JP6471586B2 - Irradiation body and irradiation device - Google Patents

Irradiation body and irradiation device Download PDF

Info

Publication number
JP6471586B2
JP6471586B2 JP2015073658A JP2015073658A JP6471586B2 JP 6471586 B2 JP6471586 B2 JP 6471586B2 JP 2015073658 A JP2015073658 A JP 2015073658A JP 2015073658 A JP2015073658 A JP 2015073658A JP 6471586 B2 JP6471586 B2 JP 6471586B2
Authority
JP
Japan
Prior art keywords
heat radiating
radiating member
irradiation
substrate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015073658A
Other languages
Japanese (ja)
Other versions
JP2016194991A (en
Inventor
純 藤岡
純 藤岡
亮彦 田内
亮彦 田内
貴章 田中
貴章 田中
祥平 前田
祥平 前田
剛雄 加藤
剛雄 加藤
弘喜 日野
弘喜 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2015073658A priority Critical patent/JP6471586B2/en
Publication of JP2016194991A publication Critical patent/JP2016194991A/en
Application granted granted Critical
Publication of JP6471586B2 publication Critical patent/JP6471586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明の実施形態は、照射体及び照射装置に関する。   Embodiments described herein relate generally to an irradiation body and an irradiation apparatus.

各種のフィルムや液晶パネルの製造工程では、紫外線硬化樹脂を硬化反応させるために、紫外線照射装置が用いられている。液晶パネルの製造工程では、紫外線照射装置によって、例えば、数mJから数千mJ程度の照度で、ピーク波長が180nmから450nm程度の紫外線を照射することで、液晶パネルを硬化させている。   In the manufacturing process of various films and liquid crystal panels, an ultraviolet irradiation device is used to cure the ultraviolet curable resin. In the manufacturing process of the liquid crystal panel, the liquid crystal panel is cured by irradiating ultraviolet rays having a peak wavelength of about 180 nm to about 450 nm with an illuminance of about several mJ to several thousand mJ by an ultraviolet irradiation device.

この種の紫外線照射装置では、発光素子としての発光ダイオード(LED)を複数配列して、光源として用いる構成が知られている。LEDを用いた紫外線照射装置では、高圧放電ランプを光源として用いた構成と同程度以上の照射特性を確保するために、LEDの高出力化が進められている。   In this type of ultraviolet irradiation apparatus, a configuration in which a plurality of light emitting diodes (LEDs) as light emitting elements are arranged and used as a light source is known. In an ultraviolet irradiation device using an LED, in order to ensure irradiation characteristics equal to or higher than the configuration using a high-pressure discharge lamp as a light source, the output of the LED is being increased.

特開2010−197540号公報JP 2010-197540 A

上述したLEDを用いた紫外線照射装置では、高出力化に伴って、LEDのジャンクション温度も高くなる傾向にある。このため、LEDを用いた紫外線照射装置では、空冷方式や水冷方式の冷却構造を採用しており、LEDが実装された基板を支持する放熱部材によって冷却を行っている。このような冷却構造を用いる場合、冷却される放熱部材と、LEDが実装された基板とが適正に密着されていない場合、基板の面内方向における照度分布の変化量が大きくなる問題がある。この問題の対策としては、基板と放熱部材との密着性を高めるために、基板と放熱部材との間に、シリコングリスを塗布したり、粘着テープを貼り付けたりすることで、密着性を高める技術が知られている。   In the ultraviolet irradiation apparatus using the LED described above, the junction temperature of the LED tends to increase as the output increases. For this reason, in the ultraviolet irradiation apparatus using LED, the cooling structure of an air cooling system or a water cooling system is employ | adopted, and it cools with the thermal radiation member which supports the board | substrate with which LED was mounted. When such a cooling structure is used, there is a problem that the amount of change in the illuminance distribution in the in-plane direction of the substrate becomes large if the cooled heat dissipation member and the substrate on which the LEDs are mounted are not properly adhered. As a countermeasure against this problem, in order to improve the adhesion between the substrate and the heat dissipation member, the adhesion is improved by applying silicon grease or attaching an adhesive tape between the substrate and the heat dissipation member. Technology is known.

しかしながら、紫外線照射装置では、経年劣化や紫外線を照射する被照射物からの不純物等の付着によりLEDからの紫外線の照度が低下するため、LEDの交換が行われる可能性がある。このため、シリコングリスや粘着テープを用いて密着性を高めた場合には、LEDの劣化や点灯不能になったときにLEDの交換作業を行いにくくなり、LEDの保守性(メンテナンス性)が乏しいという問題がある。   However, in the ultraviolet irradiation device, since the illuminance of ultraviolet rays from the LED decreases due to aging or adhesion of impurities from the irradiated object that irradiates ultraviolet rays, the LED may be replaced. For this reason, when the adhesiveness is increased using silicon grease or adhesive tape, it becomes difficult to replace the LED when the LED is deteriorated or cannot be lit, and the maintainability of the LED is poor. There is a problem.

そこで、本発明は、発光素子の保守性を確保すると共に、発光素子の放熱性を高めることができる照射体及び照射装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an irradiation body and an irradiation apparatus that can ensure the maintainability of the light emitting element and can improve the heat dissipation of the light emitting element.

実施形態に係る照射体は、発光素子が設けられた基板と、前記基板が接して設けられ、前記基板から伝わる熱を放出する第1の放熱部材と、前記第1の放熱部材を支持する支持部を有し、前記支持部と前記第1の放熱部材とが接するように前記第1の放熱部材を負圧で吸引するための空気吸引路が設けられ、前記第1の放熱部材から伝わる熱を放出する第2の放熱部材と、を具備する。   The irradiation body according to the embodiment includes a substrate on which a light emitting element is provided, a first heat radiating member that is provided in contact with the substrate and that releases heat transmitted from the substrate, and a support that supports the first heat radiating member. An air suction path for sucking the first heat radiating member with a negative pressure so that the support portion and the first heat radiating member are in contact with each other, and heat transmitted from the first heat radiating member And a second heat dissipating member that emits.

本発明によれば、発光素子の保守性を確保すると共に、発光素子の放熱性を高めることを可能にする。   ADVANTAGE OF THE INVENTION According to this invention, while ensuring the maintainability of a light emitting element, it becomes possible to improve the heat dissipation of a light emitting element.

図1は、第1の実施形態に係る照射装置を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an irradiation apparatus according to the first embodiment. 図2は、第1の実施形態に係る照射装置が有する照射体を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an irradiation body included in the irradiation apparatus according to the first embodiment. 図3は、第1の実施形態における照射体を発光素子が配列された側から模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing the illuminator in the first embodiment from the side where the light emitting elements are arranged. 図4は、第1の実施形態における照射体の長手方向に直交する面を示す断面図である。FIG. 4 is a cross-sectional view showing a surface orthogonal to the longitudinal direction of the irradiation body in the first embodiment. 図5は、第1の実施形態における照射体に負圧を加えた状態を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining a state in which a negative pressure is applied to the irradiation body in the first embodiment. 図6は、第1の実施形態における照射体の長手方向の位置と相対照度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the position in the longitudinal direction of the illuminator and the relative illuminance in the first embodiment. 図7は、第2の実施形態における照射体を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an irradiating body in the second embodiment. 図8は、第3の実施形態における照射体を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an irradiator in the third embodiment.

以下で説明する実施形態に係る照射体2は、基板8と、第1の放熱部材11と、第2の放熱部材12と、を具備する。基板8には、発光素子7が設けられている。第1の放熱部材11には、基板8が接して設けられている。第1の放熱部材11は、基板8から伝わる熱を放出する。第2の放熱部材12は、第1の放熱部材11を支持する支持部13を有する。第2の放熱部材12は、第1の放熱部材11から伝わる熱を放出する。第2の放熱部材12には、支持部13と第1の放熱部材11とが接するように第1の放熱部材11を負圧で吸引するための空気吸引路14が設けられている。   The irradiation body 2 according to the embodiment described below includes a substrate 8, a first heat radiating member 11, and a second heat radiating member 12. A light emitting element 7 is provided on the substrate 8. The first heat radiating member 11 is provided in contact with the substrate 8. The first heat radiating member 11 releases heat transmitted from the substrate 8. The second heat radiating member 12 has a support portion 13 that supports the first heat radiating member 11. The second heat radiating member 12 releases heat transmitted from the first heat radiating member 11. The second heat radiating member 12 is provided with an air suction path 14 for sucking the first heat radiating member 11 with negative pressure so that the support portion 13 and the first heat radiating member 11 are in contact with each other.

また、以下で説明する実施形態に係る照射体2における第1の放熱部材11は、第2の放熱部材12の支持部13と接する第1の平面11aを有する。第2の放熱部材12の支持部13は、空気吸引路14によって第1の放熱部材11を吸引したときに第1の平面11aと接する第2の平面12aを有する。第2の平面12aには、空気吸引路14が設けられている。   Moreover, the 1st heat radiating member 11 in the irradiation body 2 which concerns on embodiment described below has the 1st plane 11a which contact | connects the support part 13 of the 2nd heat radiating member 12. FIG. The support portion 13 of the second heat radiating member 12 has a second flat surface 12a that comes into contact with the first flat surface 11a when the first heat radiating member 11 is sucked by the air suction path 14. An air suction path 14 is provided on the second plane 12a.

また、以下で説明する実施形態に係る照射体2における第2の放熱部材12の支持部13は、第1の放熱部材11をスライドすることによって第1の放熱部材11を着脱可能に支持する。   Moreover, the support part 13 of the 2nd heat radiating member 12 in the irradiation body 2 which concerns on embodiment described below supports the 1st heat radiating member 11 so that attachment or detachment is possible by sliding the 1st heat radiating member 11. FIG.

また、以下で説明する実施形態に係る照射体2における第2の放熱部材12には、冷却用流体が流れる流路18が設けられている。   Moreover, the flow path 18 through which the cooling fluid flows is provided in the second heat radiating member 12 in the irradiating body 2 according to the embodiment described below.

また、以下で説明する実施形態に係る照射装置1は、照射体2と、照射体2が着脱可能に装着される装着部3aと、を具備する。   Moreover, the irradiation apparatus 1 which concerns on embodiment described below comprises the irradiation body 2 and the mounting part 3a to which the irradiation body 2 is mounted | worn so that attachment or detachment is possible.

また、以下で説明する実施形態に係る照射装置1は、照射体2と、照射体2が着脱可能に装着される装着部3aと、照射体2の流路18を流れる冷却用流体を冷却する冷却装置5と、を具備する。   Moreover, the irradiation apparatus 1 which concerns on embodiment described below cools the cooling fluid which flows through the irradiation body 2, the mounting part 3a to which the irradiation body 2 is detachably mounted, and the flow path 18 of the irradiation body 2. And a cooling device 5.

また、以下で説明する実施形態に係る照射装置1は、第2の放熱部材12の空気吸引路14から空気を吸引する吸引装置4を更に具備する。   The irradiation device 1 according to the embodiment described below further includes a suction device 4 that sucks air from the air suction path 14 of the second heat radiating member 12.

(第1の実施形態)
(照明装置の構成)
以下、実施形態に係る照射装置について、図面を参照して説明する。図1は、第1の実施形態に係る照射装置を模式的に示す斜視図である。図1に示すように、本実施形態に係る照射装置1は、複数の照射体2と、複数の照射体2を支持する支持基体3と、各照射体2に負圧を導入する吸引装置4と、照射体2を冷却する冷却装置5と、を具備する。また、実施形態の照射装置1は、紫外線照射装置として構成されている。
(First embodiment)
(Configuration of lighting device)
Hereinafter, an irradiation apparatus according to an embodiment will be described with reference to the drawings. FIG. 1 is a perspective view schematically showing an irradiation apparatus according to the first embodiment. As shown in FIG. 1, an irradiation apparatus 1 according to this embodiment includes a plurality of irradiation bodies 2, a support base 3 that supports the plurality of irradiation bodies 2, and a suction apparatus 4 that introduces negative pressure into each irradiation body 2. And a cooling device 5 for cooling the irradiation body 2. Moreover, the irradiation apparatus 1 of embodiment is comprised as an ultraviolet irradiation device.

支持基体3は、直方体状に形成されており、複数の照射体2がそれぞれ着脱可能に装着される複数の装着部3aを有する。複数の装着部3aは、支持基体3の一側面3bに所定の間隔をあけて配置されており、支持基体3の底面3cに沿って延びて形成されている。装着部3aは、照射体2の外形形状と対応する凹状に形成されており、支持基体3の一側面3bに開口している。また、装着部3aは、照射体2の底面側を支持する支持凸部(不図示)を有する。これにより、各照射体2は、支持基体3の装着部3aに対してA方向に沿ってスライドすることで着脱可能に支持されている。なお、図示しないが、装着部3aの内面に設けられた係合凸部と、照射体2の外周面に設けられた係合溝とが係合することで、装着部3aに各照射体2が着脱可能に支持されるように構成されてもよい。   The support base 3 is formed in a rectangular parallelepiped shape, and has a plurality of mounting portions 3a to which the plurality of irradiation bodies 2 are detachably mounted. The plurality of mounting portions 3 a are arranged at a predetermined interval on one side surface 3 b of the support base 3 and are formed to extend along the bottom surface 3 c of the support base 3. The mounting portion 3 a is formed in a concave shape corresponding to the outer shape of the irradiation body 2, and is open on one side surface 3 b of the support base 3. Further, the mounting portion 3 a has a support convex portion (not shown) that supports the bottom surface side of the irradiating body 2. Thereby, each irradiation body 2 is supported so that attachment or detachment is possible by sliding along the A direction with respect to the mounting part 3a of the support base 3. In addition, although not shown in figure, the engagement convex part provided in the inner surface of the mounting part 3a, and the engagement groove provided in the outer peripheral surface of the irradiation body 2 engage, and each irradiation body 2 is attached to the mounting part 3a. May be configured to be detachably supported.

また、支持基体3の内部には、各照射体2が有する後述の空気吸引路14と連通する複数の吸引用連通路6aが設けられている。各吸引用連通路6aは、各照射体2に沿って直線状に形成されており、吸引装置4に連結されている。なお、支持基体3は、複数の吸引用連通路6aを有する構成に限定されるものではなく、各照射体2が配列された方向に対して蛇行して形成された1つの吸引用連通路が、各照射体2に跨って配置されるように構成されてもよい。   In addition, a plurality of suction communication passages 6 a that communicate with air suction passages 14, which will be described later, included in each irradiation body 2 are provided inside the support base 3. Each suction communication path 6 a is formed linearly along each irradiation body 2 and is connected to the suction device 4. The support base 3 is not limited to a configuration having a plurality of suction communication passages 6a, but has one suction communication passage formed meandering in the direction in which the illuminators 2 are arranged. Further, it may be configured so as to be disposed across the respective irradiation bodies 2.

また、支持基体3の内部には、各照射体2が有する後述の流路18と連通する複数の冷却用連通路6bが設けられている。各冷却用連通路6bは、冷却用流体を循環させる冷却装置5にそれぞれ独立して連結されている。なお、支持基体3は、独立した複数の冷却用連通路6bを有する構成に限定されるものではなく、各照射体2の流路18を互いに連結するように形成された1つの冷却用連通路を有する構成でもよい。また、支持基体3には、図示しないが、冷却装置5によって冷却用流体が循環する流路が更に設けられてもよく、照射体2と共に支持基体3を冷却することが可能になる。   In addition, a plurality of cooling communication passages 6 b communicating with a flow path 18 described later included in each irradiation body 2 is provided inside the support base 3. Each cooling communication path 6b is independently connected to a cooling device 5 that circulates a cooling fluid. The support base 3 is not limited to a configuration having a plurality of independent cooling communication paths 6b, but one cooling communication path formed so as to connect the flow paths 18 of the respective irradiation bodies 2 to each other. The structure which has this may be sufficient. Although not shown, the support base 3 may be further provided with a flow path through which a cooling fluid circulates by the cooling device 5, and the support base 3 can be cooled together with the irradiation body 2.

吸引装置4は、支持基体3の吸引用連通路6aの一端に連結される負圧導入管4aを有しており、吸引用連通路6aから空気を吸引する。図示しないが、冷却装置5は、冷却用流体を冷却する熱交換器と、冷却用流体を循環させるポンプと、を有する。また、冷却装置5は、支持基体3の冷却用連通路6bの一端に連結される連結管5aを有しており、冷却用連通路6bを通して冷却用流体を循環させる。冷却用流体としては、冷却水が用いられるが、水に限定されるものではなく、例えば油やガスが用いられてもよい。   The suction device 4 has a negative pressure introduction pipe 4a connected to one end of the suction communication path 6a of the support base 3, and sucks air from the suction communication path 6a. Although not shown, the cooling device 5 includes a heat exchanger that cools the cooling fluid and a pump that circulates the cooling fluid. The cooling device 5 has a connecting pipe 5a connected to one end of the cooling communication path 6b of the support base 3, and circulates a cooling fluid through the cooling communication path 6b. As the cooling fluid, cooling water is used, but is not limited to water, and for example, oil or gas may be used.

また、装着部3aに装着された照射体2は、照射体2の端部に設けられた接続端子(不図示)に接続された給電線を介して、図示しない電源装置と電気的に接続される。なお、給電線には、コネクタ(不図示)等の接続部材が設けられている。   In addition, the irradiating body 2 attached to the attaching portion 3a is electrically connected to a power supply device (not shown) via a feeder line connected to a connection terminal (not shown) provided at the end of the irradiating body 2. The The power supply line is provided with a connecting member such as a connector (not shown).

(照射体の構成)
図2は、第1の実施形態に係る照射装置が有する照射体を模式的に示す斜視図である。図3は、第1の実施形態における照射体を発光素子が配列された側から模式的に示す斜視図である。図4は、第1の実施形態における照射体の長手方向に直交する面を示す断面図である。図2に示すように、照射体2は、長尺状に形成されており、複数の発光素子7と、基板8と、第1の放熱部材11と、第2の放熱部材12と、を具備する。
(Structure of irradiated body)
FIG. 2 is a perspective view schematically showing an irradiation body included in the irradiation apparatus according to the first embodiment. FIG. 3 is a perspective view schematically showing the illuminator in the first embodiment from the side where the light emitting elements are arranged. FIG. 4 is a cross-sectional view showing a surface orthogonal to the longitudinal direction of the irradiation body in the first embodiment. As shown in FIG. 2, the illuminator 2 is formed in a long shape, and includes a plurality of light emitting elements 7, a substrate 8, a first heat radiating member 11, and a second heat radiating member 12. To do.

発光素子7は、紫外線を発する発光ダイオード(LED)や半導体レーザ(LD)が用いられる。なお、発光素子7は、紫外線を発する発光素子に限定されるものではなく、可視光や赤外線を発する発光素子が用いられてもよい。また、ここでいう「紫外線」とは、ピーク波長が180nm以上、450nm以下の光を指す。   As the light emitting element 7, a light emitting diode (LED) or a semiconductor laser (LD) emitting ultraviolet rays is used. The light emitting element 7 is not limited to a light emitting element that emits ultraviolet light, and a light emitting element that emits visible light or infrared light may be used. In addition, “ultraviolet rays” as used herein refers to light having a peak wavelength of 180 nm or more and 450 nm or less.

また、複数の発光素子7は、基板8の長手方向であるA方向に沿って直線状に配列されている。なお、複数の発光素子7の配置は、一列に沿って直線状に配列される構成に限定されるものではなく、複数列に沿って配列される構成や、A方向に対して千鳥状に交互に位置をずらして配列される構成でもよい。また、所望の光を照射する必要に応じて、基板8には、複数種類の発光素子が、A方向に対して交互に配置されてもよい。   The plurality of light emitting elements 7 are arranged linearly along the A direction which is the longitudinal direction of the substrate 8. The arrangement of the plurality of light-emitting elements 7 is not limited to the configuration arranged in a straight line along one row, but the configuration arranged along a plurality of rows or alternately in a staggered manner with respect to the A direction. The arrangement may be such that the positions are shifted from each other. In addition, a plurality of types of light-emitting elements may be alternately arranged on the substrate 8 with respect to the A direction, as needed.

図3に示すように、基板8は、例えば、セラミックスによって長尺状の基材が形成されており、例えば銀等によって所望のパターン状に形成された図示しないプリント配線が基材に設けられている。基板8上には、複数の発光素子7が、プリント配線と電気的に接続されて設けられている。   As shown in FIG. 3, the substrate 8 is formed with a long base material made of ceramics, for example, and a printed wiring (not shown) formed in a desired pattern shape with silver or the like is provided on the base material. Yes. A plurality of light-emitting elements 7 are provided on the substrate 8 so as to be electrically connected to the printed wiring.

また、図示しないが、基板8は、発光素子7が接続される接続端子と、電源装置から電力が供給される電源端子とを除く領域が、絶縁性を確保し、腐食を防ぐために、被覆膜によって覆われている。被覆膜は、例えば、ガラス材等を主成分とする無機材料によって形成されている。なお、必要に応じて、基板8は、発光素子7が発する光を反射する反射性を高めるために、比較的高い反射率を有する白色のアルミナによって形成されてもよい。また、基板8は、熱伝導性を高く確保するために、比較的高い熱伝導性を有する窒化アルミニウムによって形成されてもよい。   Although not shown, the substrate 8 is covered with a region other than the connection terminal to which the light emitting element 7 is connected and the power supply terminal to which power is supplied from the power supply device in order to ensure insulation and prevent corrosion. Covered by a membrane. The coating film is formed of, for example, an inorganic material whose main component is a glass material or the like. If necessary, the substrate 8 may be formed of white alumina having a relatively high reflectance in order to enhance the reflectivity for reflecting the light emitted from the light emitting element 7. Further, the substrate 8 may be formed of aluminum nitride having a relatively high thermal conductivity in order to ensure high thermal conductivity.

第1の放熱部材11は、熱伝導性を有する金属材料によってブロック状に形成されており、図2及び図3に示すように、基板8の長手方向であるA方向に沿って延びる長尺状に形成されている。第1の放熱部材11を形成する金属材料としては、例えば、比較的軽量なアルミニウム、熱伝導性が比較的高い銅を用いることが好ましい。そして、第1の放熱部材11は、外側に臨む底面上に、基板8が接して設けられており、基板8から伝わる熱を放出する。すなわち、発光素子7に生じた熱が基板8に伝わり、基板8に伝わった熱が第1の放熱部材11に伝わることで、発光素子7の熱が放出される。   The first heat radiating member 11 is formed in a block shape from a metal material having thermal conductivity, and as shown in FIGS. 2 and 3, the first heat radiating member 11 extends along the A direction which is the longitudinal direction of the substrate 8. Is formed. As a metal material for forming the first heat radiating member 11, for example, it is preferable to use relatively light aluminum and copper having relatively high thermal conductivity. The first heat radiating member 11 is provided in contact with the substrate 8 on the bottom surface facing the outside, and releases heat transmitted from the substrate 8. That is, the heat generated in the light emitting element 7 is transmitted to the substrate 8, and the heat transmitted to the substrate 8 is transmitted to the first heat radiating member 11, whereby the heat of the light emitting element 7 is released.

なお、第1の放熱部材11に関して、基板8が接して設けられた構造とは、基板8と第1の放熱部材11との間で熱が伝導するような接触状態で、基板8が第1の放熱部材11に支持された構造を指している。この接触状態は、直に接する状態と、間接的に接する状態とを含めて指している。また、間接的に接する状態は、例えば、接着剤、粘着テープを介して固定された状態や、良好な熱伝導性を有するシリコングリス等の面密着部材を介して固定された状態を含む。本実施形態では、基板8と第1の放熱部材11とが互いに密着した状態で設けられることが好ましい。   The structure in which the substrate 8 is provided in contact with the first heat radiating member 11 is in a contact state in which heat is conducted between the substrate 8 and the first heat radiating member 11, and the substrate 8 is in the first state. The structure supported by the heat radiating member 11 is indicated. This contact state indicates a direct contact state and an indirect contact state. Moreover, the state which contact | connects indirectly includes the state fixed through surface contact members, such as a silicon grease which has the state fixed with the adhesive agent and the adhesive tape, and favorable thermal conductivity, for example. In the present embodiment, it is preferable that the substrate 8 and the first heat dissipation member 11 are provided in close contact with each other.

また、第1の放熱部材11は、基板8が設けられた底面の反対側に、第2の放熱部材12と接する第1の平面11aが形成されている。また、第1の放熱部材11には、図3及び図4に示すように、A方向に直交するB方向において、第1の平面11aの両側に、第2の放熱部材12に係合する係合凸部11bが、A方向に沿って形成されている。   The first heat radiating member 11 has a first flat surface 11 a in contact with the second heat radiating member 12 on the opposite side of the bottom surface on which the substrate 8 is provided. Further, as shown in FIGS. 3 and 4, the first heat radiating member 11 is engaged with the second heat radiating member 12 on both sides of the first plane 11a in the B direction orthogonal to the A direction. Joint convex part 11b is formed along the A direction.

第2の放熱部材12は、熱伝導性を有する金属材料によってブロック状に形成されており、図2に示すように、基板8の長手方向であるA方向に沿って延びる長尺状に形成されている。第2の放熱部材12を形成する金属材料としては、第1の放熱部材11と同様に、例えば、比較的軽量なアルミニウム、熱伝導性が比較的高い銅を用いることが好ましい。そして、第2の放熱部材12は、第1の放熱部材11から伝わる熱を放出する。   The second heat radiating member 12 is formed in a block shape by a metal material having thermal conductivity, and is formed in a long shape extending along the A direction which is the longitudinal direction of the substrate 8 as shown in FIG. ing. As the metal material forming the second heat radiating member 12, it is preferable to use, for example, relatively light aluminum and copper having a relatively high thermal conductivity, like the first heat radiating member 11. Then, the second heat radiating member 12 releases heat transmitted from the first heat radiating member 11.

第2の放熱部材12は、第1の放熱部材11を支持する支持部13を有する。支持部13は、第1の放熱部材11の外形形状に対応する凹状に形成されており、第1の放熱部材11をA方向に対してスライドすることで着脱可能に支持している。また、支持部13の内側には、支持部13に支持された第1の放熱部材11の第1の平面11aに対向する位置に、第1の平面11aと接する第2の平面12aが形成されている。また、図2及び図4に示すように、支持部13は、B方向における両側に、支持部13に支持された第1の放熱部材11の係合凸部11bと係合する係合溝12bが、A方向に沿って形成されている。   The second heat radiating member 12 has a support portion 13 that supports the first heat radiating member 11. The support portion 13 is formed in a concave shape corresponding to the outer shape of the first heat radiating member 11 and detachably supports the first heat radiating member 11 by sliding in the A direction. In addition, a second flat surface 12 a that is in contact with the first flat surface 11 a is formed inside the support portion 13 at a position facing the first flat surface 11 a of the first heat radiating member 11 supported by the support portion 13. ing. As shown in FIGS. 2 and 4, the support portion 13 has engagement grooves 12 b that engage with the engagement convex portions 11 b of the first heat radiation member 11 supported by the support portion 13 on both sides in the B direction. Are formed along the A direction.

また、支持部13には、支持部13の第2の平面12aと第1の放熱部材11の第1の平面11aとが接するように第1の放熱部材11を負圧で吸引するための空気吸引路14が設けられている。空気吸引路14は、図2に示すように、第2の平面12aに沿ってA方向に延びる吸引溝14aと、第2の平面12aに直交する方向に延びる複数の吸引穴14bと、を有する。複数の吸引穴14bは、A方向に対して所定の間隔をあけて配置されており、一端が吸引溝14aに連結されている。また、各吸引穴14bは、他端が、第2の放熱部材12の外部に貫通されている。   In addition, air for sucking the first heat radiating member 11 with negative pressure so that the second flat surface 12 a of the support portion 13 and the first flat surface 11 a of the first heat radiating member 11 are in contact with the support portion 13. A suction path 14 is provided. As shown in FIG. 2, the air suction path 14 has a suction groove 14a extending in the A direction along the second plane 12a, and a plurality of suction holes 14b extending in a direction orthogonal to the second plane 12a. . The plurality of suction holes 14b are arranged at a predetermined interval in the A direction, and one end is connected to the suction groove 14a. Further, the other end of each suction hole 14 b is penetrated to the outside of the second heat radiating member 12.

また、第2の放熱部材12の内部には、冷却用流体が流れる流路18が設けられている。流路18は、第2の放熱部材12のA方向に沿って延びると共に、A方向の一端側で折り返したU字状に形成されている。また、U字状の流路18の両端は、第2の放熱部材12の端面に貫通されており、支持基体3の冷却用連通路6bに連結される。   A flow path 18 through which a cooling fluid flows is provided inside the second heat radiating member 12. The flow path 18 extends along the A direction of the second heat radiating member 12 and is formed in a U shape that is folded back at one end side in the A direction. Further, both ends of the U-shaped flow path 18 are penetrated by the end face of the second heat radiating member 12, and are connected to the cooling communication path 6 b of the support base 3.

また、第1の放熱部材11の第1の平面11aと、第2の放熱部材12の第2の平面12aは、密着性を高めるために、高精度に平面度が確保されることが望ましい。また、発光素子7が実装された基板8は、必要に応じて、光透過性、例えば紫外線の透過性を有するカバー部材(不図示)によって気密に覆われてもよい。このようなカバー部材を用いることで、外気によって発光素子7や基板8が劣化することを抑えることが可能になる。   In addition, it is desirable that the first flat surface 11a of the first heat radiating member 11 and the second flat surface 12a of the second heat radiating member 12 have high flatness with high accuracy in order to improve adhesion. Further, the substrate 8 on which the light emitting element 7 is mounted may be airtightly covered with a cover member (not shown) having light permeability, for example, ultraviolet ray permeability, as necessary. By using such a cover member, it is possible to suppress deterioration of the light emitting element 7 and the substrate 8 due to outside air.

(照射体における吸引動作)
図5は、第1の実施形態における照射体2に負圧を加えた状態を説明するための断面図である。この図5は、上述の図4と同様に、照射体2の長手方向に直交する面で示す断面図である。また、図4は、照射体2に負圧を加えていない状態を示している。図4及び図5に示すように、照射体2では、吸引装置4によって空気吸引路14の吸引穴14bから空気が吸引されることで、第2の放熱部材12の支持部13内に、吸引溝14aに沿って負圧が生じる。この負圧によって、支持部13に支持された第1の放熱部材11は、第2の放熱部材12に吸引される。第1の放熱部材11は、空気吸引路14によって吸引されることで、第1の平面11a全体が、第2の放熱部材12の第2の平面12aに接触し、密着状態になる。これにより、第1の放熱部材11と第2の放熱部材12との熱伝導性が高められるので、第1及び第2の放熱部材11,12を介して発光素子7を効率的に冷却することが可能になる。
(Suction operation in irradiated body)
FIG. 5 is a cross-sectional view for explaining a state in which a negative pressure is applied to the irradiating body 2 in the first embodiment. FIG. 5 is a cross-sectional view showing a plane orthogonal to the longitudinal direction of the irradiating body 2 in the same manner as FIG. 4 described above. FIG. 4 shows a state where no negative pressure is applied to the irradiation body 2. As shown in FIGS. 4 and 5, in the irradiating body 2, the suction device 4 sucks air from the suction hole 14 b of the air suction path 14, thereby sucking into the support portion 13 of the second heat radiating member 12. A negative pressure is generated along the groove 14a. Due to this negative pressure, the first heat radiating member 11 supported by the support portion 13 is attracted to the second heat radiating member 12. The first heat radiating member 11 is sucked by the air suction path 14, so that the entire first flat surface 11 a comes into contact with the second flat surface 12 a of the second heat radiating member 12 and is brought into a close contact state. As a result, the thermal conductivity between the first heat radiating member 11 and the second heat radiating member 12 is enhanced, so that the light-emitting element 7 can be efficiently cooled via the first and second heat radiating members 11 and 12. Is possible.

また、照射体2には、例えば、発光素子7を点灯させる点灯時に常に負圧が導入されることで、第1の放熱部材11と第2の放熱部材12との密着性が保たれるように構成されている。なお、照射体2には、所定のタイミングで間欠的に負圧が導入されることで、第1の放熱部材11と第2の放熱部材12との密着性が必要に応じて高められるように構成されてもよい。   Further, for example, a negative pressure is always introduced into the illuminator 2 when the light emitting element 7 is turned on, so that the adhesion between the first heat radiating member 11 and the second heat radiating member 12 is maintained. It is configured. In addition, the negative pressure is intermittently introduced into the irradiating body 2 at a predetermined timing so that the adhesion between the first heat radiating member 11 and the second heat radiating member 12 is enhanced as necessary. It may be configured.

次に、照射体2における照度分布について、吸引を行った場合と、吸引を行わない場合とを比較して説明する。図6は、第1の実施形態における照射体2のA方向に沿った長手方向の位置と相対照度との関係を示す図である。図6において、縦軸が相対照度(%)を示し、横軸が、照射体2のA方向に沿った長手方向における中心位置を0としたときの位置(mm)を示す。また、図6において、吸引を行った場合を実線で示し、吸引を行わない場合を破線で示す。   Next, the illuminance distribution in the irradiation body 2 will be described by comparing the case where suction is performed and the case where suction is not performed. FIG. 6 is a diagram illustrating the relationship between the position in the longitudinal direction along the A direction of the illuminator 2 and the relative illuminance in the first embodiment. In FIG. 6, the vertical axis represents relative illuminance (%), and the horizontal axis represents the position (mm) when the center position in the longitudinal direction along the A direction of the irradiating body 2 is zero. Moreover, in FIG. 6, the case where suction is performed is indicated by a solid line, and the case where suction is not performed is indicated by a broken line.

また、照度の測定では、照度計としてウシオ電機社製のUIT=250、照度計のセンサとしてウシオ電機社製のJVD−S365を用いて測定を行った。また、発光素子と照度計のセンサとの間の距離を19.5mmとし、冷却用流体として水温が19〜21℃の冷却水を用いた。   In the measurement of illuminance, UIT = 250 manufactured by USHIO INC. Was used as the illuminance meter, and JVD-S365 manufactured by USHIO ELECTRIC CO., LTD. Was used as the sensor of the illuminometer. Moreover, the distance between a light emitting element and the sensor of an illuminometer was 19.5 mm, and the cooling water whose water temperature was 19-21 degreeC was used as a cooling fluid.

図6に示すように、照射体2では、複数の発光素子7が配列された長手方向における中央での放熱性が相対的に低く、発光素子7の発熱に伴って、長手方向に沿って照度分布が生じる。吸引を行わずに密着性が相対的に低い場合には、破線で示すように、照射体2の長手方向における中心位置で相対照度が低下している。一方、吸引を行うことで密着性が相対的に高められた場合には、実線で示すように、特に、照射体2の長手方向における中心位置で生じる相対照度の低下が小さくなった。したがって、吸引を行うことで、長手方向における照度分布の変化が抑えられ、照度分布が均一化された。   As shown in FIG. 6, in the irradiating body 2, the heat dissipation at the center in the longitudinal direction where the plurality of light emitting elements 7 are arranged is relatively low, and the illuminance along the longitudinal direction as the light emitting elements 7 generate heat. Distribution occurs. When the adhesion is relatively low without performing suction, the relative illuminance decreases at the center position in the longitudinal direction of the irradiating body 2 as shown by the broken line. On the other hand, when the adhesion is relatively improved by performing suction, the decrease in relative illuminance that occurs particularly at the center position in the longitudinal direction of the illuminator 2 is reduced, as shown by the solid line. Therefore, by performing suction, a change in the illuminance distribution in the longitudinal direction is suppressed, and the illuminance distribution is made uniform.

第1の実施形態の照射体2は、基板8が接して設けられた第1の放熱部材11と、第1の放熱部材11と支持部13とが接するように第1の放熱部材11を負圧で吸引するための空気吸引路14が設けられた第2の放熱部材12と、を有する。これにより、基板8が接して設けられた第1の放熱部材11が、第2の放熱部材12に対して容易に分離可能になる。このため、発光素子7の劣化時や故障時等のメンテナンス作業での保守性を確保することができる。加えて、負圧の吸引によって第1の放熱部材11と第2の放熱部材12との密着性が高められるので、発光素子7の放熱性を高めることができる。したがって、基板8に複数の発光素子7が配列された構成において、複数の発光素子7による照度分布の変化を抑える、すなわち、照度分布を均一化することができる。   The irradiating body 2 of the first embodiment has the first heat radiating member 11 negative so that the first heat radiating member 11 provided in contact with the substrate 8 is in contact with the first heat radiating member 11 and the support portion 13. And a second heat radiating member 12 provided with an air suction path 14 for sucking with pressure. Thereby, the first heat radiating member 11 provided in contact with the substrate 8 can be easily separated from the second heat radiating member 12. For this reason, maintainability in maintenance work such as when the light emitting element 7 is deteriorated or fails can be ensured. In addition, since the adhesion between the first heat radiating member 11 and the second heat radiating member 12 is enhanced by the suction of the negative pressure, the heat radiating property of the light emitting element 7 can be enhanced. Therefore, in the configuration in which the plurality of light emitting elements 7 are arranged on the substrate 8, a change in the illuminance distribution due to the plurality of light emitting elements 7 can be suppressed, that is, the illuminance distribution can be made uniform.

また、照射体2によれば、空気吸引路14によって第1の放熱部材11を吸引したときに第1の平面11aと接する第2の平面12aに、空気吸引路14が設けられている。これにより、空気吸引路14によって生じる負圧で、第1の平面11aと第2の平面12aとが良好に面接触するので、第1の放熱部材11と第2の放熱部材12と間の熱伝導性を適正に確保し、放熱性を高めることができる。   Further, according to the irradiating body 2, the air suction path 14 is provided on the second plane 12 a that contacts the first plane 11 a when the first heat radiating member 11 is sucked by the air suction path 14. As a result, the first flat surface 11a and the second flat surface 12a are in good surface contact with each other by the negative pressure generated by the air suction path 14, so that the heat between the first heat radiating member 11 and the second heat radiating member 12 is Conductivity can be ensured appropriately and heat dissipation can be enhanced.

また、照射体2は、第2の放熱部材12の支持部13に対して第1の放熱部材11がスライド可能に支持されているので、第1の放熱部材11を容易に着脱することが可能になり、発光素子7の保守性を更に高めることができる。   Moreover, since the 1st heat radiating member 11 is supported so that the irradiation body 2 can slide with respect to the support part 13 of the 2nd heat radiating member 12, the 1st heat radiating member 11 can be attached or detached easily. Thus, the maintainability of the light emitting element 7 can be further improved.

また、第1の実施形態によれば、発光素子7の冷却効率が高められるので、発光素子7の温度の上昇によって照度が低下することを抑え、照射体2から照射される照射エネルギ(照度)が安定するまでにかかる時間(立ち上がりに要する時間)を短縮することが可能になる。したがって、例えば紫外線硬化樹脂を用いる工程において、1つの照射対象物あたりの処理時間(タクトタイム)を短縮し、生産性を向上することが可能になる。   Further, according to the first embodiment, since the cooling efficiency of the light emitting element 7 is increased, it is possible to suppress a decrease in illuminance due to an increase in the temperature of the light emitting element 7 and to irradiate irradiation energy (illuminance) irradiated from the irradiation body 2. It becomes possible to shorten the time (time required for the start-up) required for the to stabilize. Therefore, for example, in the process using an ultraviolet curable resin, it is possible to shorten the processing time (tact time) per irradiation object and improve the productivity.

また、第1の実施形態によれば、長尺状の照射体2の長手方向における照度分布を均一化することができるので、特に、長辺が1mから2m程度の大型の液晶パネルの製造に好適であり、大型の液晶パネルの製造品質の向上につながる。   In addition, according to the first embodiment, the illuminance distribution in the longitudinal direction of the elongated illuminator 2 can be made uniform, and therefore, particularly for manufacturing a large liquid crystal panel having a long side of about 1 m to 2 m. It is suitable and leads to improvement of manufacturing quality of a large liquid crystal panel.

以下、他の実施形態の照射装置が有する照射体について図面を参照して説明する。なお、他の実施形態において、第1の実施形態と同一の構成部材には、第1の実施形態と同一符号を付して説明を省略する。   Hereinafter, an irradiation body included in an irradiation apparatus according to another embodiment will be described with reference to the drawings. In other embodiments, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.

(第2の実施形態)
図7は、第2の実施形態における照射体を模式的に示す断面図である。第2の実施形態は、第1の放熱部材が平板状に形成された点が、第1の実施形態と異なる。図7に示すように、第2の実施形態における照射体20は、複数の発光素子7と、基板8と、第1の放熱部材21と、第2の放熱部材22と、を具備する。
(Second Embodiment)
FIG. 7 is a cross-sectional view schematically showing an irradiating body in the second embodiment. The second embodiment is different from the first embodiment in that the first heat radiating member is formed in a flat plate shape. As shown in FIG. 7, the irradiating body 20 in the second embodiment includes a plurality of light emitting elements 7, a substrate 8, a first heat radiating member 21, and a second heat radiating member 22.

第1の放熱部材21は、熱伝導性を有する金属材料によって平板状に形成されており、基板8のA方向に沿って延びる長尺状に形成されている。また、第1の放熱部材21は、基板8が設けられた底面の反対側に、第2の放熱部材22と接する第1の平面21aが形成されている。   The first heat radiating member 21 is formed in a flat plate shape from a metal material having thermal conductivity, and is formed in a long shape extending along the A direction of the substrate 8. The first heat radiating member 21 has a first flat surface 21 a in contact with the second heat radiating member 22 on the opposite side of the bottom surface on which the substrate 8 is provided.

第2の放熱部材22は、熱伝導性を有する金属材料によってブロック状に形成されており、第1の放熱部材21を支持する支持部23を有する。支持部23は、第1の放熱部材21の外形形状に対応する凹状に形成されており、第1の放熱部材21をA方向にスライドすることで着脱可能に支持している。また、支持部23の内側には、支持部23に支持された第1の放熱部材21の第1の平面21aに対向する位置に、第1の平面21aと接する第2の平面22aが形成されている。   The second heat radiating member 22 is formed in a block shape from a metal material having thermal conductivity, and has a support portion 23 that supports the first heat radiating member 21. The support part 23 is formed in a concave shape corresponding to the outer shape of the first heat radiating member 21 and detachably supports the first heat radiating member 21 by sliding in the A direction. In addition, a second flat surface 22 a that is in contact with the first flat surface 21 a is formed inside the support portion 23 at a position facing the first flat surface 21 a of the first heat radiating member 21 supported by the support portion 23. ing.

また、支持部23には、第1の放熱部材21を負圧で吸引するための空気吸引路24が設けられている。空気吸引路24は、第1の実施形態における空気吸引路14と同様に、吸引溝24aと、複数の吸引穴24bと、を有する。また、図7に示すように、支持部23は、B方向における両側に、支持部23に支持された第1の放熱部材21の両端と係合する係合溝22bが、A方向に沿って形成されている。また、第2の放熱部材22の内部には、第1の実施形態における流路18と同様に、冷却用流体が流れる流路28が設けられている。   Further, the support portion 23 is provided with an air suction path 24 for sucking the first heat radiating member 21 with a negative pressure. The air suction path 24 has a suction groove 24a and a plurality of suction holes 24b, similarly to the air suction path 14 in the first embodiment. Further, as shown in FIG. 7, the support portion 23 has engaging grooves 22 b that engage with both ends of the first heat radiation member 21 supported by the support portion 23 along the A direction on both sides in the B direction. Is formed. In addition, a flow path 28 through which a cooling fluid flows is provided inside the second heat radiating member 22, similarly to the flow path 18 in the first embodiment.

以上のように構成された照射体20においても、吸引装置4によって空気吸引路24から空気が吸引されることで、支持部23に支持された第1の放熱部材21が、第2の放熱部材22に吸引される。このとき、第1の放熱部材21の第1の平面21a全体が、第2の放熱部材22の第2の平面22aに接触し、密着状態になる。これにより、第1の放熱部材21と第2の放熱部材22との熱伝導性が高められるので、第1及び第2の放熱部材21,22を介して発光素子7を効率的に冷却することが可能になる。   Also in the irradiation body 20 configured as described above, when the air is sucked from the air suction path 24 by the suction device 4, the first heat radiating member 21 supported by the support portion 23 becomes the second heat radiating member. 22 is sucked. At this time, the entire first flat surface 21 a of the first heat radiating member 21 comes into contact with the second flat surface 22 a of the second heat radiating member 22 and is brought into a close contact state. As a result, the thermal conductivity between the first heat radiating member 21 and the second heat radiating member 22 is enhanced, so that the light-emitting element 7 is efficiently cooled via the first and second heat radiating members 21 and 22. Is possible.

第2の実施形態の照射体20においても、第1の実施形態と同様に、発光素子7の保守性を確保すると共に、発光素子7の放熱性を高めることができる。したがって、複数の発光素子7による照度分布を均一化することができる。   Also in the irradiation body 20 of 2nd Embodiment, while maintaining the maintainability of the light emitting element 7 similarly to 1st Embodiment, the heat dissipation of the light emitting element 7 can be improved. Therefore, the illuminance distribution by the plurality of light emitting elements 7 can be made uniform.

また、第2の実施形態においても、第2の放熱部材22の支持部23に対して第1の放熱部材21をスライドすることで、第1の放熱部材21を支持部23に対して容易に着脱することが可能になるので、発光素子7の保守性を更に高めることができる。   Also in the second embodiment, the first heat radiating member 21 can be easily moved with respect to the support portion 23 by sliding the first heat radiating member 21 with respect to the support portion 23 of the second heat radiating member 22. Since it becomes possible to attach and detach, the maintainability of the light emitting element 7 can be further enhanced.

また、第2の実施形態では、形状が簡素な平板状に形成された第1の放熱部材21を用いることで、第1の放熱部材21を容易に形成することが可能であり、照射体20の生産性を高めることができる。   Moreover, in 2nd Embodiment, the 1st heat radiating member 21 can be easily formed by using the 1st heat radiating member 21 formed in the flat plate shape with a simple shape, and the irradiation body 20 Can increase productivity.

(第3の実施形態)
図8は、第3の実施形態における照射体を模式的に示す断面図である。第3の実施形態は、第1及び第2の放熱部材の構成が、第1の実施形態と異なる。図8に示すように、第3の実施形態における照射体30は、複数の発光素子7と、基板8と、第1の放熱部材31と、第2の放熱部材32と、を具備する。
(Third embodiment)
FIG. 8 is a cross-sectional view schematically showing an irradiator in the third embodiment. The third embodiment differs from the first embodiment in the configuration of the first and second heat radiating members. As shown in FIG. 8, the irradiator 30 in the third embodiment includes a plurality of light emitting elements 7, a substrate 8, a first heat radiating member 31, and a second heat radiating member 32.

第1の放熱部材31は、熱伝導性を有する金属材料によってほぼ断面半円状に形成されており、基板8のA方向に沿って延びる長尺状に形成されている。また、第1の放熱部材31は、基板8が設けられた底面の反対側に、第2の放熱部材32と接する円弧状の第1の曲面31aが形成されている。   The first heat radiating member 31 is formed in a substantially semicircular cross section by a metal material having thermal conductivity, and is formed in a long shape extending along the A direction of the substrate 8. The first heat radiating member 31 is formed with an arc-shaped first curved surface 31 a in contact with the second heat radiating member 32 on the opposite side of the bottom surface on which the substrate 8 is provided.

第2の放熱部材32は、熱伝導性を有する金属材料によってブロック状に形成されており、第1の放熱部材31を支持する支持部33を有する。支持部33は、第1の放熱部材31の外形形状に対応する凹状に形成されており、第1の放熱部材31をA方向にスライドすることで着脱可能に支持している。また、支持部33の内側には、支持部33に支持された第1の放熱部材31の第1の曲面31aに対向する位置に、第1の曲面31aと接する円弧状の第2の曲面32aが形成されている。   The second heat radiating member 32 is formed in a block shape from a metal material having thermal conductivity, and has a support portion 33 that supports the first heat radiating member 31. The support portion 33 is formed in a concave shape corresponding to the outer shape of the first heat radiating member 31, and detachably supports the first heat radiating member 31 by sliding in the A direction. Further, inside the support portion 33, an arc-shaped second curved surface 32 a that contacts the first curved surface 31 a at a position facing the first curved surface 31 a of the first heat radiating member 31 supported by the support portion 33. Is formed.

また、支持部33には、第1の放熱部材31を負圧で吸引するための複数の空気吸引路34が設けられている。各空気吸引路34は、第2の曲面32aに、所定の間隔をあけて配置されており、第1の放熱部材31におけるB方向に平行な断面の中心に対してほぼ放射状に延びて形成されている。また、各空気吸引路34は、第1の実施形態における空気吸引路14と同様に、吸引溝34aと、複数の吸引穴34bと、を有する。   In addition, the support portion 33 is provided with a plurality of air suction paths 34 for sucking the first heat radiating member 31 with a negative pressure. Each air suction path 34 is disposed at a predetermined interval on the second curved surface 32a, and is formed to extend substantially radially with respect to the center of the cross section parallel to the B direction in the first heat radiating member 31. ing. Each air suction path 34 includes a suction groove 34a and a plurality of suction holes 34b, as in the air suction path 14 in the first embodiment.

また、図7に示すように、支持部33は、B方向における両側に、支持部33に支持された第1の放熱部材31の両端と係合する係合溝32bが、A方向に沿って形成されている。また、第2の放熱部材32の内部には、第1の実施形態における流路18と同様に、冷却用流体が流れる流路38が設けられている。また、流路38は、空気吸引路34と交差しないように蛇行して配置された1つの流路として形成されている。   Further, as shown in FIG. 7, the support portion 33 has engaging grooves 32 b that engage with both ends of the first heat radiation member 31 supported by the support portion 33 along the A direction on both sides in the B direction. Is formed. In addition, a flow path 38 through which a cooling fluid flows is provided inside the second heat radiating member 32, similarly to the flow path 18 in the first embodiment. Further, the flow path 38 is formed as one flow path that is meandering so as not to intersect the air suction path 34.

以上のように構成された照射体30においても、吸引装置4によって空気吸引路34から空気が吸引されることで、支持部33に支持された第1の放熱部材31が、第2の放熱部材32に吸引される。このとき、第1の放熱部材31の第1の曲面31a全体が、第2の放熱部材32の第2の曲面32aに接触し、密着状態になる。これにより、第1の放熱部材31と第2の放熱部材32との熱伝導性が高められるので、第1及び第2の放熱部材31,32を介して発光素子7を効率的に冷却することが可能になる。   Also in the irradiation body 30 configured as described above, when the air is sucked from the air suction path 34 by the suction device 4, the first heat radiating member 31 supported by the support portion 33 becomes the second heat radiating member. 32 is aspirated. At this time, the entire first curved surface 31 a of the first heat radiating member 31 comes into contact with the second curved surface 32 a of the second heat radiating member 32 and is brought into a close contact state. As a result, the thermal conductivity between the first heat radiating member 31 and the second heat radiating member 32 is enhanced, so that the light-emitting element 7 is efficiently cooled via the first and second heat radiating members 31 and 32. Is possible.

第3の実施形態の照射体30においても、第1及び第2の実施形態と同様に、発光素子7の保守性を確保すると共に、発光素子7の放熱性を高めることができる。したがって、複数の発光素子7による照度分布を均一化することができる。   Also in the irradiation body 30 of 3rd Embodiment, while maintaining the maintainability of the light emitting element 7 similarly to 1st and 2nd embodiment, the heat dissipation of the light emitting element 7 can be improved. Therefore, the illuminance distribution by the plurality of light emitting elements 7 can be made uniform.

また、第3の実施形態において、第2の放熱部材32の支持部33に対して第1の放熱部材31をスライドすることで、第1の放熱部材31を支持部33に対して容易に着脱することが可能になるので、発光素子7の保守性を更に高めることができる。   In the third embodiment, the first heat radiating member 31 can be easily attached to and detached from the support portion 33 by sliding the first heat radiating member 31 with respect to the support portion 33 of the second heat radiating member 32. Therefore, the maintainability of the light emitting element 7 can be further improved.

加えて、第3の実施形態では、複数の空気吸引路34によって第1の放熱部材31が複数の箇所で吸引されるので、吸引力を更に高め、第1の放熱部材31と第2の放熱部材32の密着状態の安定性を高めることが可能になる。   In addition, in the third embodiment, since the first heat radiating member 31 is sucked at a plurality of locations by the plurality of air suction paths 34, the suction force is further increased, and the first heat radiating member 31 and the second heat radiating member are sucked. It becomes possible to improve the stability of the close contact state of the member 32.

また、第3の実施形態は、第1の放熱部材31が第1の曲面31aを有することで、他の実施形態に比べて、第1の放熱部材31と第2の放熱部材32との接触面積を増加させることが可能になるので、発光素子7の放熱性を更に高めることができる。   In the third embodiment, the first heat radiating member 31 has the first curved surface 31a, so that the first heat radiating member 31 and the second heat radiating member 32 are in contact with each other as compared with the other embodiments. Since the area can be increased, the heat dissipation of the light emitting element 7 can be further enhanced.

なお、本実施形態では、第1及び第2の放熱部材を冷却するために水冷方式が用いられたが、水冷方式に限定されるものではない。すなわち、第2の放熱部材には、流路が設けられたが、流路が設けられる構成に限定するものではない。第1及び第2の放熱部材は、自然空冷や強制空冷等の空冷方式で冷却するように構成されてもよい。空冷方式を採る場合、例えば、第2の放熱部材には、長手方向における端面や、発光素子によって光を照射する底面に、複数の放熱フィンが設けられてもよい。   In the present embodiment, the water cooling method is used to cool the first and second heat radiating members, but the present invention is not limited to the water cooling method. That is, although the flow path is provided in the second heat radiating member, it is not limited to the configuration in which the flow path is provided. The first and second heat radiating members may be configured to be cooled by an air cooling method such as natural air cooling or forced air cooling. In the case of adopting the air cooling method, for example, the second heat radiating member may be provided with a plurality of heat radiating fins on an end face in the longitudinal direction or a bottom surface irradiated with light by the light emitting element.

また、本実施形態は、紫外線を照射する照射装置として構成されたが、可視光を発する発光素子を用いることで、照明光を照射する照明装置として構成されてもよい。また、本実施形態では、第2の放熱部材の支持部に設けられた空気吸引路によって第1の放熱部材が吸引されるように構成されたが、例えば、第2の放熱部材の外側に配置された吸引機構によって第1の放熱部材が吸引されるように構成されてもよい。   Moreover, although this embodiment was comprised as an irradiation apparatus which irradiates an ultraviolet-ray, you may be comprised as an illuminating device which irradiates illumination light by using the light emitting element which emits visible light. In the present embodiment, the first heat radiating member is sucked by the air suction path provided in the support portion of the second heat radiating member. For example, the first heat radiating member is disposed outside the second heat radiating member. The first heat dissipating member may be sucked by the sucked mechanism.

本発明の実施形態を説明したが、実施形態は、例として提示したものであり、本発明の範囲を限定することを意図していない。実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、本発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although the embodiments of the present invention have been described, the embodiments are presented as examples and are not intended to limit the scope of the present invention. The embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The embodiments and modifications thereof are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalents thereof.

1 照射装置
2 照射体
7 発光素子
8 基板
11 第1の放熱部材
11a 第1の平面
12 第2の放熱部材
12a 第2の平面
13 支持部
14 空気吸引路
14a 吸引溝
14b 吸引穴
18 流路
DESCRIPTION OF SYMBOLS 1 Irradiation device 2 Irradiation body 7 Light emitting element 8 Substrate 11 1st heat radiating member 11a 1st plane 12 2nd heat radiating member 12a 2nd plane 13 Support part 14 Air suction path 14a Suction groove 14b Suction hole 18 Flow path

Claims (7)

発光素子が設けられた長尺状の基板と;
前記基板が接して設けられ、前記基板から伝わる熱を放出する第1の放熱部材と;
前記第1の放熱部材を支持する支持部を有し、前記支持部と前記第1の放熱部材とが接するように前記第1の放熱部材を負圧で吸引するための空気吸引路が設けられ、前記第1の放熱部材から伝わる熱を放出する第2の放熱部材と;
を具備し、
前記空気吸引路は、前記基板の長手方向に沿って延びる吸入溝と、前記基板の長手方向に直交する方向に延びて前記吸入溝に連通する複数の吸引穴と、を有する照射体。
A long substrate provided with a light emitting element;
A first heat dissipating member provided in contact with the substrate and releasing heat transmitted from the substrate;
An air suction path for sucking the first heat radiating member with negative pressure is provided so as to have a support portion that supports the first heat radiating member, and the support portion and the first heat radiating member are in contact with each other. A second heat radiating member for releasing heat transmitted from the first heat radiating member;
Equipped with,
The air suction path includes a suction groove extending along a longitudinal direction of the substrate, and a plurality of suction holes extending in a direction orthogonal to the longitudinal direction of the substrate and communicating with the suction groove .
前記第1の放熱部材は、前記第2の放熱部材の前記支持部と接する第1の面を有し、
前記第2の放熱部材の前記支持部は、前記空気吸引路によって前記第1の放熱部材を吸引したときに前記第1の面と接する第2の面を有し、前記第2の面に前記空気吸引路が設けられている、請求項1に記載の照射体。
The first heat radiating member has a first surface in contact with the support portion of the second heat radiating member,
The support portion of the second heat radiating member has a second surface in contact with the first surface when the first heat radiating member is sucked by the air suction path, and the second surface has the second surface. The irradiation body according to claim 1, wherein an air suction path is provided.
前記第2の放熱部材の前記支持部は、前記第1の放熱部材をスライドすることによって前記第1の放熱部材を着脱可能に支持する、請求項1または2に記載の照射体。   The irradiation body according to claim 1 or 2, wherein the support portion of the second heat radiating member detachably supports the first heat radiating member by sliding the first heat radiating member. 前記第2の放熱部材には、冷却用流体が流れる流路が設けられている、請求項1ないし3のいずれか1項に記載の照射体。   The irradiation body according to any one of claims 1 to 3, wherein the second heat radiation member is provided with a flow path through which a cooling fluid flows. 請求項1ないし4のいずれか1項に記載の照射体と;
前記照射体が着脱可能に装着される装着部と;
を具備する照射装置。
An irradiation body according to any one of claims 1 to 4;
A mounting portion to which the irradiation body is detachably mounted;
An irradiation apparatus comprising:
請求項4に記載の照射体と;
前記照射体が着脱可能に装着される装着部と;
前記照射体の前記流路を流れる前記冷却用流体を冷却する冷却装置と;
を具備する照射装置。
An irradiated body according to claim 4;
A mounting portion to which the irradiation body is detachably mounted;
A cooling device for cooling the cooling fluid flowing through the flow path of the irradiator;
An irradiation apparatus comprising:
前記第2の放熱部材の前記空気吸引路から空気を吸引する吸引装置を更に具備する、請求項5または6に記載の照射装置。   The irradiation device according to claim 5, further comprising a suction device that sucks air from the air suction path of the second heat radiation member.
JP2015073658A 2015-03-31 2015-03-31 Irradiation body and irradiation device Active JP6471586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015073658A JP6471586B2 (en) 2015-03-31 2015-03-31 Irradiation body and irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073658A JP6471586B2 (en) 2015-03-31 2015-03-31 Irradiation body and irradiation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019009132A Division JP6693581B2 (en) 2019-01-23 2019-01-23 Irradiator and irradiation device

Publications (2)

Publication Number Publication Date
JP2016194991A JP2016194991A (en) 2016-11-17
JP6471586B2 true JP6471586B2 (en) 2019-02-20

Family

ID=57323094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073658A Active JP6471586B2 (en) 2015-03-31 2015-03-31 Irradiation body and irradiation device

Country Status (1)

Country Link
JP (1) JP6471586B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017006537U1 (en) * 2017-12-21 2018-01-19 Gunther Ackermann Device for irradiating an object
JP7302409B2 (en) * 2019-09-24 2023-07-04 東芝ライテック株式会社 Irradiation unit and liquid crystal panel manufacturing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411469A (en) * 1977-06-29 1979-01-27 Fujitsu Ltd Construction for cooling wiring board
DE102004015700A1 (en) * 2004-03-29 2005-11-03 Platsch Gmbh & Co.Kg Flat UV light source
CN200955726Y (en) * 2006-10-08 2007-10-03 夏志清 LED lighting lamp with thermal negative pressure radiating tube
JP2010262742A (en) * 2009-04-30 2010-11-18 Kowa Co Led illumination device
JP2011165509A (en) * 2010-02-10 2011-08-25 Moritex Corp Led lighting system

Also Published As

Publication number Publication date
JP2016194991A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
TWI658235B (en) Radiating device and light irradiation device having the same
US10119759B2 (en) Heat radiating apparatus and light illuminating apparatus with the same
TWI696788B (en) Light irradiation device
KR20080017557A (en) Led module having cooling apparatus
KR20110060476A (en) Light emitting diode module
TWI814985B (en) Fluid sterilization device
JP6471586B2 (en) Irradiation body and irradiation device
KR20160010352A (en) Light irradiation apparatus
JP6693581B2 (en) Irradiator and irradiation device
KR100948955B1 (en) Lighting device
KR20200093431A (en) Heat dissipation device and light irradiation device having same
JP6648631B2 (en) Irradiation body and irradiation device
JP7302409B2 (en) Irradiation unit and liquid crystal panel manufacturing equipment
KR20100124411A (en) Heat sink for led lamp and led lamp
JP6544002B2 (en) Irradiator
TWI659189B (en) Radiating device and light irradiation device having the same
KR101625895B1 (en) The apparatus for lighting uv light
JP2008288456A (en) Light source device
JP6507543B2 (en) Light source device
TWI809174B (en) Ultraviolet irradiation unit and ultraviolet irradiation device
KR200434213Y1 (en) LED module having cooling apparatus
KR20160030423A (en) Light emitting apparatus
JP2021053565A (en) Ultraviolet irradiation apparatus
JP2010186674A (en) Led unit and led light source device
JP2010093008A (en) Light emitting diode unit and luminaire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R151 Written notification of patent or utility model registration

Ref document number: 6471586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151