孔が設けられている。   A circulation path 12 is provided under the floor of the chamber 10. The circulation path 12 is a transfer path that sends the cold air from the cold air outlet 22out of the air conditioner 22 to the cold air supply port 10ct of the cold aisle 10c. Therefore, through holes are provided on the hot aisle 10 h side and the cold aisle 10 c side of the floor surface of the chamber 10.

ホットアイル10h側の貫通孔は、空調装置22から冷気を循環路12に送り出し、コールドアイル10c側の貫通孔は、送られてきた冷気をチャンバー10内に送り出す。コールドアイル10c側の貫通孔を冷気供給口10ctと呼ぶ。冷気供給口10ctには、循環路12への落下防止のため、グレーチングなどを配するのが好ましい。   The through hole on the hot aisle 10 h side sends out cool air from the air conditioner 22 to the circulation path 12, and the through hole on the cold aisle 10 c side sends out the sent cool air into the chamber 10. The through-hole on the cold aisle 10c side is called a cold air supply port 10ct. In order to prevent the cool air supply port 10ct from dropping into the circulation path 12, it is preferable to provide a grating or the like.

また、循環路12は、冷気吹出し口22outから冷気供給口10ctまでの間に冷気ダンパ38が備えられていてもよい。本発明のサーバー冷却システム1では、空調装置22からの冷気の供給を抑え、押さえた分の風量は、ラックファン32で補うことで全体の消費電力を抑える。   The circulation path 12 may be provided with a cold air damper 38 between the cold air outlet 22out and the cold air supply port 10ct. In the server cooling system 1 of the present invention, the supply of cool air from the air conditioner 22 is suppressed, and the amount of air that is suppressed is supplemented by the rack fan 32, thereby reducing the overall power consumption.

空調装置22の循環ファン34が循環ファンインバータ36で冷気の供給を調整する場合は、冷気ダンパ38は不要である。しかし、空調装置22の循環ファン34が循環ファンインバータ36を備えていない場合は、冷気ダンパ38で空調装置22からの冷気の送風を低減しても、循環ファンインバータ36を備えた場合よりは少ないが、計算機センター全体の消費電力を抑制することができる。   When the circulation fan 34 of the air conditioner 22 adjusts the supply of cold air by the circulation fan inverter 36, the cold air damper 38 is unnecessary. However, when the circulation fan 34 of the air conditioner 22 does not include the circulation fan inverter 36, even if the cool air damper 38 reduces the blowing of cool air from the air conditioner 22, it is less than when the circulation fan inverter 36 is provided. However, the power consumption of the entire computer center can be suppressed.

冷気供給口10ctのコールドアイル10c側若しくは循環路12側に、加湿器13が配置されてもよい。加湿器13は冷気(給気)に湿度を付与するためのものである。冷気が乾燥しすぎると、サーバーラック20内に静電気が発生し、電子機器を破損するおそれがある。加湿器13はそのような状態を回避するために配置される。なお、加湿器13は、制御装置30からの指示信号C13で動作を制御される。   The humidifier 13 may be disposed on the cold aisle 10c side or the circulation path 12 side of the cold air supply port 10ct. The humidifier 13 is for imparting humidity to the cold air (supply air). If the cool air is too dry, static electricity may be generated in the server rack 20 and the electronic equipment may be damaged. The humidifier 13 is arranged to avoid such a state. The operation of the humidifier 13 is controlled by an instruction signal C13 from the control device 30.

なお、ここでは循環路12を床下に配置する場合を示したが、ホットアイル10hに配置した空調装置22からの冷気をコールドアイル10cまで移送できれば、循環路12は床下でなくてもよい。   Although the case where the circulation path 12 is arranged under the floor is shown here, the circulation path 12 may not be under the floor as long as the cold air from the air conditioner 22 arranged in the hot aisle 10h can be transferred to the cold aisle 10c.

チャンバー10の天井裏には、外気通路14が設けられる。外気通路14は、通気ファン14fが設けられた外気の通路であり、入口14aと出口14bを有するダクトである。図1では、通気ファン14fは入口14a側に設けられた例を示す。出口14bも外気に向かって開口している。   An outside air passage 14 is provided on the ceiling of the chamber 10. The outside air passage 14 is an outside air passage provided with a ventilation fan 14f, and is a duct having an inlet 14a and an outlet 14b. FIG. 1 shows an example in which the ventilation fan 14f is provided on the inlet 14a side. The outlet 14b is also open toward the outside air.

通気ファン14fは、制御装置30と接続されている。冷気ダンパ38が備えられている場合は、冷気ダンパ38も、制御装置30と接続されていてよい。そして、制御装置30からの指示によって運転動作する。制御装置30は、通気ファン14fに対して指示信号C14f、冷気ダンパ38に対して指示信号C38を送信して制御することができる。   The ventilation fan 14 f is connected to the control device 30. When the cold air damper 38 is provided, the cold air damper 38 may also be connected to the control device 30. Then, a driving operation is performed according to an instruction from the control device 30. The control device 30 can control by transmitting an instruction signal C14f to the ventilation fan 14f and an instruction signal C38 to the cool air damper 38.

パッケージエアコン22の上部には、ヒートパイプ24が配置される。ヒートパイプ24は蒸発器24aで溶媒を蒸発させる。気化した溶媒は、冷却パイプ24cを通って凝縮器24bに移動する。凝縮器24bは溶媒を液化させる。溶媒の液化の際に潜熱分の熱を放出する。液化した溶媒は重力で冷却パイプ24cを通り、蒸発器24aに戻る。ヒートパイプ24は、圧縮器を用いないので効率はよい。しかし、外部気温に性能が左右される。   A heat pipe 24 is disposed on the package air conditioner 22. The heat pipe 24 evaporates the solvent by the evaporator 24a. The evaporated solvent moves to the condenser 24b through the cooling pipe 24c. The condenser 24b liquefies the solvent. When the solvent is liquefied, the latent heat is released. The liquefied solvent passes through the cooling pipe 24c by gravity and returns to the evaporator 24a. The heat pipe 24 is efficient because it does not use a compressor. However, performance depends on the external temperature.

また、凝縮器24bは、外気通路14に配置される。凝縮器24bはヒートパイプ24の構造上、蒸発器24aの重力上方に配置するのが望ましいからである。凝縮器24bはファンとラジエターを有し、気化した媒体を冷却することで液化する。   Further, the condenser 24 b is disposed in the outside air passage 14. This is because the condenser 24b is preferably arranged above the gravity of the evaporator 24a because of the structure of the heat pipe 24. The condenser 24b has a fan and a radiator, and liquefies by cooling the vaporized medium.

制御装置30は、CPU(Central Processor Unit)とメモリで構成されたコンピュータである。表示画面および入力手段といったマンマシン装置30mを有し、サーバー冷却システム1の状態を容易に監視できるのが望ましい。また、制御装置30はサーバー冷却システム1の各部に設けたセンサと接続されている。   The control device 30 is a computer composed of a CPU (Central Processor Unit) and a memory. It is desirable to have a man-machine device 30m such as a display screen and input means so that the state of the server cooling system 1 can be easily monitored. The control device 30 is connected to sensors provided in each part of the server cooling system 1.

サーバーラック20の前面(冷気供給口10ctとサーバーラック20の間)には、給気温度センサTSAと給気湿度センサHSAが設けられる。これらのセンサからの信号は給気乾球温度TdbSAおよび給気相対湿度RHSAとして、制御装置30に送信される。   An air supply temperature sensor TSA and an air supply humidity sensor HSA are provided on the front surface of the server rack 20 (between the cold air supply port 10ct and the server rack 20). Signals from these sensors are transmitted to the control device 30 as an air supply dry bulb temperature TdbSA and an air supply relative humidity RHSA.

また、空調装置22の還気吸い込み口22inの手前(還気吸い込み口22inとサーバーラック20との間)には、還気温度センサTREと還気湿度センサHREが設けられる。これらの信号は、還気乾球温度TdbREおよび還気相対湿度RHREとして、制御装置30に送られる。   Further, a return air temperature sensor TRE and a return air humidity sensor HRE are provided in front of the return air suction port 22in of the air conditioner 22 (between the return air suction port 22in and the server rack 20). These signals are sent to the control device 30 as the return air dry bulb temperature TdbRE and the return air relative humidity RHRE.

また、外気通路14の入口14aには、外気温度センサTOAと外気湿度センサHOAが設けられる。これらの信号は、外気乾球温度TdbOAおよび外気相対湿度RHOAとして制御装置30に送られる。   An outside air temperature sensor TOA and an outside air humidity sensor HOA are provided at the inlet 14a of the outside air passage 14. These signals are sent to the control device 30 as the outside air dry bulb temperature TdbOA and the outside air relative humidity RHOA.

また、ヒートパイプ24の蒸発器24aの入口には、ヒートパイプ蒸発器入口温度センサTHPが配置される。ヒートパイプ24の冷気の温度は、給気温度センサTSAで確認することができる。これらの信号は、蒸発器入口温度TdEVとして制御装置30に送られる。   A heat pipe evaporator inlet temperature sensor THP is disposed at the inlet of the evaporator 24a of the heat pipe 24. The temperature of the cold air in the heat pipe 24 can be confirmed by the supply air temperature sensor TSA. These signals are sent to the controller 30 as the evaporator inlet temperature TdEV.

また、空調装置22への電力配線にはパッケージエアコン電力モニタWHPACが配置され、ヒートパイプ24への電力配線にはヒートパイプ電力モニタWHHPが配置され、サーバーへの電力配線には、サーバー電力モニタWHRACが配置され、サーバー冷却システム1およびサーバーを含めた全受電電力をモニタする受電電力モニタWHRCVが設けられる。これらの信号は、パッケージエアコン消費電力WH_PAC、ヒートパイプ消費電力WH_HP、サーバーラック消費電力WH_RAC、受電電力WH_RCVとして制御装置30に送られる。また、制御装置30は、加湿器13とも接続されており、加湿器13の稼働を制御する。これらのセンサと信号は図1に列挙した。   In addition, a package air conditioner power monitor WHPAC is disposed in the power wiring to the air conditioner 22, a heat pipe power monitor WHHP is disposed in the power wiring to the heat pipe 24, and a server power monitor WHRAC is disposed in the power wiring to the server. Is provided, and a received power monitor WHRCV for monitoring all received power including the server cooling system 1 and the server is provided. These signals are sent to the control device 30 as packaged air conditioner power consumption WH_PAC, heat pipe power consumption WH_HP, server rack power consumption WH_RAC, and power reception power WH_RCV. The control device 30 is also connected to the humidifier 13 and controls the operation of the humidifier 13. These sensors and signals are listed in FIG.

図3には、サーバーラック20を背面から見た図を示す。なお、サーバーラック20の背面にはラックファン32が配置されるが、この図では省略している。サーバーラック20に隣接して、仕切壁16が設けられている。また仕切壁16は、サーバーラック20の上方にも設けられている。   FIG. 3 shows a view of the server rack 20 as viewed from the back. A rack fan 32 is disposed on the back of the server rack 20, but is omitted in this figure. A partition wall 16 is provided adjacent to the server rack 20. The partition wall 16 is also provided above the server rack 20.

サーバーラック20には、サーバーユニット20uが複数台縦方向に配置される。なお、図面では、例示のため、縦方向に1列だけ記載した。1台のサーバーユニット20uは、CPUが搭載される中央部20cと周辺機器が配置される周辺部20pから構成されている。サーバーユニット20uは、中央部20cと周辺部20pが一応に高温になるのではなく、中央部20cが最も高温になり、周辺部20pはそれほど発熱しない。   A plurality of server units 20u are arranged in the server rack 20 in the vertical direction. In the drawings, only one column is shown in the vertical direction for illustration. One server unit 20u includes a central portion 20c on which a CPU is mounted and a peripheral portion 20p on which peripheral devices are arranged. In the server unit 20u, the central portion 20c and the peripheral portion 20p are not temporarily heated, but the central portion 20c is the hottest, and the peripheral portion 20p does not generate much heat.

コールドアイル10c側から冷気(給気)が供給されると、サーバーラック20で熱交換が行われ、ホットアイル10h側に温度が高くなった冷気(還気)が排出される。サーバー冷却システム1は基本的にこのようにしてサーバーラック20を冷却する。   When cold air (supply air) is supplied from the cold aisle 10 c side, heat exchange is performed in the server rack 20, and cold air (return air) having a high temperature is discharged to the hot aisle 10 h side. The server cooling system 1 basically cools the server rack 20 in this way.

コールドアイル10cからホットアイル10hに向けて一様な風速で冷気(給気)が流れると、中央部20cを通過する給気は熱交換によって温度が上がる。しかし、周辺部20pを通過する冷気(給気)は、温度が上がることなくサーバーラック20を通過してしまう。すなわち、給気に対して行われる熱交換の効率が低くなる。図3では、温度の高い還気の部分を符号21h、還気の温度が冷気のままの部分を符号21bとした。   When cold air (supply air) flows from the cold aisle 10c toward the hot aisle 10h at a uniform wind speed, the temperature of the supply air passing through the central portion 20c rises due to heat exchange. However, the cool air (supply air) passing through the peripheral portion 20p passes through the server rack 20 without increasing the temperature. That is, the efficiency of heat exchange performed on the supply air is reduced. In FIG. 3, the portion of the return air having a high temperature is denoted by reference numeral 21h, and the portion of the return air having the cold temperature is denoted by reference numeral 21b.

図4には、上記の状態を説明するためのサーバーラック20の平面図を示す。コールドアイル10cからの冷気の給気風速がサーバーラック20全面において均一であると、熱交換は、中央部20cだけで行われる。すると、周辺部20pを通過した冷気は温度が上昇しておらず、ホットアイル10h側の還気の温度は全体として高くならない。つまり、熱交換効率が低い。   FIG. 4 is a plan view of the server rack 20 for explaining the above state. If the supply air velocity of the cold air from the cold aisle 10c is uniform over the entire surface of the server rack 20, heat exchange is performed only at the central portion 20c. Then, the temperature of the cold air that has passed through the peripheral portion 20p does not rise, and the temperature of the return air on the hot aisle 10h side does not increase as a whole. That is, the heat exchange efficiency is low.

空調装置22は、還気の温度が多少変化しても、還気の温度を所定温度まで低下させるために消費する電力はほとんど変化しない。したがって、還気の温度が低いとサーバー冷却システム1全体の効率が低下する。   Even if the temperature of the return air changes somewhat, the air conditioner 22 hardly changes the power consumed to reduce the temperature of the return air to a predetermined temperature. Therefore, when the temperature of the return air is low, the efficiency of the entire server cooling system 1 is lowered.

一方、コールドアイル10cからホットアイル10hに向かう冷気の給気速度を一様に下げたのでは、サーバーユニット20uが発生する熱を十分に冷却できない。   On the other hand, if the cooling air supply rate from the cold aisle 10c toward the hot aisle 10h is uniformly reduced, the heat generated by the server unit 20u cannot be sufficiently cooled.

そこで、ホットアイル10h側の還気温度を高くするために、本発明に係るサーバー冷却システム1では、サーバーラック20の背面の最も発熱する中央部20cの直後(ホットアイル10h側)にラックファン32を配置する。そして、空調装置22の送風量を減らし、減らした送風量の一部は、このラックファン32によって補う。図5はホットアイル10h側からサーバーラック20の背面を見た図である。中央部20cの直後にラックファン32が設けられている。ここでは、中央部20cに2列5段のラックファン32を配置した例を示す。   Therefore, in order to increase the return air temperature on the hot aisle 10h side, in the server cooling system 1 according to the present invention, the rack fan 32 immediately after the center part 20c that generates the most heat on the back of the server rack 20 (on the hot aisle 10h side). Place. Then, the air volume of the air conditioner 22 is reduced, and a part of the reduced air volume is supplemented by the rack fan 32. FIG. 5 is a view of the rear surface of the server rack 20 as viewed from the hot aisle 10h side. A rack fan 32 is provided immediately after the central portion 20c. Here, an example is shown in which two rows and five stages of rack fans 32 are arranged in the central portion 20c.

このようにラックファン32を設けることで、空調装置22の送風量を減らしても最も発熱する中央部20cを通過する風量は維持しながら、周辺部20pを通過する冷気の量を低減させることができる。そして、ホットアイル10h側の冷気温度を高くすることができる。高い温度になった冷気を空調装置22に返すことで、空調装置22の熱変換効率も高くすることができる。   By providing the rack fan 32 in this way, it is possible to reduce the amount of cool air passing through the peripheral portion 20p while maintaining the amount of air passing through the central portion 20c that generates the most heat even if the air volume of the air conditioner 22 is reduced. it can. And the cold air temperature by the side of hot aisle 10h can be made high. By returning the cool air that has reached a high temperature to the air conditioner 22, the heat conversion efficiency of the air conditioner 22 can also be increased.

図6にこの様子を示すためのサーバーラック20の平面図を示す。給気側の風量は図4の場合よりも低下させる。そして、ラックファン32によって、最も発熱する中央部20cに集中的に冷気を通過させるようにする。周辺部20pの通過風量は減り、中央部20cを通過する還気の量が増える。言い換えると、サーバーラック20を通過する冷気の風量に分布を持たせる。   FIG. 6 is a plan view of the server rack 20 for showing this state. The air volume on the supply side is made lower than in the case of FIG. The rack fan 32 causes cold air to intensively pass through the central portion 20c that generates the most heat. The amount of air passing through the peripheral portion 20p is reduced, and the amount of return air passing through the central portion 20c is increased. In other words, the distribution of the amount of cool air passing through the server rack 20 is given.

再び図1を参照して、空調装置22の送風量は、循環ファン34を循環ファンインバータ36で駆動されるようにすることで、調節することができる。また、ラックファン32も制御装置30からの指示によって、吸引量を変動させることができるようにしてもよい。制御装置30は、還気温度センサTREと還気湿度センサHREによって、還気の温湿度状態をモニタすることができる。したがって、還気の温湿度状態に基づいて、循環ファン34とラックファン32の風量を調節する。   Referring to FIG. 1 again, the air flow rate of the air conditioner 22 can be adjusted by driving the circulation fan 34 by the circulation fan inverter 36. In addition, the rack fan 32 may be configured to change the suction amount according to an instruction from the control device 30. The control device 30 can monitor the temperature and humidity state of the return air using the return air temperature sensor TRE and the return air humidity sensor HRE. Therefore, the air volume of the circulation fan 34 and the rack fan 32 is adjusted based on the temperature and humidity state of the return air.

ラックファン32は駆動させると、消費電力が発生する。しかし、周辺部20pを通過する冷気の量を低減させているため、ラックファン32の全消費電力よりも、空調装置22の送風量の低下による消費電力の低減の方を大きくすることができ、冷却システム全体の消費電力を低下させることができる。すなわち、高効率ファンを用いたラックファン32による局所排気と空調装置22の循環ファン34の風量低減を行なうことにより、循環ファン34の搬送動力低減つまり循環ファン34の消費電力を大幅に低減することができる。   When the rack fan 32 is driven, power consumption occurs. However, since the amount of cool air passing through the peripheral portion 20p is reduced, the reduction in power consumption due to the decrease in the air flow rate of the air conditioner 22 can be made larger than the total power consumption of the rack fan 32. The power consumption of the entire cooling system can be reduced. That is, local exhaust by the rack fan 32 using a high-efficiency fan and air volume reduction of the circulation fan 34 of the air conditioner 22 are performed, thereby reducing the conveyance power of the circulation fan 34, that is, greatly reducing the power consumption of the circulation fan 34. Can do.

このようなサーバー冷却システム1の動作について簡単に説明する。制御装置30は、空調装置22の定格風量の特定量だけ減少させて運転させる。今これをX%とする。つまり、空調装置22は定格風量のX%ダウンで運転される。なお、ここで定格風量とは、冷却対象となるサーバーラック20で消費される電力から求められる発熱量を冷却するために必要とされる空調装置22の風量である。またこのX%はサーバーラック20全体を冷却するための風量である。   The operation of the server cooling system 1 will be briefly described. The control device 30 is operated by reducing the specific air volume of the air conditioner 22 by a specific amount. This is now X%. That is, the air conditioner 22 is operated at X% down of the rated air volume. Here, the rated air volume is the air volume of the air conditioner 22 that is required to cool the heat generated from the power consumed by the server rack 20 to be cooled. Further, this X% is an air volume for cooling the entire server rack 20.

そして、制御装置30は、その低減された分の風量の一部をラックファン32で送風するようにラックファン32を稼動させる。つまり、中央部20cの直後にラックファン32を設けているため、サーバーラック20全体ではなく、中央部20cのみを冷却する風量だけでよく、低減された分の風量の一部で冷却が可能となる。また、ラックファン32の駆動部も、ある程度可変稼動が可能な構成であるのが望ましい。たとえば、直流制御になっている、若しくはインバータ制御になっている等であり、高効率ファンとして消費電力を低減できる。   Then, the control device 30 operates the rack fan 32 so that a part of the reduced air volume is blown by the rack fan 32. That is, since the rack fan 32 is provided immediately after the central portion 20c, only the air volume for cooling only the central portion 20c, not the entire server rack 20, is required, and cooling is possible with a part of the reduced air volume. Become. Further, it is desirable that the drive unit of the rack fan 32 also has a configuration that allows variable operation to some extent. For example, direct current control or inverter control is used, and the power consumption can be reduced as a highly efficient fan.

このように、空調装置22の風量と、ラックファン32の風量が空調装置22の定格風量となるように制御することで、冷却システム全体の電力設計を行い、空調装置22の定格風量を求めた後に、ラックファン32を導入し、消費電力の低減を行うことができる。   Thus, by controlling the air volume of the air conditioner 22 and the air volume of the rack fan 32 to be the rated air volume of the air conditioner 22, the power design of the entire cooling system was performed, and the rated air volume of the air conditioner 22 was obtained. Later, the rack fan 32 can be introduced to reduce power consumption.

また、制御装置30は、外気温を外気温度センサTOAで、外気湿度を外気湿度センサHOAで測定し、現在の外気温湿度に応じた空調装置22の低減量を決めたり、副冷却装置となるヒートパイプ24を導入するように運転を切り替える。特にヒートパイプ24を局所冷却ファンであるラックファン32と組み合わせると、非常に高い冷却効率を得ることができる。   Further, the control device 30 measures the outside air temperature with the outside air temperature sensor TOA and the outside air humidity with the outside air humidity sensor HOA, determines the reduction amount of the air conditioner 22 according to the current outside air temperature humidity, or becomes a sub-cooling device. The operation is switched to introduce the heat pipe 24. In particular, when the heat pipe 24 is combined with the rack fan 32 which is a local cooling fan, very high cooling efficiency can be obtained.

また、空調装置22からの送風量の減少は、空調装置22の運転自体を下げるだけでなく、循環路12中に設けた冷気ダンパ38で行ってもよい。送風量の低減自体がPUEを低下させることができるからである。   Further, the reduction in the amount of air blown from the air conditioner 22 may be performed not only by lowering the operation of the air conditioner 22 but also by a cold air damper 38 provided in the circulation path 12. This is because the reduction of the blowing amount itself can lower the PUE.

以下に主冷却装置となる空調装置22と、副冷却装置となるヒートパイプ24そして、局所冷却器となるラックファン32を組み合わせ、主副冷却装置だけで冷却した場合と比較し、どの程度の消費電力の改善になるかを計算した結果を示す。   Below, the air conditioner 22 that is the main cooling device, the heat pipe 24 that is the sub cooling device, and the rack fan 32 that is the local cooler are combined, and how much is consumed compared to the case where cooling is performed only by the main and sub cooling device. The result of calculating whether the power is improved is shown.

<システム構成>
以下の仕様のシステムを想定する。
<System configuration>
Assume a system with the following specifications.

a)計算機センターは、コンテナ型データセンター(完全アイルキャッピング)であるとする。なお、完全アイルキャッピングは、コールドアイル10cとホットアイル10hを仕切壁16などで完全に分離してしまう方式である。   a) The computer center is assumed to be a container type data center (complete aisle capping). The complete aisle capping is a method in which the cold aisle 10c and the hot aisle 10h are completely separated by the partition wall 16 or the like.

b)サーバーラック20は4台あるとする。1サーバーラックあたりに、1U型サーバー(250[w])が37台、1U型HUB(100[W])が2台収容されるとする。消費電力は、1サーバーラック当たり、合計9.45[kW]である。このサーバーラック20が、4台あると、9.45[kW]×4ラック=37.8[kW]がサーバー消費電力となる。   b) Assume that there are four server racks 20. Assume that 37 1U servers (250 [w]) and 2 1U HUBs (100 [W]) are accommodated per server rack. The total power consumption is 9.45 [kW] per server rack. If there are four server racks 20, the server power consumption is 9.45 [kW] × 4 racks = 37.8 [kW].

c)主冷却装置(パッケージエアコン22)は、1台用意される。仕様としては、冷却能力:40[kW]、動作係数COPは、外気温度35℃で2.5であり、外気温度10℃で3.5とする。パッケージエアコン22は、圧縮器で36.3[kW]の電力を消費する。   c) One main cooling device (package air conditioner 22) is prepared. As specifications, the cooling capacity is 40 [kW], the operation coefficient COP is 2.5 at an outside air temperature of 35 ° C., and is 3.5 at an outside air temperature of 10 ° C. The packaged air conditioner 22 consumes 36.3 [kW] of power at the compressor.

また、ヒートパイプ式補冷却器24は、外気35℃では停止し、外気温10℃ではCOPが30とする。ヒートパイプ24の消費電力は1.4kW消費とする。この運転切換は制御装置30が、外気温度センサTOAと外気湿度を外気湿度センサHOAで測定した外気温湿度に基づいて行う。   Further, the heat pipe type auxiliary cooler 24 is stopped when the outside air is 35 ° C., and the COP is 30 when the outside temperature is 10 ° C. The power consumption of the heat pipe 24 is assumed to be 1.4 kW. The operation switching is performed by the control device 30 based on the outside air temperature sensor TOA and the outside air temperature humidity measured by the outside air humidity sensor HOA.

パッケージエアコン22の冷気をコールドアイル10cへ送風する循環ファン34は、シロッコファンを用いるとする。シロッコファンの送風能力は12,000[m/h]であり、消費電力は3.7[kW]、機外静圧は100Paとする。 It is assumed that a sirocco fan is used as the circulation fan 34 that blows cool air from the packaged air conditioner 22 to the cold aisle 10c. The blowing capacity of the sirocco fan is 12,000 [m 3 / h], the power consumption is 3.7 [kW], and the external static pressure is 100 Pa.

d)ラックファン32は、80台用意されるものとする。ラックファン32は、軸流ファンを用いる。軸流ファンの送風能力は、150m/hである。ファン径はφ145mmであり、風が通過するケース面積は200×200mmである。モータの消費電力は4Wで、回転数は、2000r/minであるとする。 d) 80 rack fans 32 are prepared. The rack fan 32 uses an axial fan. The blowing capacity of the axial fan is 150 m 3 / h. The fan diameter is φ145 mm, and the case area through which wind passes is 200 × 200 mm 2 . The power consumption of the motor is 4 W, and the rotation speed is 2000 r / min.

1サーバーラックあたり、10台ずつ2列を配置する。80台のラックファン32の総送風量は、150[m/h]×2並列×10段×4ラック=12,000[m/h]となる。なお、ラックファン32が80台で主冷却循環ファン34の風量に相当する。 Two rows of 10 are arranged per server rack. The total blown amount of the 80 rack fans 32 is 150 [m 3 / h] × 2 parallel × 10 stages × 4 racks = 12,000 [m 3 / h]. The number of rack fans 32 is 80, which corresponds to the air volume of the main cooling circulation fan 34.

なお、COPは動作係数で、基本的に以下のように求められる。   Note that COP is an operation coefficient and is basically obtained as follows.

冷却機を通過する風量qtsを、qts=v×S[m]で求める。ここで、vは冷却機を通過する風速であり、Sは冷却機冷風が通過する断面積である。
冷却機に供給される還気の平均温度をT1とし、
冷却機の出口温度の平均温度をT2とし、
冷却機での消費電力をWH_TS、とし、
空気密度を1.293[kg/m]とすると、
冷却機の冷却処理熱量Qは、Q=1.293×qts×(T1−T2)[KJ]である。動作係数COPは、COP=Q/WH_TSとして算出する。
The air volume qts passing through the cooler is obtained by qts = v × S [m 3 ]. Here, v is a wind speed passing through the cooler, and S is a cross-sectional area through which the cooler cool air passes.
Let the average temperature of the return air supplied to the cooler be T1,
Let T2 be the average temperature of the cooler outlet temperature,
The power consumption in the cooler is WH_TS,
If the air density is 1.293 [kg / m 3 ],
The cooling heat quantity Q of the cooler is Q = 1.293 × qts × (T1-T2) [KJ]. The operating coefficient COP is calculated as COP = Q / WH_TS.

次に以下の条件を設定する。
ファン風量Qはモータ回転速度Nに比例し、
圧力Pはモータ回転速度の2乗Nに比例し、
ファン軸動力Pは回転速度の3乗Nに比例する。
Next, the following conditions are set.
The fan air volume Q is proportional to the motor speed N,
The pressure P is proportional to the square of the motor rotation speed N 2 ,
Fan shaft power P is proportional to the cube N 3 of the rotational speed.

図7を参照する。図7は、主冷却の循環ファン34の特性を仮定したものである。横軸は風量(m/h)であり、縦軸は静圧(Pa)である。LINE1は、最大風量の時の風量−静圧曲線で、LINE2は、半分程度の風量の時の風量−静圧曲線である。動作点は循環ファンインバータ36を用いた場合のシステムインピーダンス(LINE3)とこれらの曲線の交点として求めることができる。つまり、風量を変更すると、動作点はこのシステムインピーダンス上を移動する。 Please refer to FIG. FIG. 7 assumes the characteristics of the main cooling circulation fan 34. The horizontal axis is the air volume (m 3 / h), and the vertical axis is the static pressure (Pa). LINE1 is an air volume-static pressure curve at the maximum air volume, and LINE2 is an air volume-static pressure curve at about half the air volume. The operating point can be obtained as the intersection of these curves with the system impedance (LINE3) when the circulation fan inverter 36 is used. That is, when the air volume is changed, the operating point moves on the system impedance.

なお、冷気ダンパ38を使用してもよいが、図7の循環ファンインバータ36のシステムインピーダンスのLINE3より、縦軸に近く傾きが大きい曲線となるため、インバータのような高効率の効果は得られない。   Although the cool air damper 38 may be used, since it is a curve having a larger slope near the vertical axis than the system impedance LINE3 of the circulation fan inverter 36 in FIG. 7, a high efficiency effect like an inverter is obtained. Absent.

そして、インバータによる主冷却装置(空調装置22)の循環ファン34の定格の運転点Aから運転点Bへと、風量を1/2にすると、消費電力は1/8となる。
動作点(A)の消費電力3.7[kW]→動作点(B)の消費電力463[W] ・・(1)この動作点Aから動作点Bにインバータで風量減少を行ない、その分をラックファン32でまかなう。つまり、主冷却循環ファン34の定格風量が12,000[m/h]であるとして、ラックファン32でその1/2、すなわち、6,000[m/h]をまかなう。
When the air volume is halved from the rated operating point A to the operating point B of the circulation fan 34 of the main cooling device (air conditioner 22) by the inverter, the power consumption becomes 1/8.
Power consumption at operating point (A) 3.7 [kW] → Power consumption at operating point (B) 463 [W] (1) The air volume is reduced from this operating point A to operating point B by an inverter Will be covered by the rack fan 32. That is, assuming that the rated air volume of the main cooling circulation fan 34 is 12,000 [m 3 / h], the rack fan 32 covers half of that, that is, 6,000 [m 3 / h].

より、具体的には、ラックファン32の1台あたりの風量が75[m/h]とし、4サーバーラック分の全ラックファン風量は、(2)式のように求められる。
75[m/h]×2並列×10段×4ラック=6,000[m/h] ・・(2)
上記(2)式の全ラックファン風量で局所換気を行なう。
More specifically, the air volume per rack fan 32 is 75 [m 3 / h], and the total rack fan air volume for the four server racks is obtained as shown in equation (2).
75 [m 3 / h] × 2 parallel × 10 stages × 4 racks = 6,000 [m 3 / h] (2)
Local ventilation is performed with the total rack fan air flow of the above formula (2).

上記に相当するラックファン32の消費電力は、(3)式のように求められる。
2.4[W]×2並列×10段×4ラック=192[W] ・・(3)
(1)、(2)式の合算値よりファン消費電力合計は655[W] ・・(4)
一方、主冷却循環ファン34のみで循環を行なう場合は3.7[kW] ・・(5)
The power consumption of the rack fan 32 corresponding to the above is obtained as shown in Equation (3).
2.4 [W] × 2 parallel × 10 stages × 4 racks = 192 [W] (3)
From the sum of the formulas (1) and (2), the total fan power consumption is 655 [W] (4)
On the other hand, when circulating only with the main cooling circulation fan 34, 3.7 [kW] (5)

以上より、上記主冷却装置22の循環ファン34の1/2の風量をラックファン32でまかなう場合の循環ファン34全体の搬送電力の削減は(4)、(5)式より、以下の(6)式によって求められる。   From the above, when the rack fan 32 supplies half the air volume of the circulation fan 34 of the main cooling device 22, the reduction of the conveyance power of the entire circulation fan 34 is represented by the following (6) from the equations (4) and (5): ).

(3700−655)/3700×100=82.2% ・・・・(6)
(6)式より、82.6%の循環ファン34全体の搬送電力の削減が可能となる。
(3700-655) /3700×100=82.2% (6)
From the equation (6), it is possible to reduce the transport power of the entire circulation fan 34 by 82.6%.

これをPUEで比較してみる。PUEは外気温によって左右されるため、場合わけを以下のように行う。   Compare this with PUE. Since PUE depends on the outside air temperature, the following cases are performed.

a)夏季に主冷却循環ファン34のみで循環搬送を行なう場合のPUEは(7)式のように求められる。
PUE=(16300+3700+37800)/37800=1.53 ・・(7)
a) PUE in the case of circulating and transporting only with the main cooling circulation fan 34 in the summer is obtained as in equation (7).
PUE = (16300 + 3700 + 37800) /37800=1.53 (7)

b)夏季に主冷却装置22の循環ファン34の1/2の風量をラックファン32でまかなう場合は(8)式のようにPUEが求められる。
PUE=(16300+655+37800)/37800=1.45 ・・・(8)
b) When the rack fan 32 provides half the air volume of the circulation fan 34 of the main cooling device 22 in the summer, PUE is obtained as in equation (8).
PUE = (16300 + 655 + 37800) /37800=1.45 (8)

c)冬季に主冷却装置22の循環ファン34のみで循環搬送を行なう場合のPUEは(9)式のように求められる。
夏季と比較して、冬季における空調装置22のCOPが2.5から3.5に向上する。
PUE=(11643+3700+37800)/37800=1.4 ・・・・(9)
c) PUE in the case of carrying out circulation conveyance only with the circulation fan 34 of the main cooling device 22 in winter is calculated | required like (9) Formula.
Compared with the summer, the COP of the air conditioner 22 in the winter is improved from 2.5 to 3.5.
PUE = (11643 + 3700 + 37800) /37800=1.4 (9)

d)冬季に主冷却装置22の循環ファン34の1/2の風量をラックファン32でまかなう場合のPUEは、(10)式のように求められる。
PUE=(11643+655+37800)/37800=1.33 ・・・・(11)
d) PUE in the case where the rack fan 32 supplies half the air volume of the circulation fan 34 of the main cooling device 22 in winter is obtained as in equation (10).
PUE = (11643 + 655 + 37800) /37800=1.33 (11)

e)冬季にヒートパイプ式補冷却器24を動作させる場合のPUEは(12)式のように求められる。
外気温度10℃で空調装置22の圧縮器を完全停止できる。
PUE=(3700+37800)/37800=1.1 ・・・・・・・・・(12)
e) The PUE when the heat pipe type auxiliary cooler 24 is operated in winter is obtained as shown in the equation (12).
The compressor of the air conditioner 22 can be completely stopped at an outside air temperature of 10 ° C.
PUE = (3700 + 37800) /37800=1.1 (12)

f)冬季にヒートパイプ式補冷却器24を動作させ、なおかつ空調装置22の1/2の風量をラックファン32でまかなう場合のPUEは(13)式のように求められる。
PUE=(662+37800)/37800=1.02 ・・・・・・・・・(13)
以上より、冬季に空調装置22の1/2の風量をラックファン32でまかない、かつ、ヒートパイプ24を動作させた場合は、PUEは1.02という高効率のサーバー冷却システムが実現できる。
f) PUE in the case where the heat pipe type auxiliary cooler 24 is operated in winter and the air volume of the air conditioner 22 is supplied by the rack fan 32 is obtained as shown in the equation (13).
PUE = (662 + 37800) /37800=1.02 (13)
As described above, when the air volume of the air conditioner 22 is not covered by the rack fan 32 and the heat pipe 24 is operated in winter, a highly efficient server cooling system with PUE of 1.02 can be realized.

このように、空調装置22若しくはヒートパイプ式補冷却器24と、ラックファン32を組み合わせることで、大幅なPUEの改善が見込める。実際には、チャンバー10の大きさおよびサーバーラック20の大きさによって、空調装置22若しくはヒートパイプ式補冷却器24と、ラックファン32の風量の割合を細かく調整することが必要となる。したがって、ラックファン32のまかなう風量の割合は、特に限定されるものではない。   Thus, by combining the air conditioner 22 or the heat pipe type auxiliary cooler 24 and the rack fan 32, a significant improvement in PUE can be expected. Actually, it is necessary to finely adjust the air volume ratio between the air conditioner 22 or the heat pipe type auxiliary cooler 24 and the rack fan 32 according to the size of the chamber 10 and the size of the server rack 20. Therefore, the ratio of the air volume covered by the rack fan 32 is not particularly limited.

しかし、空調装置22若しくはヒートパイプ式補冷却器24と、ラックファン32の風量を1/2ずつにすることで、ほとんどのサーバーシステムにおいて、空調装置22若しくはヒートパイプ式補冷却器24だけで行うよりも高い効率の冷却が可能になる。   However, by reducing the air volume of the air conditioner 22 or heat pipe type auxiliary cooler 24 and the rack fan 32 by 1/2, in most server systems, only the air conditioner 22 or heat pipe type auxiliary cooler 24 is used. More efficient cooling is possible.

以上のように、本発明に係るサーバー冷却システム1によれば、以下の効果を奏することができる。   As described above, according to the server cooling system 1 according to the present invention, the following effects can be obtained.

(1)サーバー機器に局所分散としてラックファン32を設置し、主冷却であるパッケージエアコン22の循環ファン34との局所連携により、データセンター内の空間搬送動力、ホットアイル10h側からコールドアイル10c側への再循環、サーバーラック20の隙間からの逆送による無駄な搬送動力をなくすことにより、全体として冷気の搬送動力を低減することができる。   (1) A rack fan 32 is installed as local dispersion in the server equipment, and the local transport power of the package air conditioner 22 that is the main cooling is linked to the space conveyance power in the data center, from the hot aisle 10h side to the cold aisle 10c side. By eliminating wasteful transport power due to recirculation and reverse feed from the gap of the server rack 20, the transport power of cold air can be reduced as a whole.

(2)ラックファン32により、サーバー負荷(電力)に相当する換気動力を供給することにより、サーバーユニット20uを冷却する換気動力を低減することができる。
(1)(2)の効果は、サーバーの規模が大きくなるほど、すなわち、サーバーラック20の数量が増えるほど、大きくなる。
(2) By supplying the ventilation power corresponding to the server load (electric power) by the rack fan 32, the ventilation power for cooling the server unit 20u can be reduced.
The effects of (1) and (2) increase as the scale of the server increases, that is, as the number of server racks 20 increases.

(3)ラックファン32による局所換気により、サーバーラック20背面のCPU中央部20cの高温発熱領域を集中的に換気するとともに、周辺部20pの低温発熱領域の無駄な換気動力を低減することができる。   (3) The local ventilation by the rack fan 32 can intensively ventilate the high-temperature heat generation area of the CPU central portion 20c on the back of the server rack 20, and reduce unnecessary ventilation power in the low-temperature heat generation area of the peripheral portion 20p. .

(4)サーバーラック20背面から全体的に均一かつ高温の排気をパッケージエアコン22に戻すことにより、還気経路にヒートパイプ式補冷却器24が設置されている場合は、同器を高効率に高めることができる。   (4) By returning the uniform and high temperature exhaust from the back of the server rack 20 to the package air conditioner 22 as a whole, when the heat pipe type auxiliary cooler 24 is installed in the return air path, the device is made highly efficient. Can be increased.

本発明は、計算機センターのサーバー冷却システムに好適に利用することができる。   The present invention can be suitably used for a server cooling system in a computer center.

1 サーバー冷却システム
10 チャンバー
10c コールドアイル
10h ホットアイル
10ct 冷気供給口
12 循環路
13 加湿器
14 外気通路
14a 入口
14b 出口
14f 通気ファン
16 仕切壁(遮蔽手段)
20 サーバーラック
20u サーバーユニット
20c 中央部
20p 周辺部
21h 温度の高い還気の部分
21b 冷気のままの還気の部分
22 空調装置(22パッケージエアコン)
22in 還気吸い込み口
22out 冷気吹出し口
24 ヒートパイプ(24ヒートパイプ式補冷却器)
24a 蒸発器
24b 凝縮器
24c 冷却パイプ
30 制御装置
30m マンマシン装置
32 ラックファン
34 循環ファン
36 循環ファンインバータ
38 冷気ダンパ
TSA 給気温度センサ
HSA 給気湿度センサ
TRE 還気温度センサ
HRH 還気湿度センサ
TOA 外気温度センサ
HOA 外気湿度センサ
WHPAC パッケージエアコン電力モニタ
WHHP ヒートパイプ電力モニタ
WHRAC サーバー電力モニタ
WHRCV 受電電力モニタ
WHRF ラックファン電力モニタ
THP ヒートパイプ蒸発器入口温度センサ
DESCRIPTION OF SYMBOLS 1 Server cooling system 10 Chamber 10c Cold aisle 10h Hot aisle 10ct Cold air supply port 12 Circulation path 13 Humidifier 14 Outside air path 14a Inlet 14b Outlet 14f Ventilation fan 16 Partition wall (shielding means)
20 Server rack 20u Server unit 20c Central part 20p Peripheral part 21h High temperature return air part 21b Cold return air part 22 Air conditioner (22 package air conditioner)
22in return air inlet 22out cold air outlet 24 heat pipe (24 heat pipe type auxiliary cooler)
24a Evaporator 24b Condenser 24c Cooling pipe 30 Control device 30m Man-machine device 32 Rack fan 34 Circulation fan 36 Circulation fan inverter 38 Cold air damper TSA Supply air temperature sensor HSA Supply air humidity sensor TRE Return air temperature sensor HRH Return air humidity sensor TOA Outside air temperature sensor HOA Outside air humidity sensor WHPAC Package air conditioner power monitor WHHP Heat pipe power monitor WHRAC Server power monitor WHRCV Received power monitor WHRF Rack fan power monitor THP Heat pipe evaporator inlet temperature sensor

Claims (4)

チャンバー内を実質的に2分し、一方にコールドアイルを形成し、他方にホットアイルを形成し、前記コールドアイルと前記ホットアイルの境界上にサーバーラックを配置したサーバー冷却システムであって、
前記サーバーラックは、複数台縦方向に配置されたサーバーユニットで構成され、
前記サーバーユニットは、CPUが搭載された中央部と周辺機器が配置される周辺部から構成され、
前記ホットアイル側に設けられた空調装置と、
前記空調装置から前記コールドアイルまで配置された循環路と、
前記サーバーユニットの前記周辺部のホットアイル面には設けず、前記中央部のホットアイル面に設けられたラックファンと、
前記サーバーラックと前記チャンバー内壁および前記チャンバーの天井との間に設けられた仕切壁を有し、
前記ラックファンにより、前記サーバーユニットの中央部に集中的に冷気を通過させることを特徴とするサーバー冷却システム。
A server cooling system in which a chamber is substantially divided into two, a cold aisle is formed on one side, a hot aisle is formed on the other, and a server rack is disposed on a boundary between the cold aisle and the hot aisle,
The server rack is configured on the server units arranged in a plurality vertical Direction,
The server unit is composed of a central part where a CPU is mounted and a peripheral part where peripheral devices are arranged,
An air conditioner provided on the hot aisle side;
A circulation path arranged from the air conditioner to the cold aisle;
A rack fan provided on the hot aisle surface of the central part without providing it on the hot aisle surface of the peripheral part of the server unit;
A partition wall provided between the server rack and the chamber inner wall and the ceiling of the chamber;
A server cooling system, wherein the rack fan allows cold air to pass through the central portion of the server unit in a concentrated manner.
前記ホットアイル側には、ヒートパイプが備えられていることを特徴とする請求項1に記載されたサーバー冷却システム。   The server cooling system according to claim 1, wherein a heat pipe is provided on the hot aisle side. 前記ラックファンの風量は、前記サーバーラックの発熱部の消費電力に対応して可変することを特徴とする請求項1または2に記載されたサーバー冷却システム。   The server cooling system according to claim 1 or 2, wherein the air volume of the rack fan varies in accordance with the power consumption of the heat generating part of the server rack. 前記空調装置の循環ファンはインバータにより風量を制御することを特徴とする請求項1乃至3の何れか1の請求項に記載されたサーバー冷却システム。   The server cooling system according to any one of claims 1 to 3, wherein the circulation fan of the air conditioner controls an air volume by an inverter.
JP2015191945A 2015-09-29 2015-09-29 Server cooling system Active JP6478046B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015191945A JP6478046B2 (en) 2015-09-29 2015-09-29 Server cooling system
PCT/JP2016/004282 WO2017056453A1 (en) 2015-09-29 2016-09-20 Server cooling system
TW105130954A TW201712478A (en) 2015-09-29 2016-09-26 Server cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015191945A JP6478046B2 (en) 2015-09-29 2015-09-29 Server cooling system

Publications (2)

Publication Number Publication Date
JP2017068485A JP2017068485A (en) 2017-04-06
JP6478046B2 true JP6478046B2 (en) 2019-03-06

Family

ID=58422966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015191945A Active JP6478046B2 (en) 2015-09-29 2015-09-29 Server cooling system

Country Status (3)

Country Link
JP (1) JP6478046B2 (en)
TW (1) TW201712478A (en)
WO (1) WO2017056453A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123461B2 (en) 2017-04-05 2018-11-06 Google Llc Cooling electronic devices in a data center with cooling units mounted in bays of a server rack frame assembly
CN107228442A (en) * 2017-07-20 2017-10-03 郑州云海信息技术有限公司 A kind of container data center with double refrigeration systems
US11540422B2 (en) 2018-06-26 2022-12-27 Nec Corporation Server rack and method of cooling utilizing a determination of a heat exchange control parameter
JP2020021386A (en) * 2018-08-03 2020-02-06 清水建設株式会社 Server room air conditioning system, and data center
CN110388707B (en) * 2019-07-24 2020-11-10 苏州市相城区阳澄产业园发展有限公司 Self-cooling type air conditioner refrigeration auxiliary equipment utilizing gear pitch to compress air

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140421A (en) * 2007-12-10 2009-06-25 Toyo Netsu Kogyo Kk Server rack and data center provided with the same
JP5524467B2 (en) * 2008-10-31 2014-06-18 高砂熱学工業株式会社 Server room air conditioning system
JP6090715B2 (en) * 2013-02-15 2017-03-08 パナソニックIpマネジメント株式会社 Server cooling system
JP6287073B2 (en) * 2013-10-31 2018-03-07 富士通株式会社 Cooling device and cooling method

Also Published As

Publication number Publication date
WO2017056453A1 (en) 2017-04-06
JP2017068485A (en) 2017-04-06
TW201712478A (en) 2017-04-01

Similar Documents

Publication Publication Date Title
JP6478046B2 (en) Server cooling system
US7791882B2 (en) Energy efficient apparatus and method for cooling an electronics rack
JP5907247B2 (en) Integrated air conditioning system and its control device
JP4780479B2 (en) Electronic equipment cooling system
JP5804078B2 (en) Information processing device
US9158345B1 (en) Managing computer performance
US20100252233A1 (en) Cooling system
US20120128507A1 (en) Cooling arrangement and method of operation for a fan control
JP2012510145A (en) Method and sensor configuration for adjusting cooling air in equipment cabinet
US20110314853A1 (en) Cooling system
JP2009217500A (en) Cooling system and method of cooling electronic appliance
JP2014157494A (en) Server cooling system
JP2009193247A (en) Cooling system for electronic equipment
US20130050931A1 (en) System and method for cooling a processing system
JP2009231529A (en) Cooling system for electronic device
JP5921931B2 (en) Air conditioning system
JP2014006896A (en) Cooling system and cooling method using chimney effect
JP2009264599A (en) Rack air conditioning system, method for operating the same, and rack type air conditioner
JP6609975B2 (en) Duct and data center
US20100314079A1 (en) Heat dissipation device
JP2011155301A (en) Cooling system for electronic apparatus
WO2016157895A1 (en) Phase change cooling device and control method for same
CN109757085A (en) Tapered gradual-enlargement type forced air cooling system
JP5747552B2 (en) Cooling system and cooling device
JP2011163758A (en) Cooling system for electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190122

R151 Written notification of patent or utility model registration

Ref document number: 6478046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151